RATIONAL POINTS ON TORIC VARIETIES

V.V.BATYREV AND YU.TSCHINKEL

ABSTRACT. We study the distribution of rational points on smooth
compactifications of algebraic tori.

1. INTRODUCTION

Let X be a smooth Fano variety defined over a number field F' and
— K x its anticanonical line bundle. Over some finite extension one
expects infinitely many rational points on X. One can introduce ap-
propriate counting functions - height functions and study the asymp-
totic for the number of rational points of bounded height with growing
height. In [1] Batyrev and Manin formulated conjectures describing
such asymptotics. Let £ = (L, | - ||,) be a metrized very ample line
bundle on X. Denote by H. : X(F) — Rsy the corresponding height
function. Define the height zeta function associated with £ as

Ze(s)= > Hp(a)™.

z€X(F)

Analytic properties of Z,(s) determine the asymptotic behaviour of the
number of F-rational points on X of bounded L-height. Denote this
number by N (X, L, B). It is an experimental fact that in order to get
a good description of the asymptotics of N(X, L, B) for B — oo in ge-
ometrical terms one should delete some Zariski closed subsets. Already
for del Pezzo surfaces one has to deal with accumulating subvarieties -
exceptional curves C' are lines in the anticanonical embedding with an
asymptotic N(C,—Kx|c, B) ~ B? while the conjecture predicts

N(U,-Kx, B) ~ B(log B)"™ 7?01

for some Zariski open U. One hopes that U can be chosen to be the
complement of exceptional curves. In [5] geometric techniques were
developed to prove upper bounds for the number of points on surfaces
outside exceptional curves. One of the goals of the present paper is
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to show that it is still possible to get precise results if the accumu-
lating subvarieties are contained in the divisor at infinity in a smooth
compactification of an algebraic torus.

Acknowledgements. We would like to thank Yu.l.Manin, D.Kazhdan
and B. Mazur.

2. GEOMETRY

Let us first recall some terminology from the theory of toric varieties
over algebraically closed fields [3, 6].

Definition 2.0.1. A linear algebraic group Tr defined over a num-
ber field F' is called a d-dimensional torus if its base extension T =
Tr X spec(ry (Spec(F)) is isomorphic to G (F).

The group of F-rational points of T is denoted by T'(F'). We call Tr
splitif it is isomorphic to G, (F) already over F.. We call Tr anisotropic
if it has no nontrivial F-split F-subtori. Examples of anisotropic tori
are provided by norm equations. Equivariant compactifications of split
tori are described by the following objects:

1. A finitely generated free Z-module M of rank d and the dual
module N = Hom(M, Z).
2. A complete d-dimensional fan 3.

Definition 2.0.2. A finite set X consisting of convex rational polyhe-
dral cones in Ng = N ® R is called a complete d-dimensional fan if the
following conditions are satisfied:

(i) every cone o € ¥ contains 0 € Ng;

(i1) every face o' of a cone o € ¥ belongs to ¥;

(111) the intersection of any two cones in 3 is a face of both cones;

(iv) N is the union of cones from X.

We denote by ¥(i) the set of all i-dimensional cones in ¥. The toric
variety Xy, is obtained by glueing affine schemes

Xz = U

oey

where U, = Spec(F[M N ¢&]) and ¢ is the dual to o cone. It contains
Tr as a Zariski open subset. The toric variety Xy is smooth iff every
cone in X is generated by a part of a Z-basis of N.

There is a parallel theory of compactifications of nonsplit tori. In this
case a T" and Galois equivariant compactification of T is described by:
M, N,Y and an action of the Galois group on these objects.
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Definition 2.0.3. A continuous function ¢ : Nrg — R is called -
piecewise linear if the restriction of ¢ to every cone ¢ € ¥ is a linear
function. It is called integral if ¢(N) C Z. We denote by m,,, the
restriction of ¢ to o considered as an element in M. The group of
integral piecewise linear functions is denoted by PL(X).

Proposition 2.0.4. The Picard group Pic(Xy) is isomorphic to PL(X)/M
where elements of M are considered as globally linear integral functions
on NR.

Denote by e, ... , e, the primitive integral generators of all 1-dimensional
cones in Y. They define T-invariant Weil divisors Dq,..., D, on Xs.

Proposition 2.0.5. The piecewise linear function ¢ € PL(X) such
that @(e;) = 1 for all i (if it exists) corresponds to the anticanonical
class — Ky in Pic(Xy).

Proposition 2.0.6. The cone of effective divisors Nelff(Xg) is gener-
ated by the classes (D], ..., [Dy].

3. HEIGHTS

In this section we introduce metrizations on line bundles on toric
varieties. The idea is that instead of studying Z.(s) for some fixed
metrized line bundle, one should consider the height zeta function as
a function on the whole complexified Picard group. Therefore we need
canonical simultaneous metrization on all line bundles. We don’t know
how to achieve this on arbitrary Fano varieties. We know how to do it
in two examples: for flag varieties [4] and for toric varieties.

Let F' be a global field and Ap the adele ring of F. Denote by
|-]v : F,, — R the standard norms on v-adic completions of F' satisfying
the product formula [[, |al, = 1 for all a € F*. Let X = G/P be
generalized flag variety. Here GG is a semisimple linear algebraic group
defined over F' and P a parabolic subgroup containing a Borel subgroup
B. Denote by 7 : G — G/ P the natural projection. Denote by X*(P)
the characters of P defined over F'. There is an embedding of finite
index

X*(P) — Pic(G/P)
X = Ly
where the line bundle L, is defined by

LU, L) ={f €T(x'(U),0q) | f(pg) =x(p)flg) Ype P VgeG}.

Fix a compact subgroup K = [[ K, C G(Ap) such that G(Ap) =
B(Ap)K. Let k = k(z) € K be given by n(k) = x € G/P(F). For a
section s € I'(L,) nonvanishing in x put ||s(x)||, = |f(k)|, where f is
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a function on G nonvanishing in x and satisfying f(pg) = x(p)f(g) as
above. The height function is defined as

He (z) =[] Is(@)l;".

The corresponding height zeta function is an Eisenstein series and its
analytical properties can be summarized as follows: it is holomorphic
in the domain pp+ a;)g where pp is half of the sum of roots counted with
their multiplicities and a} is the positive Weyl chamber. In geometric
language it translates into holomorphy of the height zeta function in-
side the domain —Ky + N};;(X) for X = G/P with simple poles at
faces of the polyhedral cone —Kx +dN/;;(X). The multiplicity of the
pole at the vertex —Kx equals rk Pic(X). There are no accumulating
subvarieties.

Let X = Xy, be a complete split toric variety obtained by glueing affine
schemes U, = Spec(F[M N¢]). One can define a canonical covering of
X5 (F,) by compact subsets K, , C U,(F,) as follows:

K, ={z, € U,(F,) | Im(zy)|o <1 for all me M Na}.

Here we have used the canonical embedding T'(F,)/T(O,) < N (resp.
N ® R for archimedian v). For o,7 € ¥ one has K,, N K,,. Let
L, be a line bundle on Xy given by a piecewise linear function ¢ =
{my,} € PL(X) and s € I'(L,,) a local section of L, nonvanishing in
x € T(F) C Xx(F). Define the v-norm of s at z, € K,,, by

Is(@u)llo = [s(z0) /Mo (x0)]0-
This gives a T'(O,)-invariant v-adic metric on L, ® F,,. The height

function is defined as

He, () = [T lsza) 1"

Example 3.1. On Xy = P¥ the group of piecewise linear functions
PL(X) is 2- dimensional, ps = (s1,52) given by (e1) = s1,p(e2) = sa.
The corresponding local height function is

3 if Jale =1

jzf > if el <1

Here we have x € T(F) = G»(F) — F and | - |, is the standard

valuation.

H,(z,s) ={

Let us point out that the introduced metrizations on line bundles for
flag and for toric varieties are quite different. For P¥ considered as a
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flag variety the associated height zeta function is
1
Z(S) - Z (m2 + n2)s/2
(n,m)=1
For P* considered as a compactification of G, the height zeta function

Zs(s) =4 (WS’) —2

n

where ¢(m) is the Euler function.
We want to extend the height function to the complexified Picard group
Pic(Xs) ® C. For a piecewise linear function ¢, € PL(X) ® C given
by ¢(e;) = s; for s = (s1,...,5,) define the complex local height
function as

Hy (z,5) = e¥s(@v)logau

Here ¢, equals the cardinality of the residue field of F;, for non-archimedian
v and log ¢, = 1 for archimedian valuations and z, is the image of z, in
N, = N. The global complex height function defined as a product

Hz(llf, S) = H HZ,U(':Ev ‘9)

extends naturally to 7% (Ap).

Proposition 3.0.7. Fors € Z* and x € Xx(F) the function [[, Hs (z, s)
coincides with the (classical) height function Hy, (x) defined through
the canonical compact covering.

Summing up: we have defined a function on the Zariski open subset
T C Xx,

Hg(l’, S) : T(AF) X PiC(Xg)(C — C
invariant under the compact subgroup K C T'(Ar). The corresponding
height zeta function

Zs(t,s) = Hy(tr,—s)

z€T(F)

is invariant under 7'(F'). It is not difficult to see that the series con-
verges absolutely and uniformly in the domain Re(s) > 1 = {Re(s;) >
1 forj=1,... ,n}. The next step is to use harmonic analysis on the
homogeneous space T(Ar)/T(F') and to try to establish the analytic
properties of Zx(t,s). The accumulating subvarieties are contained in
the complement Xy, — 7. All geometrical information is now encoded
in the height Hy. Here is a precise version of Manin’s conjecture in the
case of toric varieties.
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Conjecture 3.0.8. The height zeta function Zx(t, s) is a function on

Pﬁf) ® C, it is holomorphic in the domain Re(s) € —Kx + N} (Xx)

and has simple poles on codimension 1 faces of this cone.

In general, we cannot hope to prove a functional equation and analytic
continuation to the whole plane.

4. FOURIER ANALYSIS

4.1. Adelization. Denote by T'(Ar) the adele group of T, by T (Ar)
the subgroup of norm 1 adeles, by K'T(F) the smallest closed subgroup
of T*(Ar) containing T'(F) and K =[], T(O,).

Let us formulate analogs of well known properties of ideles.

1. T(Ar)/T'(Ar) ~ R> where r equals the rank of the group of
F-rational characters of Tr,

2. T'(Ap)/KT(F) is isomorphic to a product of a finite abelian
group (analog of the idele class group) and a connected compact
abelian group,

3. [I,7(0,) NT(F) is a finite group of torsion elements in T'(F)
(this is the analog of the group of roots of unity).

4.2. Poisson formula. For a locally compact abelian group G denote
by G* its dual group of characters. For a function f € L}(G) define
the Fourier Transform

f(y):/Gf(x)<x,y>dx.

Let H C G be a closed subgroup. Define the orthogonal subgroup in
G* by

H*={yecG*|<z,y>=0Voec H}.
Given Haar measures on G and H there exists a unique measure dh* on

H* such that for all f € L'(G) with f € L'(G*) the Poisson formula
holds:

[t [ i

Example 4.1. Let PLT C R* = (~p, ... ,~y) be the simplicial cone
given by s; >0 forallj=1,... ,n. Let Nelff be its n — d dimensional
image under a linear surjective map of vector spaces. We have an exact
sequence

0— M — R —R"" -}
Then the function
dm

A= [, TG+ v Tmy)
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s a rational function on Nelff ® R = R*~ with simple poles on codi-
mension 1 faces of Nelff. Here m; are the coordinates of m in the fized
basis (1, ...,8n) of R*. This follows from Poisson formula applied to

the Laplace transform of the characteristic function of the dual cone
1

Neff-

4.3. An integral representation. Recall that for Re(s) > 1 we have

defined the height zeta function by the series

Zs(t,s)= > Hy(tx,—s).
z€T(F)

In the following let us assume ¢ = 1 and denote Zx(1, s) by Zs(s). The
K invariance of the height Hy, implies the following

Proposition 4.3.1. Let dx be a Haar measure on T'(Ag). There is an
explicit constant ¢y such that

Zs(s) = CQ/ Hy(z,—s)dx.
KT(F)

Theorem 4.3.2. The following formula holds for Re(s) > 1

/ Hy(z,—s)dx = / dy/ Hy(x,—s)xy(x)dz.
KT(F) (T(Ar)/KT(F))* T(AF)

Here x,, : T(Ap)/KT(F) — C is a continuous character and dz, dy are
appropriate Haar measures.

4.4. Reductions. The character x, € (T'(Ar)/KT(F)) splits through
the section of the map T (Ap) — T(Ar) into a product

Xy = Xm X Xu
such that y,, is trivial on T'(Ar) and ., € (T"(Ar)/KT(F))*. Notice

that for split tori T(Ag)/T"(Ar) ~ R ~ M and that x,,, = |z|Y~"™.
We can rewrite the integral above

Zx(s) :/ dm du/ Hy(x, —8)Xm () xu(x)dx.
(T(Ap)/T(AFp))* (T (Ap)/KT(F))* T(Ar)

Consider

Z4(s) :/ dm/ Hs(x,—8)Xm(z)dx.
(T(Ap)/T(AR))* T(Ar)

A variant of Poisson formula implies that Zx(s) and Z&(s) have the
same analytic properties in the domain Re(s) > 1 — ¢ for some small
positive . This is enough to prove the

Theorem 4.4.1. Let Xy be a compactification of an anisotropic torus.
Then the height zeta function Zx,(s) satisfies Manin’s conjecture (3.0.8).
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4.5. Further reductions. Just like P* is seen to be a factor of G5\ {(¥,#)}
by the diagonal action of G, one can represent split toric varieties as
factors of some open dense U(X) < G3 by an action of a torus G¥~.
We have a diagramm

0 - G —- U3 — Xy — 0

I U U

0O - G - G —- T — 0

and an induced embedding of characters

Definition 4.5.1. For x = (x1,...,2,) € GX(Ar) define fx(z) =
®vf2,v(x) by

d
fE,v(I) = Z(_l)d_k fU,v(x)
k=0 oe(k)
where [y, (z) = H?:1 fgv(:c) and
0o(zy) if o € X(d) and e; ¢ o
Jo(@) = fl(z;) ={ xiw(z;) if oc€X(k), k<d and e;¢o

X<10(z;) otherwise
Here 61,(t) is defined by

/ S0 () |x]*x(t)dt =1
G (Fy)

forall x € (T(Ap)/KT(F))* with Re(x) > 0 and all s with Re(s) > 0.
The other functions are defined as

X10(t) =1 for |t|,=1 and 0 otherwise
X<10(t) =1 for |t|, <1 and 0 otherwise.

The above definition needs some explanation. At each non-archimedian
place fx,(z) is a smooth function. At archimedian places fx,(z) is a
distribution. We don’t want to define a product of delta functions. The
notation 0y, (1) X 61,4(t2) stands for §¢,1y(t1,22).

Theorem 4.5.2. For Re(s) > 1 we have the following identity:
| @i = [ @l
T(Ar) G3 (Ar)

Here x, is considered as an element of (GX(Ar))* and |z|® = |x1[** ... |z, [*".
The integrals converge absolutely.

Proof. To prove the theorem we compare local factors. Using
1. T(0O), invariance of Hy,, and x, ..,
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2. the embedding T'(F,)/T(O,) — N (resp. N ® R for archimedian
v),
3. the explicit description of the height
HEU(:L'U) — 6‘Ps(jv)10glh
where ¢, € PL(X) is a piecewise linear function on N (resp. N®R
).
we deduce our claim. O
We have expressed the height zeta function as a Mellin transform of a

(generalized) function on a bigger group. The next step is to isolate
the poles of the adelic integral

B(so) = [ felo)lalyy o),
GX (AF)
and to study to integral
Zs(s) = [ Ists. ).

4.6. Examples. Assume ' = Q. In this section we consider split
toric varieties. Recall that in this case (T(Ag)/T"'(Ag))* @~ R ~ M
and y(x) = |z[Y=T". It follows that Is(s, xm) = Is(s + v/—1Im); our
notations are in accordance with example (4.1). Let us introduce more
notations: For G = [[ G define

Js(s) = / Fs(@)|z) ~>dx
|z|>1,2€G(AF)

where f(z) is the additive Fourier transform of fx(z). The integral
converges uniformly for Re(s) > 1 — § for some § > 0.

1. Here is yet another expression for the height zeta function of P¥
Z]pué (81, 82) =

Co(s1 + vV —=1m)Cg(se — \/—_1m)( 1 N 1
R¥ C@(Sl + 82) (81 + \/—_1m) (82 — \/—_1m)
where (g(s) is the Riemann zeta function.

2. Consider a smooth split del Pezzo surface X = Xy, of degree 6. It
is a toric variety obtained by blowing up P* in 3 points or by com-
pactifying G% with 6 rational curves. The cone N, orp(X) is gen-
erated by the divisors at infinity (exceptional curves) Dy, ... , Dg.
From the discussion above we see that

Zx(s) = /R Is(s ++v/—1m)dm

)dm

Put s_; = s¢.
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Claim. c
Is(s) = Js(s) + ——————+
H?—1(3j —1)
6
J]pué Sj+1, Sj 1) 1
+c1 Z 5505 — 1) + co ; 3j3j+1+
0 1 0 1
+c3 + ¢y
; (8] - 1)<SJ+1 - 1) ; ( J 1>S (SJ—I-I - 1)
0 1 0 1

Notice that

/1‘[ 1+\/_m9)

coincides with the functlon
A(N, ffS —1)=A(—Kx + Neff7 s)

from example (4.1).
3. The constant ¢y in the example (2) involves an Euler product.
Let us give a general expression for a local factor:
d

esp= S ST (1 - Sy

k=0 oex(k) p

From an easy combinatorial identity on the fan it follows that 1/p
terms cancel and that the Euler product converges. For P* we

get ﬁ as expected, for P* blown up in 3 points we get
9 16 9 1
CE,P:<1_]¥+p_3_]¥+]¥)
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