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Abstract. We classify regular generically free actions of finite
groups on the projective plane, up to conjugation in the Cremona
group.

1. Introduction

One of the most intensely studied objects in algebraic geometry is
the plane Cremona group

Cr2 = Bir(P2),

the group of birational automorphisms of the plane. Recall that, over
an algebraically closed field of characteristic zero,

Cr2 := ⟨PGL3, ι⟩,
where

(1.1)
ι : P2 99K P2,

(x, y, z) 7→
(

1
x
, 1
y
, 1
z

)
is the standard Cremona involution. Conjugacy classes of finite sub-
groups of PGL3 have been described in [Bli18]: there are three types,
recalled in Section 3:

• intransitive,
• transitive but imprimitive,
• primitive.

There exist isomorphic non-conjugated finite subgroups of PGL3 which
are conjugated in Cr2, see Sections 3 and 6. However, finite subgroups
of different types are not conjugated in Cr2.

A century later, in the seminal paper by Dolgachev and Iskovskikh
[DI09], came the classification of finite subgroups of Cr2, i.e., finite
groups that can act regularly and generically freely on rational surfaces.
However, the classification of subgroups as well as of actions, up to
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conjugation in Cr2, remained an open problem. For finite subgroups of
PGL3, this was explicitly asked in [DI09, Section 9]:

Find the conjugacy classes in Cr2 of actions of finite
subgroups of PGL3. For example, there are two actions of
the subgroup of PGL3 isomorphic to A5 and four actions
of A6 which differ by outer automorphisms of the groups.
Are they conjugated in Cr2?

Since then, it was shown in [Che14] that the two A5-actions are con-
jugated in Cr2, while the four A6-actions are not. A similar problem
for the remaining primitive actions follows from [Sak19], see Section 4
for an explicit solution. Furthermore, conjugacy classes of actions of
intransitive abelian subgroups of PGL3 have been described in [RY02];
in particular, actions of finite cyclic subgroups are always conjugated
in Cr2.

In this paper, we completely settle the Dolgachev–Iskovskikh prob-
lem for the remaining finite subgroups of PGL3. Our main new tool
to distinguish the actions up to conjugation in Cr2 is the formalism of
Burnside invariants, introduced in [KT22a] and recalled in Section 2.
These fail to distinguish primitive actions [TYZ24, Proposition 7.1
and Example 7.2], and are inconclusive for some imprimitive actions
[TYZ24], but those are accessible via the equivariant Sarkisov program.
However, the new invariants are decisive in the case of intransitive ac-
tions. One of the main results of this paper, proved in Section 6, is:

Theorem 1.1. Nonabelian intransitive actions ϕ1, ϕ2 : G ↪→ PGL3 are
conjugated in Cr2 if and only if

[P2 ý ϕ1(G)] = [P2 ý ϕ2(G)] ∈ Burninc
2 (G).

We also obtain an explicit geometric description of this condition,
see Theorem 6.1.

Our second main result, proved in Section 5, is:

Theorem 1.2. Distinct imprimitive actions ϕ1, ϕ2 : G ↪→ PGL3 are
conjugated in Cr2 if and only if they are conjugated by the standard
Cremona involution.

Together with existing results concerning primitive actions, this set-
tles the Dolgachev–Iskovskikh problem, quoted above [DI09, Section 9].
The proof proceeds via classification of groups and actions, followed by
a detailed analysis of equivariant Sarkisov links. As a byproduct, we
compute the normalizer of G in the Cremona group in many cases, and
answer a question posed by L. Katzarkov:
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Theorem 1.3. Let G ⊂ PGL3 be a finite subgroup. Then the normal-
izer of G in Cr2 is finite if and only if G is transitive and not isomorphic
to any of the following groups:

A4, C2
3 , C3 ⋊S3, C7 ⋊ C3, C2

3 ⋊ C4.

Recall that Cr2 is generated by involutions, over any perfect field
[LS24]. Thus, it is reasonable to expect that the normalizer in Cr2 of
any finite subgroup G ⊂ Cr2 is also generated by involutions. However,
this is not always the case: if G ⊂ PGL3 is isomorphic to the Hessian
group, then G is unique in Cr2, up to conjugation [DI09], coincides with
its normalizer in Cr2 by [Sak19], but is not generated by reflections.
One can check that normalizers of other transitive subgroups in PGL3
are generated by reflection.

Keeping in mind results in [CLdC13, Lon16, Zim18], one could ask:
When is the normalizer in Cr2 of a finite subgroup G ⊂ Cr2 simple?
Such G would have to be simple and coincide with their normalizer. By
[Che14], there are exactly two such nonabelian finite subgroups in Cr2
(up to conjugation), both contained in PGL3, namely, A6 and PSL2(F7).
Using the classification of elements of prime order in Cr2, completed
in [BB00, dF04, BB04, Bla07], one can also show that a prime order
cyclic subgroup G ⊂ Cr2 coincides with its normalizer if and only if G
is generated by a Geiser or Bertini involution, and the fixed curve of the
involution does not admit nontrivial automorphisms. Such subgroups
are conjugated in Cr2 if and only if the fixed curves of their generating
involutions are isomorphic.
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(Edinburgh) in November 2024, has been developed at CIRM (Luminy)
during of a semester-long Morlet Chair program, and was finished at
the Simons Foundation (New York) in July 2025.

2. Basic notions in equivariant geometry

Automorphisms and birational automorphisms. Throughout, k
is an algebraically closed field of characteristic zero. Let X be a smooth
projective irreducible variety over k and

Aut(X) ⊆ Bir(X),
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the group of regular, respectively, birational, automorphisms of X.
Let G be a finite group admitting an embedding

ϕ : G ↪→ Aut(X),

we refer to this as a choice of a G-action on X, and call X a G-variety.
For G ⊆ Aut(X), let

AutG(X) ⊆ BirG(X),

be the normalizers of G in the respective groups. This group-theoretic
definition has the following geometric interpretation: AutG(X) is the
group of all G-biregular self-maps of X, i.e., all all φ ∈ Aut(X) such
that there exists a ψ ∈ Aut(G) and a commutative diagram

X

g
��

φ // X

ψ(g)
��

X
φ // X

for all g ∈ G. Similarly, BirG(X) is the group of all G-birational self-
maps, defined by the same diagram, with φ ∈ Bir(X). There are
natural homomorphisms

(2.1) AutG(X)

α
%%

� � // BirG(X)

βyy
Aut(G)

and we denote the kernels, i.e., centralizers of the respective groups, by

ZAutG(X) ⊆ ZBirG(X).

A birational map X 99K Y between G-varieties is called
• G-equivariant, if it commutes with the action of G,
• G-birational, if it commutes with the action of G, up to a fixed

automorphism ψ ∈ Aut(G).

Conjugacy of groups. Given a G-variety X and embeddings

ϕ1, ϕ2 : G ↪→ Aut(X)

one has the following general

Problem A: When are ϕ1(G) and ϕ2(G) conjugated in Aut(X)?
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Problem B: When are ϕ1(G) and ϕ2(G) conjugated in Bir(X)?

In the first case, this means that there is a G-biregular self-map
φ : X → X conjugating ϕ1(G) and ϕ2(G). In the second case, φ is
G-birational.

Conjugacy of actions. Consider actions ϕ1, ϕ2 : G ↪→ Aut(X) on a
G-variety X as above. They are conjugated in Aut(X) if there exists
a φ ∈ Aut(X) such that

ϕ2 = φ ◦ ϕ1 ◦ φ−1.

In this case, we don’t distinguish these two actions! In the following,
when we refer to action, we always mean up to conjugation in Aut(X).

Clearly, if ϕ1 and ϕ2 give the same action on X, then the groups
ϕ1(G) and ϕ2(G) are conjugated in Aut(X). However, the converse
does not always hold.

Problem AA: Assuming that the groups ϕ1(G) and ϕ2(G) are conju-
gated in Aut(X), when are the actions ϕ1, ϕ2 the same?

We can consider a similar problem in Bir(X): we say that the actions
ϕ1 and ϕ2 are conjugated in Bir(X) if there exists a φ ∈ Bir(X) such
that

ϕ2 = φ ◦ ϕ1 ◦ φ−1.

As before, if ϕ1 and ϕ2 are conjugated in Bir(X), then the groups
ϕ1(G) and ϕ2(G) are conjugated in Bir(X).

Problem BA: Assuming that the groups ϕ1(G) and ϕ2(G) are conju-
gated in Bir(X), when are the actions ϕ1, ϕ2 conjugated in Bir(X)?

To solve these problems, we can precompose one of the actions with
a suitable G-biregular self-map φ ∈ Aut(X), respectively, with a G-
birational map φ ∈ Bir(X), to obtain

ϕ1(G) = ϕ2(G),

as subgroups of Aut(X). Then ϕ2 = ϕ1 ◦ψ, for some ψ ∈ Aut(G), and
the actions are conjugated in Aut(X) if and only if ψ lies in the image
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of the homomorphism α from diagram (2.1). We have a diagram

ϕ1(G) = ϕ2(G)
� � // AutG(X)

α

��

� � // BirG(X)

βxx
Inn(G) �

� // Aut(G) // // Out(G),

where Inn(G) and Out(G) are inner and outer automorphisms of G.
Clearly, if ψ ∈ Inn(G), the actions are conjugated in Aut(G). There-
fore, Problem AA reduces to

Problem IA: Determine the image of

ᾱ : AutG(X) → Out(G).

Similarly, Problem BA reduces to

Problem IB: Determine the image of

β̄ : BirG(X) → Out(G).

Using this terminology, we can compute the number of G-actions
with a fixed image in Aut(X) as

|Out(G)|
|image(ᾱ)|

.

Similarly, the number of actions with fixed image in Aut(X), up to
conjugation in Bir(X), is given by

|Out(G)|
|image(β̄)|

.

Problem IA is purely group-theoretical, and its solution can be au-
tomated with computer algebra packages such as Magma. On the other
hand, Problem IB is of birational nature. If we knew the generators
of BirG(X) then we could compute the image of β̄. In practice, this
is rarely feasible. However, in some situations, the solution is easy, for
example, when

• Out(G) is trivial, e.g., G = Sn, with n ̸= 6,
• Aut(X) = Bir(X), so that Problems IA and IB coincide, e.g.,

if X is a curve or if the canonical class KX is ample,
• AutG(X) = BirG(X),
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• one can identify sufficiently many elements in BirG(X) to prove
the surjectivity of β̄.

Example 2.1. There is a unique A5 ⊂ PGL3 ≃ Aut(P2), up to conju-
gation. We have Out(A5) ≃ C2 and

AutA5(P2) ≃ A5.

As there are no nontrivial homomorphisms A5 → C2, we conclude that
there are two A5-actions on P2. However,

BirA5(P2) ≃ S5,

and the homomorphism β̄ is surjective [Che14]. It follows that both
A5-actions on P2 are conjugated in Cr2; a realization of this conjugation
is in [CS16, Lemma 6.3.3], see also Example 2.6.

Additional examples with surjective β̄ will be given in Section 3.

Equivariant Sarkisov program for rational surfaces. Let X be
a smooth rational G-surface. The equivariant Minimal Model Program
implies that X is G-birational to a G-surface S such that

• S is a smooth del Pezzo surface with rkPic(S)G = 1, or
• S admits a G-equivariant conic bundle

π : S → P1

with rkPic(S)G = 2.
Such G-birational models are called G-Mori fiber spaces (in dimen-
sion 2). Any G-birational map between such G-Mori fiber spaces can
be factorized into a sequence of elementary G-birational maps, called
G-Sarkisov links. We recall their classification, following the classifi-
cation of Sarkisov links between 2-dimensional Mori fiber spaces over
nonclosed ground fields in [Isk96]. There are three basic types:

• DP-DP (del Pezzo to del Pezzo):

S S̃
σoo σ′

// S ′,

where
– σ is a blowup of a G-orbit Σ such that |Σ| < K2

S and S̃ is
a del Pezzo surface,

– S ′ is a (smooth) del Pezzo G-surface with rkPic(S ′)G = 1,
– σ′ is a blowup of a G-orbit Σ′ such that |Σ′| < K2

S′ ;
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• DP-CB (del Pezzo to conic bundle / and its inverse):

S S̃
σoo π̃ // P1

where
– σ is a blowup of a G-orbit Σ such that |Σ| < K2

S and S̃ is
a del Pezzo surface,

– π̃ is a G-equivariant conic bundle;
• CB-CB (conic bundle to conic bundle):

S

π
��

S̃
σoo σ′

// S ′

π′

��
P1 P1

where
– π′ is a G-equivariant conic bundle, with K2

S′ = K2
S,

– σ is a blowup of a G-orbit Σ such that no points of Σ are
contained in the singular fibers of π and every smooth fiber
of π contains at most one point of Σ,

– σ′ is the blowdown of the strict transforms of the fibers of
π that contain points of Σ.

Example 2.2. We list G-Sarkisov links that start from S = P2:
• DP-DP with r := |Σ| ∈ {2, 3, 5, 6, 7, 8}

– r = 2: S ′ = P1×P1 and σ′ blows down the strict transform
of the line passing through Σ,

– r = 3: S ′ = P2 and σ′ blows down the strict transforms of
lines passing through pairs of points in Σ,

– r = 5: S ′ is a del Pezzo surface of degree 5 and σ′ blows
down the strict transform of the conic through Σ,

– r = 6: S ′ = P2 and σ′ blows down strict transforms of
conics passing through 5 points of Σ,

– r = 7: S̃ is a del Pezzo surface of degree 2 and σ′ = σ ◦ τ ,
where τ is the involution of the anticanonical double cover
S̃ → P2,

– r = 8: S̃ is a del Pezzo surface of degree 1 and σ′ = σ ◦ τ ,
where τ is the involution of the double cover S̃ → P(1, 1, 2)
given by the linear system | − 2KS̃|.

• DP-CB with r = |Σ| ∈ {1, 4}
– r = 1: S̃ is the Hirzebruch surface F1 and π̃ a P1-bundle,
– r = 4: S̃ is a del Pezzo surface of degree 5 and π̃ a conic

bundle with 3 singular fibers.
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Remark 2.3. Let S be a smooth del Pezzo G-surface of degree ⩾ 2
such that rkPic(S)G = 1. Suppose that there exists a G-Sarkisov link

S S̃
σoo σ′

// S ′

such that σ is a blowup of a G-orbit Σ with

|Σ| ∈ {K2
S − 1, K2

S − 2},
where S ′ is a (smooth) del Pezzo G-surface with rkPic(S)G = 1, and
σ′ is a blowup of a G-orbit Σ′. Then S̃ is a smooth del Pezzo surface of
degree 1 or 2, and Aut(S̃) contains an involution τ that centralizes the
action of the group G. The involution τ is known as Bertini involution
(when K2

S̃
= 1) or Geiser involution (when K2

S̃
= 2). This implies that

S and S ′ are G-birational, in particular, we have |Σ′| = |Σ|. Hence, we
may assume that σ′ ◦ β = γ for

γ = σ ◦ τ ◦ σ−1.

Note that γ ∈ BirG(S), and its image β(γ) ∈ Aut(G) is trivial, because
γ centralizesG. In the following, we will say that γ is a Bertini or Geiser
(birational) involution of the surface S, respectively.

A more detailed description of two-dimensional G-Sarkisov links is
in [DI09, Section 7]. For instance, if S → P1 is a G-conic bundle with
rkPic(S)G = 2, then 7 ̸= (−KS)

2 ≤ 8 and the following assertions hold:
• if (−KS)

2 ≤ 1, then S is not G-birational to a del Pezzo surface,
see [DI09, Section 8],

• if (−KS)
2 = 3, 5, 6, then S is a del Pezzo surface,

• if (−KS)
2 = 8, then S is G-birational to a del Pezzo surface.

If (−KS)
2 = 4, there are examples such that S is a del Pezzo surface,

and there are examples such that S is not G-birational to a smooth del
Pezzo surface, see [DI09, Section 8]. It was an open question, posed in
[DI09, Section 9] whether or not S is G-birational to a smooth del Pezzo
surface when (−K2)

2 = 2. Even though this is not directly related to
the main topic of this paper, we include an example that answers this
question:

Example 2.4. Let S̄ ⊂ P(1x, 1y, 3z, 3w) be given by

zw = x6 + y6,

let η : S → S̄ be the minimal resolution of singularities, and let G be
the subgroup in Aut(S̄) generated by

σz,w : (z, w) 7→ (w, z), σx,y : (x, y) 7→ (x, y),
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θ12 : (x, y, z, w) 7→ (ζ12x, ζ
−1
12 y,−z, w).

Then (−KS)
2 = 2, rkPic(S)G = 2, G ≃ (C2)

2.D6, and we have the
following G-equivariant commutative diagram:

S
π

  

η

��
S̄

ξ // P1
x,y

where π is a conic bundle, and ξ is given by (x, y, z, t) 7→ (x, y). By
the classification of G-Sarkisov links, S is not G-birational to a smooth
del Pezzo surface unless there exists the G-equivariant commutative
diagram:

S

π
��

// S ′

π′
��

P1 P1

where S ′ is a del Pezzo surface of degree 2 with rkPic(S ′)G = 2, and
π′ is a G-conic bundle. Using the classification of actions on del Pezzo
surfaces of degree 2 in [DI09], we exclude the latter possibility, so that
S is not G-birational to a smooth del Pezzo surface.

Now, we suppose that S is a del Pezzo surface with rkPic(S)G = 1.
Such S is called:

• G-birationally super-rigid if there are no G-Sarkisov links start-
ing from S,

• G-birationally rigid if every G-Sarkisov link that starts from S
ends at a del Pezzo surface which is G-biregular to S,

• G-solid if S is not G-birational to a G-conic bundle.
If S is G-birationally super-rigid then AutG(S) = BirG(S), and the

number of G-actions on S with fixed image in Aut(S) is the same,
whether we consider it up to conjugation in Aut(S) or in Bir(S).

Example 2.5. Let S = P2 and G = A6. Then S does not have G-
orbits Σ of length |Σ| < K2

S = 9. By Example 2.2, S is G-birationally
super-rigid.

Example 2.6. Let S = P2 and G = A5. Then S contains a unique
G-orbit Σ of length |Σ| < K2

S = 9, this orbit has length 6 and the
points of Σ are in general linear position and are not contained in a
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conic. By Example 2.2, S ′ = P2, and is G-biregular to S, thus S is
G-birationally rigid.

Burnside formalism. This formalism, introduced in [KT22a] and ap-
plied in, e.g., [HKT21], [KT22b], [TYZ24], allows to distinguish bira-
tional types of actions of finite groups in many new situations. It takes
into account information from the stabilizer stratification on a standard
birational model for the action. This is a model X such that

• there is a Zariski open U ⊂ X on which the G-action is free,
• the complement X \ U is a normal crossings divisor such that

for each irreducible component Dα in X \U = ∪α∈ADα, and all
g ∈ G, we have that

g(Dα) = Dα or g(Dα) ∩Dα = ∅.
On such a model, generic stabilizers of all subvarieties are abelian.

We describe the simplest version of the general theory in the case
of surfaces: given a standard model as above, a G-orbit of irreducible
components of X \U , and a choice of a representative Dα of this orbit,
we have a symbol

(Hα, Zα ýk(Dα), (bα)),

where
• Hα is the (cyclic) generic stabilizer of Dα,
• Zα ⊆ ZG(Hα)/Hα, a subgroup of the centralizer modulo stabi-

lizer, acting generically freely on Dα, and
• bα ∈ H∨

α is the weight of Hα in the normal bundle of Dα.
Such symbols are considered up to G-conjugation.

A symbol is called incompressible if Dα is a curve of genus ≥ 1, or if
Zα is not cyclic. The class

[X ý G] :=
∑

α∈A/G

(Hα, Zα ýk(Dα), (bα))

in the free abelian group
Burninc

2 (G),

spanned by incompressible symbols (up to conjugation), is an equi-
variant birational invariant of the G-action.

In our application to Theorem 6.1, we have Dα = P1, and Zα is one
of the

Dn, A4, S4, A5.

The following example from [KT22b, Section 10] and [TYZ24, Section
7] illustrates this.
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Example 2.7. For t ≥ 2 and odd n ≥ 5, consider G = Ct×Dn. Let χ
be a primitive character of Ct and ψ a primitive character of Cn ⊂ Dn.
Let Vψ be the 2-dimensional faithful representation of Dn induced from
ψ, and Vχ,ψ = χ⊗ Vψ. Then G acts generically freely on

P2 = P(V ) = P(1⊕ Vχ,ψ).

The class
[P(V ) ý G] ∈ Burninc

2 (G)

equals

(Ct,Dn ýk(P1), (χ)) + (Ct,Dn ýk(P1), (−χ)).
In particular, if χ ̸= ±χ′ or ψ ̸= ±ψ′, the corresponding actions on
P(V ) and P(V ′) are not birational.

3. Classification of finite subgroups in PGL3

Finite subgroups G ⊂ PGL3 have been classified by Blichfeldt [Bli18].
These arise via projectivizations P(V ) of faithful 3-dimensional rep-
resentations V of central extensions G̃ of G. We recall the relevant
terminology: a G-action on P2 = P(V ) is called:

(I) intransitive: if G fixes a point in P2;
(T) transitive but imprimitive: if G does not fix a point in P2 but

there exists a G-orbit of length 3;
(P) primitive: neither of the above.

The following groups give rise to primitive actions:

A5, A6, PSL2(F7), ASL2(F3), PSU3(F2), C2
3 ⋊ C4.

Each of these is unique in PGL3, up to conjugation. Explicit generators
are given in [YY93]. The group ASL2(F3) is known as the Hessian group
— after a suitable coordinate change, it leaves invariant the Hesse
pencil:

x3 + y3 + z3 + λxyz = 0, λ ∈ P1,

in P2
x,y,z. The action on the curves of this pencil gives an exact sequence

of groups
1 → C2

3 ⋊ C2 → ASL2(F3) → A4 → 1,

where C2
3 ⋊C2 ⊂ PGL3 is the subgroup that leaves invariant a general

curve in the pencil, and C2
3 ⊂ C2

3 ⋊ C2 acts on a general elliptic curve
in the pencil via translations by 3-torsions. This subgroup is transitive
but not primitive, and ASL2(F3) can also be defined as its normalizer
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in PGL3. Up to conjugation, the three primitive subgroups C2
3 ⋊ C4,

PSU3(F2), ASL2(F3) are nested as follows:

C2
3 ⋊ C4 ⊂ PSU3(F2) ⊂ ASL2(F3).

We describe groups giving rise to actions of type (T). In this case, G
has an orbit of length 3, consisting of points in linear general position.
Changing coordinates, we may assume that these points are

[1 : 0, 0], [0 : 1 : 0], [0 : 0 : 1].

The G-action on these points gives rise to the exact sequence

1 → T → G
ν−→ S3,

which turns out to be split. The kernel of ν consists of diagonal
automorphisms. The image is either C3 or S3.

Proposition 3.1 ([DI09, Theorem 4.7]). Let G ⊂ PGL3 ≃ Aut(P2)
be a finite subgroup giving rise to an action of type (T). Then, up to
conjugation in PGL3, one of the following holds:

• G ≃ C2
n ⋊ C3 is generated by

diag(ζn, 1, 1), σ123.

• G ≃ C2
n ⋊S3 is generated by

diag(ζn, 1, 1), σ123, σ12,

• G ≃ (Cn × Cn/r)⋊ C3 is generated by

diag(ζrn, 1, 1), diag(ζsn, ζn, 1), σ123,

where r ≥ 1, r | n, and s2 − s+ 1 ≡ 0 (mod r),
• G ≃ (Cn × Cn/3)⋊S3 is generated by

diag(ζ3n, 1, 1), diag(ζ2n, ζn, 1), σ123, σ12,

with 3 | n,
where

σ123 : (x, y, z) → (y, z, x), σ12 : (x, y, z) → (y, x, z),

on P2
x,y,z. Each of these subgroups is unique up to conjugation in PGL3.

Proof. The classification is achieved in [DI09]. To show the uniqueness
of each subgroup in PGL3, it suffices to show that the two choices of s
give rise to the same subgroup in the third case G ≃ (Cn×Cn/r)⋊C3.

LetG1, G2 be groups corresponding to different choices of roots s1, s2,
for fixed n, r, in the third case. Since s1 + s2 = 1 (mod r), we have

σ12 · diag(ζs1n , ζn, 1) · σ12 = diag(ζs1n , 1, ζn).
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Up to multiplying by powers of diag(ζrn, 1, 1), we have

diag(ζs2n , ζn, 1) ∈ σ12G1σ12.

It follows that
σ12 ·G1 · σ12 = G2.

□

We turn to actions of type (I), following [DI09, Section 4.2]. The
existence of a fixed point implies that we have an embedding G ↪→ GL2,
inducing an action on P1, via the projection GL2 → PGL2; we denote
by Ḡ the image of G, and by Cm its kernel, a cyclic subgroup of order
m. We write

χr : (x1, x2, x3) 7→ (x1, ζrx2, ζrx3),

for a primitive root of unity ζr of order r ≥ 1. We have:

Proposition 3.2 ([NvdPT08]). Let G ⊂ PGL3 ≃ Aut(P2) be a finite
subgroup giving rise to an action of type (I). Then, up to conjugation
in PGL3, one of the following holds:
• Ḡ ≃ Cn. G is generated by

χr, (x1, ζ
r
nx2, ζ

m
n x3), r,m ∈ Z≥0.

• Ḡ ≃ Dn:
– n odd. G is generated by

χr, (x1, ζnx2, ζ
−1
n x3), (x1, ζ2mx3, ζ2mx2), r,m ∈ Z≥0.

– n even. G is generated by

χr, (x1, ζ2nx2, ζ
−1
2n x3), (x1, ζ4x3, ζ4x2), r ∈ Z≥0.

– n even. G is generated by

χr, (x1, ζ2m+1ζ2nx2, ζ2m+1ζ−1
2n x3), (x1, ζ4x3, ζ4x2), r ∈ Z≥0,m ∈ Z≥1.

– n even, n ̸= 2. G is generated by

χr, (x1, ζ2nx2, ζ
−1
2n x3), (x1, ζ2m+1ζ4x3, ζ2m+1ζ4x2), r ∈ Z≥0,m ∈ Z≥1.

• Ḡ ≃ A4.
– G is generated by

χr, (x1, ζ
2
3x2, ζ3x3 − x2), (x1, x3,−x2), r ∈ Z≥0,

– or G is generated by

χr, (x1, ζ3m+1ζ23x2, ζ3m+1(ζ3x3 − x2)), (x1, x3,−x2), r,m ∈ Z≥0.
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• Ḡ ≃ S4. G is generated by

χr, (x1, ζ2m+1ζ4(−2x2 + s1x3), ζ2m+1ζ4(s2x2 + 2x3)),

(x1,−s2x2 − x3, s1x2 + (s1 + 1)x3),

where

s1 = ζ38 + ζ8 − 1, s2 = ζ38 + ζ8 + 1, r,m ∈ Z≥0.

• Ḡ ≃ A5. G is generated by

χr, (x1, (ζ
3
5 + ζ45 )x2 − (ζ45 + 1)x3, ζ

3
5x2 + (ζ25 + ζ5)x3), (x1, ζ

2
5x3,−ζ35x2),

for r ∈ Z≥0.

Moreover, different subgroups in the list are not conjugated in PGL3.

From this description, we obtain:

Corollary 3.3. If a group G gives rise to actions of different classes
among (I), (T), and (P), then G ≃ C2

3 , the actions are of type (I)
and (T), and there are two subgroups in PGL3 isomorphic to G, up to
conjugation, generated by

⟨diag(1, ζ3, 1), diag(1, 1, ζ3)⟩ of Type (I),

⟨diag(1, ζ3, ζ23 ), (x3, x1, x2)⟩ of Type (T).

Proof. We start by describing the center Z(G) if G is in class
(I): if G is nonabelian, the quotient G/Z(G) is a noncyclic subgroup

of PGL2, and Z(G) ⊃ C2 unless G = Cr ×Dn, with n, r odd.
(T): the center Z(G) = 1, C3, or C2

3 .
(P): the center Z(G) = 1, unless G = C2

3 ⋊ C4, where Z(G) = C2

and G/Z(G) = C3 ⋊S3.
We conclude that no group giving rise to actions in type (P) also
gives rise to an action of type (I) or (T). Assume that G gives rise
to actions of both types (I) and (T). If G is nonabelian, we know
that G = C3 ×Dn with n odd. But no group giving rise to actions of
type (T) is isomorphic to this group. It follows that G is abelian and
G = Z(G). So |G| is a power of 3. It is not hard to see that the only
possibility is G = C2

3 and it has two conjugacy classes in PGL3, as is
explained above. □

Remark 3.4. Finite isomorphic subgroups of PGL2 ≃ Aut(P1) are
conjugated, see, e.g., [Bea10, Proposition 4.1]. Corollary 3.3 shows
that this does not hold for PGL3.
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We proceed to give a description of conjugacy classes of finite sub-
groups in PGL3.

Corollary 3.5. Let G1 and G2 be isomorphic finite nonabelian sub-
groups of PGL3. Then G1 and G2 are conjugated in PGL3 unless

G1 = ⟨diag(ζn, 1, 1), (x1, ζ23x2, ζ3x3 − x2), (x1, x3,−x2)⟩,
G2 = ⟨diag(ζn, 1, 1), (x1, x2, ζ23x3 − ζ3x2), (x1, x3,−x2)⟩,

for n ≥ 1. In this case, G1 and G2 are not conjugated in PGL3, and

G1 ≃ G2 ≃

{
Cn ⋊ A4 when n is even,
C2n ⋊ A4 when n is odd.

Proof. By Corollary 3.3, we know that nonabelian groups giving rise
to actions of different types among (I), (T), and (P) are not isomor-
phic. Each subgroup in type (T) and (P) is unique in PGL3, up to
conjugation. It follows that G1 and G2 give rise to actions of type
(I). Using Proposition 3.2, we check that the only possibility is when
Ḡ = G/Z(G) ≃ A4, with the generators given above.

To show G1 and G2 are not conjugated in PGL3, we note that when
n = 1, the generic stabilizer of the line {x2 = (2ζ3 + 1)x3} ⊂ P2

x1,x2,x3
is trivial under the action induced by G1, but is C3 under that induced
by G2. □

4. Primitive actions

Equivariant birational geometry of primitive actions was essentially
settled, via equivariant MMP, in [Sak19]; the classification of conjugacy
of actions was not addressed. We proceed to fill this gap:

• super-rigid, in particular, the actions are not conjugated in Cr2:
– A6: four actions on P2 [Che14, Theorem B.9],
– PSL2(F7): two actions on P2 [Che14, Theorem B.8],
– PSU2(F3): two actions on P2 [Sak19, Proposition 3.16],
– ASL2(F3): two actions on P2 [Sak19, Proposition 3.16],

• rigid:
– A5: two actions on P2, conjugated in Cr2 and BirG(P2) ≃
S5 [Che14, Lemma B.13],

– a subgroup G = C2
3 ⋊C4 of the Hessian group: two actions

on P2, conjugated in Cr2.
We explain the last entry: there are eight faithful 3-dimensional

representations of the central extension C3.G, but only two, up to mul-
tiplication with characters, thus there are two G-actions on P2. The
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outer automorphism group Out(G) is C2
2 . In the automorphism group

Aut(G), there are three conjugacy classes of subgroups of order 72,
isomorphic to

F9, S3 ≀S2, PSU3(F2).

Recall that we have inclusions G ⊂ PSU3(F2) ⊂ PGL3. In particular,

AutG(P2) = PSU3(F2).

Then the conjugation action of PSU3(F2) on G induces a map

PSU3(F2)
f→ C2 ⊂ Out(G).

The conjugation in Cr2 can be seen as follows: according to [Sak19,
Proposition 3.16], there are exactly two orbits of size 6 on P2, for each
of the actions. Blowing up any of these orbits, we obtain a cubic surface
S, which must be the Fermat cubic surface [DI09, Table 4], yielding an
embedding

G ↪→ Aut(S) = C3
3 ⋊S4.

There is a unique subgroup G1 ⊂ Aut(S) of order 72. We know that
G1 ≃ S3 ≀S2 and G ⊂ G1. Choosing an element in G1 \G, we obtain
at element τ1 ∈ BirG(P2) such that ⟨τ1, G⟩ ≃ G1. Similarly, blowing
up another orbit of length 6, we obtain at element τ2 ∈ BirG(P2) such
that ⟨τ2, G⟩ ≃ G1. Then

BirG(P2) = ⟨τ1, τ2,PSU3(F2)⟩,
and ⟨τ1, τ2, G⟩ is an amalgamated product of two copies of G1 with

common subgroup G. In particular, BirG(P2) is infinite.
The conjugation action of G1 on G induces a map

S3 ≀S2
g→ C2 ⊂ Out(G),

and the images of f and g generate Out(G), since S3 ≀S2 and PSU3(F2)
are distinct index-2 subgroups of Aut(G). It follows that the two linear
actions of G are conjugated in Cr2.

5. Transitive non-primitive actions

In this section, we assume that G ⊂ PGL3 is one of the subgroups
listed in Proposition 3.1. Observe that the points

(5.1) [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]

form a G-orbit of length 3, and that

ι ∈ BirG(P2),

where ι is the standard Cremona involution (1.1).
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If G ≃ A4, then AutG(P2) ≃ S4 and

β̄(AutG(P2)) = Out(G) ≃ C2.

Similarly, if G ≃ S4, then AutG(P2) = G and Out(G) is trivial. Hence,
in these two cases, there is a unique G-action on P2.
Lemma 5.1 (Pinardin). Suppose that G ≃ S4. Then

BirG(P2) = ⟨G, ι⟩ ≃ S4 × C2.

Proof. Observe that the points
(5.2) [1 : 1 : 1], [−1 : 1 : 1], [1 : −1 : 1], [1 : 1 : −1],

form a G-orbit of length 4. Then (5.1) and (5.2) are the only G-orbits
in P2 of length < 9 that are in general position. Thus, every G-Sarkisov
link that starts at P2 must blow up one of these two orbits.

Let σ : S̃ → P2 be the blow up of the G-orbit (5.2). Then S̃ is a del
Pezzo surface of degree 4, and we have the following G-Sarkisov link:

S̃
σ

��

π̃

��
P2 P1

where π̃ is a conic bundle. The kernel of the G-action on P1 is iso-
morphic to C2

2 , which implies that there are no G-Sarkisov links that
start at S̃ except for the inverse of the constructed G-Sarkisov link,
which brings us back to P2. The required assertion follows from the
classification of equivariant Sarkisov links starting at P2. □

Lemma 5.2. Suppose that G ≃ A4. For λ ∈ k \ {0, 1} with λ6 ̸= −1,
let ϑλ be the birational selfmap of P2 given by

ϑλ : (x1, x2, x3) 7→ (f1, f2, f3),

where

f1 = x41x3 −
λ12 + 1

λ2
x21x

2
2x3 + λ8x42x3 − 2λ2x21x

3
3 − 2λ6x22x

3
3 + λ4x53,

f2 = λ8x41x2 − 2λ6x21x
3
2 + λ4x52 −

λ12 + 1

λ2
x21x2x

2
3 − 2λ2x32x

2
3 + x2x

4
3,

f3 = λ4x51 − 2λ2x31x
2
2 + x1x

4
2 − 2λ6x31x

2
3 −

λ12 + 1

λ2
x1x

2
2x

2
3 + λ8x1x

4
3.

Then ϑλ is an involution in BirG(P2), so, in particular, BirG(P2) is
infinite. Moreover, birational involutions ϑλ, the standard Cremona
involution ι, and AutG(P2) ≃ S4 generate the group BirG(P2).
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Proof. Observe that P2 contains one G-orbit of length 3, three G-orbits
of length 4, and infinitely many G-orbits of length 6 such that each of
them is a G-orbit of [0 : 1 : λ], for λ ∈ k×. Let σλ : Sλ → P2 be the
blow up of the G-orbit of the point [0 : 1 : λ]. Then Sλ is a smooth
cubic surface if and only if λ ̸= 0, 1 and λ6 ̸= −1. In this case, we have
the following G-commutative diagram:

Sλ

σλ
��

θλ // Sλ

σλ
��

P2

ϑλ

// P2

where θλ is a biregular involution in Aut(Sλ). Note also that

⟨G, ϑλ⟩ ≃ S4.

Now, arguing as in the proof of Lemma 5.1, we see that BirG(P2) is
generated by AutG(P2), the involution ι, and involutions ϑλ. □

Recall from [Sak19, Theorem 1.3] that P2 is G-birationally rigid if
and only G ̸≃ A4,S4. Moreover, if

G ̸≃ A4, S4, C2
3 , C3 ⋊S3, C7 ⋊ C3,

then it follows from [Sak19, Lemma 3.14] that (5.1) is the only G-orbit
in P2 of length 3. From the proof of [Sak19, Theorem 1.3], we know
that BirG(P2) is finite, and that

(5.3) BirG(P2) = ⟨AutG(P2), ι⟩.

If G ≃ C3⋊S3 or G ≃ C2
3 , then it follows from [Sak19, Lemma 3.14]

that P2 has 4 orbits of length 3 (the group C3 ⋊ S3 is erroneously
omitted in [Sak19, Lemma 3.14]). In these two cases, we have

AutG(P2) ≃ ASL2(F3),

and all G-orbits of length 3 form one orbit of AutG(P2). It follows
from [Sak19, Theorem 1.3] that (5.3) also holds.

Lemma 5.3. Suppose G ≃ C2
3 or C3 ⋊S3. Then BirG(P2) is infinite.

Proof. Set Ĝ = BirG(P2). If Ĝ is finite, its birational action on P2 is
regularized on a smooth projective rational surface S such that

• S is a smooth del Pezzo surface with rkPic(S)Ĝ = 1, or
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• S admits a Ĝ-equivariant conic bundle

π : S → P1,

with rkPic(S)Ĝ = 2.
The latter case is impossible, since P2 is G-solid [Sak19], so that S
is a smooth del Pezzo surface. Using the classification of finite sub-
groups of automorphism groups of smooth del Pezzo surfaces [DI09],
we conclude that S ≃ P2. Since AutG(P2) ≃ ASL2(F3), it follows from
Corollary 3.3 that Ĝ is a primitive subgroup in Aut(S) ≃ PGL3, which
is a contradiction since ASL2(F3) is a maximal subgroup in PGL3. □

If G ≃ C7 ⋊ C3, then AutG(P2) = G, and (5.1) is the only G-orbit
in P2 of length 3. In this case, it follows from the proof of [Sak19,
Theorem 1.3] that

BirG(P2) = ⟨G, ι, τ1, τ2, τ3⟩,

where τ1, τ2, τ3 are Geiser involutions, implicitly described in the proof
of [Sak19, Lemma 3.14]. One can show that the group ⟨ι, τ1, τ2, τ3⟩ is
infinite, which gives:

Corollary 5.4. If G ≃ C7 ⋊ C3, then BirG(P2) is infinite.

If G ≃ A4 or G ≃ S4, then β̄(ι) is the identity, so that conjugation
by ι does not change the G-action, which is not very surprising, since
A4 and S4 admit one faithful action on P2. In all other cases, it follows
from Remark 2.3 that

β̄(BirG(P2)) = ⟨β̄(AutG(P2)), β̄(ι)⟩,

where ι is the standard Cremona involution. We proceed to show how
to compute β̄(BirG(P2)) in several representative examples.

Example 5.5. Suppose that G ≃ C2
3 . Then Out(G) ≃ GL2(F3), the

group AutG(P2) is the Hessian subgroup ASL2(F3) ⊂ PGL3 and

β̄(AutG(P2)) ≃ SL2(F3),

and we have two non-isomorphic G-actions on P2. These actions are
conjugated in Cr2, because β̄(ι) ̸∈ β̄(AutG(P2)). Thus,

β̄(BirG(P2)) = Out(G),

and there is a unique imprimitive G-action up to conjugation in Cr2.
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Example 5.6. Suppose thatG ≃ C3⋊S3. Then AutG(P2) ≃ ASL2(F3),
Out(G) ≃ S4, and

β̄(AutG(P2)) ≃ A4.

Therefore, there are two non-isomorphic G-actions on P2. They are
conjugated in Cr2, because β̄(ι) ̸∈ β̄(AutG(P2)). Then

β̄(BirG(P2)) = Out(G).

Example 5.7. Suppose that G ≃ C7 ⋊ C3. Then Out(G) ≃ C2 and

AutG(P2) = G.

Hence, there are two non-isomorphic G-actions on P2, conjugated in
Cr2 by ι, and

β̄(BirG(P2)) = Out(G),

since β(ι) is not an inner automorphism of G.

Example 5.8. In the notation of Proposition 3.1, suppose further that
ν(G) = S3 and G ≃ C2

n ⋊S3 with n ≥ 3. Then

AutG(P2) = G,

and Out(G) ≃ (Z/nZ)×, and we have |(Z/nZ)×| non-isomorphic G-
actions on P2. Then

β̄(BirG(P2)) ≃ C2,

since β(ι) is not an inner automorphism.

In all these examples, the conjugation by ι changes the action of
the group G on P2. This is not a coincidence:

Lemma 5.9. Suppose that G ̸≃ A4,S4. Then β̄(ι) ̸∈ β̄(AutG(P2)).

Proof. Recall that G is one of the subgroups in Proposition 3.1. Let us
use notation introduced in this proposition. Keeping in mind examples
above, we may assume further that G ̸≃ C2

3 , C3⋊S3. Then the G-orbit
(5.1) is the only G-orbit of length 3 in P2, so that (5.1) is also an orbit
of the group AutG(P2).

Denote by T ⊆ G the subgroup consisting of transformations given
by diagonal matrices. Then G is generated by T , σ123 and in some
cases by σ12, where all possibilities for T are given by Proposition 3.1.
Conjugation by ι gives an automorphism ϕ ∈ Aut(G) that acts trivially
on σ123 and σ12 (if σ12 ∈ G), but

ϕ(t) =
1

t
,

for every t ∈ T . Hence, ϕ is not trivial, since G ̸≃ A4,S4.
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Let G′ = AutG(P2), and let T ′ ⊆ G′ be the subgroup containing all
transformations given by diagonal matrices. Note that σ123 ∈ G′, since
G ⊂ G′. Similarly, if σ12 ∈ G, then σ12 ∈ G′, so that

G′ = ⟨T ′, σ123, σ12⟩.

If σ12 ̸∈ G, then it follows from the proof of Proposition 3.1 that

G′ = ⟨T ′, σ123⟩,

unless ν(G) = C3 and G ≃ (Cn × Cn/3)⋊ C3 is generated by

diag(ζ3n, 1, 1), diag(ζ2n, ζn, 1), σ123,

where 3 | n. In this case, σ12 ∈ G′, and G′ = ⟨T ′, σ123, σ12⟩.
Now, we suppose that ϕ is given by a conjugation by some g ∈ G′.

Then g = t′σ for some σ ∈ ⟨σ123, σ12⟩. Note that σ is not an identity,
since conjugation by an element in T ′ acts trivially on T . If g = t′σ123,
then

1

t
= ϕ(t) = t′σ123t(t

′σ123)
−1 = σ123t(σ123)

−1,

for every t ∈ T , which is a contradiction, since σ123t(σ123)−1 = t if and
only if t is an identity, and T is nontrivial. Similarly, if g = t′σ12, then

1

t
= ϕ(t) = t′σ12t(t

′σ12)
−1 = σ12t(σ12)

−1,

for every t ∈ T . This implies that every element in T is given by the
diagonal matrix

diag(a, a−1, 1),

for some a ∈ k×, which is only possible when G ≃ C2
3 . But this case

is treated in Example 5.5 and excluded, by assumption. Similarly, we
obtain a contradiction for other possibilities for σ ∈ ⟨σ123, σ12⟩. □

Summarizing, we obtain:

Theorem 5.10. Let ϕ1, ϕ2 : G ↪→ PGL3 be different imprimitive ac-
tions such that ϕ1(G) = ϕ2(G) is one of the subgroups in Proposi-
tion 3.1. Then ϕ1 and ϕ2 are conjugated in Cr2 if and only if they
are conjugated by the standard Cremona involution ι. Moreover, if
G ̸≃ A4,S4, then conjugation by ι changes the isomorphism class of
the G-action on P2.
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6. Intransitive

In this section, we prove Theorem 1.1. We assume that G ⊂ PGL3 is
one of the subgroups listed in Proposition 3.2. Recall that the G-action
on P2 = P(V ) arises from a faithful linear representation of G, which
decomposes as V = 1 ⊕ V2. Let Ct be the generic stabilizer of the
G-action on the line l = P(V2) ⊂ P(V ), and χ the character of Ct in
the normal bundle of l.

If t = 1, for two such G-actions P(V ) and P(V ′) arising from

V = 1⊕ V2, V ′ = 1⊕ V ′
2 ,

we have G-equivariant birationalities

P(V ) ∼ P(1⊕1)×P(V2) ∼ P(V ′
2)×P(V2) ∼ P(1⊕1)×P(V ′

2) ∼ P(V ′),

by the no-name lemma. In fact, if G is nonabelian, we know that
G = Dn, with odd n, when t = 1.

If t ≥ 2, then the class of the action

[P(V ) ý G] ∈ Burninc
2 (G)(6.1)

equals

(Ct, Ḡ ýk(l), (χ)) + (Ct, Ḡ ýk(l), (−χ)),(6.2)

where Ḡ = G/Ct acts generically freely on l = P(V2). These symbols
are incompressible, provided Ḡ is nonabelian. The main result in this
section is

Theorem 6.1 (cf. Theorem 1.1). Intransitive G-actions with t ≥ 2
and G nonabelian are birational ⇐⇒ the corresponding Ḡ-actions on
the invariant line l are isomorphic and the corresponding characters χ
are equal, up to ±1.

Proof of (⇐). Assume that the Ḡ-action and χ do not satisfy the as-
sumption. Then the incompressible symbols (6.2) in the classes (6.1)
of the two G-actions are different in Burninc

2 (G). The Burnside formal-
ism implies that the two actions are not birational, see also [TYZ24,
Section 7]. □

The rest of this section is devoted to a proof of the (⇒) direction of
Theorem 6.1. The proof of Theorem 6.1 implies Theorem 1.1, namely,
that the Burnside formalism is decisive for nonabelian intransitive ac-
tions. It suffices to identify actions with the same Ct,±χ, and the same
Ḡ-action on P1. We do this via a case-by-case analysis of Ḡ, using the
list of all possibilities for G in Proposition 3.2.
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Remark 6.2. When Ḡ = A4 or S4, there is a unique Ḡ-action on P1.
Theorem 6.1 then implies that G-actions are not birational if and only
if the corresponding characters χ do not differ by ±1.

Remark 6.3. For intransitive G ⊂ PGL3, the group BirG(P2) is always
infinite – it contains a 1-dimensional torus generated by

{diag(1, a, a) : a ∈ k×}.

6.1. When Ḡ = Cn. In this case, G is abelian. Linear G-actions are
birational if and only if the corresponding invariants in [RY02] coincide.
In fact, birational classification of linear actions of abelian groups has
been settled, in all dimensions, in [RY02, Theorem 7.1].

6.2. When Ḡ = Dn with odd n. Recall that all G-actions are con-
jugated in Cr2 if the generic stabilizer Ct of the G-action on P(V2) is
trivial. Hence, we assume that t ⩾ 2. In each case, the standard Cre-
mona involution ι is contained in BirG(P2). It would be interesting to
describe generators of BirG(P2).

Proof of Theorem 6.1 in this case. By Proposition 3.2, the action of G
depends on the choice of primitive weights t1, t2, t3 in

diag(1, ζt1r , ζ
t1
r ), diag(1, ζt22n, ζ

−t2
2n ), (x1, ζ

t3
2mx3, ζ

t3
2mx2).

The action of the generic stabilizer of l = {x = 0} ⊂ P2 is generated
by

diag(1, ζt1r , ζ
t1
r ), diag(1, ζt32m−1 , ζ

t3
2m−1).

The weights can be changed birationally as follows:
• The standard Cremona involution ι composed with transposi-

tion of x2, x3 preserves t2 and inverts

t1 7→ −t1, t3 7→ −t3,

• the transposition of x2, x3 preserves t1, t3 and inverts t2 7→ −t2,
• the coordinate change x3 7→ −x3 preserves t1, t2 and maps t3 7→
t3 + 2m−1.

For two choices of weights (t1, t2, t3), if the corresponding characters χ
differ by ±1 and the induced Dn-actions on l are isomorphic, then the
weights can be interchanged by a composition of the three maps above,
and thus the actions are birational. □
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6.3. When Ḡ = Dn with even n. The generic stabilizer Ct of l is
never trivial, and all possibilities for G are listed in Proposition 3.2.
The standard Cremona involution ι is contained in BirG(P2), and it fits
in the G-commutative diagram:

S
ϕ

��

π

��
F1

η
��

F1

η
��

P2
ι

// P2

where η is the blowup of the G-fixed point, π is the blowup of the
orbit of length 2 in the strict transform L of the line l ⊂ P2, and ϕ
is the contraction of the strict transforms of the fibers of the natural
projection F1 → P1 that pass through this orbit.

Observe that BirG(P2) also contains the birational selfmap of P2

given by

(6.3) γ : (x1, x2, x3) 7→ (x1x
n/2
2 x

n/2
3 , x2(x

n
2 − xn3 ), x3(x

n
2 − xn3 )).

To describe the geometry of γ, let E be the η-exceptional curve. Then
γ fits in the following G-commutative diagram:

S1

ϕ1

!!

π1

~~

S2

ϕ2

%%

π2

}}

Sr
ϕr

  

πr

yy
F1

η
��

Fn−1 Fn−2 · · · F3 F1

η
��

P2
γ

// P2

where r = n
2
+ 1, π1 is the blowup of the orbit of length n in L, ϕ1

is the contraction of the strict transforms of the fibers of the natural
projection F1 → P1 that pass through this orbit, and each πi for i ⩾ 2
is the blowup of the orbit of length 2 on the strict transform of E, and
each ϕi for i ⩾ 2 is the contraction of the strict transforms of the fibers
of the natural projection Fn+3−2i → P1 that pass through this orbit.

Proof of Theorem 6.1 in this case. In each of the families, the G-action
depends on primitive weights t1, t2, t3, t4 as in

(1) diag(1, ζt1r , ζ
t1
r ), diag(1, ζt22n, ζ

−t2
2n ), (x1, ζ4x3, ζ4x2).

(2) diag(1, ζt1r , ζ
t1
r ), diag(1, ζt32m+1ζ

t2
2n, ζ

t3
2m+1ζ

−t2
2n ), (x1, ζ4x3, ζ4x2).
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(3) diag(1, ζt1r , ζ
t1
r ), diag(1, ζt22n, ζ

−t2
2n ), (x1, ζ

t4
2m+1ζ4x3, ζ

t4
2m+1ζ4x2).

The generic stabilizer of l = {x1 = 0} ⊂ P2 is generated by
(1) diag(1, ζt1r , ζ

t1
r ), diag(1,−1,−1);

(2) diag(1, ζt1r , ζ
t1
r ), diag(1, ζt32m , ζ

t3
2m);

(3) diag(1, ζt1r , ζ
t1
r ) diag(1, ζt42m , ζ

t4
2m).

The weights can be altered by the following maps, in all cases
• the birational map with image ( 1

x1
, 1
x3
,− 1

x2
) maps

t1 7→ −t1, t2 7→ t2, t3 7→ −t3, t4 7→ −t4,
• the coordinate change diag(1, 1,−1) maps

t1 7→ t1, t2 7→ t2, t3 7→ t3, t4 7→ t4 + 2m.

• the birational map γ maps

t1 7→ t1, t2 7→ t2, t3 7→ t3 + 2m, t4 7→ t4,

or equivalently,

t1 7→ t1, t2 7→ t2 + n, t3 7→ t3, t4 7→ t4.

Similarly, for two actions, if the characters χ of the generic stabilizer of
l differ by ±1 and the induced Dn-actions on l are isomorphic, we know
that the corresponding weights can be interchanged by a composition
of the three maps above; thus, the actions are birational. □

To obtain an alternative proof of Theorem 6.1 in this case, one can
explicitly describe generators of BirG(P2): Recall that ι, γ ∈ BirG(P2).
For every λ ∈ k×, with λn ̸= 1, let τλ ∈ BirG(P2) be the birational map
given by

(6.4) τλ : (x1, x2, x3) 7→ (x1(x
2n
2 − x2n3 ), x2fλ, x3fλ),

where

fλ =
n−1∏
r=0

((x1 − λζrnx2) · (x2 − λζrnx1)) .

Then τλ fits in the following G-commutative diagram:

S ′

ϕ′

""

π′

~~

S ′′

ϕ′′

""

π′′

||

S ′′′

ϕ′′′

  

π′′′

||
F1

η
��

F2n−1 Fn−1 F1

η
��

P2
τλ

// P2
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where π′ is the blowup of the orbit of length 2n on L that is mapped
by χ to the G-orbit of [0 : λ : 1], π′′ and π′′′ are blowups of the orbits of
length n on the strict transform of E, and ϕ′, ϕ′′ and ϕ′′′ are contractions
of the strict transforms of the fibers of the corresponding P1-bundles
passing through the blown up orbits.

Lemma 6.4. Suppose n ⩾ 10. Then BirG(P2) is generated by AutG(P2),
the standard Cremona transformation ι, the map γ given by (6.3), and
τλ given by (6.4) for λ ∈ k× with λn ̸= 1.

Proof. Take any φ ∈ BirG(P2) such that φ ̸∈ AutG(P2). Then φ can
be decomposed into a sequence of G-Sarkisov links. Since n ⩾ 10, P2

contains exactly two G-orbits of length < 9: the G-fixed point, and the
unique G-orbit of length 2, which is contained in the G-invariant line.
Hence, the only G-Sarkisov links that start at P2 are the link

F1

η

~~   
P2 P1

where F1 → P1 is the natural projection, and the link

Y

~~ ##
P2 P1 × P1

where the left map is the blow up of the unique G-orbit of length
2 and the right map is the contraction of the strict transform of the
G-invariant line l ⊂ P2. Moreover, the G-fixed point in P1 × P1 is the
only G-orbit of length < 8 in P1 ×P1, so the only G-Sarkisov link that
starts at P1 × P1 is the inverse of the link described above.

Moreover, since Ct ̸= 1, any G-orbit of a point in F1 away from E∪L
intersects some fiber of the natural projection F1 → P1 at more than
1 point. Now, using the classification of two-dimensional G-Sarkisov
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links [Isk96], we see that we have the following G-commutative diagram

F1
ρ //

η

��

��

F1

��
η

��

P1
υ

// P1

P2
φ

// P2

where υ is an isomorphism, and ρ is a G-birational map such that
its indeterminacy points are G-orbits in E ∪ L, and every fiber of the
projection F1 → P1 contains at most one of these indeterminacy points.
Composing φ with a composition of appropriate maps τλ or ι◦τλ◦ι, we
may assume that the indeterminacy points of the map ρ are G-orbits of
length 2 or n. Composing φ with γ or ι ◦ γ ◦ ι, we may further assume
that the indeterminacy points of ρ are G-orbits of length 2. Hence,
either ρ ∈ AutG(P2) or ρ ◦ ι ∈ AutG(P2), which implies the required
assertion. □

It seems possible to weaken (or remove) the condition n ⩾ 10 in
Lemma 6.4; this would entail taking into account Geiser and Bertini
involutions that may appear in BirG(P2).

6.4. When Ḡ = A4. Recall that there is a unique A4-action on P1. We
find birational maps between two G-actions when the corresponding
characters χ differ by ±1.

Proof of Theorem 6.1 in this case. The action depends on choices of
primitive (with the exception that t2 can be 0) weights t1, t2, t3 in

(1) diag(1, ζt1r , ζ
t1
r ), (x1, ζ

t2
3 ζ

2
3x2, ζ

t2
3 (ζ3x3 − x2));

(2) diag(1, ζt1r , ζ
t1
r ), (x1, ζ

t3
3m+1ζ

t2
3 ζ

2
3x2, ζ

t3
3m+1ζ

t2
3 (ζ3x3 − x2))

with m ≥ 1. The respective action of the generic stabilizer of l is
generated by

(1) diag(1, ζt1r , ζ
t1
r ), diag(1,−1,−1);

(2) diag(1, ζt1r , ζ
t1
r ), diag(1, ζt33m , ζ

t3
3m), diag(1,−1,−1).

Let

h4 = x42 −
8ζ3 + 4

3
x32x3 − 2x22x

2
3 +

8ζ3 + 4

3
x2x

3
3 + x43,

f4 = x32x3 + (−2ζ3 − 1)x22x
2
3 − x2x

3
3,

f6 = x62 − (4ζ3 + 2)x52x3 − 5x42x
2
3 − 5x22x

4
3 + (4ζ3 + 2)x2x

5
3 + x63.



CONJUGACY IN THE PLANE CREMONA GROUP 29

We note that f4, h4, g6 are semi-invariant forms under the G-action.
They correspond to orbits of length 4 and 6 of the A4-action on P1.
Then

• The birational map σ : (x1, x2, x2) 7→ (x1h4, x2f4, x3f4) maps
t1 7→ t1, t2 7→ t2 + 1, t3 7→ t3,

or equivalently
t1 7→ t1, t2 7→ t2, t3 7→ t3 + 3m−1.

• The birational map γ : (x1, x2, x3) 7→ (f6h4, x1x2f
2
4 , x1x3f

2
4 )

maps
t1 7→ −t1, t2 7→ −t2, t3 7→ −t3.

For two G-actions, as long as the characters of the stabilizer of l differ
by ±1, we can interchange the corresponding weights t1, t2, t3 of the
two actions using maps above, and thus they are birational. □

6.5. When Ḡ = S4. Similarly, there is a unique S4-action on P1.
We find birational maps between two actions when their corresponding
characters χ differ by ±1.

Proof of Theorem 6.1 in this case. The action depends on choices of
primitive weights t1, t2, t3 in
diag(1, ζt1r , ζ

t1
r ), (x1, ζ

t2
2m+1ζ

t3
4 (−2x2 + s1x3), ζ

t2
2m+1ζ

t3
4 (s2x2 + 2x3))

with m ≥ 0. The corresponding action of the generic stabilizer of l is
generated by

• diag(1, ζt1r , ζ
t1
r ), diag(1,−1,−1), when m = 1,

• diag(1, ζt1r , ζ
t1
r ), diag(1,−ζt22m ,−ζt22m), when m ̸= 1.

Let f6, f8, f12, h12 be semi-invariant binary forms of degree 6, 8, 12 and
12, under the S4-action on P1

x2,x3
generated by

(−2x2 + s1x3, s2x2 + 2x3), (−s2x2 − x3, s1x2 + (s1 + 1)x3)

such that f12 and h12 are linearly independent. Such forms are unique
up to scalars. Then

• The birational map σ : (x1, x2, x2) 7→ (x1h12, x2f12, x3f12) maps
t1 7→ t1, t2 7→ t2 + 2m, t3 7→ t3,

or equivalently
t1 7→ t1, t2 7→ t2, t3 7→ t3 + 2.

• The birational map γ : (x1, x2, x3) 7→ (f8, x1x2f6, x1x3f6) maps
t1 7→ −t1, t2 7→ −t2, t3 7→ −t3.
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When the characters of the stabilizer of l in two actions differ by ±1,
we can interchange the corresponding weights t1, t2, t3 using the maps
above, and thus the actions are birational. □

6.6. When Ḡ = A5. Recall that the group G is generated by

diag(1, ζr, ζr)

and

(x1, (ζ
3
5 + ζ45 )x2 − (ζ45 + 1)x3, ζ

3
5x2 + (ζ25 + ζ5)x3), (x1, ζ

2
5x3,−ζ35x2).

(6.5)

In particular, there is a unique minimal lift of A5 ⊂ PGL2 to GL2
given by (6.5). This minimal lift is isomorphic to SL2(F5). It has two
faithful 2-dimensional representations, giving rise to 2 non-isomorphic
A5-actions on P1.

Proof of Theorem 6.1 in this case. Fixing the A5-action on P1, we see
that the isomorphism class of the G-action only depends on the weight
of the generic stabilizer of l. The action of the stabilizer is generated
by

• diag(1, ζt1r , ζ
t1
r ), if r is even,

• diag(1, ζt1r , ζ
t1
r ), diag(1,−1,−1), if r is odd,

where t1 indicates the weight. Let f12, f20 and f30 be the SL2(F5)-
invariant binary forms of degrees 12, 20 and 30 in variables x2 and x3,
which correspond to the unique orbits of lengths 12, 20 and 30 of the
A5-action on P1. Then the birational map

σ : (x1, x2, x3) 7→ (f12f20, x1x2f30, x1x3f30)

changes the weight t1 7→ −t1. We conclude that two actions are
birational if and only if the characters of the stabilizer of l differ by
±1. □

This completes the proof of Theorem 6.1, and Theorem 1.1 follows
as a corollary.
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