EQUIVARIANT BIRATIONAL TYPES AND BURNSIDE
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ABSTRACT. We introduce equivariant Burnside groups, new invari-
ants in equivariant birational geometry, generalizing birational sym-
bols groups for actions of finite abelian groups, due to Kontsevich,
Pestun, and the second author, and study their properties. We es-
tablish a specialization map for the equivariant birational type of a
smooth algebraic variety with an action of a finite group.

1. INTRODUCTION

Let G be a finite group, acting on algebraic varieties X and X', de-
fined over a field k. A classical problem in higher-dimensional algebraic
geometry is to determine whether or not there exists a G-equivariant
birational morphism between X and X’. This is a formidable challenge
already when G is the trivial group and X' = P™: the rationality problem
has occupied generations of mathematicians and inspired the introduc-
tion of many important ideas and techniques. Recently, there has been
a resurgence of interest and activity in rationality questions, with the
introduction of specialization techniques in [32], [9], [23], [17], and their
applications to various classes of varieties, e.g., in [30], [11], [12], [13],
27], [28], [22].

There is also an extensive literature on G-equivariant birationality.
In dimension two, the problem reduces to the study of the G-module
structure of the Picard lattice Pic(X), coupled with the detailed study
of the geometry of Del Pezzo surfaces (see, e.g., [20], [10], [7]). The
situation is much less clear in higher dimensions, where the main tools
come from the Minimal Model Program and birational rigidity.

In this paper, we introduce and study a new invariant in G-equivariant
birational geometry. Informally, it is defined as follows. Let X © G be
a smooth projective variety of dimension n, together with a generically
free action of GG. Then:

e After a sequence of blow-ups in smooth G-invariant subvarieties,
we can assume that the G-action on X has only abelian stabilizers.
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e To each (orbit of a) subvariety with generic abelian stabilizer
H C G we attach a symbol

(H,Ng(H)/H C K, p), (1.1)

where K is the function field of the stratum with action of the
normalizer Ng(H) of H in G, such that the restriction to H is
the trivial action, and S encodes the generic representation of H
on the normal bundle.

e The invariant [ X © G] of X © G is the sum of all such symbols.

The invariant takes values in the equivariant Burnside group,
Burn, (G) = Burn,, x(G),

a quotient of the Z-span of symbols as above by explicit relations, im-
posed so that

(X O G =[X"9d]

whenever X and X' are G-equivariantly birational. In the definition of
[X © G] (Definition 4.4), we rely on

e the divisorialification algorithm of Bergh and Bergh-Rydh, ap-
plied to the quotient stack [X/G], to obtain abelian stabilizers,
e the G-equivariant form of weak factorization.

Throughout, we make the assumption that k& has characteristic zero, and
we make an additional, simplifying assumption concerning roots of unity
in k. (These are stated in Section 2.)

When G is trivial, Burn, (G) is the Burnside group of fields

Burn,, = Burn,, j,

defined in [17]. When G is abelian, Burn, (G) admits a surjective homo-
morphism to the group B, (G, k) introduced in [16]; the comparison is
explained in Section 8. For general (G, we construct a homomorphism

Burn, (G) — Burn,,

to the Burnside group of orbifolds of [18]. When X is a smooth projective
variety with generically free G-action, this sends [X © G] to the class in
Burn, of the quotient stack [X/G].

One of our main constructions is a homomorphism of abelian groups,
the equivariant Burnside volume (Definition 6.4)

pS: Burn, x(G) — Burn, x(G),

when K is the function field of a complete DVR o with residue field &
and uniformizer 7. This is an equivariant version of the map of [17, §5].
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As a consequence we obtain the equivariant specialization of birationality
(Corollary 6.8): If

X — Spec(o) and X' — Spec(o)

are smooth and projective, with generically free actions of a finite group
G and G-equivariantly birational generic fibers, then the special fibers are
G-equivariantly birational.

Acknowledgments: We are very grateful to Maxim Kontsevich for es-
sential contributions to the main constructions and inspiring discussions
on these and related questions, and to Brendan Hassett for his interest
and comments. The first author was partially supported by the Swiss
National Science Foundation. The second author was partially supported
by NSF grant 2000099.

2. PRELIMINARIES: ALGEBRA

In this section we outline an algebraic condition, in terms of group
cohomology, and some of its consequences, that apply to the function
fields in a symbol (1.1).

Let G be a finite group; write Ng(H) for the normalizer of a subgroup
H C @. Fix a choice of representatives

... H,

of the conjugacy classes of abelian subgroups of G and let e be the least
common multiple of the exponents of Hy, ..., H,. Throughout, we work
over a field k of characteristic zero; for convenience, we assume that k
contains primitive e-th roots of unity. The character group of an abelian
subgroup H C G will be denoted by

HY := Hom(H, k™).

We will use standard facts about Galois algebras K/Kj for a finite
group I', where K| is a field. For instance (see, e.g., [14, §4.3]):

e Writing K = K! x --- x K* as product of fields, for the subgroup
I'' that sends the factor K! to itself we have K equivariantly
isomorphic to Indp. (K1).

e (Hilbert’s Theorem 90) HY(T', K*) = 0.

Assumption 1. If H C G is an abelian subgroup, K a field containing k,
and K/Kj a Galois algebra for the group Ng(H)/H, then the composite
homomorphism

H'(Ng(H), K*) — HY(H, K*)NeUW/H _, [V (2.1)
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is surjective, where the first map comes from the Hochschild-Serre spec-
tral sequence and the second is obtained by writing

K~K'x .. x K
where each K® is a field, and projecting to a factor
H'(H,(K")*) = Hom(H, (K")*) = H".
Remark 2.1. That K is a field in Assumption 1 implies:

(i) The choice of a different factor K% in Assumption 1 modifies
the composite homomorphism (2.1) by the automorphism of H",
induced by conjugation of H by a suitable element of Ng(H).

(ii) Assumption 1 is therefore independent of the choice of factor K.

(iii) The composite homomorphism (2.1) is always injective, since by
the Hochschild-Serre spectral sequence, the kernel is identified
with H'(Ng(H)/H, K*), which is zero by Hilbert’s Theorem 90.
Thus, an equivalent form of Assumption 1 is that the composite
homomorphism (2.1) is an isomorphism.

Proposition 2.2. Let H be an abelian normal subgroup of a finite group
N, Ky a field containing primitive e-th roots of unity, where e is the
exponent of H, and K/Ky a Galois algebra for the group N/H. Write

K2K'x - x K,

where K, ..., K are fields, choose some i € {1,...,0}, and suppose
that the composite homomorphism

HY(N, K*) — HY(H, K>V - HY(H, (K')*)

1s an isomorphism. Then, for every m € N there is a unique map of
non-abelian cohomology sets

HY(N,GL,,(K)) — H' (H,GL,,(Kp)) (2.2)
that is compatible with extension of scalars

HY(H,GL,,(Ky)) — H'(H,GL,,(K"))
and restriction

H'(N,GL,,(K)) = H'(H,GL,,(K")),
and this map (2.2) is bijective.

Proof. The extension of scalars map is injective (by standard representa-
tion theory). It suffices to exhibit a bijective map (2.2) that is compatible
with the maps to H'(H, GL,,(K")).
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Let ( € Ky be a primitive e-th root of unity. We write, according to
the structure theorem of finite abelian groups,

HZ=Z/mZ x - X L/nZ, mny,...,n.>2, n;|ng forall i

with n, = e. Sending the i-th generator of H to (¢/™ and all other gener-
ators to 1, we have an element of H'(H, K;), which by hypothesis comes
from a 1-cocycle (u;4)gen Wwith values in K. Furthermore, (u;})gen is
a l-coboundary, i.e., for some v; € K* we have

=9, vy, for all g € N.

Uy

The data of (u;");, and (v;); give us a way to assign, functorially,
a Galois algebra for the group H over an étale Ky-algebra Ly to every
Galois algebra L/Lg for the group N with N-equivariant Ky-algebra ho-
momorphism K — L. Specifically, given L/Lg and ¢: K — L, for every

v we apply Hilbert’s Theorem 90 to obtain w; € L* such that
L(wig) = Jw; /w;, for all g € N.

For every i, then, ¢(v;)w; ™ is Galois-invariant, i.e., lies in L, and is
unique up to multiplication by an element of (Lj)™. This observation
lets us assign, functorially, the Galois algebra

Lolty, ..., t.]/(t7" — t(v)w] ™, ... t0 — o(v,)w, ™)

r

for the group H over Ly. The functorial association is fully faithful.
Essential surjectivity follows easily from the fact that any two Galois
algebras L/ Lo and L{/ L for the group H become equivariantly isomor-
phic after passage to a suitable étale algebra over L.

The previous paragraph gives us an equivalence of categories. This in
turn induces an equivalence of categories of the functorial associations of
a free Lo-module of rank m to every Galois algebra L/ Lg for the group N
with N-equivariant Ky-algebra homomorphism K — L, respectively, to
Galois algebras Ly /Ly for the group H. The isomorphism classes of ob-
jects are given by H'(N, GL,,(K)), respectively, H'(H, GL,,(K,)), so the
equivalence of categories gives us a bijective map (2.2). The compatibility
with the maps to H'(H, GL,,(K")) is immediate from the construction
and the fact that m-dimensional representations of H over K, whose
equivalence classes are parametrized by H'(H, GL,,(Kj)), decompose as
direct sums of 1-dimensional representations. [

Action construction (A): Let
HCG, K,  Ne(H)/HCK,
satisfy Assumption 1, let
a,...,a, € A:=H"
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be characters, and define

H = ﬂ ker(a;),

i=1
with character group
A=A/ ay, ..., a.).
We take
Upy - v ey Ue
to be 1-cocycles, u; = (Ui,g)geng (), With values in K, corresponding by

the isomorphism that we have, thanks to Remark 2.1(iii), to ay, ..., a;
these determine an action

No(H) & K(ty,...,t.).
Writing, as in Assumption 1,
K~K'x .. x K
we define K’ to be the product of all K such that the action
HC K'(ty,...,t)
restricts to the trivial action of H. Then the action of
H = Nyg)(H)
on K'(ty,...,t.) restricts to the trivial action of H, thus we have
H/HCK'(ty,... t.).
We define

K = Ind%?(H’ K'(ty,... . t).

3. PRELIMINARIES: GEOMETRY

Let G be a finite group and X a reduced quasiprojective scheme over k,
equipped with a generically free action of G. By convention, we suppose
that the generic point of any component has dense orbit in X. Then
we will say that X is a quasiprojective variety with generically free G-
action. We suppose that X is smooth and remind the reader that this
can be achieved with equivariant resolution of singularities. (Resolution
of singularities is available in a functorial form, see, e.g., [31], [6].) We
will also make use of functorial weak factorization, established in [1].

By a smooth blow-up of X we mean the blow-up of X along a smooth
subscheme. We say that a smooth blow-up is equivariant when it is the
blow-up of X along a smooth G-invariant subscheme.
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Remark 3.1. Geometry naturally leads to situations where Assumption
1 is relevant. Suppose that G acts on X with abelian stabilizer groups.
Let V C X be a reduced subscheme, such that if we express the decom-
position into irreducible components as

V=Viu.-..uve,

then G acts transitively on {V1 ..., V7}. The generic stabilizer groups
of the V* comprise a single conjugacy class of abelian subgroups of G,
say, the one represented by H € {Hy,..., H,}. We write
{Y?! ..., Y"} := {V?| the stabilizer of the generic point of V' is H},
Y :=Y'U.--UY?
and note that Ng(H) acts transitively on {Y!, ... Y*}. We choose a
trivialization of the fiber of the normal bundle

Ny/x

at the generic point of each Y*. Letting m denote the codimension of Y,
the Ng(H )-action gives rise to a 1-cocycle, representing a class in

H' (Na(H), GLn(k(Y))),

where k(Y) denotes k(Y?!) x --- x k(Y?). We have a Galois algebra
k(Y)/k(Z) for the group Ng(H)/H, where Z denotes the quotient variety
Y/Ne(H) = V/G,

and when m = 1 (respectively m > 1) the class may be studied via the
map in Assumption 1 (respectively in Proposition 2.2).

For H € {Hy,...,H,}, the H-fixed locus X* is smooth and stable
under the action of Ng(H). We consider an N¢(H )-orbit of components
of X# where the stabilizer at the generic points of the components is
equal to H. Denoting one such by Y, we have a generically free action
of No(H)/H on Y with an irreducible quotient variety Z.

Assumption 2. The G-action on X satisfies:
e All stabilizers of the action of G on X are abelian.
e For every H € {H,,..., H,}, with character group H", and every
Y as above, the composite homomorphism
Pic’(X) — H'(Ng(H), k(Y)*) — HY(H, k(Y ) )NeW/H _y v

is surjective.

Remark 3.2. We make the following observations:

(i) Assumption 2 implies Assumption 1, for all abelian H C G and
Galois algebras as above k(Y')/k(Z) for the group Ng(H)/H.
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(ii) Assumption 2 implies that there exists a finite collection of G-
linearized line bundles on X such that the images of the classes
in Pic”(X) generate HV, for every H and Y as above.

(ili) Assumption 2 is equivalent to the existence of a finite collection of
G-linearized line bundles on X such that the associated morphism
of stacks

[X/G] = BG,, x --- x BG,,
(where the number of factors BG,, is the number of linearized
line bundles) is representable.

In (iii), [X/G] is the quotient stack associated with the G-action on
X and BG,, is the classifying stack of G,,, so that each G-linearized
line bundle on X determines a morphism [X/G| — BG,,. For a given
finite collection of G-linearized line bundles on X the equivalence of the
conditions stated in (ii) and (iii) is given in [4, Rem. 7.14].

Proposition 3.3. Let X be a smooth quasiprojective variety with a
generically free action of G. There exists a sequence of equivariant
smooth blow-ups

X'=X,— =X = X,=X,
such that X', with its G-action, satisfies Assumption 2.

Proof. This is a consequence of the divisorialification algorithm of Bergh
[4] and Bergh-Rydh [5], applied to the quotient stack [X/G]. For the
convenience of the reader we explain how this works in the language of
equivariant geometry. Let D = D;U---U D, be a simple normal crossing
divisor on X, where each D; is G-invariant. The divisorial index is a
quantity attached to a point x (closed or not) of X and the divisor D.
Let H denote the stabilizer of x (so H acts trivially on {z}), and let A/
denote the normal bundle /\/’m / «|{z3- Each D; that contains x determines
a one-dimensional linear representation of H. Denoting the intersection
of the kernels of these representations by H’, the divisorial index at x is
the dimension of the nontrivial part of NV, as a representation of H'.
We regard X as equipped with a simple normal crossing divisor D =
D1U---UD, on X, where each D; is G-invariant: initially D may be taken
to be empty, and with every blow-up we replace each D; by its proper
transform and adjoin the exceptional divisor as Dy,;. Let m denote
the maximal value of the divisorial index, over all the points of X. If
m > 0, then by [4, §7-8] and [5, §6] the points with divisorial index m
are the points of a smooth G-invariant closed subscheme W C X which
has normal crossing with Dy, ..., D,, and after blowing up X along W,
every point of the blow-up has divisorial index less than m. Iterating,
we achieve m = 0. O
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Remark 3.4. In the proof of Proposition 3.3 we may start with any simple
normal crossing divisor D = Dy U ---U D, on X, where each D; is G-
invariant. This transforms in the indicated manner with each blow-up
to yield, finally, a simple normal crossing divisor D' = D U ---U Dy, on
X'. A variant, which does not change the variety X’ that we get at the
end (up to isomorphism), is to write at every step

W=W,U---UW,

a disjoint union, where each W; is a G-orbit of components, and to index
the exceptional divisor over each W; separately. Denoting by ¢: X’ — X
the composite map, with this variant the support of ¢~1(D) is necessarily
of the form | J, ¢ D;j for suitable S C {1,...,¢'}.

Example 3.5. Even if k contains all roots of unity (e.g., is algebraically
closed), Assumption 1 is nontrivial. For instance, let G = Dg be the
dihedral group of order 8, generated by p of order 4 and o of order 2. For
H = {p) we consider the Galois algebra C(z)/C(z?) for the group G/H.
Assumption 1 is not satisfied, since |[H'(G,C(2)*)| = 2. When this arises
geometrically, e.g., from G acting on A} with

p'(xay)z):<_yaxvz> and U'(«'anaz):(l’a -Y, _Z)7
divisorialification in the form of Proposition 3.3 leads to a situation where
Assumption 2 is satisfied, hence as well Assumption 1.

Proposition 3.6. Let X and X' be smooth projective varieties, each
equipped with a generically free G-action, satisfying Assumption 2. Given
a G-equivariant birational map

o: X' --» X,

restricting to an isomorphism over an open U C X, there exists a weak
factorization of p, where each map is, or is inverse to, a equivariant
smooth blow-up along a center disjoint from U, and the intermediate
varieties in the weak factorization also satisfy Assumption 2.

Proof. 1t suffices, by equivariant resolution of singularities, to treat the
case that ¢ is a morphism. Then we apply the functorial weak factor-
ization of [1] and notice that, since the intermediate varieties admit a
G-equivariant morphism to X, by Remark 3.2(iii) they all satisfy As-
sumption 2. |

Remark 3.7. The proof of Proposition 3.6 starts by applying equivariant
resolution of singularities to the closure in X’ x X of the graph of the
restriction of ¢ to U, to reduce to the case that ¢ is a morphism. In the
presence of boundary divisors D C X, D =D, U---U D,, and D' C X',
D' = DjU---U Dy, simple normal crossing divisors with respective
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complement U, where each D; is G-invariant, equivariant resolution of
singularities with boundary divisor lets us reduce to the case that ¢
is a morphism and ¢~'(D) is a simple normal crossing divisor. The
equivariant weak factorization of [1] is applicable to ¢: X’ — X with
pair of boundary divisors (p~(D), D).

Remark 3.8. The correct formulation of Assumptions 1 and 2, when k
does not contain enough roots of unity, is that a factor K* of K contains
primitive e-th roots of unity, where e is the exponent of H, and the
composite map to H'(H, (K*)*) is surjective. (This does not imply that
K, contains primitive e-th roots of unity, as we may see by taking G and
H as in Example 3.5 and G/H C C over K :=R.)

4. EQUIVARIANT BURNSIDE GROUP

In this section we define the equivariant Burnside group and study
its first properties. It receives G-equivariant birational invariants of G-
varieties over a field k, where G is a finite group. We maintain the
assumption that k has characteristic zero and contains primitive e-th
roots of unity, where e is the least common multiple of the exponents of
abelian subgroups of G.

It will be convenient for the following to proceed in two steps.

Definition 4.1. The symbols group

Burn? (G)
is the Z-module with
Generators:
(H,Na(H)/H C K, ),
where

e H C (G is an abelian subgroup,

e K/Kj is a Galois algebra for the group Ng(H)/H, where Kj is a
finitely generated field of transcendence degree d < n over k, up
to isomorphism, satisfying Assumption 1, and

e (3 is a faithful (n — d)-dimensional linear representation of H over
k, with trivial space of invariants, up to equivalence; by Assump-
tion 1, § decomposes as a sum of one-dimensional representations,
hence we may write 5 as a sequence of characters, up to order:

B=(a,...,an_q), a; € A:=H".
These are subject to the following conjugation relations:
(C1): Triples with same subgroup and algebra extension are identified,
(H,No(H)/H C K, ) = (H, Ne(H)/H C K, '),
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when § and " are related by conjugation by an element of Ng(H).

(C2): Triples with subgroups and algebra extensions related by conju-
gation by g € G are identified,

(H,N¢(H)/H & K,) = (H',Ng(H')/H & K, '), H' =gHg™,
when 3 and 3’ are related by conjugation by g.

Notice, if H = gHg ! = ¢’Hg'~!, then the two symbols, identified
with (H, Ng(H)/H C K, ) by applying (C2) to g and ¢', will be related
by (C1). By (C2), the class of any triple in Burn® (G) may be expressed
as (H,Ng(H)/H & K, ) with H € {Hy,...,H,}.

Definition 4.2. The equivariant Burnside group
Burn, (G) = Burn,, x(G)
is the Z-module with

Generators:
(H,Ne¢(H)/H C K, B),

as above, satisfying conjugation relations (C1)—(C2) and the following
blow-up relations (n —d > 2):

(B1): For all H, K, and ay,a3...,a,-4 € A we have
(H,Ng(H)/H C K, (a1, —ai,as,...,a,_4)) = 0.

(B2): For all H, K, and 8 = (a1,...,a,_q), a; € A,
(Hu NG<H)/H c K?ﬁ) = C'_')1 +@27

where
O, — 0, if a; = a9,

' \(H Ne(H)/H G K, 1)+ (H No(H)/H & K, 3), otherwise,
with

B = (al, Qg — G1,0a3, . . . 7an7d>7 Po = (CL27 ap — Gg,as, . . . 7an7d)7

and
o, — 0, if a; € (a; — ay) for some i,

2 (H,Ng(H)/H & K, B), otherwise,
with

z:: A/<a1_a2>7 ﬁ\/:za B:: (C_LQ,C_L3,...,C_Ln_d), a; Ez’

and K, with the action, described in Construction (A) in Section 2,
applied to the character a; — ap (with ¢ = 1).
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Example 4.3. Let G = Dg be as in Example 3.5, and H := (p?,0) C G.
In Burny(G) we have

(H,G/H & C x C, (ay,a2)),
with generators ay, as of the character group A of H, equal to
(H,G/H ¢ CxC,(ar,a1 +a2)) + (H,G/H & C x C, (as,a; + az))
+ (o), {p*,0) /(o) C C(t), a),

where ©; from (B2) appears on the first line, and ©,, on the second;
in a character group of order 2 we write a for the non-identity element.
Here, ©, is obtained from the action of G on C(t) x C(u) given by

p-t=—u, o-t=—t,

p-u=t, o-u=1u,

and the nontrivial character in A = A/{a; + as). Now H = {(p?0) acts
trivially only on the first factor C(t). So ©, is

((p%0), (p*,0)/{p*0) C C(t),a),
written above in an equivalent form by applying (C2).

Definition 4.4. Let X be a smooth projective variety over k with gener-
ically free G-action, satisfying Assumption 2. Put

XoaG) =) > (H;, No(H;)/H; G E(Y), By (X)). (4.1)
i=1 Y C X with
generic stabilizer H;
In the inner sum, Y is an Ng(H;)-orbit of components where the generic
stabilizer is H;. We understand k(Y') to be the product of the function
fields of the components, and we let the generic normal bundle represen-
tation along Y be recorded as Sy (X).

Example 4.5. There exist projective equivariant compactifications of
faithful representations of abelian groups, of the same dimension, which
are not birationally equivalent. Indeed, by [26, Theorem 7.1] (see also [29,
Section 1]), if V' and W are d-dimensional faithful representations of an
abelian group G of rank » < d, and x4, ..., xq, respectively ny,...,nq €
GV, are the characters appearing in V, respectively W, then these are
G-equivariantly birational if and only if

Xl/\.../\Xd:ﬂ:nl/\.../\ndG/\d<Gv).

(This condition is nontrivial only when r = d.)
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Remark 4.6. In motivic integration, one has considered an equivariant
version K§(Varg) of the Grothendieck group of algebraic varieties over
a field k (see, e.g., [19, Lemma 5.1]). Note that in the definition of
K§ (Vary,), one trivializes the actions of finite groups on A", which is a
significant coarsening, from the birational perspective, as can be seen
from Example 4.5.
Proposition 4.7. In Burn,(G) we have the following relations:

(i) Ifar +---+a; =0, for some j € {2,...,n—d}, then

(H,N¢(H)/H & K, (a1,...,a,-4)) = 0.
(ii) For any 2 <j<n-—d,
(H,Ne(H)/H C K, (a1, ..., a5-q)) = Z (Hr, Ne(Hr)/Hr & K, Br)

(I,C[)

where the sum is over pairs (I,C) such that
— I ={ig,...,i.} C{1,...,7} is nonempty,
— (7 is a nontrivial coset of the subgroup

<CLZ‘1 — CLZ'O, . ,CLZ'C — CLZ‘0> C A,
—I={1<i<jla€C},
— the elements
C_Lj+1, R ,C_Ln_d S A[ = A/<az‘1 — Qijyy - ooy A, — CLZ‘0>

are nonzero,
and Construction (A) in Section 2 is applied to the characters

Ay — A4y, <oy a;, — Ay

c

to obtain
(Hr, Ng(Hp)/H; C Ky, Br),

with Hy == H, K; = K, and

Br = (s, Gy, — iy, - - -, Qg = Qig, Aji1s - - -5 Apd),

j—c—1

where {4, ...,i5 . yUT={1,...,7}.

Proof. We prove (i) and (ii) by induction on j, where the base case j = 2
is (B1), respectively (B2). For the inductive step of (i), we set

B = (a1,a1 + az,as, ..., a, a).
If a; + -+ aj41 =0, then (B2) and the induction hypothesis yield
(H,Ng(H)/H, (a1, as,...,a,-4)) = 0.
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We carry out the inductive step of (ii). Apply the induction hypothesis:

(H,No(H)/H G K, (a1, ... ,an-a)) = > _ (H;, Na(H;)/H; C K1, Br),
(I7CI)

and, for each (I,C}), apply (B2) to weights in §; corresponding to a;,

and @;41:

(H,Ng(H)/H C K, (a1,...,an-a)) = > _ O1+6s.

(LCI)
For instance, the contribution of ©; is
> o -
(1701)
> (Hi, No(Hp)/Hy & Ky, B7) (4.2)
(I’CI)
+ Z (H[aNG(HI)/HI CKI)ﬁ?)? (43)
(1701)
where
5} = (aim @Z/l - aioa v 7di;_c_1 - aim &j-i-l - dioa &j-i-?v <. 7dn—d)7
BT = (@j41, Q. — iy - - y Qi T Qigy Gig — g1, G2y - ; Gn—d)-
Now there are two cases. First we treat the case a;41 ¢ {a1,...,qa;}.

Then the induction hypothesis identifies
(H, N(;(H)/H C K, (al—aj+1, ey A=A, A1, g2, - ,an_d)) (44)
with (4.3). The sum of (4.2), (4.4), and

> e,
)

(I,C]
is equal to the required sum of triples over (I,Cr), I C {1,...,j + 1}.
In the remaining case a;+1 € {a1,...,a;}, we use (B1) to see that (4.3)
vanishes. What remains gives the required sum of triples. O

5. EQUIVARIANT BIRATIONAL INVARIANTS

Our first task is to show that the class introduced in Definition 4.4 is
an equivariant birational invariant, i.e.,

[X © G] € Burn, (G).

Then we extend the definition to include the case of quasiprojective G-
varieties. Finally, we extend the definitions to remove the dependence on
Assumption 2.
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Theorem 5.1. Let X and X' be smooth projective varieties of dimension
n over k, each with a generically free action of a finite group G, satisfying
Assumption 2. If X and X' are G-equivariantly birationally equivalent,
then

(X O G =[X"9d]
in Burn, (G).

Proof. By Proposition 3.6, it suffices to treat the case that X’ is obtained
from X by an equivariant smooth blow-up. So, let W be a G-invariant
smooth subscheme of X, of pure dimension dim(W) < n — 2. Now we
split [X © @] into two sums:

> > (HuNe(H)/H: G k(Y), By (X))

Ygw
generic stabilizer H;

i Z 3 (H;, No(H;)/H; & k(Y), By (X)).

YCW
generic stabilizer H;

Letting F denote the exceptional divisor of the blow-up, we similarly
split [X' © G] into two sums:

Z Z (Hy, No(Hy)/Hy & k(Y'), By(X))
i'=1 Y'¢E
generic stabilizer H;

+) > (Hy, No(Hy)/Hy C k(Y"), By (X')).
=1 Y'CE

generic stabilizer H;/
The two first sums are equal. It remains to verify that the two second
sums are equal in Burn,,(G). We consider some Y’ C E in the second sum
for [X’ © G]. The G-orbit of its image in X determines, by the generic
stabilizer, a conjugacy class representative H;, a union of components Z
with generic stabilizer H;, and Y containing Z, appearing in the first or
second sum for [X © G]. Then

j:=n—dim(Y) — dim(W) + dim(2)

is positive. Let codim(Y") be the codimension of Y in X; then codim(Y’) =
n — dim(Z) if and only if Y C W. In this case, the corresponding sum-
mand from the second sum for [X < G] is equal in Burn,(G) to the
corresponding terms from the second sum for [X’ © G], by Proposition
4.7 (ii). Otherwise, we have codim(Y) < n — dim(Z), and we have the
vanishing of the terms of the second sum for [X’ © G| by (B1). O
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We proceed to define [U © G| € Burn,(G) for a smooth quasipro-
jective variety U with a faithful action of G, satisfying Assumption 2.
Imitating (4.1) in the most naive way, we define

U © Gave = Z > (Hi, No(Hy)/Hi C E(V), By ().

V C U with
generic stabilizer H;

(5.1)
This suffers from an important drawback: A key property of classes in
the non-equivariant Burnside group, which fails for [U © {1}]"*"®, is that
when U C X is open, [X] — [U] € Burn, carries information about the
boundary X \ U, e.g., it is essentially what we get by application of the
specialization map on Burnside groups [17] when X fibers over a smooth
curve C' and U is the pre-image of C'\ {c} for ¢ € C(k). However, the
following is an immediate consequence of the definition of [U © G]*e.

Lemma 5.2. Let U C U be a G-invariant open subvariety, with the
property that every V.- C U in (5.1) has nontrivial intersection with U’.
Then in Burn, (G) we have

[U D G]naive — [U/ 'S G]naive.

The correct definition of [U © G| (Definition 5.4, below) involves an
alternating sum over boundary components, as in [18, (1.1)], and the
normal bundles

! NDI/X — D[,

in X of intersections of divisors

Dp:=(\Di, ICT:={1,... ¢}
iel
we agree by convention that Dy = X.

The class [U © G]"™"° is at least an equivariant birational invariant of
U; we recall (see, e.g., [18]), that, by definition, U and U’ are equivari-
antly birationally equivalent if there exist a quasiprojective G-variety V
and equivariant birational projective morphisms V' — U and V — U’.

Lemma 5.3. Let U and U’ be smooth quasiprojective varieties of di-
mension n over k, each with a generically free action of G, satisfying
Assumption 2. If U and U’ are equivariantly birationally equivalent, then

[U ) G]naive — [U/ ) G]naive'

Proof. As in the proof of Theorem 5.1, it suffices to treat the case that
U’ is obtained from U by an equivariant smooth blow-up. The proof of
Theorem 5.1 carries over without change to establish the lemma. O
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Definition 5.4. Let X be a smooth projective variety over k with a
generically free G-action satisfying Assumption 2. For smooth quasipro-
jective
U=X\D, D=JD;, I:={1..1}
i€T
with a generically free G-action, and a simple normal crossing divisor D,
with a compatible G-action, where each D; is G-invariant, we define

UoG:=[X20G+ > (-)Np,/x O G (5.2)
0AICT

Remark 5.5. In Definition 5.4, G is not allowed to permute the divisors
Dy, ..., Dy nontrivially. For instance, the compactification of

U:=A'x (A\{0}),
with action of G := Z/27Z by

(z,y) = (zy~ "y ™),
by P? is not permitted; instead we may work with the compactification
by the blow-up of P? at the point where the line y = 0 meets the line at
infinity.

It is possible to obtain an alternative formula by recognizing the can-
cellation of many terms in (5.2). We may work in the symbols group
Burn? (G).

Definition 4.4 gives a well-defined class of Burn® (G) attached to X © G.
We may analogously view [U © G]"*" as an element of Burn?(G) and
hence, as well, [U © G| by the formula (5.2) (whose a priori dependence
on the presentation of U as X \ D will be removed in Proposition 5.8,
below). Lemma 5.2 is valid in Burn? (G). The canonical homomorphism

Burn? (G) — Burn,(G)
relates the classes in Burn? (G) to the ones defined in Burn,,(G).
Definition 5.6. We adopt the notation of Definition 5.4. Recognizing,

I C 7, that Np,/x may be identified with the direct sum over i € I of
the restrictions Np, / x|p,, we define the punctured normal bundles

{@jel\{i}NDj/an when ¢ € I,

N7 =N,
Di/X D;/X \ U Wfl(Dfu{i})7 when i ¢ I,

i€
with projections
T2 Np,x = Dy = Dr\ U D;.

i€I\I
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Lemma 5.7. We adopt the notation of Definitions 5.4 and 5.6. Then
in Burn? (G), and hence in Burn,(G), we have

oG =UDa™ + > ()N, x O G

PAICT

Proof. There is a group homomorphism to Burn? (G) from

45 & D P zuwl, (53

H.} MCZ W C Djs with J C M satisfying
generic stabilizer H (1)—(ii) below
and {i € Z|W CD;} =M

where A := HY and a; € A is determined by the divisor D; for i € M,
so that A is generated by «a; for ¢ € M and Bw (D)) (characters of the
generic normal bundle representation along W in Dy), and J C M in
the final sum is required to satisfy:

() {J € Ma; € (aiieans} = M\ J;

(ii) no character in By (Das) lies in (a;)icnr -
Letting H; C H be the subgroup with H} = A/(a;);ean s, then, [J, W]
is mapped to the triple

(Hy, Ne(H;)/H; C Ky, B)),

where Ng(H;)/H; C K arises by application of Construction (A) in
Section 2 to Ng(H)/H C k(W) and (a;)iem\, and

B1 =75 ® Bw(Du)lu,,

with ~; given by a; for ¢ € J.

We interpret (5.2) as taking values in the group (5.3) as follows. Given
I C 7 and V appearing in the definition of [N, x O G]**"¢, we associate
[J,W] for W =V N Dy, where with M = {i € Z|W C D;} there is a
unique subset J such that I U J = M and, for the vector bundle

CaM: @ N, x|py — D,
i€M\J
we have V' = ¢7,(W). We observe that [N}, /x O G]"™¥° contributes
just the terms with J = 0.

The proposition is thus reduced to the observation that in the group
(5.3) the sum of terms from (5.2) with J # ) is zero. For given W (which
determines M) and J # (), each I C M with I U J = M appears with
coefficient (—1)/l. These coefficients sum to zero. O

)))))

Proposition 5.8. Let U O G be a smooth quasiprojective variety of
dimension n over k with a generically free G-action. Then its associated
class in Burn® (G), and hence in Burn, (G), is independent of the choice
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of presentation as U = X \ D, i.e., if X' is another smooth projective
variety with a generically free G-action, with an equivariant embedding
U — X' with complement

D'=JD, T=A{1,..0}
ieT
a simple normal crossing divisor, where each D) is G-invariant, such that

X' satisfies Assumption 2, then formula (5.2) agrees with the analogous
formula for X' and D’.

The proof of Proposition 5.8, along with the birational invariance of
[U © G] stated below as Proposition 5.13, will use Lemmas 5.3 and 5.7,
along with a careful cancellation argument much like that used in the
proof of Lemma 5.7. Because of the intricate combinatorics, we present
first an example in a simple setting to illustrate the cancellation scheme.

Example 5.9. Let X be a smooth projective variety of dimension n with
a generically free G-action, satisfying Assumption 2. Let U = X \ D,
where D is a smooth invariant divisor, let d > 2, and let Z be a smooth
purely (n — d)-dimensional subscheme of D:

ZCDcCX.

Let X be the blow-up of Z in X with exceptional divisor ' and proper
transform D of D. Then an instance of Proposition 5.8 is the following
equality:

(X © G| - [ND/X O G]naive =
[X ) G] o [Nﬁ/)} ) G]naive o [NE/)? S G]naive + [NﬁmE/)? S G]naive'

As a first step, we apply Lemma 5.7 to both sides. Then the terms
[U © G]™@¥¢ on each side cancel, leaving us to verify

[N[o)/X S G]naive . [ %/)} o G]naive —

[ g/)? ) G]naive o [ l%mE/)? ) G]naive.

(5.4)

The left-hand side of (5.4) is just the contribution to [Nj,y © G]"™"
from loci V' with various generic stabilizer groups that are contained in
the pre-image under N x D of Z. In the spirit of the proof of Lemma
5.7, these may be labeled by W C Z with some generic stabilizer H €
{Hy,..., H.}, where the divisor D determines an element a € A := H",
such that no character of By (D) lies in (a). The left-hand side of (5.4)
is a sum over such W of elements of Burn,(G) arising by Construction
(A) in Section 2 from Ng(H)/H & k(W) and a, with the representation
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obtained by restriction from Sy (D). On the right-hand side of (5.4), we
have

v = Nzx \Nzp, (5.5)

E/X
while N DrE/% is a direct sum of the line bundles

Nongp = Orvyyp) (—1) (5.6)
and
Nonge = Nojxlpw, ) ® Orw,,p) (1) (5.7)
Here, for (5.6)-(5.7) we use E = P(Nyx) and DN E = P(Ny/p). So,
z%mE/)? = (NZ/D \Z) xp (ND/X \ D). (5.8)

We relate the two punctured normal bundles on the right-hand side of
(5.4) by choosing, Zariski locally on Z, a G-equivariant splitting of the
short exact sequence of vector bundles

S

0—Nz/p Nz/x Np/x|z —0. (5.9)

This is possible, since splittings exist Zariski locally and may be averaged
with their translates to yield equivariant splittings, or in fancier language,
since the invariant local section functor on coherent sheaves is exact [2,
Lemma 2.3.4]. Using (5.5) and (5.8), we obtain from (5.9) isomorphisms

N3 \ sNoyxlz) = N

NE/X"

over G-invariant Zariski open subsets of Z. A splitting does not neces-
sarily exist globally but does exist and is unique upon restricting to the
locus Z’ where no character of 5z(D) is equal to a, by Schur’s lemma.
This observation, together with the fact that every W as above is con-
tained in Z’; lets us identify (see Lemma 5.10) the right-hand side of
(5.4) with a sum over W C Z as before and thereby establish (5.4).

Lemma 5.10. Let d < n, let Z be a smooth purely (n — d)-dimensional
quasiprojective G-scheme over k, and let U and U’ be quasiprojective
purely n-dimensional schemes over k, with generically free G-actions and
G-equivariant smooth morphisms

U—Z7 and U — 7.

Suppose that for every z € Z there exist a G-invariant Zariski neighbor-
hood Y C Z of z and a G-equivariant open immersion

U’ XzY >UXzY
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which commutes with the projection maps to'Y and satisfies the condition
in Lemma 5.2. Then in Burn® (G) we have

[U S G]naive — [U/ ) G]naive'

Proof. There exists a finite collection Yy, ..., Y,, of G-invariant Zariski
neighborhoods as in the statement of the lemma, whose union is Z. Over
each Y; we choose an open immersion as in the statement. In the def-
inition of [U" © G]™¥¢ to each 1 < i < r and V' C U’ with generic
stabilizer H; we associate j € {1,...,m}, taken to be minimal with the
property that the image of V' in Z has nontrivial intersection with Y;.
Then we use the chosen G-equivariant open immersion over Y; to iden-
tify a corresponding V' C U with generic stabilizer H;, appearing in the
definition of [U © G]"". The hypotheses guarantee that every V C U
appearing in the definition of [U © G]™¥¢ is accounted for. 0J

Proof of Proposition 5.8. By equivariant weak factorization (see Remark
3.7) it suffices to compare the presentations of U as X \ D and X \ D,
where X is obtained from X by equivariant smooth blow-up, with a
center of blow-up Z that is disjoint from U and has normal crossing with
the divisors D;, and

D=D,U---UD,UE,

where D; denotes the proper transform of D; for ¢ =1, ..., ¢, and F,
the exceptional divisor.
We introduce the notation

I'={ieZ|ZcCD} and I":={ieT|Z ¢ D;}
and, for I C 7,
I'=7'nI and I"=7"nlI.
Additionally, we define
Zr=D3,,;NZ.

Application of Lemma 5.7 to the expressions for [U © G| from U C X
and U C X' reduces the proposition to the verification of

Z (_1)|I|([ B[/X (®) G]Haive . [ %I/X' o G]naive) _
0AICT

Z(_l)\1|+1[N%ImE/)~( S, G]naive‘

ICT
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This is equivalent to
I o naive 0 naive
Z (—)M( Dy/x O Gl _[Nﬁl/)}@G] ) =
0AICT

Z (_l)\ll([ o “ G]naive _ [Ng ) G]naive).

) EI//ﬂE/)z DImE/jZ
#ICT

(5.10)

Indeed, taking iy € Z’, the summand with I = {iy} has first term
—V; % 9 G)"ave while the first terms from the remaining summands
cancel, as we see by pairing the terms indexed by I and I U {ip} for
0#1CT\ {io} _ _

For any I C 7 and ¢« € 7' we have D; \ D; = D;\ (D; U E). It
follows easily that the left-hand side of (5.10) is 0 whenever Z' ¢ 1.
When 7’ C I, the left-hand side of (5.10) is equal to the contribution to
NG, /x O G]™ from loci V with various stabilizer groups, contained

m

(m7) " (Zr).
Any such V is equal to (79)~* (W), where W is the image of V in Z;. Let
H be the generic stabilizer of (a union of components of) W. Then the
contribution, specifically, is gotten by pairing the outcome of Construc-
tion (A) in Section 2, applied to Ng(H)/H & k(W) and (a;)ies, with
the characters of Sy (Dg). We have

W cZ,

where
7' C Zr

is defined to be the locus where, for all i € 7', the character a; in the
corresponding character group does not appear in 8z, (D5).

We now turn to an analysis of the right-hand side of (5.10). Since Z
meets Dy transversally we have

~

NE/)Z'|1~)I//QE NEI//QE/EI/N

hence as well
. - A~ ~ -
NDI//QE/X - DI//ﬂE/DI// EB <@ND1/X’DI//HE) °
jerr

The complement of the zero-section in the line bundle N B,unE/D,, MAY
be identified with the complement of the zero-section in the vector bundle

Nb,nz/p,,- To obtain N2 -, we remove the exceptional divisors of
I DnnNE/X
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the blow-up of Dy along DN Z for every @ € I as well as everything
over divisors indexed by Z" \ I:

NJ%IHHE/)? = (NZI/DI” \ U NZI/DI”U{i}> X7z < X (NDj/X|ZI \ ZI)>‘

7,€Z/ je]!l
Analogously, in the respective cases Z' C [ and Z' € I we have
J%mE/)? = <NZI/DI \ ZI) X 7 ( X (Np, x|z \ Z1)>,
jel
respectively
Z%IQE/)} = (NZI/DI \ U NZI/DIu{i}> XZy < >< (NDj/X|ZI \ ZI))'
i€eT'\I gel
As explained in Example 5.9, Zariski locally over Z; there exist equi-
variant splittings of the short exact sequence

0— NZ,/DI/U, - NZ,/D,,/ — @ND]/X’ZI — 0. (5.11)
JET
First we treat the case 7' C I. Zariski locally over Z; we use splittings
of (5.11) to identify

NZI/DI 2 (@NDj/Xlzl)
JET!
with Nz, /p,,. We have also defined Z’ C Z, closed, over which a split-
ting s of (5.11) exists and is unique. So

U:= (NZI/DI// \ < U NZI/DI//U“} U 5(®NDi/X|Z’))) Xz

€T’ i€’

(X W, xlz \ 20)

jer

is a well-defined open subscheme of N 3 To U we have, over

I ﬁE/)? ’
G-invariant open subschemes of Z;, equivariant open immersions from

%1 e Lemma 5.10 is applicable and yields

[U 'S G]naive — [ (o ) G]naive

EIQE/)?
in Burn?(G) (or both U and D; N E are empty, and the equality holds
trivially). On the other hand, we may write

[ o ) G]naive _ [U S G]naive

EI//QE/)?

as a sum over W C Z; of elements of Burn®(G), which is equal to the
contribution to [N, © GJ™™ from loci contained in (77)~'(Z;). The
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equality of the left- and right-hand sides of (5.10) is thus established for
the summands with 7/ C I.
When 7' € I we take a splitting of (5.11) over invariant open Y C Z;

S: @ND]-/X|Y — NY/DI//
jez!

and restrict to €@ jer N, D;/ x|y to obtain an isomorphism

Ny/p, ® (@NDj/X|Y) = Ny/p,,- (5.12)
jer
This, we claim, induces an isomorphism of !%m B/% with A/ z%,m 5% OVer

Y. Indeed, when ¢ € I’, the isomorphism (5.12) induces
Ny/p, @ s( @ Np,/xly) = NY/D
jei\{i}
while for i € 7'\ I we obtain
NY/Dlu{z‘} D S( @NDJ/X|Y) = NY/DI”U{i}
jer
from (5.12). For the latter, it is crucial that the splitting used to produce

(5.12) is the restriction of a splitting s of (5.11). Lemma 5.10 is applicable
(where the open immersions that exist locally are isomorphisms), so that

N s © G = A, 5 © G =0
in Burn?(G), as desired. O

Remark 5.11. It is instructive to examine the proof of Proposition 5.8
when Z is equal to the intersection of some of the divisors D;. Then the
left-hand term in (5.11) is always zero. The equalities

[ Z%I/X S G]naive — [ %I//QE/)? S) G]naive (I/ g I) and
[ I%IQE/X' S G]naive — [ %IHQE/X— 'S G]naive (I/ g I)

can be traced back to canonical, globally defined G-equivariant isomor-
phisms of the respective pairs of punctured normal bundles. A general
result, from which these isomorphisms can (indirectly) be obtained is
stated next.

Proposition 5.12. Let W be a smooth quasiprojective variety with a
generically free G-action, D = Dy U ---U Dy a simple normal crossing
divisor where each D; is G-invariant, and ay, ..., a, positive integers.
Let U =W\ D and

K .= i*OU,
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where i: U — W denotes the inclusion. and define the Oy -subalgebra
A= {flayordy(f) + -+ agord(f) > 0}

of K, where ord;(f) denotes the order of vanishing of f € K, along
D; and the condition s imposed at all z € Z == DN ---NDy. Then
V := Spec(A) is smooth with smooth divisor E C 'V defined by the sheaf
of ideals

Z:={f|ayordy(f)+ -+ asordy(f) > 0},
and we have a canonical G-equivariant isomorphism

~ o

E/v =Nz/w-

Proposition 5.13. Let U and U’ be smooth quasiprojective varieties with
generically free G-actions, of the form U =X\ D and U' = X'\ D’ for
simple normal crossing divisors

D=\JD;, I:={1,....1},
i€T
and
D'=\JD, T:={1,...10}
€T’
where X and X' have compatible G-actions, satisfy Assumption 2, and

each D; and each D) is G-invariant. If U and U’ are equivariantly bira-
tionally equivalent, then

U9 Gl =[U ©d]
in Burn, (G).

Proof. As in the proof of Proposition 5.8 it suffices to treat the case
that X’ is obtained from X by equivariant smooth blow-up, where the
center of blow-up Z has normal crossing with the divisors D;, and the
components of Z form a single G-orbit. The case that Z is disjoint
from U has already been treated, so we may suppose that Z meets Dy
transversely, for every I C Z. Then we have ¢/ = ¢, and for every I C Z,

Npixr = Np,yx|pr -
By Lemma 5.3,
[NDI/X 'S G]naive — [ND’I/X’ S G]naive

in Burn, (G). By combining this with the equality from Theorem 5.1 we
get the desired result. O
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Using Proposition 3.3 we are able to extend the definition of the class
of a smooth projective G-variety in the equivariant Burnside group, so
that it is not necessary to suppose that Assumption 2 is satisfied. We
can extend, as well, the definition of the class of a smooth quasiprojective
G-variety to eliminate the requirement of Assumption 2.

Definition 5.14. Let X be a smooth projective variety over k with a
generically free G-action. The associated class in Burn,, (G) is obtained by
taking X’ to be a smooth projective variety with G-action and equivariant
birational morphism to X, such that X’ satisfies Assumption 2, and
setting

(X © G] = [X'© G] € Burn, (G).
Let U be a smooth quasiprojective variety over k with a generically free
G-action. The associated class is obtained by taking X with G-action
to be a smooth projective compactification of U with U = X \ D, such
that D = Dy U---U Dy is a simple normal crossing divisor on X, where
each D; is G-invariant, and X’ to be a smooth projective variety with G-
action and equivariant birational morphism to X, such that X’ satisfies
Assumption 2 and has a simple normal crossing divisor D' = D{U---UDy,,
where each D} is G-invariant, and D’ is the support of the pre-image of
D in X'; then

U © G] = [U' D G| € Burn,(G),

where U’ denotes the complement of D’ in X',

Theorem 5.15. The classes in Definition 5.1/ are well-defined and give
rise to equivariant birational invariants of smooth projective, respectively
quasiprojective varieties over k with a generically free G-action.

Proof. For projective varieties this is clear by Proposition 3.3 and Theo-
rem 5.1. For quasiprojective varieties we combine equivariant embedded
resolution of singularieties (for the existence of D as claimed) with Re-
mark 3.4 (for X’ and D’) and Proposition 5.13. O]

Remark 5.16. Tt is easy to see that the classes [U ©O G] generate Burn,, (G).

6. SPECIALIZATION

Let 0 be a complete DVR with residue field k. The goal of this section
is to produce a specialization map

Burn,, x(G) — Burn,, x(G),

where K denotes the field of fractions of 0. The non-equivariant case was
treated in [17]. A given smooth projective variety over K is extended to a
regular model X" over o, where the special fiber is a strict normal crossing
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divisor. Then the components of the special fiber, along with their inter-
sections, are used to define the specialization of [X]. In one variant, the
multiplicities of the components play no role. Another variant involves
the multiplicities and is sensitive to the choice of a uniformizer of o.

We fix a choice of uniformizer m € o. Then, from [17, §5]:

Definition 6.1. The Burnside volume
pr: Burn, x — Burn,, 4

is defined, for a smooth projective variety X of dimension n over K and
regular model X over o whose special fiber is a simple normal crossing
divisor Dy U - - - U Dy, with each D; irreducible, by

pe([X]) = D) (DR ), Ti=A{L 0
0#AICT
Here,
wr: Np,jx = Gm
denotes the morphism obtained from the trivialization of

i€l

Dy

determined by 7, where d; denotes the multiplicity of D; in the special
fiber of X.

Example 6.2. Let E be an elliptic curve over K := k((t)) with full
2-torsion defined over K and minimal model over k[[t]] of Kodaira type
I;. The special fiber consists of four rational curves of multiplicity 1
and a fifth rational curve of multiplicity 2. For I = {5}, w;'(1) is a
degree 2 cover of P!\ {4 points}, while the contributions from all other
I cancel. The outcome: p;([E]) is the class of an elliptic curve over k,
which changes by quadratic twist by a € k* when we replace t by at.

Remark 6.3. As may be deduced, e.g., from [21, Prop. 2.3.2], w; ' (1) may
as well be obtained from the normalization of

Spec(o[m'/1]) Xspec(o) X,

where d; denotes the ged of the integers d;, i € I, as a G torsor over
the pre-image of D7. In combination with Proposition 5.12, this quickly
leads to the following observations:
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e If m is a positive integer, then the DVR o’ := o[r!/™] with field
of fractions K’ := K (m'/™) gives rise to a commutative diagram

Pr
Burn,, g —— Burn,,

l pﬂl/m ‘

Burn,, g — Burn,, j,

e To obtain p,([X]) we may take m such that a semistable model
X over o’ exists and apply the specialization map

p
Burn,, g+ — Burn,,

of [17, §3], where the uniformizing element does not play a role.
(Such m exists by [15, §IV.3].)

We turn now to the equivariant case.

Definition 6.4. We define the equivariant Burnside volume
pf: Burn,, x(G) — Burn,, ;(G)

by, for H € {Hy,..., H,}, smooth projective Y over K of dimension
d < n with generically free action of Ng(H)/H, and 3 a sequence of
n — d elements of A := H" which generates A, sending

(H,Ne¢(H)/H ¢ K(Y), B)
to
> ()Y H, No(H)/H & k(w; ' (1)),8),  T:={1,....4}.
0AICT

Here we take Y to be a regular model over o, with compatible Ng(H)/H-
action and special fiber a simple normal crossing divisor Dy U --- U Dy,
where each D; is G-invariant, and let

wr: Np, 1y = G
denote the morphism obtained from the trivialization of

® Nb@id/iy

el

I

determined by 7, where the expression of the special fiber as D;U---UD,
is taken, so that the components of each D; have a common multiplicity
d;.

The verification that Definition 6.4 yields a well-defined homomor-
phism is straightforward. Indeed we recognize that the equivariant Burn-
side group splits as a direct sum according to the triviality or nontriviality
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of the representation component of triples. Now we view Y as quasipro-
jective over Spec(o) and apply Definition 5.14 to Y O Ng(H)/H, with
compactification ). In the definition we disregard Assumption 2 and
disregard all contributions from subvarieties with nontrivial generic sta-
bilizer. We also disregard the first term from (5.2). Disregarding all
contributions from subvarieties with nontrivial generic stabilizer reduces
Lemma 5.7 to a triviality. The essential content is contained in Propo-
sition 5.8, specifically (5.10). Since we are disregarding all contributions
from subvarieties with nontrivial generic stabilizer, the left-hand side
trivially vanishes. The (local) identifications of direct sums of normal
bundles that we obtain from equivariant splittings of short exact se-
quences of vector bundles respect the invertible function on punctured
normal bundles determined by 7. So, the cancellations remain valid when
the naive classes are replaced by the classes of the fibers over 1. The di-
rect summand of Burng ,(Ng(H)/H), determined by the triviality of the
first component of the triples, maps to Burn,, ;(G) by replacing the first,
respectively third component in each triple by H, respectively [.

Remark 6.5. The class of an irreducible variety with G-action can spe-
cialize to an orbit of varieties. For instance, a non-hyperelliptic curve of
genus 3 with unramified degree 2 cover may be presented by the defining
equation

Q1Q3 = an

in P2, respectively

Q1 =17, Q2 =rs, Q3 = 57,
in P4, where Q1, Q2, Q3 € k[u,v,w] are homogeneous of degree 2, with
G :=7/27 acting by (u:v:w:r:s)— (u:v:w:—r:—s) (see [8]).
Now we define X over k((t)) by replacing )y, respectively @3, by

@1 = u? 4+ tQ, respectively @3 =02+ tQs.

For general )1, ()2, (Y3, the same equations define a regular model X
where the special fiber consists of two pairs of conics exchanged by G, and
the equivariant Burnside volume of [X © G| = (triv, G C k(X), triv) is
a nonzero multiple of (triv,G C k(z) X k(2), triv).

We formulate a version of Assumption 2 for an action of G on a regular
model X of a projective variety X over K. As before, we require all
stabilizers of the action to be abelian. For each H € {H;,..., H,} and
Ng(H)-orbit Y of components of X where the stabilizer at the generic
points of the components is equal to H, we consider two cases:

e For Y contained in the special fiber we require the composite
Pic(X) — HY(Ng(H), k(Y)*) = HY(H, k(Y)*)NeUD/H _y [V
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to be surjective.
e Otherwise, we require the composite
Pic%(X) — HY(Ng(H), K(Y)*) — HY(H, K(Y)*)NeU/H 5 gV
to be surjective.

Theorem 6.6. Let X be a smooth projective variety over K with a gener-
ically free G-action and reqular model X, projective over o, to which the
G-action extends, whose special fiber is a simple normal crossing divi-
sor Dy U---U Dy, where each D; is G-invariant and components of each
D; have a common multiplicity d;. We suppose that the G-action on X
satisfies the above variant of Assumption 2. Let

CU]: N[O)[/X — Gm
denote the morphism obtained from the trivialization of
®NDi/X|DIa
el
determined by m. Then

(X oa)= Y ()

0AICT i=1

> (Hi, No(Hy)/H; G E(V Nwrt (1), Bv(Np, /)

VCND, x with

generic stabilizer H;

Proof. This follows directly from the definition. OJ

r

Remark 6.7. The G-equivariant analogues of the statements from Re-
mark 6.3 are valid.

Corollary 6.8. Let X and X' be smooth projective varieties over K with
generically free G-actions, admitting reqular models X, respectively X',
smooth and projective over o, to which the G-action extends. If X and
X" are G-equivariantly birational over K, then the special fibers of X and
X' are G-equivariantly birational over k.

The following generalizes the notion of B-rational singularities of [17].

Definition 6.9. Let X, be a singular projective variety over k with a
generically free G-action. We say that X, respectively a pair (X, Xj)
has BG-rational singularities if for every projective model X over o,
respectively a given projective model X', with G-action, smooth generic
fiber X, and special fiber G-equivariantly isomorphic to X, we have

PF (X ©G6) = [Xo Gl
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Example 6.10. If the only singularity of X is an orbit of isolated ordi-
nary double point singularities on which G acts simply transitively, then
X is BG-rational. Indeed, any projective model X is resolved by a se-
quence of blow-ups of orbits of points, and it is straightforward to verify
using Theorem 6.6 that [X © G| specializes to [ X, © G].

7. EQUIVARIANT BURNSIDE GROUPS AND ORBIFOLDS

In this section, we define a natural homomorphism from the equivariant
Burnside group to the Burnside group of orbifolds:

k% : Burn,(G) — Burn,,

a group we introduced in [18], as a quotient, by explicit relations, of the
Z-module with generators

(X1, [8)),
where
e [X] € Burng, d < n, and
e [8] € B,_4, a certain invariant of representations of finite abelian
groups [18, Definition 3.1].
Then the class in Burn,, of an n-dimensional orbifold X is defined as
follows (see [18, Section 4] for terminology and precise definitions):

e After divisorialification we may assume that X' is divisorial (with
respect to some finite collection of line bundles);

e Fxpress
X =] %u,
H

where Xy are strata characterized by the isomorphism type of
their geometric stabilizer group H (an abelian group);
e Put

[X]:= ([Xn], [Nx.u]) € Burn, (7.1)

H
where Xy is the coarse moduli space of Xy, and the representa-
tion [Nx g is extracted from the normal bundle Nx g := N, /-

This class is a well-defined invariant of the birational type of X.

Example 7.1. Let an abelian group H act trivially on a smooth projec-

tive d-dimensional variety Y and diagonally by characters aq, ..., a,_q4
generating A := H" on A" ¢, Then
Vxam = Y YL @), (72)

I¢{1,...,n—d}
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where a; denotes the character of H; := [, ker(a;) given by the class of
a; in Ay := A/{a;);ic;. We obtain (7.2) from (7.1) by repeatedly applying
modified scissors relations [18, §2] to subvarieties defined by the vanishing
of a coordinate of A",

Remark 7.2. Suppose that a; = 0 for some ¢ in Example 7.1. Then
[Y x A"~4/H] is a product with A'. Hence (7.2) vanishes by the triviality
in Burn,, of any product with A! (cf. the proof of [18, Prop. 2.2]). Another
way to obtain the vanishing is to notice that in the sum (7.2) the terms
indexed by I and I U {i} cancel, for i ¢ I.

In Example 7.1 the orbifold in question is the total space of a direct
sum of line bundles over Y x BH. More generally, we may consider a
smooth projective Deligne-Mumford stack X with line bundles L4, ...,
L,, such that the total space of L1 ®---@® L, is an orbifold. It will be con-
venient to require this orbifold to be divisorial. We recall a well-known
fact [25, Prop. 2.1]: Every smooth separated finite-type Deligne-Mumford
stack over a field is a gerbe over an orbifold. A smooth projective (re-
spectively, quasiprojective) Deligne-Mumford stack X is a gerbe, then,
over a projective (respectively, quasiprojective) orbifold X

Lemma 7.3. Let X be a a smooth separated irreducible Deligne-Mumford
stack of finite type over k, gerbe over the orbifold X, with finite abelian
group H as the isomorphism type of the geometric generic point of X,
and let Ly, ..., L, be line bundles on X. The following are equivalent.

(i) The orbifold X is divisorial, and the representation of H at the
geometric generic point of X determined by L1®- - -B L, is faithful.
(ii) The total space of Ly ® --- ® L, is an orbifold and is divisorial.
(iii) The total space of Li®- - -@® L, is an orbifold and is divisorial with
respect to the pullbacks of Ly, ..., L, and some finite collection
of line bundles on X.

Proof. The kernel of the representation in (i) is the geometric generic
stabilizer of the total space of Ly @ --- @ L,. This lets us rephrase (ii)
and (iii), replacing the requirement for the total space of Ly & --- & L, to
be an orbifold by the faithful representation requirement from (i). For an
orbifold to be divisorial with respect to a finite collection of line bundles,
we recall, means that the corresponding morphism to a product of copies
of BG,, is representable; we allow ourselves to apply this terminology to
arbitrary Deligne-Mumford stacks. This way, we can formulate variants
of (ii) and (iii), let us say (ii’) and (iii’), in which instead of requiring
L1®---® L, to be divisorial we require X’ to be divisorial. Since X sits as
the zero-section in Ly @ - - -@® L,, we have (ii) = (ii’) and (iii) = (iil’). As
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well, Ly & --- & L, — X is representable, so (ii’) = (ii) and (iii") = (iii).
Trivially, (iii) = (ii).

We establish (i) = (iii’) by the observation that the stabilizer at a
geometric point of X contains H, such that the quotient by H is the
stabilizer at the corresponding geometric point of X. We are done, then,
if we can establish (ii’) = (i). A line bundle on X comes from X if and
only if induces the trivial representation of H, according to the criterion
of [3, Thm. 10.3] (in a form adapted to a relative notion of coarse moduli
space, cf. [24, §2.3]). Since we have a faithful representation as in (i), we
get a surjective homomorphism of character groups Z" — HY. So any
line bundle on X will, after adjustment by a suitable tensor combination
of Li, ..., L,, descend to X. Carrying this out for a collection of line
bundles, with respect to which X is divisorial, we get vector bundles,
with respect to which X is divisorial [

Given X, Ly, ..., L, satisfying the equivalent conditions of Lemma
7.3, with X' quasiprojective of dimension n — r, we define, following the
notation of [18, Thm. 4.1],

(X, (L1, L)) =) ([Xp],[Nxp @ L & & L,]) € Burn,,

sum over geometric stabilizer groups P of X.

Lemma 7.4. Let X, Ly, ..., L, satisfy the equivalent conditions of
Lemma 7.3, with X quasiprojective of dimension n — r, and let D =
Dy U---U Dy be a stmple normal crossing divisor on X. Then, with
U:=X\D andZ :={1,...,0} we have

U, (Lilus -5 Lele)] = [X, (L, o5 Ly)]

+ Y (~1)Dy, (Lilpys - Lelpys - Noyalp,, )] (73)
PAICT

in Burn,,, where the last term includes the line bundles NDi/X|DI for all
1€ 1.

Proof. We first remark that (7.3), when X is a projective variety, is
essentially the formula in Burn, for the class of the complement of a
strict normal crossing divisor [18, (1.1)]. It is an easy exercise to verify
that the formula is valid when X" is a quasiprojective variety.

To treat the case of a Deligne-Mumford stack, we consider a geometric
stabilizer group P of X. It is a straightforward fact that Xp has normal
crossing with Dy, ..., D,. We obtain the lemma from an equality for
each P. When (a connected component of) Xp is contained in some D;,
there is no contribution to the left-hand side, while the right-hand side,
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viewed as a single sum over all I C Z, has pairs of terms that cancel,
indexed by I and I U {i} for ¢ ¢ I. Otherwise, each L; is generically
trivial on Dy, for all I, and the equality may be rewritten as

([Up], [Nup ® L1 @ --- @ L,]) = ([Xp],[Nxp © L1 © - © Ly])

+ 3 (~)I((D)p x P [Np, p@ L@ @ L)), (T4)
0£ICT

where we write (Dy)p for the coarse moduli space of D;NXp and neglect
to include in the notation that the line bundles are restricted to U, re-
spectively, to D;. The same representation is extracted from the vector
bundles in all of the terms in (7.4). So, the equality follows from the case
of a quasiprojective variety mentioned above. O

Lemma 7.5. Let X be an n-dimensional quasiprojective orbifold over k
that is divisorial with respect to some collection of line bundles, and let
D =DyU---UDy be a simple normal crossing divisor with complement
U. Then, with T := {1,...,0}, the coarse moduli spaces X of X, etc.,
satisfy
U] =[X]+ > (~=)"[Dy x P
0#£ICT
i Burn,,.

Proof. The equality holds if and only if it holds after blow-up of any
smooth substack of X that has normal crossings with Dy, ..., D, (where
the exceptional divisor gets added as D, in case of center of blow-up
contained in D), cf. the proof of [17, Thm. 4]. We conclude by applying
the destackification algorithm [4], which leads to a situation where X is
smooth with simple normal crossing divisor determined by the D;. Then
the desired formula is [18, (1.1)] which, as mentioned in the proof of
Lemma 7.4, is also valid in the setting of quasiprojective X. O

Definition 7.6. Let K, be a finitely generated field over k and K/Kj a
Galois algebra for the group Ng(H)/H. Put

k% (H,Ng(H)/H & K,B) — [Y x A"4/H],

where H acts trivially on Y, any smooth projective variety with function
field Ky, and via the representation 3 on A"~

Proposition 7.7. We have a well-defined group homomorphism
x“: Burn,(G) — Burn,,.

Proof. Changing the triple by a conjugation relation does not change
the isomorphism type of the quotient stack [Y x A" ¢/H], hence these
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relations are respected by the map in Definition 7.6. To show that the
map respects (B1), i.e.,

[Y x A"%/H] =0 € Burn,,

when H acts on A" ¢ with weights (ay,...,a,_q), and a; + as = 0, we
let Y := [V x A"~%"2/H] with action by weights as, ..., a,_q4, and L the
line bundle given by the weight a;. Using Example 7.1, we verify

Y x A""%/H] = [V, (L, LV)] = [Y x P?> x A""%"?/ker(a,)] € Burn,.

The right-hand side vanishes, as we see by applying the final relation of
[18, Defn. 3.1] with as =0 and j = 2.
Let us rewrite (B2) as

(H,Na(H)/H C K, ) — 6, = 6.

To see that the map respects (B2), we first verify that the image of —©,
in Burn,, is

[V x (A'\ {0}) x A"/ H], (7.5)

where the action of H is by a; — ay on A\ {0} and by ay, ..., a,_4 on
A"=9=1 There are two cases:

e If a; € (a; —ay) for some i; then after replacing the corresponding
coordinate of A"4~1 by its product with a suitable power of the
coordinate of A!\ {0}, we have a trivial H-action on this coordi-
nate. As in Remark 7.2, (7.5) is 0, while ©3 = 0 by definition.

e Otherwise, O, is the class of the triple given in Definition 4.2, and
we have a formula for the image in Burn, of —©, by Example
7.1. Reasoning as in Example 7.1, we obtain a formula for (7.5).
Comparing, we find that the two expressions are equal.

Thus it suffices to show that
[V XA/ H4H[Y x (AN{0}) x A"/ H] = [Y x A"/ H]+[Y x A"/ H]

holds in Burn,,, where the first term on the left corresponds to the given
triple, and the terms on the right correspond to the triples in ©. Equiv-
alently, by [18, Thm. 4.1],

[V x (BlyA?) x A" 2 /H] + [V x (A" \ {0}) x A"/ H]
= [V x A"/ H|+[Y x A"/ H].
The stack [V x (A!\ {0}) x A"=9"1/H] as well as each of the stacks
[Y x A"?/H] on the right-hand side may be viewed as complements

of smooth divisors in [Y x (BfyA?) x A"?"2/H]. We get the desired
equality by Lemma 7.4. 0J
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In order to show that ¢ maps the class of a variety with group action
to the class of the associated quotient stack (Proposition 7.9), we need
the following computation, where we employ the notation

(X ©G, (Ly,..., L))" = [L, ® - @ L, O G"** € Burn, (G)

for a smooth quasiprojective variety X with G-action and G-linearized
line bundles Ly, ..., L,, with X of dimension n—r, such that the G-action
on the total space of L1 @ - -- & L, is generically free.

Lemma 7.8. Let X be a smooth quasiprojective variety with G-action,
and let Ly, ..., L, be G-linearized line bundles on X, such that the
G-action on L1 ® --- ® L, is generically free. We suppose that G acts
transitively on the set of components of X, the dimension of X isn —r,
and for some component of X, every point has stabilizer H C G. Then
KX © G, (L, ..., L))" is the class in Burn, of the field k(X)%
and the representation of H determined by Ly ® -+ @ L,.

Proof. Let A := HY, with ay, ..., a, € A determined by L, ..., L,.
With Z := {1,...,r} and, for I C 7,

H;:= ﬂker(ai) and Ar = AJ{a;)ier,

1€l

we have an expression of [X © G, (L, ..., L,)]"" as a sum of triples
over I C 7, such that for all j € Z\ I we have a; ¢ (a;);c;. The triple for a
given [ consists of the group H;, a Galois algebra over k(X ) (t1,...,t),
and the classes of a; in A;, for j € Z\I. By Example 7.1, upon application
of K% such a triple gives rise to a sum indexed by subsets of Z, disjoint
from I:

(X © G, (Ly, ..., L)) = Z’ > ()R, (@, - an),
= i

(7.6)
where Y denotes the sum over I satisfying a; ¢ (a;)ic; for all j € T\ I,
and a; denotes the class of a; in A;y;. By Remark 7.2, if we consider
some [ such that a; € (a;);e; for some j € T\ I and evaluate the inner
sum of the right-hand side of (7.6) for this I, we get 0. So

KX © G (Ly, ... L))"™) = Y (—)I([R(X)Y), (@, ..., @)
1,JCI
INJ#0

Due to the sign, only the term with I = J = () survives. O
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Proposition 7.9. For a quasiprojective variety X of dimension n with
generically free G-action and stack quotient X := [X/G] we have

KX © G) =[]

i Burn,,.

Proof. Definition 5.4 and Lemma 7.4 allow us to reduce the proposition
to the claim, that for a smooth projective variety X with G-action and G-
linearized line bundles L4, ..., L,, such that the G-action on L1 ®---® L,
is generically free and satisfies Assumption 2, with X of dimension n —r,
we have

KX DG, (Ly,..., L)) = [X, (L, ..., L), (7.7)

where the line bundles on X are those determined by the G-linearized
line bundles Ly, ..., L,.

We prove (7.7) by induction on dim(X). The case dim(X) = 0 follows
from Lemma 7.8. So we assume dim(X) > 0.

The class in Burn,(G) on the left-hand side of (7.7) is a birational
invariant, by Lemma 5.3. If we blow up X along a smooth G-invariant
subvariety, then X gets blown up along the corresponding smooth sub-
stack. We verify that the right-hand side of (7.7) remains unchanged,
by observing that the equality [18, (4.1)] is valid when L; & --- & L, is
inserted on both sides. So, by divisorialification as in Proposition 3.3, we
may reduce further to the case that X possesses a simple normal cross-
ing divisor D = Dy U --- U Dy, where each D; is G-invariant, such that
U := X \ D has constant stabilizers, as in Lemma 7.8.

With a minor adaptation to the proof of Lemma 5.7, taking W in
Li|p,, & -+ & L.|p,, instead of in D), we obtain the identity

X O G, (Ly,..., L) = [US G, (Liu, ..., Lly)™"

+ Z (_1)‘I|[ E)I/X O Ga (L1|D1"">LT|D1)]naive
OAICT

— > (VD © G (Lilpy. - Lelpy - - Noyxlpg, - ),
0AICT

where the last term includes the line bundles Np, x|p, for all i € I.
After applying ¢, Lemma 7.8 is applicable to the first two terms on the
right, then Lemma 7.5 lets us identify their contribution as the class in
Burn,,_, of the quotient variety of U by G, paired with the class in B,
of the representation of the generic stabilizer determined by L, ..., L,.
The induction hypothesis is applicable to the final term on the right, and
we conclude by Lemma 7.4. 0J
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8. COMPARISONS

In this section, G is a finite abelian group. We will compare birational
invariants for actions of such G introduced in [16] with the invariant in
Definition 4.4, taking values in the equivariant Burnside group

Burn, (G)
from Definition 4.2.
Let A := GV be the character group of G. We recall from [16]:
B.(G)

is the Z-module generated by equivalence classes of faithful n-dimensional
linear representations of G over k, i.e., by symbols

B:=lai,...,a,], a; € A, (8.1)
consisting of n-tuples of characters of G, up to order, generating A; these
are subject to relations, for all 2 < j < n:

lay, ... a,)

= E [al—ai,...,ai,...,aj—a,-,aj+1,...,an]. (82)
1<i<y
a;Fa; Vi'<i

We first explain how to obtain B,,(G) as a quotient of Burn,,(G). There
is a quotient group Burn&(G) of Burn,, (G), consisting of triples with first
entry G:

(G, triv C K, B).
The homomorphism
Burn,, (G) — Burn%(G)

to the quotient group annihilates all triples whose first entry is a proper
subgroup of GG. The next result reveals a further quotient group, isomor-

phic to B,(G).
Proposition 8.1. The map sending the class of a triple
(G, triv & K, B) € Burn%(G),
with 6 = (a1, ...,a,_q), and d the transcendence degree of K over k, to
(K" Kllat, ..., an_q,0,...,0] € B,(G),

where k' denotes the algebraic closure of k in K, extends to a surjective
homomorphism

Burn&(G) — B,(G).
For n > 2, the group B,(G) may be presented as a Z-module by the
generators (8.1) and just the relations (8.2) with j = 2.
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Proof. The quantity [k’ : k] is unchanged when K is replaced by K(t). So,
to verify that the map is a homomorphism, it suffices to verify relations
analogous to (B1) and (B2) in B,(G). For (B1), we apply (8.2) with
j =2 and ay = 0. The general j = 2 case of (8.2) takes care of (B2).
It is clear that the homomorphism is surjective. For the final claim,
we just have to check that in the abelian group defined by generators
(8.1) and relations (8.2) with j = 2, the relations (8.2) with 7 > 2
follow as a consequence. If any of aq, ..., a; is 0, then the relation is a
consequence of the relation analogous to (B1), which we have already
treated. Otherwise, the relation is analogous to Proposition 4.7 (ii) and
thus follows from relations analogous to (B1) and (B2). O

A refined version of B,,(G) keeps information about the stable bira-
tional type of K. This refined group

B.(G,k)

is defined by associating to a function field K of transcendence degree d
over k:

e The isomorphism type of K(t1,...,t,—1-4), encoding the stable
birational type of a model of K, when the formation of products
with P! is restricted by the requirement of dimension < n — 1.
e An element of B,,.1(G), where m is the largest integer such that
K(t1,...,ty,_1_4) is isomorphic over k to L(ui, ..., u,,) for some
field L, finitely generated over k.
We refer the reader to [16] for a more detailed description and the def-
inition of the class Bx(X) € B,(G, k) of a smooth projective variety X
with faithful G-action.

Proposition 8.2. The surjective homomorphism from Proposition 8.1
factors through B, (G, k), and the homomorphism

Burn%(G) — B, (G, k) (8.3)

15 surjective. If X is a smooth projective variety with a generically free
action of G, then the image of [X © G] in Burn$(G) maps to Br(X)
under the map (8.3).

Proof. The proof is analogous to that of Proposition 8.1. U
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