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Introduction

Let X be a projective algebraic variety defined over a number field K,
X(K) the set of K-rational points of X. We are interested in relations
between the geometry of X and diophantine properties of X (K) in the sit-
uation when X (K) is infinite. The main object of our study is the height
function on X (K) with respect to a metrized line bundle £. A metrized
line bundle is a pair £ = (L, || - ||»), consisting of a line bundle L equipped
with a family {|| - ||,} of v-adic metrics (v runs over the set Val(K') of all
valuation of K), satisfying certain conditions. This defines a height function
H;: X(K) — Ryg by

He(z)= I @),

veVal(K)

where f is a K-rational local section of the line bundle L not vanishing in
r e X(K).

Let Pic(X) be the Picard group of X and A C Pic(X) the cone of
effective divisors. Assume that the class of L is contained in the interior of
the cone of effective divisors Aeg C Pic(X)mr. In this case, some positive
tensor power of L defines a birational map of X into some projective space.
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We denote by U, C X the Zariski open subset such that the restriction of
the above birational map to Uy, is an isomorphism on its image.

For any Zariski open subset U C Up consider the height zeta-function
defined by the following series [1, 9]:

ZL;,U(S): Z H[;(ZL’)_S.

zeU(K)

Then Z, 1(s) converges absolutely and uniformly for Re(s) > 0. A Taube-
rian theorem relates the analytic properties of the zeta-function with the
asymptotic behaviour of the number N (U, L, B) of K-rational points x €
U(K) with He(z) < B as B — 0.

We define

a(L,U) =inf{a € R | Z,y(s) converges for Re(s) > a}.

We say that U does not contain L-accumulating subvarieties if for any non-
empty Zariski open subset U’ C U we have o(L,U) = o(L,U’).

One expects a good accordance between the geometry of X and diophan-
tine properties of the set of K-rational points of X which are contained in
the complement U C X to some proper closed subvarieties in X. Denote by
K~! the metrized anicanonical line bundle. The following conjecture is due
to Yu. I. Manin [9]:

Let X be a smooth projective variety over a number field K whose anti-
canonical line bundle is ample (i.e., X is a Fano variety). Assume that the set
X(K) of K-rational points is Zariski dense. Let U C X be the largest Zariski
open subset which doesn’t contain K~ '-accumulating subvarieties. Then

NU,K™', B) = c(X,K™', K)B(log B)*'(1 + 0(1)) for B — oo

where k equals the rank of the Picard group Pic(X) over K and ¢(X, K™, K)
18 some positive constant which depends on X, K and the choice of v-adic
metrics on the anticanonical line bundle.

The above conjecture was refined by E. Peyre [21] who defined Tamagawa
numbers of Fano varieties and proposed an interpretation of ¢(X, K1, K) in
terms of these numbers.



Unfortunately, the conjecture of Manin is not true in general (see [3]).
It has been proved for some class of Fano varieties, e.g., for generalized flag
varieties, complete intersections of small degree and for some blow ups of
projective spaces [9, 1, 21].

In this paper we prove Manin’s conjecture and compute the constant
c(X, K71, K) for arbitrary smooth projective equivariant compactifications of
algebraic tori over number fields, i.e., for toric varieties Py associated with a
Galois invariant finite polyhedral fan ¥ [27]. We restrict ourselves to the case
when U is the dense torus orbit. It is easy to show that U doesn’t contain
L-accumulating subvarieties for any metrized line bundle £. On the other
hand, it might happen that there is some larger Zariski open subset U’ C Py,
which contains U and which does not contain L-accumulating subvarieties.
It is possible to show that the the asymptotic formula for N(U’,K~!, B)
does not depend on the choice of such a Zariski open U’, but we decided to
postpone the proof of this fact.

One of our main ideas for the computation of the height zeta-function on
a toric variety Py is to introduce some canonical simultaneous metrizations
on all line bundles and to obtain a pairing

Hy(z,8) : T(K) x Pic(Ps)c — C

between the set of rational points T'(K) C Px(K) in the Zariski open sub-
set T" and the complexified Picard group, extending the usual height pair-
ing between T'(K) and Pic(Py). This allows to extend the one-parameter
zeta-function to a function Zx(s) defined on the complexified Picard group
Pic(Py)c and holomorphic when the Re(s) is contained in the interior of the
cone [K7!| 4+ Aeg, where Aoz C Pic(Px)R is the cone of effective divisors of
Ps.

The second step is to use the multiplicative group structure on the torus
T C Pyx. With our choice of metrics, the height zeta-function becomes a
function on the adelic group T(Af) invariant under the closed subgroup
T(K)Kr, where Ky C T(Ak) is the maximal compact subgroup. The key
idea is to use the Poisson formulain order to obtain an integral representation
for Zs(s).

Our third step is the study of analytic properties of Zx(s) using the above
integral formula and properties of X'-functions of convex cones.

In section 1 we introduce notations and basic notions from the theory of
toric varieties over non-closed fields.



In section 2 we recall the definitions of Tamagawa numbers of algebraic
tori and Tamagawa numbers of algebraic varieties with metrized anticanon-
ical bundle.

In section 3 we define simultaneous metrizations of all line bundles on
toric varieties, introduce the height zeta-function and give formulas for local
Fourier transforms of heights.

In section 4 we prove the Poisson formula which yields an integral repre-
sentation of the height zeta-function.

In section 5 we formulate basic properties of X-functions of convex finitely
generated polyhedral cones.

In section 6 we prepare the necessary analytic tools.

And finally, in section 7 we prove our main theorem:

Let Py, be a smooth projective compactification of an algebraic torus T
over K. Let k be the rank of Pic(Pyx). Then there is only a finite number
N(T,K™, B) of K-rational points x € T(K) having the anticanonical height
Hi-1(z) < B. Moreover,

o)
(k—1)!

with the constant O(X) = a(Px)[(Pyx)mc(Pyx), where:

1. a(Pyx) is a constant defined by the geometry of the cone of effective
divisors Neg C Pic(Py)R;

2. B(Pyx) is the order of the non-trivial part of the Brauer group of Py;

3. 7 (Pyx) is the Tamagawa number associated with the metrized canonical
sheaf on Py, (as it was defined by E.Peyre in [21]).

N(T,K™,B) = - B(log B)*"'(1 + o(1)), B — o0,

Our results provide first examples for asymptotics on unirational vari-
eties which are not rational and on varieties without weak approximation, in
general. A new phenomenon is the appearance of the non-trivial part of the
Brauer group Br(Py)/Br(K) in the asymptotic constant. We don’t need to
assume that the anticanonical class of Py is ample (i.e., Py is a toric Fano
variety).

This paper is a continuation of our paper [2], where we proved the conjec-
ture of Manin about the distribution of K-rational points of bounded height
for the case of projective compactifications of anisotropic tori. An equvari-
ant compactification Py of an anisotropic torus 7' is much simpler in many
aspects: the cone of effective divisors Ag is always simplicial, all K-rational



points of Py are contained in T, and the group T(Ag)/T(K) is compact
(this last property significantly simplifies the Poisson formula).
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1 Algebraic tori and toric varieties

Let X be an algebraic variety defined over a number field K and E/K a
finite extension of number fields. We will denote the set of E-rational points
of X by X(F) and by Xg the E-variety obtained from Xy by base change.
We sometimes omit the subscript in X if the respective field of definition
is clear from the context. Let G, p = Spec(E[z,z~']) be the multiplicative
group scheme over F.

Definition 1.1 A linear algebraic group Tk is called a d-dimensional alge-
braic torus if there exists a finite extension F/K such that Ty is isomorphic
to (Go,p)?. The field E is called the splitting field of T.

For any field E we denote by Ty = Hom (T, E*) the group of regular
E-rational characters of T'.

Theorem 1.2 [8, 19, 26] There is a contravariant equivalence between the
category of algebraic tori defined over a number field K and the category of
torsion free Gal(E/K)-modules of finite rank over Z. The functors are given
by

M — T = Spec(K[M]); T — Tg.

The above contravariant equivalence is functorial under field extensions of

K.



Let Val(K') be the set of all valuations of a global field K. Denote by Sy
the set of archimedian valuations of K. For any v € Val(K), we denote by
K, the completion of K with respect to v. Let E be a finite Galois extension
of K with the Galois group G. Let V be an extension of v to E, Ey the
completion of E with respect to V. Then

Gal(By/K,) = G, C G,

where GG, is the decomposition subgroup of G and K, ®x F = [y, By Let T’
be an algebraic torus over K with the splitting field E. Denote by T'(K,) =
the v-adic completion of T'(K) and by T'(0,) C T(K,) its maximal compact
subgroup.

Definition 1.3 Denote by T'(Ak) the adele group of T'. Define
TYAg)={teT(Ax) : ] |m(t) =1, forallme Tx C M}.

veVal(K)
Let
Kr= [] T(O.),
veVal(K)

be the maximal compact subgroup of T'(A).

Proposition 1.4 [19] The groups T(Ax), T'(Ak), T(K), Kr have the fol-
lowing properties:

(i) T(Ag)/T (Ak) = R, where t is the rank of Tk ;

(ii) T (Ak)/T(K) is compact;

(iii) TY(Ag)/T(K) - Kr is isomorphic to the direct product of a finite
group cl(Tx) and a connected compact abelian topological group which di-
mension equals the rank v’ of the group of O -units in T(K);

(iv) W(T) = KrNT(K) is a finite group of all torsion elements in T'(K).

Definition 1.5 We define the following cohomological invariants of the al-
gebraic torus T
h(T) = Card[H' (G, M)],

IIL(T) = Ker [H'(G,T(E)) — H(G,,T(Ag))],
i(T) = Card[ITI(T)).



Definition 1.6 Let T(K) be the closure of T'(K) in T(Ag) in the direct
product topology. Define the obstruction group to weak approrimation as

A(T) = T(Ax)/T(K).

Remark 1.7 It is known that over the splitting field E one has A(Tg) = 0.

Let Tx be a d-dimensional algebraic torus over K with splitting field £ and
G = Gal(E/K). Denote by M the lattice Tz and by N = Hom(M, Z) the
dual abelian group. Let us recall standard facts about toric varieties over
arbitrary fields [5, 6, 10, 18, 2].

Definition 1.8 A finite set > consisting of convex rational polyhedral cones
in Ng = N ® R is called a d-dimensional fan if the following conditions are
satisfied:

(i) every cone o € ¥ contains 0 € Ng;

(ii) every face o’ of a cone o € 3 belongs to X;

(iii) the intersection of any two cones in ¥ is a face of both cones.

Definition 1.9 A d-dimensional fan ¥ is called complete and reqular if the
following additional conditions are satisfied:

(i) NR is the union of cones from ¥;

(ii) every cone o € X is generated by a part of a Z-basis of N.
We denote by 3(j) the set of all j-dimensional cones in . For each cone
o € ¥ we denote by N, g the minimal linear subspace containing o.

Theorem 1.10 A complete reqular d-dimensional fan Y defines a smooth
equivariant compactification Ps, g of the E-split algebraic torus Ty. The
toric variety Py, g has the following properties:

(i) There is a Tg-invariant open covering by affine subsets U, p:

Py rp = U Us.-

oeY

The affine subsets are defined as U, p = Spec(E[M N&]), where & is the cone
mn Mg which is dual to o.



(ii) There is a representation of Px, g as a disjoint union of split algebraic
tori T, g of dimension dimT, p = d — dim o, that is, for all fields F/E we
have

Py p(F)= | Tre(F).
oeY
For each j-dimensional cone o € X(j) we denote by T, g the kernel of a
homomorphism Ty — (G, g) defined by a Z-basis of the sublattice N N
NmR C N.

To construct compactifications of non-split tori Tk over K, we need a com-
plete fan ¥ of cones having an additional combinatorial structure: an action
of the Galois group G = Gal(E/K) [27]. The lattice M = T is a G-module
and we have a representation p : G — Aut(M). Denote by p* the induced
dual representation of G in Aut(N) = GL(d, Z).

Definition 1.11 A complete fan > C Ng is called G-invariant if for any
g € G and for any ¢ € X, one has p*(¢)(c) € ¥. Let N¢ (resp. MC,
NR, M§ and X°) be the subset of G-invariant elements in N (resp. in M,
N®R, M®R and X). Denote by ¢ C N§ the fan consisting of all possible
intersections o N ngi where o runs over all cones in 3.

The following theorem is due to Voskresenskii [27]:

Theorem 1.12 Let ¥ be a complete reqular G-invariant fan in Ng. Assume
that the complete toric variety Py, g defined over the splitting field E by the
G-invariant fan 3 is projective. Then there exists a unique complete algebraic
variety Py x over K such that its base extension Ps g ®gpec(x) Spec(E) is
isomorphic to the toric variety Py, . The above isomorphism respects the
natural G-actions on Py g ®gspec(i) Spec(E) and Py p.

Remark 1.13 Our definition of heights and the proof of the analytic prop-
erties of height zeta functions do not use the projectivity of respective toric
varieties. We note that there exist non-projective compactifications of split
algebraic tori. We omit the technical discussion of non-projective compacti-
fications of non-split tori.

We proceed to describe the algebraic geometric structure of the variety
Py i in terms of the fan with Galois-action. Let Pic(Py g) be the Picard
group and A.g the cone in Pic(Py ) generated by classes of effective divisors.
Let K be the canonical line bundle of Py .
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Definition 1.14 A continuous function ¢ : Ngr — R is called X-piecewise
linear if its restriction to every cone o € 3 is a linear function; i.e., for every
cone o € ¥ there exists an element m, € Mg such that ¢|,(z) =< z,m, >
where < *,*% >: Ng X Mr — R is the pairing induced from the duality
between N and M. It is called integral if ¢(N) C Z. Denote the group of
Y.-piecewise linear integral functions by PL(3).

We see that the G-action on M (and N) induces a G-action on the free
abelian group PL(Y). Denote by ey, ..., e, the primitive integral generators
of all 1-dimensional cones in . A function ¢ € PL(X) is determined by
its values on e;, (i = 1,...,n). Let T} be the (d — 1)-dimensional torus orbit

corresponding to the cone Rspe; € ¥(1) and T; the Zariski closure of 7} in
PE,E-

Proposition 1.15 Let Py i be a smooth toric variety over K which is an
equivariant compactification of an algebraic torus Ty with splitting field E
and ¥ the corresponding complete reqular fan with G = Gal(E/K)-action.
Then:

(i) There is an exact sequence

0— M® — PL(%)Y — Pic(Py ) — H' (G, M) — 0.

(i1) Let
(1) =% (1)U..Ux,.(1)

be the decomposition of (1) into a union of G-orbits. The cone of effective
divisors Neg 1s generated by classes of G-invariant divisors

Dj = Z Tz (j = 1, ...,7").

RzoeiGE]‘(l)

(iii) The class of the anticanonical line bundle K™' € Pic(Px k) is the
class of the G-invariant piecewise linear function oy, € PL(X)Y given by
ox(e;) =1 forallj=1,..n.

Proof. (i) Tt is known that Pic(Pyx x) = (Pic(Px ) ([26] Prop. 4.40). It
remains to take G-invariants in the standard short exact sequence

0— M — PL(X) — Pic(Pg ) — 0
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describing the Picard group of a toric variety over a splitting field (see [10]
3.4) and notice that H'(G, PL(X)) = 0, because PL(Y) is a permutational
G-module.

(ii) The statement was proved in [2] 1.3.

(iii) The statement is standard [5, 18]

Theorem 1.16 [26, 4] Let T be an algebraic torus over K with splitting field
E. Let Py i be a complete smooth equivariant compactification of T'. There
is an exact sequence:

0 — A(T) — Hom(H'(G,Pic(Ps g)),Q/Z) — III(T) — 0.

Remark 1.17 The group H'(G, Pic(Px )) is canonically isomorphic to the
non-trivial part of the Brauer group Br(Py x)/Br(K), where Br(Py ) =
HZ2(Ps k,G,,). This group appears as the obstruction group to the Hasse
principle and weak approximation in [14, 4].

Corollary 1.18 Let 5(Px) be the cardinality of H'(G, Pic(Px g)). Then

B(Py)

Card[A(T)] = 572

2 Tamagawa numbers

In this section we recall the definitions of Tamagawa numbers of tori following
A. Weil [28] and of algebraic varieties with a metrized canonical line bundle
following E. Peyre [21]. The constructions of Tamagawa numbers depend on
a choice of a finite set of valuations S C Val(K) containing archimedian val-
uations and places of bad reduction, but the Tamagawa numbers themselves
do not depend on S.

Let X be a smooth algebraic variety over K, X (K,) the set of K,-rational
points of X. Then a choice of local analytic coordinates 1, ..., x4 on X (K,)
defines a homeomorphism ¢ : U — K% in v-adic topology between an open

11



subset U C X (K,) and ¢(U) C K2 Let dx; - --dxy be the Haar measure on
K% normalized by the condition

1
/Ogdxl-~-d:cd—7<m)d

where 0, is the absolute different of K,. Denote by dx; A --- A dxg the
standard differential form on K2. Then f = ¢*(dz; A --- A dxg) is a local
analytic section of the canonical sheaf K. If || - || is a v-adic metric on K,
then we obtain the v-adic measure on U by the formula

[ o= [ 1567 @I

where U’ is arbitrary open subset in U. The measure wi, does not depend
on the choice of local coordinates and extends to a global measure on X (K,)
[21].

Definition 2.1 [19] Let 7" be an algebraic torus defined over a number field
K with splitting field E. Denote by

Ls(s,T;E/K)= [[ Lu(s,T;E/K)

veVal(K)

the Artin L-function corresponding to the representation
p: G=Gal(E/K) — Aut(Ts)

and a finite set S C Val(K) containing all archimedian valuations and all
non-archimedian valuations of K which are ramified in £. By definition,
L,(s,T;E/K) =1ifv e S, L,(s,T;E/K) = det(Id — q;°F,) ' ifv & S,
where F, € Aut(TE) is a representative of the Frobenius automorphism.

Let T be an algebraic torus of dimension d and {2 a T-invariant algebraic
K-rational differential d-form. The form {2 defines an isomorphism of the
canonical sheaf on T with the structure sheaf on T'. Since the structure sheaf
has a canonical metrization, using the above construction, we obtain a v-adic
measure wq, on T'(K,). Moreover, according to A. Weil [28], we have

[ = I gy
T(Oy) qy
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for all v & S. We put du, = L,(1,T; E/K)wq,, for all v € Val(K). Then the
local measures du, satisfy
dp, =1

forallv & S.

Definition 2.2 We define the canonical measure on the adele group T(A )

WQ’S = H LU(I,T; E/K)U)Qm = H d,uv
veVal(K) veVal(K)

By the product formula, wq ¢ does not depend on the choice of 2. Let dx be
the standard Lebesgue measure on T(Af)/T (Af). There exists a unique
Haar measure w(, g on T"(Af) such that wg ¢dx = wo .

We proceed to define Tamagawa measures on algebraic varieties following
E. Peyre [21]. Let X be a smooth projective algebraic variety over K with
a metrized canonical sheaf K. We assume that X satisfies the conditions
hY(X,0x) = h*(X,0x) = 0. Under these assumptions, the Néron-Severi
group NS(X) (or, equivalently, the Picard group Pic(X) modulo torsion)
over the algebraic closure K is a discrete continuous Gal(K /K )-module of
finite rank over Z. Denote by Ts the corresponding torus under the duality
from 1.2 and by Eyg a splitting field.

Definition 2.3 [21] The adelic Tamagawa measure wi s on X (Ag) is de-
fined by

wes = [I  Lo(1,Tys; Ens/K) 'wi.
veVal(K)

Definition 2.4 Let ¢ be the rank of the group of K-rational characters Tk
of T'. Then the Tamagawa number of T is defined as

_ bs(T)
(1) = Is(T)

where

bs(T :/ W
s(T) TUAR)/TK) °
Is(T) = lirri(s —1)'Ls(s, T; E/K).
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Definition 2.5 [21] Let k& be the rank of the Néron-Severi group of X over

K, and X (K) the closure of X (K) C X(Ak) in the direct product topology.
Then the Tamagawa number of X is defined by

01
where
bs(X :/X(K)w

whenever the adelic integral converges, and

lgl(X) = £1ir%(s — 1)kL5(8, TNS; ENs/K)

Remark 2.6 Notice the difference in the choice of convergence factors for
the Tamagawa measure associated with a metrized canonical line bundle on a
complete algebraic variety X and for the classical Tamagawa measure on an
algebraic torus T'. In the first case, we choose L;1(1,Tys; Ens/K) whereas
in the second case one uses L,(1,7; E/K). This explains the difference in
the definitions of lg(X) and [g(T).

Remark 2.7 For a toric variety Py D T one can take Eyg = F, where F
is a splitting field of T

Remark 2.8 It is clear that in both definitions the Tamagawa numbers
do not depend on the choice of the finite subset S C Val(K). E. Peyre
([21]) proves the existence of the Tamagawa number for Fano varieties by
using the Weil conjectures. The same method shows the existence of the
Tamagawa number for smooth complete varieties X satisfying the conditions
(X, O0x) = h*(X,0x) = 0.

Theorem 2.9 [20] Let T be an algebraic torus defined over K. The Tama-
gawa number 7(T') doesn’t depend on the choice of a splitting field E/K. We

have
7(T) = h(T)/i(T).
The constants h(T),i(T) were defined in 1.5.
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We see that the Tamagawa number of an algebraic torus is a rational
number. We have 7(G,,,(K)) = 1. The Tamagawa number of a Fano variety
with a metrized canonical line bundle is certainly not rational in general. For
Pb with our metrization we have TK(P%‘Q) =1/(q(2).

Proposition 2.10 [2] One has

/_ wi,s = /_ WK, S -
T(K) Ps(K)

3 Heights and their Fourier transforms
Let p € PL(X)&. Using the decomposition of $(1) into a union of G-orbits
(1) =%(1)U... U (1),
we can identify ¢ with a T-invariant divisor with complex coefficients
D,=s5D;+-+s.D,

where s; = p(e;) € C and e; is a primitive lattice generator of some cone
o€ X(l) (j=1,...,r). It will be convenient to identify an element ¢ =
vs € PL(X)g with the vector s = (sq,...,s,) of its complex coordinates.

Let us recall the definition of heights on toric varieties from [2]. For our
purposes it will be sufficient to describe the restrictions of heights to the
Zariski open subset T' C Py k.

Proposition 3.1 Let v € Val(K) be a valuation and G, C G the decompo-
sition group of v. There is an injective homomorphism

my - T(Ky)[T(Oy) = Ny,

which is an isomorphism for all but finitely many v € Val(K). Here N, =
N% C N for non-archimedian v and N, = Ng° for archimedian valuations
v. For every non-archimedian valuation we can identify the image of m, with
a sublattice of finite index in N,.
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Definition 3.2 Let s € C" be a complex vector defining a complex piecewise
linear G-invariant function ¢ € PL(X)&. For any point z, € T(K,) C
Py (K,), denote by T, the image of x, in N,, where N, is considered as a
canonical lattice in the real space Ng* for non-archimedian valuations (resp.
as the real Lie-algebra Ng, of T'(K,) for archimedian valuations). Define
the complezified local Weil function Hy, ,(x,,s) by the formula

Hy ,(2,,8) = e#(@v) log g
s )

where g, is the cardinality of the residue field &, of K, if v is non-archimedian
and log g, = 1 if v is archimedian.

Theorem 3.3 [2] The complezified local Weil function Hy ,(z,,s) satisfies
the following properties:

(i) Hyo(y,s) is T(O,)-invariant.

(ii) If s =0, then Hy,(xy,8) =1 for all z, € T(K,).

(ili) Hyy(xy,s +8') = Hy o(2y,8)Hy o (T4, 8).

(iv) If s = (s1,...,8,) € Z", then Hyx ,(x,,8) is a classical local Weil
function corresponding to a Cartier divisor Dg = 51Dy +---+5,D, on Py .

Definition 3.4 For a piecewise linear function ps € PL(X)& we define the
complezified height function on T(K) C Py x(K) by

Hy(z,s) = H Hy (2, 8).
veVal(K)

Remark 3.5 Although the local heights are defined only as functions on
PL(X)& = Cr, the product formula implies that for x € T(K) the global
complexified height function descends to the Picard group Pic(Pyx x)c. More-
over, since Hy(x,s) is the product of local complex Weil functions Hy, ,(z, s)
and since for all z, € T(O,) we have Hy, ,(x,,s) = 1 for all v, we can imme-
diately extend Hy(z,s) to a function on T(Ak) x PL(2)&.

Definition 3.6 Let (1) = X;(1)U---UX,;(1) be the decomposition of ¥(1)
into a disjoint union of G,-orbits. Denote by d; the length of the G,-orbit
(1) (dy + -+ +d; = n). We establish a 1-to-1 correspondence ¥;(1) < u;
between the G,-orbits ¥1(1),...,%;(1) and independent variables uy, ..., u;.
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Let 0 € X% be any G,-invariant cone and X (1) U---UX; (1) the set of
all 1-dimensional faces of 0. We define the rational function R, (uy,...,u;)
corresponding to o as follows:

wbr B
R, (uy,...,u) = d?l Tk —.
(=) (1= )

Jk

Define the polynomial Qx(uy,...,u;) by the formula

Qx(ul, e ,ul)
(1 —uf) - (1 —u")

> Ry(wi,...,w) =

oexGv

Proposition 3.7 [2] Let ¥ be a complete reqular G,-invariant fan. Then
the polynomaual

Qz(ul, N ,ul) —1
contains only monomials of degree > 2.
Let x be a topological character of T'(Af) such that its v-component
Xo : T(K,) — S' C C* is trivial on T(O,). For each j € {1,...,1}, we
denote by n; the sum of d; generators of all 1-dimensional cones if the G-
orbit 3,(1). By (3.1) we know that the homomorphism
™ T(K,)/T(O,) — N,

is an isomorphism for almost all v. We call these valuations good. Hence, for
good non-archimedian valuations, n; represents an element of 7'(X,) modulo
T(O,). Therefore, x,(n;) is well-defined.

Definition 3.8 Denote by
I:IE,U(XM _S) = / HE,v(le _S)Xv(xv>d,uv
T(Ky)
the value at x, of the multiplicative Fourier transform of the local Weil func-

tion Hy,(x,, —s) with respect to the v-adic Haar measure du, on T'(K,)
normalized by [, ) dpe = 1.
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Proposition 3.9 [2] Let v be a good non-archimedian valuation of K . For
any topological character ., of T(K,) which is trivial on the subgroup T(O,)
and a piecewise linear function ¢ = ps € PL(X)& one has

Qs (2, 20)
(1 _ Xe(n1) ) . (1 _ Xv(”l))

qu?™1) qu?m)

FIE,U(XUv _S) =

Corollary 3.10 [2| Let v be a good non-archimedian valuation of K. The
restriction of

/ HZ,U(:I:lH _S)d,uv
T(Kyv)
to the line s; = --- = s, = s is equal to

Ly(s,T;E/K)-Ly(s,Tys, E/K) - Qs(q,°,...,q,°).

Remark 3.11 It is difficult to calculate the Fourier transforms of local
heights for the finitely many ”bad” non-archimedian valuations v, because
there is only an embedding of finite index

T(Ky)/T(Oy) = Ny

However, for our purposes it will be sufficient to use upper estimates for these
local Fourier transforms. One immediately sees that for all non-archimedian
valuations v the local Fourier transforms of Hy ,(x,,—s) can be bounded
absolutely and uniformly in all characters by a finite combination of multi-

dimensional geometric series in ¢, /2 in the domain Re(s) € R o.

Now we assume that v is an archimedian valuation. By (3.1), we have
T(K,)/T(O,) = Ng* C Nr where G, is the trivial group for the case K, =
C, and G, = Gal(C/R) = Z/2Z for the case K, = R.. Let (-, -) be the pairing
between Nr and Mg induced from the duality between N and M. Let y
be an arbitrary element of the dual R-space My = Hom(T(K,)/T(O,),R).
Then y,(z,) = e *@¥ is a topological character of T(K,) which is trivial
on T'(0,). We choose the Haar measure du, on T'(K,) as the product of the
Haar measure du® on T'(0,) and the Haar measure dz, on T'(K,)/T(0,). We
normalize the measures such that the du’-volume of T'(O,) equals 1 and dz,
is the standard Lebesgue measure on Ngv normalized by the full sublattice
NG,
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Proposition 3.12 [2] Let v be an archimedian valuation of K. The Fourier
transform Hy, ,(xy, —s) of a local archimedian Weil function

Hy ,(z,, —s) = e~ #s(@v)
is a rational function in variables s; = ps(e;) for Re(s) € Rxo.

Proof. Let us consider the case K, = C. One has a decomposition of the
space NR into a union of d-dimensional cones NR = Uyexq) 0. We calculate
the Fourier transform as follows:

ﬁZ,v(Xgp —S) = / @—%DS(EU)—i(f%wdfv _

NR
- / e~ es@) =il gy, = Y L '
ocex(d) ' ? oeX(d) Hejaf(sj + e, )
The case K, = R can be reduced to the above situation. O

4 Poisson formula
Let Py, be a toric variety and Hy(z,s) the height function constructed above.

Definition 4.1 We define the zeta-function of the complex height-function

Hy(z,s) as
ZE(S) = Z HE([L’, —S).

z€T(K)

Theorem 4.2 The series Zx(s) converges absolutely and uniformly for s
contained in any compact in the domain Re(s) € RZ;.

Proof. 1t was proved in [19] that we can always choose a finite set S such
that the natural map

rs 1 T(K) — @T(K,)/T(0,) = N,

vgS vgS

is surjective. Denote by T'(Og) the kernel of mg consisting of all S-units in
T(K). Let W(T) C T(Ogs) the subgroup of torsion elements in T'(Og). Then
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T(Og)/W(T) has a natural embedding into the finite-dimensional logarith-
mic space
NR,S = @ T(Kv)/T(Ov) ®R

veES
as a sublattice of codimension ¢. Let I' be a full sublattice in Ngr g containing
the image of T'(Og)/W(T). Denote by A a bounded fundamental domain
of I"in Ngg. For any = € T(K) we denote by Tg the image of z in Ng s.
Define ¢(x) to be the element of I' such that Tg — ¢(z) € A. Thus, we have
obtained the mapping

If K C C" is a compact in the domain Re(s) € RZ,, then there exist two
positive constants C(K) < Cy(K) such that

f{E([L’, S)

0<Ci(K) < Ho(rs)

< (y(K) forse K, x € T(K),

since T, —¢(x), belongs to some bounded subset A, in Ngr , for any x € T'(K)
and v € S. Therefore, it is sufficient to prove that the series

ZE(S): Z I:Ig(l’,—s)

z€T(K)

is absolutely converent for s € K. Notice that Zs(s) can be estimated from
above by the the following Euler product

(Z 1T Hso(e, —S)) 11 (Z Hs (2, —s)) .

yell vesS vg€S \zENy

The sum

Z H HE,U(’}/va _S)

~yel vesS

is an absolutely convergent geometric series for Re(s) € RZ,. On the other
hand, the Euler product

H (Z Hy (2, —s))

vg€S \z€Ny
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can be estimated from above by the product of zeta-functions
C3(K) [ Cx; (),
j=1

where C3(K) is some constant depending on K. Since each (g, (s;) is abso-
lutely convergent for Re(s;) > 1, we obtain the statement. O
We need the Poisson formula in the following form:

Theorem 4.3 ([11], 31.46 e) Let G be a locally compact abelian group with
Haar measure dg,H C G a closed subgroup with Haar measure dh. The
factor group G/H has a unique Haar measure dx normalized by the condition
dg = dx -dh. Let F : G — R be an L'-function on G and F' its Fourier
transform with respect to dg. Suppose that F is also an L'-function on H*,
where H* is the group of topological characters x : G — S' which are trivial

on H. Then R
[ F@an= [  Podx.
H HL

where dx 1is the orthogonal Haar measure on H* with respect to the Haar
measure dz on G/H.

We will apply this theorem in the case when G = T(Af) and H = T'(K),
dg = wqs, and dh is the discrete measure on T'(K).

Theorem 4.4 (Poisson formula) For all s with Re(s) € RL, we have the
following formula:

1
- Hy(z, —)y(2)wos | dx,
(2m)tbs(T) /<T<AK>/T<K>>* </T<AF> >(@, ~s)x() Q’S> X

where x € (T(Ak)/T(K))* is a topological character of T'(Ak), trivial
on the closed subgroup T(K) and dx is the orthogonal Haar measure on
(T(Ag)/T(K))*. The integral converges absolutely and uniformly to a holo-
morphic function in s in any compact in the domain Re(s) € RL;.

Zg(S) =

_ Proof. Because of 4.2 we only need to show that the Fourier transform
Hsx(x, —s) of the height function is an L'-function on (T'(Ag)/T(K))*. By
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3.9 and uniform estimates at places of bad reduction 3.11, we know that the

Euler product R
H HZ,U(Xva _S)
V€S0

converges absolutely and is uniformly bounded by a constant ¢(K) for all
characters y and all s € K, where K is some compact in the domain Re(s) €
RZ,.

Since the height function Hy,(z, —s) is invariant under 7'(0,) for all v,
the Fourier transform of Hy(x, —s) equals zero for characters x which are
non-trivial on the maximal compact subgroup K. Denote by P the set of
all such characters x € (T'(Ax)/T(K))*.

We have a non-canonical splitting of characters x = x; - x,, where x; €
(TY(Ak)/T(K))* and x, € (T(Ak)/T'(Ak))*. Let us consider the logarith-
mic space

N = @ T(K)/T(O) = @ Nr.
VESso vESco
It contains the lattice T(Ok)/W (T) of Ok-integral points of T(K) modulo
torsion. Denote by MR o = @,ecs., MR, the dual space. It has a decom-
position as a direct sum of vector spaces MR o, = My @ My, such that the
space M, contains the dual lattice L := (T'(Ok)/W (T))* as a full sublattice
and the space My is isomorphic to (T(Ag)/T (Ak))* = Tk ® R.
By 1.4, we have an exact sequence

0—cl(T)—>P—M-—0,

where M is the image of the projection of P to Mg, and cl*(T) is a finite
group. We see that the character y € P is determined by its archimedian
component up to a finite choice. Denote by y(x) € M C MR » the image of
x € P.

The following lemmas will provide the necessary estimates of the Fourier
transform of local heights at archimedian places. This allows to apply the
Poisson formula 4.3. a

Lemma 4.5 [2] Let ¥ C Ngr be a complete fan in a real vector space of
dimension d. Denote by My the dual space. For all m € Mg and all s with
0 < 01 < Re(s;) < 0y there exists a constant ¢ = ¢(dy, d2,2) such that we
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have the following estimate

1 1
| : | <c :
aezzgd) Hejeo(sj +i<ej,m>) aezzgd) Hejeg(l +| <ej,m > |)H1/d

Corollary 4.6 Consider
HE oo - H HE v - )

UESOO

as a function on
M C MR,oo = @ MRJ,.
vES

Let d' be the dimension of MR .. We have a direct sum decomposition
MR = My @ My of real vector spaces. Let Mj, C My be any affine
subspace, dy’ the Lebesgue measure on My, and L' C My, any lattice. Let
g(y, —s) be a function on Mg ., satisfying |g(y, —s)| < ¢(1 + ||y||)° for all
Yy € MR, o, all s contained in some compact K C C" in the domain RZ, /25
some 0 < § < 1/d" and some constant ¢ > 0. Then the series

> [, 900 =) ey, ~5)f

is absolutely and uniformly convergent to a holomorphic function in s in this
domain.

Proof. We apply 3.12 and observe that on the space Ng o, we have a fan
Yo Obtained as the direct product of fans X% for v € S, (i.e., every cone
in ¥, is a direct product of cones in X¢v). a

5 X-functions of convex cones

Let (A, AR, A) be a triple consisting of a free abelian group A of rank k, a
k-dimensional real vector space Ag = A ® R containing A as a sublattice
of maximal rank, and a convex k-dimensional cone A C AR such that AN
—A =0 € Ar. Denote by A° the interior of A and by Ag = A° + iAR the
complex tube domain over A°. Let (A*, AR, A*) be the triple consisting of
the dual abelian group A* = Hom(A, Z), the dual real vector space AR =
Hom(Ag,R), and the dual cone A* C Ax. We normalize the Haar measure
dy on AR by the condition: vol(Ag/A*) = 1.
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Definition 5.1 The X-function of A is defined as the integral

Xa(s) = [ eeVay,
A*
where s € Ag.

Remark 5.2 X-functions of convex cones have been investigated in the the-
ory of homogeneous cones by M. Kocher, O.S. Rothaus, and E.B. Vinberg
[12, 23, 25]. In these papers X-functions were called characteristic functions
of cones, but we find such a notion rather misleading in view of the fact
that Xx(s) is the Fourier-Laplace transform of the standard set-theoretic
characteristic function of the dual cone A*.

The function X, (s) has the following properties [23, 25]:
Proposition 5.3 (i) If A is any invertible linear operator on R¥, then

Xa(s).
det A’

XA(.AS) =

(ii) If A = R%,, then
Xp(s) = (s1---s)7 ", for Re(s;) > 0;

(iii) If s € A°, then

SIL%IA XA(S) = %

(iv) Xa(s) # 0 for all s € Ag.

Proposition 5.4 If A is a k-dimensional finitely generated polyhedral cone,
then Xx(s) is a rational function

where P is a homogeneous polynomial, () is a product of all linear homoge-
neous forms defining the codimension 1 faces of A, and deg P —deg () = —k.
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Proof. We subdivide the dual cone A* into a finite union of simplicial sub-
cones A} (j € J). Let A; C AR be the dual cone to A}. Then

XA(S) = Z XAJ- (S)
jed

By 5.3(i) and (ii),
Py(s)
0:(s) (J€J),
where P; is a homogeneous polynomial of degree 0 and @), is the product of &
homogeneous linear forms defining the codimension 1 faces of A;. Therefore,
X (s) can be uniquely represented up to constants as a ratio of two homoge-
neous polynomials P(s)/Q(s) with g.c.d.(P,Q) = 1 where @ is a product of
linear homogeneous forms defining some faces of A; of codimension 1. Since
() does not depend on a choice of a subdivision of A* into a finite union of
simplicial cones A}, only linear homogeneous forms which vanish on codi-
mension 1 faces of A can be factors of (). On the other hand, by 5.3(iii),
every linear homogeneous form vanishing on a face of A of codimension 1
must divide Q). O

Theorem 5.5 Let (A, Ar,A) and (A, Ar, A) be two triples as above, k =
tkA and k = tkA, and v : A — A a homomorphism of free abelian
groups with a finite cokernel A’ (i.e., the corresponding linear mapping of
real vector spaces ¥ : Ar — AR is surjective), and (A) = A. Let
B = Kerty C A, db the Haar measure on Bg = B ® R normalized by the
condition vol(Br/B) = 1. Then for all s with Re(s) € A° the following
formula holds:

XAJ- (S) =

1
(2m)h-F|A'| Jog
where |A'| is the order of the finite abelian group A’.

X;(¢(s) = X, (s + ib)db,

Proof. We have the dual injective homomorphisms of free abelian groups
¢* + A* — A* and of the corresponding real vector spaces i* ~*R — AR.
Moreover, A* = A* N Af. Let Cy-(y) be the set-theoretic characteristic
function of the cone A* C A and Cy-(¥) the restriction of Cy-(y) to AR
which is the set-theoretic characteristic function of A* C flf{. Then

Xi(0(s) = [ Crn(3le Vg,

*

R
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Now we apply the Poisson formula to the last integral. For this purpose we
notice that any additive topological character of A which vanishes on the
subgroup Ax C AR has the form

e “PY)  where b € Bg.

Moreover,
db

(2m)h=F| 4|
is the orthogonal Haar measure on Br with respect to the Haar measures
dy and dy on AR and AR respectively. It remains to notice that

*

X, (s + ib) :/ C’A*(y)e—<s+ib,)’>dy
R

is the value of the Fourier transform of Ci~ (y)e=®¥) on the topological char-
acter of AR /AR corresponding to an element b € Bg C Ag. O

Corollary 5.6 Assume that in the above situation tk = &k — k=1 and
A = A/B. Denote by v a generator of B. Then

X(00s) = o [ Al 2,

© 2mi
where z =z 4+ 1y € C.

Corollary 5.7 Assume that a k-dimensional rational finite polyhedral cone
A C AR contains exactly r one-dimensional faces with primitive lattice gen-
erators ay,...,a, € A. We set k :=r, A :=Z" and denote by ¢ the natural
homomorphism of lattices Z" — A which sends the standard basis of Z" into
ai,...,a, € A, so that A is the image of the simplicial cone RY, C R" under
the surjective map of vector spaces ¢ : R” — Agr. Denote by Mg the kernel
of ¢ and set M :=Z"N Mg. Let s = (s, ..., s,) be the standard coordinates
in C". Then

1 1
2m) kA Jug Tlj=10(85 + Y5)
where dy is the Haar measure on the additive group Mg normalized by the

lattice M, y; are the coordinates of y in R", and [A’[ is the index of the
sublattice in A generated by aq,...,a,.

Xa((s)) =

dy

26



Example 5.8 Consider an example of a non-simplicial convex cone which
appears as the cone of effective divisors of the split toric Del Pezzo surface
X of anticanonical degree 6. The cone Aqg has 6 generators corresponding to
exceptional curves of the first kind on X. We can construct X as the blow up
of 3 points py, p2, p3 in general position in P2, Denote the exceptional curves
by Cy, Cs, Cs, Cia, Ci3, Cas, where Cj; is the proper pullback of the line joining
Di and Dj- Lets = S1 [Cl] + 82[02] + S3 [Cg] + S12 [Clg] —|—813[013] + So3 [C23] S Agﬁ
be an element in the interior of the cone of effective divisors. The sublattice
M C Z° of rank 2 consisting of principal divisors is generated by ~; =
C1+Ci3—Cy—Cyand v, = Cy + Cip — C3 — Co3 = 0.

In our case, the integral formula in 5.7 is a 2-dimensional integral (r = 6)
which can be computed by applying twice the residue theorem to two 1-
dimensional integrals like the one in 5.6. We obtain the following formula for
the characteristic function of Aqg:

81+82+$3+$12+$13+823
(81 + 823)(82 + 813)(83 + 812)(81 + So + 83)(812 + 513 + 823).

Xa((s)) =

Definition 5.9 Let X be a smooth proper algebraic variety. Consider the
triple (Pic(X), Pic(X) ® R, Aeg) where Agg C Pic(X) ® R is the cone gen-
erated by classes of effective divisors on X. Assume that the anticanonical
class [K™!] € Pic(X)g is contained in the interior of A.g. We define the
constant o(X) by

a(X) = Xy (K1),

Corollary 5.10 If A is a finitely generated rational polyhedral cone, then
a(X) is a rational number.

6 Some technical statements

Let E be a number field and y an unramified Hecke character on G,,(Ag).
Its local components Y, for all valuations v are given by:

Xo : Gm(Ey) /G (0,) — S
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Definition 6.1 Let x be an unramified Hecke character. We set

y(x) == {tv}ves.om) € R,

where 71 (resp. r) is the number of real (resp. pairs of complex) valuations
of E. We also set

= ty].
Il = max [t

We will need uniform estimates for Hecke L-functions in vertical strips. They
can be deduced using the Phragmen-Lindelof principle [22].

Theorem 6.2 For any € > 0 there exists a 6 > 0 such that for any 0 < 6, <
d there exists a constant c(e, 61, E) > 0 such that the inequality

| Le(s, x)| < (e, 01, E)(1 + [Im(s)| + [y O0)®

holds for all s with §; < |Re(s) —1| < ¢ and every Hecke L-function Lg(s, x)
corresponding to an unramified Hecke character x.

Corollary 6.3 For any € > 0 there exists a 0 > 0 such that for any compact
K C C in the domain 0 < |Re (s) — 1| < § there exists a constant C(K, ¢, F)
depending on K, £ and E such that

[Le(s,x)| < C(K,e, E)(1+ [y0))®
for s € K and every unramified character x.

Let ¥ be the Galois-invariant fan defining Py, and (1) = ¥, (1)U...UX,.(1)
the decomposition of the set of one-dimensional generators of X into G-
orbits. Let e; be a primitive integral generator of o;, G; C G the stabilizer
of e;. Denote by K; C E the subfield of Gj-fixed elements. Consider the
n-dimensional torus

T/ - H RKj/K(Gm>-

i=1

Let us recall the exact sequence of Galois-modules from Proposition 1.15:
0— M® — PL(%)Y — Pic(Px) — H' (G, M) — 0.
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It induces a map of tori 7" — T and a homomorphism

a: T'(Ag)/T'(K) — T(Ag)/T(K).

So we get a dual homomorphism for characters
- (T(Ag)/T(K *—>H m(Ax;)/Gm(K;))".

Proposition 6.4 [7] The kernel of a* is dual to the obstruction group to
weak approximation A(T) defined in 1.6.

Let x € (T(Ag)/T(K))* be a character. Then x o a defines r Hecke
characters of the idele groups

X; - Gm(AKj)—>51CC*,j:1,...,r

If x is trivial on Ky, then all characters x; (j = 1,...,r) are trivial on
the maximal compact subgroups in G,,(Ag;). We denote by L, (s, x;) the
Hecke L-function corresponding to the unramified character ;.

Proposition 6.5 Let x = (x.) be a character and ﬁz,v(Xv, —s) the local
Fourier transform of the complex local height function Hy, ,(x,, —s). For any
compact K C C" contained in the domain Re(s) € RL,, there exists a
constant ¢(K) such that

[T Hs(xe —=8) - TT L (55, x5) < e(K)
vgS i=1

for all characters x € (T'(Ak)/T(K))*.

The proof follows from explicit computations of local Fourier transforms
3.9 and is almost identical with the proof of Proposition 3.1.3 in [2].

Proposition 6.6 There exists an € > 0 such that for any open U C C"
contained in the domain 0 < |Re(s;) — 1| < ¢ for j =1,...,r the integral

~

Hx(x,—s)dx
/(T(AK)/NK))*

converges absolutely and uniformly to a holomorphic function for Re(s) € U.
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Proof. Using uniform estimates of Fourier transforms for non-archimedian
places of bad reduction (3.11) and the proposition above we need only to
consider the following integral

Hs: oo(x, —s) [ L, (55, x;)dx
/(T(Am/T(K»* };[1 7

Observe that there exist constants ¢; > 0 and ¢y > 0 such that we have the
following inequalities:

allyOoll < Z [yl < eally(x) |-

i=1

Here we denoted by |ly(x)|| the norm of y(x) € MR . Recall that since we
only consider y which are trivial on the maximal compact subgroup K, all
characters x; are unramified. To conclude, we apply uniform estimates of
Hecke L-functions from Corollary 6.3 and the Corollary 4.6. O

The rest of this section is devoted to the proof of our main technical
result.

Let R[s| (resp. CJs|) be the ring of polynomials in sq,..., s, with coeffi-
cients in R (resp. in C), C[[s]] the ring of formal power series in s1,...,s,
with complex coefficients.

Definition 6.7 Two elements f(s), g(s) € C[[s]] will be called coprime, if
g (f(s), g(5) = 1.

Definition 6.8 Let f(s) be an element of C|[s]]. By the order of a monomial

s1t...s&7 we mean the sum of the exponents oy + ... + a,.. By multiplicity

w(f(s)) of f(s) at 0 = (0,...,0) we always mean the minimal order of non-
zero monomials appearing in the Taylor expansion of f(s) at O .

Definition 6.9 Let f(s) be a meromorphic at 0 function. Define the multi-
plicity p(f(s)) of f(s) at 0 as

p(f(s) = p(gi(s)) — pn(ga(s))

where ¢;(s) and go(s) are two coprime elements in C[[s]] such that f = ¢1/¢o.
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Remark 6.10 It is easy to show that for any two meromorphic at 0 functions
fi(s) and fy(s), one has
(i) pu(f1- f2) = p(f1) + pu(f2) (in particular, one can omit ”coprime” in
Definition 6.9);
n(f2)};

(i) p(fr 4 f2) =2 min{u(f1),

(iii) p(fr + f2) = p(fr) 3 p(f2) > p(f).

Using the properties 6.10(i)-(ii), one immediately obtains from Definition
6.8 the following:

Proposition 6.11 Let fi(s) and fs(s) be two analytic at O functions, (s)
a homogeneous linear function, v = (y1,...,7%) € C" an arbitrary complex
vector with () # 0, and g(s) := fi(s)/f2(s). Then the multiplicity of the
function

P k
(s) == (E) 9(s + 2 V) |a=—us)/17)

at 0 is at least u(g) — k, if

fa(s + 2 V) a=—us)109)
1s not identically zero.
Let ' C Z" be a sublattice, 'g € R" (resp. TI'c C C") the scalar
extension of I" to a R-subspace (resp. to a C-subspace). We always assume

that 'r N R, = 0. We set Vg := R"/I'r and V¢ := C"/T'c. Denote by ¢
the canonical C-linear projection C" — V(.

Definition 6.12 A complex analytic function f(s) = f(s1,...,s,): U — C
defined on an open subset U C C" is said to descend to V¢ if for any vector
a € g and any u = (uq, ..., u,) € U one has

flu+z-a)=f(u) forall{z€ C : u+z-acU}.

Remark 6.13 By definition, if f(s) descends to Vi, then there exists an
analytic function g on ¥(U) C Vg such that f = g o). Using Cauchy-
Riemann equations, one immediately obtains that f descends to V¢ if and
only if for any vector a € I'g and any u = (uq,...,u,) € U, one has

flu+iy-a)=f(u) forall{y e R : u+iy-acU}.
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Definition 6.14 Let U be an open subset in R". By a tube domain Uc over
U we mean the set

Uc:={z€ C" : Re(z) e U}.
The following statement can be found in [17] (Prop. 6 on p. 122):

Theorem 6.15 Let U C R" (with r > 2) be a connected open subset. Then
any function f (z) which is analytic in Uc extends to an_analytic function in
Uc, where Ugc is the tube domain over the convex hull U of U.

Definition 6.16 An analytic function W (s) in the domain Re(s) € R is
called good with respect to I if it satisfies the following conditions:

(i) W (s) descends to V;

(ii) There exist pairwise coprime linear homogeneous polynomials

li(s),...,l,(s) € R]s]

and positive integers ki, ..., k, such that for every j € {1,...,p} the linear
form [;(s) descends to Vi, [;(s) does not vanish for s € RZ,, and

P(s) = W(s) - H i (s)

is analytic for Re(s) € R _;, for some 0 > 0.
(ili) There exist a non-zero complex number C(W) and a decomposition
of P(s) into the sum
P(s) = Fo(s) + Pi(s)

so that Py(s) is a homogeneous polynomial of degree u(P), Pi(s) is an an-
alytic function in the domain Re(s) € RL_; with u(Py) > u(F), both
functions Fy, P; descend to Vi, and

Po(S)
b0 (s)

where X is the X-function of the cone A = ¢(R%,) C VR;

= C(W) - Xa(4(s)),
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Definition 6.17 If W (s) is a good with respect to I' as above, then the

meromorphic function
Po(s)

kj
?:1 lj (s)
will be called the principal part of W (s) at 0 and the non-zero constant C'(1)
the principal coefficient of W (s) at 0.

Suppose that tkI' =t < r — 1. Let v € Z" be an element which is not
contained in I, I :=T®Z <~y > TR =TR®R <y >, Vg = Rr/fR and
VC = Cr/fc.

The following easy statement will be helpful in the sequel:

Proposition 6.18 Let f(s) be an analytic at O function, I(s) a homogeneous
linear function such that I(y) # 0. Assume that f(s) and l(s) descend to V.

Then ~ s)
(s) :=f<s—m~v>

descends to V.

Theorem 6.19 Let W(s) be a good function with respect to T as above,
k;
o(s)= [[ 1'(s)
j 1 (1)=0

the product of those linear forms l;(s) (j € {1,...,p}) which vanish on 7.
Assume that 'r NRLy = 0 and the following statements hold:
(i) The integral

W(s) := / W(s+z-7)dz, z€C
Re(z)=0
converges absolutely and uniformly on any compact K C C” in the domain
RG(S) S R;O;'
(ii) There exists a § > 0 such that the function W(s + z - v) is defined

and analytic in a tube domain Uc over an open neighborhood U of O for all
z with Re(z) = and the integral

/ O(s) W(s+ 2 7)dz
Re(z)=6
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converges absolutely and uniformly in any compact which is contained in
the same tube domain Uc. Moreover, the multiplicity of the meromorphic
function

W, ::/ Wi(s+z-v)d
5(s) Re(o)s (s+2-7)dz
at 0 is at least 1 + kT — 7;

(ili) Fors with Re(s) € R, the function

G(N,s) = sup (W(s +z-7)
0<Re(2)<4, [Im(z)|=N

tends to 0 as N — +o0, uniformly in any compact K contained in the tube
domain over RL,. ) )
Then W (s) is a good function with respect to I' and C(W') = 2mi - C(W).

Proof. Assume that [;(y) < Oforj=1,...,p1,j(y) =0forj = p1+1,...,po,
and [j(y) > 0 for j = po+1,...,p. In particular, one has

D(s) = ﬁ 17 (s).

Jj=p1+1

Denote by z; the solution of the equation
li(s) +2li(y) =0, j=1,....p.

Let U™ be the intersection of RZ, with an open neighborhood U of 0, such
that i

D(s) - Wi(s)
is analytic in Ug. Then both functions W;(s) and W (s) are analytic in Ug.
Moreover, the integral formulas for Wj(s) and W (s) show that the equalities
Ws(u+ iy -~) = Ws(u) and W (u+ iy - 7) = ~I/T/'(u) hold for any y € R and
u,u+iy-y € UL. Therefore, both functions Wi(s) and W(s) descend to Vg

(see Remark 6.13).
For N > 0, we can apply the residue theorem and obtain

/N W(s+it-v)dt + /06 Wi(s+ (iN +y)vy)dy—

—N
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—/N W(s + (it +9) -7)dt—/()6W(s+ (—iN +y)y)dy =

—-N

P1
= —2mi-» Res._., W(s+z-7)

=1
for all s € US. By (iii), we have

)

lim Wi(s+ (iN +y)y)dy =0
N—+00 ./

and
b

lim Wi(s+ (—iN +y)y)dy =0
N—+400 .J0

uniformly for all s contained in any compact K C Uf. By (i) and (ii), we
have

~ N
W)= Jim [ W(s+ it
and N
Ws(s) = lim W (s + (it + 8) - v)dt
N—+4o0 J_N

uniformly for all s contained in a compact K C Ug. Therefore,

~ _ p1
W(s) — Ws(s) = —2mi- Y Res,—., W(s+z-7)

j=1

for all s € US.
We denote by U(v)c the open subset of U defined by the inequalities

L) |, In(s) o
# ——= forall j #m, jome{l,...,p}.
L) " ()
The open set U(7)c is non-empty, since we assume that g.c.d.(l;,1,,) = 1 for
j #m. For s € U(v)c, we have
kej—1 .
1 J . . k P .
ResZ:ZjW(s + z- ”y) = 7' <g> i]_(s +z 7) ’ (S R 7) |Z:Zj7
(kj — 1P\ 0= () Tt U (s 4+ 2+ )
where L(s)
j S
Z. _— —
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Let
W(s) - _1_11 [} (s) = P(s) = Py(s) + Pi(s),

where Py(s) is a uniquely determined homogeneous polynomial and P;(s)
is an analytic in the tube domain over RY_; function such that pu(P) =

1(Fo) < p(Pr) and
P(](S)

k.
?:1 ljj(s)

(Xa(s) is the X-function of the cone A = ¥(R%,)). We set

= C(W) - Xy(s)

PQ(S) Pl(S)

P (s) P (s)

Then u(W) = p(Ry) < p(Ry). Moreover, p(W) = —dimVg = r — rkI.
Define

Ro(S) = Rl (S) =

. p1
Ry(s) := —2mi- > Res._. Ro(s +2-7)

J=1

and
pP1

Ry(s) := —2mi - > Res,—, Ri(s+ z - 7).

Jj=1

By Proposition 6.11, we have ju(R;) > 14 u(Ry) > 2+ pu(Ro) = 1 +1kT — 7.
We claim that ) .

Fols) = 21 - C(W) 3 (5(5).
(in particular, ju(Ro) = p(Ro)+1 = rk ' — 7). Indeed, repeating for Xx(¢(s))
the same arguments as for W (s), we obtain

/Re(z):o Xy(U(s+z-7))dz — / Xn(Y(s+z-7))dz

Re(z)=6

k1
= —2mi- Y Res,—,, X (¥(s + 2 - 7))

Jj=1

Moving the contour of integration Re(z) = ¢ (§ — +00), by residue theorem,
we obtain

/Re(2)=6 Xa(Y(s+ 2z 7))dz = 0.
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On the other hand,

X(006)) = 5 [ Aalls+ 2o )

2w

(see Theorem 5.6). . .
By Proposition 6.11, we have p(Ry) > 14+u(Ry) > 24+ u(Ro) = 1+rk['—r.
By 6.9(iii), using the decomposition

W (s) = Ws(s) + Ro(s) + Ri(s)

and our assumption u(W;) > 1+ rkI' — 7 in (i), we obtain that u(W) =
w(Ry) =1k — 7.
By 6.18, the linear forms

hm.j(8) = lm(s + 2j - 7) = lm(s) —
and the analytic in the domain U(7)c functions
Res,—.,W(s+2-7), Res.—;, Ro(s+2-7)
descend to V. For any j € {1,...,p}, let us denote

Qe = TI M)

m#jm=1

It is clear that

QY (s) - Res,—. W(s+z-7) and ij(s) Res.—., Ro(s + 2 - )

J

are analytic at 0 and the polynomial ®(s) divides each ();(s). So we obtain
that

W(S> ﬁ Q?J (s) = (W(g(s) — 271 - pzl R'eSZ:ZjW(S + oz fy)) H QfJ (S)

j=1 j=1

Ro(s) [1 Q;?j (s) = <—2m' : i Res,—., Ro(s + z - 7)) 11 Q;?j (s)

J=1
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are analytic in Uc.

Define the set {I;(s),...,l,(s)} as a subset of pairwise coprime elements
in the set of homogeneous linear forms {h,,;(s)} (m € {1,...,p}, j €
{1,...,p1}) such that there exist positive integers ny,...,n, and a repre-
sentation of the meromorphic functions W (s) and Ry(s) as quotients

W(s) = L Rls) = o)
i=17(s) i=107(s)

where P(s) is analytic at O, Py(s) is a homogeneous polynomial and none

of the forms /y(s),...,l,(s) vanishes for s € RZ (the last property can be

achieved, because both functions W(s) and Ry(s) are analytic in Ug).
Define

Pils) = (Wals) + Bu(s) - TT V(6.

Then . . . "
P(S) = Po(S) + Pl(S)

where Py(s) is a homogeneous polynomial and Pi(s) is an analytic in Ug
function such that pu(P) = u(Fy) < pu(P;) and

p() ES)
J 6 l?j (s)

For sufficiently small positive dg, the domain R _ is contained in the convex
hull of U URZ,,. By 6.15,

= 2mi - C(W) - X5 (4(s))-

1 m; =
[157 (s)W(s)
j=1
is analytic in Re(s) € R” ;. This proves that W(s) is a good function with

respect to I'. O

7 Main theorem

Let us set
WE(S) = ZZ(QOS + sz) = ZE(sl + ]_, ey Se + ].)

By Theorem 4.2, Wx(s) is an analytic function in the domain Re(s) € RZ.
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Theorem 7.1 The analytic function Wx(8) is good with respect to the lattice
MC¢ ¢ PL(X)C = 7.

Proof. By Theorem 4.4, we have the following integral representation for
Zyx(s) in the domain Re(s) € RZ,

sl
(2m)tos(T') J(r(AR)/T(K))"

Zs(s) = Hs(x, —s)dx

We need only to consider characters y which are trivial on the maximal com-
pact subgroup Kr C T'(Ak), because for all other characters the Fourier
transform Hy(x, —s) vanishes. Choosing a non-canonical splitting of charac-
ters corresponding to some splitting of the sequence

0—TYAk) — T(Ag) — T(Ag) /T (Ag) — 0

we obtain

1

PO — i |
=(s) 2m)0s(T) Jeraw > X Ja -

H E(X ) —S)Xm
We have an isomorphism M§ ~ (T(Ak)/T'(Ak))* and the measure dy,
coincides with the usual Lebesgue measure on Mg. Recall that a character
X € (T(Ak)/T(K))* defines r Hecke characters xi, ..., X, of the idele groups
G (Ak;). In particular, we get r characters xi,, ..., Xry. We have an em-
bedding MY c PL(X)Y, which together with explicit formulas for Fourier
transforms of local heights shows that the integral

1

S Hs (v, —(s +1))d
bs(T) /(T1<AK)/T(K>>* =06 = N

AZ(Sv Xy) =

is a function on PL(X)E and we have

AE(57Xy) = AE(S + zy) = Ag(Sl -+ iyl, ey Sy —+ zyr)

Denote by I' := M the lattice of K-rational characters of 7. Let ¢ be
the rank of I'. The case t = 0 corresponds to an anisotropic torus 7'. It has
been considered in [2]. So we assume t > 0.

For any element v € I' C Z" we denote by I(7y) the number of its co-
ordinates which are zero (0 < I(y) < r). Let {(I') be the minimum of ()
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among v € I'. Notice that [(I') < r —¢ — 1. Indeed, if we had [(I") > r — ¢,
then M% would be contained in the intersection of r — ¢ linear coordinate
hyperplanes s; = 0 (the latter contradicts the condition M§ NRZL, = 0). We
can always choose a Z-basis 7', ..., 7" of I" in such a way that I(T') = I(y*)
(u=1,...,t). Without loss of generality we assume that I' is contained in

the intersection of coordinate hyperplanes s; =0, j € {1,...,I(I')}. We set

U(T)

@(S) = H Sj.
j=1
For any u < t we define a subgroup I'® C T of rank u as
I .=@PzZ<qy >.
j=1

We introduce some auxiliary functions

WE(s) = [, As(s +iy™)dy™
"R

where dy™ is the induced Lebesgue measure on I' g{) C R", normalized by
I'®. Denote V) = C7/TY. We prove by induction that W (s) is good
with respect to '™ C Z7.
By 4.6, Wé“)(s) is an analytic function in the domain Re(s) € RZ,.
There exist 01, ...,d; > 0 such that the integral

/ o(s) - WS V(s + 2 y")dz (u=1,2,...,1)
Re(z)=0u

converges absolutely and uniformly in any compact contained in a tube do-
main Uc over an open neighborhood U of 0. This can be seen as follows:
For any ¢ with 0 < ¢ < 1/rd’, where d’ = dim MR ,, we can choose a ball
B., C R" of radius e; around 0 such that for any ball B., C B, of radius
es (0 < €3 < 1) around 0 we can uniformly bound the Hecke L-functions
Lk,(s; +1,x;) appearing in Hx(x,s) by

cj(ea)(ly ()l + Mm(s;)| + 1)
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with some constants c¢;(ey) for all s in the domain Re(s;) € B, \ B, for j =
1,...,7 (see 6.2). By 4.6, this assures the absolute and uniform convergence
of the integral

g s+ iy
ry

for all s contained in a compact in C” such that Re(s;) € B.,\B., for j =
1,...r. We know that the coordinates 7} of the vectors v* = (7, ...,7,) € Z'
are not equal to zero for [(I') < 7 < r. Therefore, we can now choose such
real 0, > 0 that 5ufy]” are all contained in the open ball B.,. So there must
exist some e; > 0 such that 6,7} & B, forallu =1,..,tand all [(T') < j < 7.
It follows that there exists an open neighborhood of 0, such that for all s
contained in this neighborhood we have Re(s; + 0,7}) € B, \Be, for all
I(I") < j < r. Since we remove the remaining poles by multiplying with ®(s)
we obtain the absolute and uniform convergence of Wéu)(s) to a holomorphic
function in s in this neighborhood.
Moreover, the multiplicity of the meromorphic function

Wil = [ sz n)ds
at 0 is at least
w( @) =1+t—r=1+1kl =7 >1+1kIT® — 7.
We apply Theorem 6.19. It is clear that

3 Hy(x,—(s1—1),...,—(s, — 1))

XE(TH (A g /T(K)Kr)*

is good with respect to the trivial lattice I' = 0 (The property (iii) follows
from estimates 6.3 and 4.6). This concludes the proof.
O

Theorem 7.2 Denote by }AI275(X, —s) the multiplicative Fourier transform
of the height function with respect to the measure wos (see 2.2). The prin-
cipal coefficient C(X) of

1 )
Ag(s) = / s, s(x1, —s)d
2(8) = 550 iAo 2S00 7SN
at 1= ... = s, = 1 is equal to B(Px)1c(Py).

41



Proof. We follow closely the exposition of the proof of theorem 3.4.6 in
2]. Since MY — PL(X)% we have an embedding of characters

(T(Ag)/T'(Ak))" = Mg — H m(Ak,)/ G (Ax))"

7j=1

Recall that the kernel of

T

o+ (T(Ak)/T(Ak))" = J](Gm(Ak,)/Gm(Ax)))"

J=1

is dual to the obstruction group to weak approximation A(T) = T'(Ak)/T(K).
We have a splitting

T(K)=T(K)g x T(Ags).

Here we denoted by T(K) the image of T(K) in [I,cs T(K,) and T(Ak s) =
T(Ak) N Ilugs T(Ky). The pole of the highest order r of Hs s(xi, —s) at
s1 = ... = s, = 1 appears from characters x; such that the corresponding
X1, .-, Xr are trivial characters of the groups G,,,(Ak,)/Gn(Kj;), ie., x; is a
character of the finite group A(T) = [I,esT(K,)/T(K)g, and is trivial on
the group T'(Ak s).

For s € R, we can again apply the Poisson formula to A(7"). By 1.18,
the order of A(T) equals 3(Py)/i(T). We obtain

1 : B(Py)
Hy s(xi,—8) = ——+ | Hx(z,—s)was
bs(T) xe(AZ(T))* Z(T)bs(T) T(K)
(see 1.18). We restrict to the line s; = ... = s, = s and we want to compute
the limit
li —1)" H — .
51_12(3 ) i) (2, —s)wa,s
We have
m1'1[2(5(7, —S)(UQS = (1)
= Hy,, vy U / Hy,, vy djiy
iy, WL Hmolen =)o 11 J o sl =s)du

(recall that wa, = [lvevai(x) dite and dp, = Ly(1,T; B/ K)wq, for all v and
L,(1,T;E/K)=1forveS).
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From our calculations of the Fourier transform of local height functions
for v € S (3.10), we have

11 / Hs, o (0, —8)djty = 2)

vgS
= Ls(s,T;E/K) - Ls(s, Tns; E/K) [] Qs (a0, °, .-, 4,°).
vgS
By 3.7,
| RSN

vgS

is an absolutely convergent Euler product for s = 1. Moreover, the limits

lin%(s —1)'Ls(s, T; E/K)

lin%(s — 1) Lg(s, Ts; B/K)

exist and equal the non-zero constants lg(T) and lg*(Px) (r = t + k). By
3.11,

S HHEU Ty, —S va

T(K)s veS
is absolutely convergent for s; = ... = s, = 1. Using (1) and (2), we obtain:
lim(s — 1)" Hy(z, —s)wq s = (3)
=1 T(K)
ls(T _ -
= S( ) / HHEU Iva_s)wﬂ,v' HQZ(qvla'-->qvl)‘
s (Px) JT(®)4 veS vgS

Now recall (3.10), that for v ¢ S we have
(g )= [ L (0 Tvs; B/ K) Hyyfw ~1)wa,.

It was proved in [2] Proposition 3.4.4 that the restriction of the v-adic mea-
sure wy,, to T(K,) C Pyg(K,) coincides with the measure

HE’U(SL’, —1)&)9’@.

Here IC is the canonical sheaf on the toric variety Py metrized as above.
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We also have

/T(K) H HEU xvv_l)wﬂ,v = H WK,v- (4)

S ves T(K)s yeg

Using the splitting T'(K) = T'(K )4 x T(Ak,s) and multiplying the above
equations we get

/T(K / 1] v H/ N1, Ts; B/ K)wio-

K)s pes ogs (Kv

On the other hand, it was proved in [2], Proposition 3.4.5 that we have

/_ wic,s =
T(K) Ps(K

)w;gs = bS(PZ)-
Therefore,

bS(PE) = H HZ(:E> _902)0‘19,1) ’ H QE(qv_la SRR qv_l)
T(K)s s v@S

Collecting terms, we obtain

BPs)  1s(T)
i(T)os(T) 1s(Ps)

By 2.4 and 2.9, we have the following equality

i(T)bs(T) = h(T)ls(T).

It remains to notice that we have an exact sequence of lattices

Cc(¥) =

-bs(Py).

0 — M® — PL(X)Y — Pic(Py) — H'(G,M) — 0

and that the number h(T) = |H'(G, M)| appears in the integral formula
for the X-function of the cone Aeg C Pic(Pyx). We apply Theorem 5.5 and
obtain that

Wx(s) = ! / As (s +iy)dy

(2m)ibs(T) Jug

is good with respect to the lattice M and that

C(X) = B(Py)7c(Px)
is the principal coefficient of Wyx(s) at 0. O
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Theorem 7.3 There ezists a 6 > 0 such that the height zeta-function (x(s)
obtained by restiction of the zeta-function Zx(s) to the complex line s; =
w(ej) =s forall j =1,...,r has a representation of the form

0(%) 9(s)
Gl = o T o

with k = r —t = rkPic(Pyg) and some holomorphic function g(s) in the
domain Re(s) > 1 —3§. Moreover, we have

O(%) = a(Ps)5(Px)7c(Py).

Proof. Since Wx(s) is good with respect to the lattice ME C Z", we have
the following representation of Wx(s) in a small open neighborhood of 0:

P(s)
J1 157 (s)

where P(s) = Py(s) + Pi(s), u(Py) > pu(Fp) and

WZ (S) =

P(] (S)
A s)

where X, is the X'-function of the cone Aeg = ¢(R%,) C Pic(Px)R.
If we restrict

= B(Px)7c(Ps) - Xa 0 (¥(s)),

Po(s)
k.
?:1 ljj(s)
to the line s;, = s —1 (j = 1,...,7), then we get the meromorphic function

O(s — 1)7* with © = a(Pyx)B(Px)7c(Ps). Moreover, the order of the pole
at s = 1 of the restriction of

Py(s)
-, 15 (s)

to theline s, =s—1(j =1,...,r) is less than k. Therefore, this restriction
can be written as g(s)/(s — 1)¥~! for some analytic at s = 1 function g(s).
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Corollary 7.4 Let T be an algebraic torus and Py its smooth projective
compactification. Let k be the rank of Pic(Py). Then the number of K-
rational points x € T'(K) having the anticanonical height Hi-1(z) < B has
the asymptotic

o2
N : 1)>' Bllog B (14 o(1)), B — oo.
Proof. We apply a Tauberian theorem to (x(s). a
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