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Abstract. We study linearizability of actions of finite groups on
singular cubic threefolds, using cohomological tools, intermediate
Jacobians, Burnside invariants, and the equivariant Minimal Model
Program.

1. Introduction

In this paper, we continue our investigations of actions of finite
groups on rational threefolds over an algebraically closed field k of
characteristic zero, up to equivariant birationality. The main problem
is to decide linearizability, i.e., birationality of the given action to a
linear action on projective space, see, e.g., [22] for background and ref-
erences. The linearizability problem is essentially settled in dimension
2 [36, 50], but remains largely open in dimension 3. Here, we focus on:

Problem 1. Let X ⊂ P4 be a singular rational cubic threefold and let
G be a finite subgroup of its automorphisms. When is the G-action on
X linearizable?

Note that linearizability of a G-action for a cubic threefold X is
equivalent to projective linearizability, since the action lifts to GL5 (see
Section 2 for a proof, and [42] for a general discussion of these notions).

Smooth cubic threefolds are not rational, and their automorphisms
have been classified in [57, Theorem 1.1]: there are 6 maximal groups

C4
3 oS5, ((C

2
3 o C3) o C4)×S3, C24, C16,PSL2(F11), C3 ×S5.

On the other hand, all singular ones, except cones over smooth cubic
curves, are rational. Cubic threefolds with isolated singularities have
been classified in [55]; but it is not immediately clear how to identify
possible symmetries from that analysis.

Here, we restrict our attention to nodal cubics, i.e., those with or-
dinary double points, as this is the most interesting and difficult class
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of singular cubics, from the perspective of equivariant geometry. In
all these cases the automorphism group Aut(X) is finite, by, e.g., [2,
Theorem 1.1].

Note that the existence of a G-fixed node yields a straightforward lin-
earization construction: projection from this node gives an equivariant
birational map to P3, with linear action. Thus, we will be primarily
interested in actions not fixing a singular point of X. Another such
construction comes from a G-stable plane and a disjoint G-stable line:

Lemma 1.1. Let X be a nodal cubic threefold. Let G ⊆ Aut(X) be
such that it preserves a plane Π ⊂ X and a line l ⊂ X, disjoint from
Π. Then the G-action on X is linearizable.

Proof. Let φ : X 99K X2,2 be the unprojection from Π; X2,2 ⊂ P5 is a
(nodal) complete intersection of two quadrics. Then φ is G-equivariant,
and φ(l) is a G-invariant line. Taking a projection from this line, we
obtain a G-equivariant birational map X 99K P3; see [29, Proposition
2.2] for an application of this construction over nonclosed fields. �

Let s = s(X) be the cardinality of the set Sing(X) of nodes of X. It
is well known that s ≤ 10. Moreover, there is a unique cubic threefold
X with s = 10, the Segre cubic, treated in [5, 24]. In [5], it is shown that
the subgroup A5 ⊂ S6 = Aut(X) that leaves invariant a hyperplane
section is not linearizable. In [24], we have completed this analysis by
proving that the action of G ⊆ S6 is linearizable if and only if:

• G fixes a singular point of X, or
• G is contained in the subgroup S5 ⊂ S6 that does not leave

invariant a hyperplane section of X, or
• G ' C2

2 , X contains three G-invariant planes, and Sing(X)
splits as a union of five G-orbits of length 2.

Using this description one can list all subgroups of S6 giving rise to
linearizable actions — there are 37 such subgroups up to conjugation
(among 56 conjugacy classes of subgroups of S6).

In this paper, we study the cases where

2 ≤ s(X) ≤ 9.

To address the linearizability problem for these outstanding cases, we
use explicit geometric constructions, as well as the following techniques:

• cohomological tools [14, 45],
• intermediate Jacobians, in the equivariant context [10],
• Burnside invariants and their specialization [46],
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• G-birational rigidity and G-solidity, see, e.g., [20].

To describe our results, we distinguish cases based on linear position
properties of nodes, following [37]. According to [37], there are 15
configurations, labeled (J1), ..., (J15), with (J1), ..., (J5) corresponding
to 1, ..., 5 nodes in general linear position, and (J15) corresponding to
the Segre cubic threefold. The relevant invariants are:

• s, the number of nodes of X,
• d = rk Cl(X)− 1, the defect of X, which equals the number of

dependent linear conditions imposed on H0(X,OX(1)) by the
nodes, and
• p - the number of planes Π ⊂ X.

We list all possibilities for the triples (s, d, p), and describe our results
in each of the cases:

• s = 2, d = 0, p = 0: We prove that the G-action is linearizable
if and only if G fixes each of the two nodes, and classify actions
of cyclic groups not fixing any node, see Section 3.
• s = 3, d = 0, p = 0: We conjecture that the G-action is lineariz-

able if and only if it fixes a node, and classify all automorphism
groups not fixing any node. We provide examples of nonlin-
earizable actions of G = C2

3 , see Section 4.
• s = 4:

– d = 0, p = 0: There is an equivariant birational map to
a smooth divisor of degree (1, 1, 1, 1) in (P1)4. Following
considerations over nonclosed fields in [48, Conjecture 1.3],
we conjecture that the G-action is not linearizable if it is
transitive on the nodes. We provide examples of nonlin-
earizable actions of G = C2

2 confirming this conjecture. We
classify all automorphism groups not fixing any node.

– d = 1, p = 1: An action is nonlinearizable if and only if it
does not fix a node and X does not contain G-stable lines
disjoint from the unique plane in X, see Section 5.

• s = 5:
– d = 0, p = 0: All actions are linearizable, except for ac-

tions of A5 and S5, which are birational to standard ac-
tions on a smooth quadric threefold. The S5-action is not
linearizable [21]; we conjecture that the A5-action is also
not linearizable, see Section 6.

– d = 1, p = 1: All actions are linearizable, as there is a
unique node outside the plane and fixed by the action [37].
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• s = 6:
– d = 1, p = 0: We classify all automorphism groups not

fixing any node, establish a sufficient condition for non-
linearizability, and apply it to provide examples of nonlin-
earizable actions of G = C2.

– d = 1, p = 1: All actions are linearizable by Lemma 1.1.
– d = 2, p = 3: We classify all actions and solve the lineariz-

ability problem for most of them, see Section 7.
• s = 7:

– d = 2, p = 2: All actions are linearizable, since each of the
two planes contains 4 nodes, and exactly one of the nodes
is on both planes, thus preserved by the action [37].

– d = 2, p = 3: All actions are linearizable, since there is a
unique node not contained in any plane in X, thus fixed
by the action [37].

• s = 8, d = 3, p = 5: We classify automorphism groups not fixing
any node, and solve the linearizability problem in Section 8.
• s = 9, d = 4, p = 9: Linearizability problem is solved, except for

specific actions of S3 and D6, which are birational to actions
on a smooth quadric, see Section 9.

We conclude the introduction by summarizing the cases for which
the linearizability problem remains open.

• s = 3, d = 0, p = 0: Actions in Proposition 4.1 not containing
the C2

3 in Example 4.2 and not fixing any node.
• s = 4, d = 0, p = 0: Actions in Theorem 5.1 not containing the
C2

2 in Example 5.2 and not fixing any node.
• s = 5, d = 0, p = 0: A unique A5-action described in Section 6,

which is equivariantly birational to the A5-action on a smooth
quadric (6.1).
• s = 6, d = 1, p = 0: Actions in Proposition 7.3 not fixing any

node and not containing an involution not fixing any nodes.
• s = 6, d = 2, p = 3: Actions in Proposition 7.11 not containing

the C2
2 in Lemma 7.14, not containing the C2

2 or S3 in Re-
mark 7.15, not contained in the C2

2 in Lemma 7.13, and not
fixing any node.
• s = 9, d = 4, p = 9: The actions of D6, S3 and S′3 specified

in (9.1); these are also equivariantly birational to actions on a
smooth quadric (9.2).
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In many of these cases, equivariant specialization of [46], applied here
in the geometric context for the first time, shows nonlinearizability
of the actions for a very general member of the family, see Proposi-
tions 4.3, 5.3, 5.4, Lemmas 7.17, 7.18 and Remark 7.19.

Acknowledgments: The first author was partially supported by the
Leverhulme Trust grant RPG-2021-229. The second author was par-
tially supported by NSF grant 2301983. We are grateful to Anton
Mellit for his help with computations in Proposition 3.2 and to Olivier
Wittenberg for his comments.

2. Obstructions to linearizability

Among available obstruction theories to linearizability are:

• Existence of fixed points upon restriction to abelian subgroups,
• Group cohomology,
• Intermediate Jacobians, and their equivariant versions,
• Burnside invariants,
• Specialization of birational types,
• Birational rigidity.

We briefly review relevant results and constructions.

Fixed points by abelian subgroups. Recall that existence of fixed
points for actions of abelian groups is an equivariant birational invari-
ant, see [51]. Precisely, let G be a finite abelian group acting generically
freely on a smooth projective variety V . Assume that there exists a
G-equivariant birational map W 99K V from a smooth G-variety W .
Then

WG 6= ∅ ⇐⇒ V G 6= ∅.
Linear actions of abelian groups on projective spaces always have fixed
points, and thus:

Lemma 2.1. Let V be a smooth projective variety with generically free
and linearizable action by a finite group G. Then V H 6= ∅ for all abelian
subgroups H ⊆ G.

In particular, let X be a nodal cubic threefold and G ⊆ Aut(X). The
G-action on X is linearizable if and only if it is projectively linearizable.
To see this, one can apply the argument in [38]. Alternatively, we
provide a direct proof below.

First, we show that the G-action is induced from an action of the
ambient P4, i.e., G ⊂ PGL5. Indeed, by Lefschetz hyperplane theorem,
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the Picard group Pic(X) = Z is generated by a general hyperplane
section of X. The induced G-action on Pic(X) is trivial, sending a
hyperplane to another hyperplane in P4. This implies that the G-action
on X lifts to P4.

It follows that the G-action naturally lifts to OX(−5), the restric-
tion of the canonical bundle of P4 to X. Similarly, the G-action lifts
to OX(−2), the canonical bundle of X. Since OX(−5) and OX(−2)
generate OX(1), we know that the G-action lifts to OX(1), and thus to
H0(X,OX(1)) and H0(P4,OP4(1)). Therefore the G-action lifts to GL5.

This also shows that the Amitsur group Am(X,G) (see [13, Section
6]) is trivial. If the G-action is projectively linearizable, i.e., equivari-
antly birational to a G-action on P3, then Am(P3, G) = 0 since the
Amitsur group is an equivariant birational invariant. This implies that
the G-action on P3 is linear, namely, it lifts to GL4. So the notions of
linearizable and projectively linearizable actions on X are equivalent.

Thus, if an abelian subgroup H ⊆ G does not fix a point in the

standard desingularization X̃ of X (the blowup of the nodes), then
there exists no G-equivariant birational map X 99K P3. We found two
applications of this obstruction, see Example 4.2 and Section 9.

Cohomology. Let X be a nodal cubic threefold, X̃ → X its standard
desingularization, and G ⊆ Aut(X). Here we consider the induced
G-actions on the Picard group Pic(X̃) and the class group Cl(X); we
often identify divisors and their classes.

A well-studied obstruction to (stable) linearizability is the failure
of Pic(X̃) to be a stably permutation module, we call this the (SP)-
obstruction. In turn, this is implied by the nonvanishing of

H1(G′,Pic(X̃)), or H1(G′,Pic(X̃)∨), for some G′ ⊆ G.

We call this the (H1)-obstruction, see [24, Section 2].

Proposition 2.2. When s(X) ≤ 7 and s(X) 6= 6, or when s = 6 and
the nodes are not in general linear position, Pic(X̃) is a permutation
module.

Proof. We use labels for configurations of nodes and planes from [37].

• s = 1, . . . , 5, p = 0; (J1-J5):
Cl(X) = Z is freely generated by the hyperplane section, with
trivial G-action, and Pic(X̃) is freely generated by the excep-
tional divisors of the blowup X̃ → X and the pullback to X̃
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of the basis of Cl(X). The G-action permutes the exceptional
divisors. So Pic(X̃) is a permutation module.
• s = 4, 5, 6, p = 1; (J6-J8):

Cl(X) = Z2 is freely generated by the hyperplane section and
the unique, necessarily G-stable, plane in X, with trivial G-
action on their classes. Thus Pic(X̃) is a permutation module.
• s = 7, p = 2; (J10):

Cl(X) = Z3 is freely generated by the hyperplane section and
the classes of the two planes in X, with G possibly permuting
these two classes. Thus Pic(X̃) is a permutation module.
• s = 6, 7, p = 3; (J11-J12):

Cl(X) = Z3 is freely generated by the classes of the three planes
in X which form a tetrahedron (with one face missing), with G
possibly permuting these classes. So Pic(X̃) is a permutation
module.

�

The remaining cases are more involved; we handle these in subse-
quent sections.

Intermediate Jacobians. Applications of intermediate Jacobians to
rationality problems (over k = C) go back to the seminal work of
Clemens-Griffiths [27]: if a smooth threefold X is rational then its
intermediate Jacobian IJ(X) is a product of Jacobians of curves. Re-
finements of this, taking into account group actions, have appeared in,
e.g., [8]; an arithmetic analog of these arguments has been developed in
[10]. In particular, intermediate Jacobians exist over arbitrary fields,
see [1, 11].

The key point is that, geometrically, IJ(X) could be a product of
Jacobians of curves, but this does not necessarily hold equivariantly,
respectively, over a nonclosed base field. This idea is implemented in,
e.g., [10, Theorem 1.1]. Pursuing the analogy, we have:

Theorem 2.3. Let X be a smooth projective rationally connected three-
fold over an algebraically closed field such that its intermediate Jacobian
IJ(X) is isomorphic to the Jacobian of a smooth nonhyperelliptic curve
C of genus g ≥ 3 as a principally polarized abelian variety. Suppose
that Aut(X) contains an involution τ acting on IJ(X) by multiplica-
tion by (−1). Then X is not 〈τ〉-equivariantly birational to any smooth
projective variety with trivial intermediate Jacobian.
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Proof. Suppose first that there exists a 〈τ〉-equivariant blowup π : X →
Y of a nonhyperelliptic curve C ⊂ Y , where Y is a smooth threefold
with trivial intermediate Jacobian. Since C is not hyperelliptic, it
follows from Theorem 3 in [49, Appendix] that

(2.1) Aut
(
IJ(X)

)
' Aut(C)× C2,

where the second factor corresponds to the action of multiplication by
(−1). If C is pointwise fixed by τ , then τ acts trivially on IJ(X). If τ
acts faithfully on C, then its action on IJ(X) = J(C) is induced by the
action on C; thus, τ cannot project nontrivially to the second factor in
(2.1).

The general case is treated similarly, using equivariant weak factor-
ization. �

Example 2.4. Consider the conic bundle

x1x2 = f(y1, y2, y3) ⊂ A2 × P2,

where f is a form of degree > 4 defining a smooth curve in P2, and C2-
action via permutation on x1, x2. Then this action is not linearizable
by Theorem 2.3, see the proof of Theorem 3.3.

Remark 2.5. In the assumptions and notation of Theorem 2.3, sup-
pose that there exists a G-equivariant birational map X 99K P3, for
some subgroup G ⊆ Aut(X). From the isomorphism (2.1), we deduce
that the G-action on IJ(X) gives rise to a homomorphism

ν : G→ Aut(IJ(X)) = Aut(C)× C2,

The projection of ν(G) to the C2-factor must be trivial, cf. the proof
of [10, Proposition 3.2].

Burnside obstructions. It is well-known that the classification of in-
volutions τ ∈ Cr2, the plane Cremona group, is based on the geometry
of τ -fixed loci F (τ), see, e.g., [7]. The different cases are characterized
by geometric properties of a (necessarily unique) curve C of genus ≥ 1
in F (τ), primarily by whether or not this curve is hyperelliptic. A
more refined birational invariant of actions of general cyclic groups on
rational surfaces, the normalized fixed curve with action, appeared in
[34] and [12]; the invariant takes into account the stabilizer of the fixed
curve, as well as the residual action on it.

These invariants are special cases of the Burnside formalism of [46],
which applies to actions of arbitrary finite groups and takes into ac-
count all strata with nontrivial generic stabilizers. We will use a sim-
plified version, explained in [24, Section 4]. It is based on the notion of
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incompressible divisorial symbols, which should be viewed as analogs
of higher-genus curves in the classification of involutions on rational
surfaces. A sample result in our context is the following:

Proposition 2.6. Let X be a nodal cubic threefold, with a regular
action of G, and assume that there is an element τ ∈ G such that

(1) the τ -fixed locus contains a cubic surface S ⊂ X,
(2) the subgroup Y ⊆ G preserving S acts generically nontrivially

on S and contains an element fixing a curve of genus ≥ 1.

Then the G-action on X is not linearizable.

Proof. Let H = 〈τ〉; the action produces the symbol

(H, Y/H ýk(S), (b)),

By [14], H1(Y/H,Pic(S)) 6= 0, which implies that the symbol is incom-
pressible, see [24, Section 4]. Such symbols cannot appear for linear
actions, see [53, Corollary 6.1]. �

Example 2.7. Let X ⊂ P4 be a 2-nodal cubic given by

x1x2x3 + x1(x
2
4 + x25) + x2(x

2
4 − x25) + x33 = 0,

with G ' C4-action generated by

ι : (x1, x2, x3, x4, x5) 7→ (x2, x1, x3, x4, ζ4x5).

The model satisfies the conditions in Proposition 2.6. In particular, the
subgroup 〈ι2〉 fixes the cubic surface S = X ∩ {x5 = 0}. The residual
C2-action fixes a genus 1 curve S ∩ {x1 = x2}. By Proposition 2.6, the
G-action on X is not linearizable.

Specialization of birational types. We will use the specialization
homomorphism for Burnside groups

ρGπ : Burnn,K(G)→ Burnn,k(G)

from [46, Definition 6.4], and in particular, [46, Corollary 6.8]. Here K
is the fraction field of a DVR and k its residue field. In applications,
one considers the local geometry of fibrations, seeking to specialize the
birational type of the generic fiber X to a special fiber X0. In practice,
the special fiber X0 is an irreducible variety, with mild singularities;
the relevant notion of BG-rational singularities on the special fiber X0

is in [46, Definition 6.9].

Example 2.8. Let X → B be a G-equivariant flat and projective
morphism onto a smooth curve B, with smooth generic fiber X and a
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special fiber X0 with ordinary double points. Then the singularities of
X0 are BG-rational singularities in the following situations:

• G-orbits of isolated ordinary double points, with trivial stabi-
lizers [46, Example 6.10];
• G = C2, fixing a singular point; one verifies directly that the

required condition for BG-rational singularities holds, namely,

ρGπ ([X ý G]) = [X0 ý G].

A Hilbert scheme argument, used in [56], [28], and [40, Theorem 9]
in the context of specialization of rationality properties, implies:

Proposition 2.9. Let k be an uncountable algebraically closed field of
characteristic zero and G a finite group. Let

π : X → B

be a G-equivariant flat and projective morphism onto a smooth curve
over k with smooth generic fiber, such that

• G acts trivially on B and generically freely on the fibers of π,
• for some b0 ∈ B, the special fiber Xb0 is irreducible, has BG-

rational singularities, and the G-action on Xb0 is not lineariz-
able.

Then, for very general b ∈ B, the G-action on the special fiber Xb is
not linearizable.

Specialization allows to exhibit nonlinearizable actions which are “in-
visible” to classical obstructions, i.e., cannot be distinguished from lin-
earizable actions with other available tools. On the other hand, the
very general condition makes it difficult to determine linearizability for
any specific variety in the family. A central problem is to give criteria
for linearization.

In our applications, we work with models with nodes in the generic
fiber. We reduce to the situation of Proposition 2.9 by equivariantly
resolving the nodes in the generic fiber.

Example 2.10. Let X → A1
k be a family of cubic threefolds whose

fibers Xa := Xa over a ∈ k are given in P4 by

a(x1x
2
2 − 4x23x4 + x3x

2
4 − 3x23x5 − x24x5)+

+ (a+ 1)(x1x2x3 + x1x2x4 + x1x2x5 − x1x4x5 − x2x4x5)+
+ x1x3x4 − 3x2x3x4 − 3x1x3x5 + x2x3x5 + (5a+ 3)x3x4x5 = 0.
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One can check that the family carries a G = 〈ι〉 ' C2-action, with ι
acting on P4 via

(x1, . . . , x5) 7→ (−x3 + x5,−x3 + x4,−x3,−x3 + x2,−x3 + x1).

For a very general a ∈ k, Xa is a 2-nodal cubic threefold with nodes at

p1 = [1 : 0 : 0 : 0 : 0] and p2 = [0 : 0 : 0 : 0 : 1].

But the special fiber over a = 0 is 6-nodal; the nodes are in general
linear position and ι does not fix any of the nodes. By Proposition 7.5,
the G-action on the special fiber X0 is not stably linearizable. The 4
additional nodes form two G-orbits with trivial stabilizer, so they are
BG-rational singularities, by Example 2.8. Blowing up the singularities
in the generic fiber, we are in the situation of Proposition 2.9. This
allows us to conclude that the G-action on a very general member in
the family X is not stably linearizable.

Birational rigidity. Let X ⊂ P4 be a nodal cubic threefold and let
G ⊆ Aut(X). If rk ClG(X) = 1, then X is a G-Mori fiber space [23,
Definition 1.1.5], and every G-birational map from X to another G-
Mori fiber space can be decomposed into a sequence of elementary links,
known as G-Sarkisov links [31, 39]. If there are no G-Sarkisov links that
start at X, we say that X is G-birationally super-rigid. Similarly, if
every G-Sarkisov link that starts at X also ends at X, we say that
X is G-birationally rigid. Finally, if X is not G-birational to any G-
Mori fiber space with a positive dimensional base (a conic bundle or a
Del Pezzo fibration), we say that X is G-solid. We have the following
implications:

G-birationally super-rigid ⇒ G-birationally rigid ⇒ G-solid.

Note that all of these conditions assume that rk ClG(X) = 1.
Recall that the G-action on X lifts to P4. Using the G-action on P4,

we can state an obstruction for a cubic threefold X to be G-solid:

Lemma 2.11 ([5, Lemma 2.6]). If G leaves invariant a line or a plane
in P4, then X is not G-solid.

Proof. Note that G leaves invariant a plane in P4 if and only if it leaves
invariant a line. Thus, we may assume that there exists a G-stable
plane in P4. Linear projection P4 99K P1 from this plane induces a
rational dominant map X 99K P1 whose general fiber is a (possibly
singular) cubic surface. Taking a G-equivariant resolution of indeter-
minacies of this map, a G-invariant resolution of singularities (if neces-
sarily), and applying the G-equivariant Minimal Model program over
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P1, we obtain a G-birational map from X to a G-Mori fiber space with
a positive-dimensional base. �

This yields the following result:

Theorem 2.12 (Avilov). Let X ⊂ P4 be a nodal cubic threefold and
G ⊆ Aut(X) a finite subgroup such that rk ClG(X) = 1. If X is G-
solid, then one of the following holds:

(1) |Sing(X)| = 10, X is the Segre cubic, Aut(X) ' S6, and G
contains a subgroup isomorphic to A5 that leaves invariant a
hyperplane section of X,

(2) |Sing(X)| = 9, X is given in P5 by

x1x2x3 − x4x5x6 =
6∑
i=1

xi = 0,

Aut(X) ' S2
3 o C2, G acts transitively on Sing(X), and is

isomorphic to S2
3 o C2, S

2
3 or C2

3 o C4,
(3) |Sing(X)| = 5, X ⊂ P4 is given by

x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5+

+ x1x4x5 + x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5 = 0,

Aut(X) ' S5, and either G ' S5 or G ' A5.

Proof. Suppose that X is G-solid. If there exists a G-equivariant bira-
tional map X 99K P3, then P3 is G-solid, which contradicts [20]. Thus,
the G-action on X is not linearizable. It follows from [6, 4, 5] and the
proofs of the main results in these papers that either X and G are as
in (1), (2), (3), or X is the cubic threefold in (3) and G ' C4 o C5.
Let us show that X is not G-solid in the latter case, contradicting the
assumption.

Namely, suppose X is the threefold from (3), and G ' C4 o C5. By
[5, 21], there exists the following S5-Sarkisov link:

X̃
β //

α

��

X̂
γ

��
X

χ // Q

where Q is the smooth quadric threefold

{x1x2 + x2x3 + · · ·+ x4x5 = 0} ⊂ P4,
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S5 acts on Q by permuting the coordinates, χ is the birational map
induced by the standard Cremona involution of P4, α is the standard
resolution of singularities, β is a composition of 10 Atiyah flops, γ is
a blowup of an S5-orbit of length 5. Let η : Q → P3 be the double
cover induced by the projection from the S5-fixed point in P4. Then η
is S5-equivariant, and P3 contains two skew lines L1 and L2 such that
the curve L1 + L2 is G-invariant. Let C1 and C2 be the preimages of
these lines on Q. Then C1 and C2 are disjoint conics, and the curve
C1 + C2 is G-invariant. Blowing up these two conics, we obtain a G-
equivariant birational map from Q to a conic bundle over P1 × P1, in
particular, X is not G-solid, which contradicts our assumption. In fact,
the G-action on Q is linearizable, see Section 6. �

Moreover, in Case (1) in Theorem 2.12, X is G-birationally super-
rigid [6]. Similarly, if follows from [21] that X is G-solid in Case (3)
when G ' S5. In Section 9, we show that X is G-birationally super-
rigid in Case (2) when G ' S2

3 o C2. We believe that X is G-solid for
the remaining groups G in Cases (2) and (3).

3. Two nodes

Standard form. We may assume that Sing(X) consists of the points

[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0],

and that G = Aut(X) swaps these points. Then X can be given by:

(3.1) x1x2x3 + x1q1 + x2q2 + f3 = 0,

for forms q1, q2 ∈ k[x4, x5], and f3 ∈ k[x3, x4, x5], of degree 2, 2, 3,
respectively.

Conic bundle. Introducing new coordinates y1 = x1x3 and y2 = x2x3
(of weight two), and multiplying (3.1) by x3, we rewrite (3.1) as

y1y2 + y1q1 + y2q2 + x3f3 = 0,

which defines a quartic hypersurface V4 ⊂ P(1, 1, 1, 2, 2); the coordinate
change defines a G-equivariant birational map

χ : X 99K V4.

We can G-equivariantly simplify the equation of V4 further as

z1z2 = q1q2 − x3f3,
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where z1 = y1 + q2 and z2 = y2 + q1. Observe that V4 has 2 singular
points of type 1

2
(1, 1, 1) — these are the points

[0 : 0 : 0 : 1 : 0], and [0 : 0 : 0 : 0 : 1],

in coordinates (x3, x4, x5, z1, z2). This yields the following Aut(X)-
equivariant commutative diagram:

X̂
α

��

β

��
X χ

// V4

where α is an extremal divisorial contraction of a surface to the line
{x3 = x4 = x5 = 0} ⊂ X, and β is an extremal divisorial contraction
of the strict transform of the non-normal cubic surface {x3 = 0} ∩X.
The description of the morphism α can be found in the proof of [18,

Proposition 6.1], see also [54]. Note that X̂ has 2 singular points of
type 1

2
(1, 1, 1), which are mapped to the nodes of X.

Let D be the quartic curve {q1q2 − x3f3 = 0} ⊂ P2
x3,x4,x5

. Then D is
smooth, and we have the following G-equivariant commutative diagram

Y
γ

��

π

##
V4 // P2

x3,x4,x5

(3.2)

where γ is the blow up of the singular points of V4, π is a conic bundle
with discriminant curve D, and the dashed arrow is the projection

(x3, x4, x5, z1, z2) 7→ (x3, x4, x5).

This gives a natural homomorphism

γ : Aut(X)→ Aut(D).

Automorphisms. The full classification of automorphisms of 2-nodal
cubics can be addressed via the conic bundle presentation, combined
with the (classically known) classification of automorphisms of smooth
quartic plane curves, see, e.g., [36, Lemma 6.16 and Table 6], [47];
and using Torelli for nodal cubics, as in [15, Section 7]. Starting with
equation (3.1) and passing to the conic bundle, we see that the G-action
on X gives rise to

• a linear representation on P2, preserving a line, corresponding
to x3 = 0, and thus a fixed point in P2,
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• an automorphism of the discriminant curve D.

Combining these two conditions with the list of automorphisms of plane
quartic curves, we find that the possible images of the G-actions on the
base P2

x3,x4,x5
of the conic bundle are

C2, C3, C4, C
2
2 , S3, C6, C7, C2 × C4, C8, Q8, C9, C

2
4 ,

C12, D4 o C2, SL2(F3), OD16, D4, C4wrC2, SL2(F3) o C2.

Here are examples with interesting groups Aut(X):

Example 3.1. We keep the notation of (3.1), with X ⊂ P4 and the
discriminant curve D ⊂ P2

x3,x4,x5
, with G = Aut(X) and G′ = Aut(D).

(1) Let D = x43 + x44 + x45 + (4ρ+ 2)x23x
2
4, and X be given by

f3 = x33, q1 = x24 + (2ρ+ 1 + 2i)x25, q2 = x24 + (2ρ+ 1− 2i)x25.

Then G = D4 o C2 and G′ = SL2(F3) o C2.
(2) Let D = x43 + x44 + x45, and X be given by

f3 = −x33, q1 = x24 + ix25, q2 = x24 − ix25.

Then G = C4wrC2 and G′ = C2
4 oS3.

Proposition 3.2. Let X ⊂ P4 be a 2-nodal cubic threefold with an
action of a cyclic group G = 〈ι〉 ⊆ Aut(X) not fixing any node. Then,
up to a change of coordinates, X is given by

x1x2x3 + x1q1 + x2q2 + f3 = 0,

for q1, q2 ∈ k[x4, x5] and f3 ∈ k[x3, x4, x5] that can be described together
with ι as follows.

(C2) ι(x1, x2, x3, x4, x5) = (x2, x1, x3, x4, x5),

q1 = q2 = x4x5,

f3 ∈ k[x3, x4, x5];

(C ′2) ι(x1, x2, x3, x4, x5) = (−x2,−x1, x3, x4,−x5),

q1 = a1x
2
4 + x4x5 + a3x

2
5,

q2 = −a1x24 + x4x5 − a3x25,
f3 = c1x

3
3 + d1x

2
3x4 + x3(e1x

2
4 + e3x

2
5) + r1x

3
4 + r3x4x

2
5,

for some a1, a3, c1, d1, e1, e3, r1, r3 ∈ k;
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(C ′′2 ) ι(x1, x2, x3, x4, x5) = (x2, x1, x3, x4,−x5),

q1 = q2 = x24 + x25

f3 = c1x
3
3 + d1x

2
3x4 + x3(e1x

2
4 + e3x

2
5) + r1x

3
4 + r3x4x

2
5,

for some c1, d1, e1, e3, r1, r3 ∈ k;
(C4) ι(x1, x2, x3, x4, x5) = (x2, x1, x3, ζ4x4,−ζ4x5), ζ4 = e

2πi
4 ,

q1 = a1x
2
4 + x4x5 + a3x

2
5,

q2 = −a1x24 + x4x5 − a3x25,
f3 = x33 + e2x3x4x5,

for some a1, a2, e2 ∈ k;
(C ′4) ι(x1, x2, x3, x4, x5) = (x2, x1, x3, x4, ζ4x5),

q1 = x24 − x25,
q2 = x24 + x25,

f3 ∈ k[x3, x4];

(C ′′4 ) ι(x1, x2, x3, x4, x5) = (x2, x1, x3,−x4, ζ4x5),

q1 = x24 − x25,
q2 = x24 + x25,

f3 = x33 + e1x3x
2
4 + r3x4x

2
5,

for some e1, r3 ∈ k;
(C6) ι(x1, x2, x3, x4, x5) = (x2, x1, x3, ζ3x4, ζ

2
3x5) for ζ3 = e

2πi
3 ,

q1 = q2 = x4x5,

f3 = x33 + e2x3x4x5 + r1(x
3
4 + x35),

for some e2, r1 ∈ k;
(C ′6) ι(x1, x2, x3, x4, x5) = (ζ6x2, ζ6x1, x3, ζ

5
6x4, ζ

2
6x5) for ζ6 = e

2πi
6 ,

q1 = a1x
2
4 + x4x5 + a3x

2
5,

q2 = −a1x24 + x4x5 − a3x25,
f3 = x23x5,

for some a1, a3 ∈ k;
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(C12) ι(x1, x2, x3, x4, x5) = (ζ812x2, ζ
8
12x1, x3, ζ

4
12x4, ζ12x5) for ζ12 = e

2πi
12 ,

q1 = (x24 − x25),
q2 = (x24 + x25),

f3 = x23x4.

Proof. We can choose the coordinates so that

ι : (x1, x2, x3, x4, x5) 7→ (sx2, tx1, x3, ux4, vx5),

for some s, t, u, v ∈ k×, and X is given by

x1x2x3 + x1q1 + x2q2 + f3 = 0,

for

q1 = a1x
2
4 + a2x4x5 + a3x

2
5 + a4x

2
3 + a5x3x4 + a6x3x5,

q2 = b1x
2
4 + b2x4x5 + b3x

2
5 + b4x

2
3 + b5x3x4 + b6x3x5,

f3 = c1x
3
3 + x23d(x4, x5) + x3e(x4, x5) + r(x4, x5),

where

d = d1x4 + d2x5,

e = e1x
2
4 + e2x4x5 + e3x

2
5,

r = r1x
3
4 + r2x

2
4x5 + r3x4x

2
5 + r4x

3
5.

Since X is 〈ι〉-invariant, one has ι∗(f) = stf , and thus the zero loci
of q1q2 and f3 are preserved; and these polynomials cannot identically
vanish, under our assumptions on singularities of X. Concretely,

ι∗(f) = stx1x2x3 + sx2ι
∗(q2) + tx1ι

∗(q2) + ι∗(f3) = stf

which implies that

(3.3) ι∗(q2) = tq1, ι∗(q1) = sq2,

and

(3.4) ι∗(f3) = stf3.

Expanding and substituting into (3.3) we obtain 12 equations:

u2a1 − tb1 = uva2 − tb2 = v2a3 − tb3 = 0,

sa1 − u2b1 = sa2 − uvb2 = sa3 − v2b3 = 0,

a4 − tb4 = ua5 − tb5 = va6 − tb6 = 0,

sa4 − b4 = sa5 − ub5 = sa6 − vb6 = 0,
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and, writing down the (3.4) constraints on f3, additional equations

c1(1− st) = 0,

d1(u− st) = d2(v − st) = 0,

e1(u
2 − st) = e2(uv − st) = e3(v

2 − st) = 0,

r1(u
3 − st) = r2(uv − st) = r3(uv

2 − st) = r4(v
3 − st) = 0,

in the variables

a1, . . . , a6, b1, . . . , b6, c1, d1, d2, e1, e2, r1, . . . , r4 ∈ k.

Since X has nodes at [1 : 0 : 0 : 0 : 0] and [0 : 1 : 0 : 0 : 0], we have

a22 − 4a1a3 6= 0, b22 − 4b1b3 6= 0.

Thus, up to scaling x4, x5 and swapping them, we may further assume
that one of the following holds:

• a2 = b2 = 1, or
• a2 = b1 = b3 = 1, b2 = 0, or
• a1 = b1 = b3 = 1, a2 = b2 = 0.

The second option is impossible, since b2 = 0 forces a2 = 0. Solving
the system of equations for the remaining two options using Magma, we
obtain a complete set of solutions:
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(a1, a2, a3, a4, a5, a6) (d1, d2) c1 s u
(b1, b2, b3, b4, b5, b6) (e1, e2, e3) (r1, r2, r3, r4) t v

(1) (a1, 1, a3, a4, a5, a6) 1 1
(a1, 1, a3, a4, a5, a6) 1 1

(2) (a1, 1, a3, a4, a5, a6) (d1, 0) -1 1
(−a1, 1,−a3,−a4,−a5, a6) (e1, 0, e3) (r1, 0, r3, 0) -1 -1

(3) (0, 1, 0, a4, 0, 0) (0, 0) 1 ζ3
(0, 1, 0, a4, 0, 0) (0, e2, 0) (r1, 0, 0, r4) 1 ζ23

(4) (a1, 1, a3, a4, 0, 0) (0, 0) 1 ζ4
(−a1, 1,−a3, a4, 0, 0) (0, e2, 0) (0, 0, 0, 0) 1 −ζ4

(5) (a1, 1, a3, 0, 0, 0) (0, d2) 0 ζ6 ζ56
(−a1, 1,−a3, 0, 0, 0) (0, 0, 0) (0, 0, 0, 0) ζ6 ζ26

(6) (1, 0, 1, a4, a5, a6) 1 1
(1, 0, 1, a4, a5, a6) 1 1

(7) (1, 0, 1, a4, a5, a6) (d1, 0) 1 1
(1, 0, 1, a4, a5,−a6) (e1, 0, e3) (r1, 0, r3, 0) 1 -1

(8) (1, 0,−1, a4, a5, 0) (d1, 0) 1 1
(1, 0, 1, a4, a5, 0) (e1, 0, 0) (r1, 0, 0, 0) 1 ζ4

(9) (1, 0,−1, a4, a5, 0) (0, 0) 1 -1
(1, 0, 1, a4,−a5, 0) (e1, 0, 0) (0, 0, r3, 0) 1 ζ4

(10) (1, 0,−1, 0, 0, 0) (d1, 0) 0 ζ812 ζ412
(1, 0, 1, 0, 0, 0) (0, 0, 0) (0, 0, 0, 0) ζ812 ζ12

Here, we omitted solutions obtained by swapping coordinates x4 and
x5 and scaling coordinates x1 and x2. After an additional equivariant
change of coordinates, we obtain the required assertion. �

Intermediate Jacobian. Using arguments as in Section 2, we settle
the linearizability problem for 2-nodal cubic threefolds.

Theorem 3.3. Let X ⊂ P4 be a 2-nodal cubic, and G ⊆ Aut(X) a
subgroup not fixing any node of X. Then the G-action on X is not
linearizable.

Proof. By the assumptions, G contains an element ι switching the
nodes of X. It suffices to prove the required assertion for G = 〈ι〉.
With the notation as above, we may assume that X is given by (3.1),
i.e.,

f = x1x2x3 + x1q2 + x2q2 + f3 = 0,

and ι acts on the coordinates via

ι : (x1, x2, x3, x4, x5) 7→ (sx2, tx1, x3, ux4, vx5),
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for roots of unity s, t, u, v. Introducing new coordinates

w1 =
√
tx1 +

√
sx2, w2 =

√
tx1 −

√
sx2,

we diagonalize ι, so that it acts via

ι : (w1, w2, x3, x4, x5) 7→ (λw1,−λw2, x3, ux4, vx5),(3.5)

where λ =
√
st. The equation of X in the new coordinates becomes

f ′ = (w2
1 − w2

2)x3 + (w1 + w2)2
√
sq1 + (w1 − w2)2

√
tq2 + 4

√
stf3 = 0

Note that ι∗(f ′) = λ2f ′.
Recall that X is G-birational to the conic bundle (3.2). The conic

bundle is not standard. In particular, the intermediate Jacobian of X̃
and the Jacobian of the curveD are isomorphic, as principally polarized
abelian varieties:

IJ(X̃) ' IJ(Y ) ' J(D),

where X̃ is the standard desingularization of X, Y is the conic bundle
in (3.2) and D is its discriminant curve in P2

x3,x4,x5
given by the quartic

form h = q1q2 − x3f3. Note that ι∗(h) = λ2h.
Arguing as in the proof of [9, Lemma 1], we see that ι acts faithfully

on IJ(X̃) and preserves the principal polarization. On the other hand,
the ι-action on coordinates x3, x4, x5 induces an action on D and its

Jacobian J(D). We claim that the ι-actions on IJ(X̃) and J(D) differ
by multiplication by −1. Since D is not hyperelliptic, this would imply
that the G-action on X is not linearizable, by Remark 2.5.

To compute the action of ι on IJ(X̃), recall that its tangent space at

zero T0 IJ(X̃) is isomorphic to H2(X̃,Ω1
X̃

). We show that H2(X̃,Ω1
X̃

)∨

is canonically isomorphic to the linear subspace in

H0
(
P4,Ω4

P4 ⊗OP4(2X)
) ∼= H0

(
P4,OP4(KP4 + 2X)

) ∼= H0
(
P4,OP4(1)

)
consisting of all sections that vanish at the nodes of X. The proof is
essentially contained in [33]. We follow the proof of [9, Lemma 1]. Let

π : P̃4 → P4 be the blow up of P4 centered at two nodes p1 and p2
of X, and identify X̃ with the strict transform of X in P̃4. The exact
sequence

0→ (N
X̃/P̃4)

∨ → Ω1

P̃4|X̃
→ Ω1

X̃
→ 0

gives rise to a 〈ι〉-equivariant exact sequence

0→ H2(X̃,Ω1
X̃

)→ H3(X̃, (N
X̃/P̃4)

∨)→ H3(X̃,Ω1

P̃4|X̃
)→ 0.
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By [33], the dimension of H3(X̃,Ω1

P̃4|X̃
) equals the defect of X, which

is 0 in our case. It follows that

H2(X̃,Ω1
X̃

) ∼= H3(X̃, (N
X̃/P̃4)

∨).

Similarly, the 〈ι〉-equivariant exact sequence

0→ OP̃4(−2X̃)→ OP̃4(−X̃)→ (N
X̃/P̃4)

∨ → 0

and the vanishing of Hi(P̃4,OP̃4(−X̃)) ([33, Corollary 2]) provides an
〈ι〉-isomorphism

H3(X̃, (N
X̃/P̃4)

∨) ∼= H4(P̃4,OP̃4(−2X̃)).

By Serre duality, we have canonical isomorphisms between

H4(P̃4,OP̃4(−2X̃))∨ ∼= H0(P̃4, KP̃4⊗OP̃4(2X̃)) ∼= H0(P̃4,Ω4

P̃4
⊗OP̃4(2X̃)).

So we have a 〈ι〉-equivariant isomorphism

H2(X̃,Ω1
X̃

)∨ ∼= H0(P̃4, KP̃4 ⊗OP̃4(2X̃))

Let E1 and E2 be the exceptional divisors of π over p1 and p2 respec-
tively. By adjunction,

KP̃4 = π∗(OP4(−5))⊗OP̃4(3E1 + 3E2),

and

OP̃4(2X̃) = π∗(OP4(6))⊗OP̃4(−4E1 − 4E2).

Then we know

KP̃4 ⊗OP̃4(2X̃) = π∗(OP4(1))⊗OP̃4(−E1 − E2).

It follows that we can canonically identify H2(X̃,Ω1
X̃

)∨ with linear sub-

space in H0(P4,Ω4
P4 ⊗ OP4(2X)), (or equivalently, in H0(P4,OP4(1))),

which consists of all sections that vanish at p1 and p2. Now we can

compute the induced G-action on T0IJ(X̃)∨ explicitly. Set

z2 =
w2

w1

, z3 =
x3
w1

, z4 =
x4
w1

, z5 =
x5
w1

,

and consider the rational 4-forms

z3ω, z4ω, z5ω, where ω =
dz2 ∧ dz3 ∧ dz4 ∧ dz5
(f ′(1, z2, z3, z4, z5))

2 .
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These give sections of H0(P4,Ω4
P4 ⊗ OP4(2X)), forming a basis of the

subspace consisting of sections that vanish at the nodes of X. One
computes

ι∗(z2) = −z2, ι∗(z3) =
1

λ
z3, ι∗(z4) =

u

λ
z4, ι∗(z5) =

v

λ
z5

and

ι∗(f ′(1, z2, . . . , z5)
2) = ι∗

(
f ′(w1, w2, x3, x4, x5)

2

w6
1

)
=
f ′(1, z2, . . . , z5)

2

λ2
.

Using these, we see that ι acts on T0 IJ(X̃)∨ with eigenvalues

−uv
λ2
, −u

2v

λ2
, −uv

2

λ2
.

Similarly, to compute the action of ι on J(D), we note that T0 J(D)∨

is canonically isomorphic to

H0
(
P2,Ω2

P2 ⊗OP2(D)
)
.

Set y4 = x4
x3

and y5 = x5
x3

. The rational 2-forms

dy4 ∧ dy5
h(1, y4, y5)

, y4
dy4 ∧ dy5
h(1, y4, y5)

, y5
dy4 ∧ dy5
h(1, y4, y5)

define sections of H0(P2,Ω2
P2 ⊗OP2(D)), forming its basis. One has

ι∗(y4) = uy4, ι∗(y5) = vy5, ι∗(h(1, y4, y5)) = λ2h(1, y4, y5)

and ι acts on T0 J(D)∨ with eigenvalues

uv

λ2
,

u2v

λ2
,

uv2

λ2
.

This shows that the ι-action on IJ(X̃) ' J(D) differs from the action on
J(D) induced by the action on D by multiplication by −1 as claimed.
Therefore, the G-action on X is not linearizable. �

4. Three nodes

Standard form. The three nodes are necessarily in general linear po-
sition; they span a distinguished G-stable plane, which is not contained
in X. This case is labelled (J3), in [37]. Assume the nodes are

p1 = [1 : 0 : 0 : 0 : 0], p2 = [0 : 1 : 0 : 0 : 0], p3 = [0 : 0 : 1 : 0 : 0].

The standard form is given by

(4.1) x1x2x3 + x1q1 + x2q2 + x3q3 + f3 = 0,
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with quadratic q1, q2, q3 ∈ k[x4, x5], and cubic f3 ∈ k[x4, x5]. Note
that q1, q2, q3 must have rank 2, and q1, q2, q3, f3 do not share common
factors.

Automorphisms. We proceed to classify automorphism groups of 3-
nodal cubics acting transitively on nodes.

Proposition 4.1. Let X ⊂ P4 be a 3-nodal cubic threefold. As-
sume that Aut(X) contains an element acting transitively on the nodes.
Then, up to a change of coordinates, X is given by

x1x2x3 + x1q1 + x2q2 + x3q3 + f3 = 0,

for q1, q2, q3, f3 ∈ k[x4, x5] that can be described together with Aut(X)
as follows.

(1) Aut(X) = C3, generated by

σ1 : (x1, x2, x3, x4, x5) 7→ (x2, x3, x1, x4, ζ
2
6x5), ζ6 = e

2πi
6 ,

• with f3 = ax34 + bx35, for b 6= 0, (a, b) 6= (0, 1) and

q1 = x4(x4 + x5),

q2 = x4(x4 + ζ26x5),

q3 = x4(x4 + ζ46x5), or

• with f3 = dx34 + ex35,

q1 = x24 + bx4x5 + x25,

q2 = x24 + ζ26bx4x5 + ζ46x
2
5,

q3 = x24 + ζ46bx4x5 + ζ26x
2
5, d 6= ±e, and b 6= ±2.

(2) Aut(X) = C6 generated by

σ2 : (x1, x2, x3, x4, x5) 7→ (x2, x3, x1, x4, ζ6x5),

f3 = dx34 for some d 6= 0, and

q1 = x24 + x25,

q2 = x24 + ζ26x
2
5,

q3 = x24 + ζ46x
2
5.

(3) Aut(X) ' S3 generated by σ1 and

σ3 : (x1, x2, x3, x4, x5) 7→ (ζ26x2, ζ
4
6x1, x3, ζ

4
6x5, ζ

2
6x4),
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f3 = d(x34 + x35),

q1 = x24 + bx4x5 + x25,

q2 = x24 + ζ26bx4x5 + ζ46x
2
5,

q3 = x24 + ζ46bx4x5 + ζ26x
2
5, d 6= 0, b 6= ±2.

(4) Aut(X) ' C2 ×S3 generated by σ1, σ3 and

ι : (x1, x2, x3, x4, x5) 7→ (x1, x2, x3,−x4,−x5),
with f3 = 0 for b 6= ±2 and b2 6= −2, and

q1 = x24 + bx4x5 + x25,

q2 = x24 + ζ26bx4x5 + ζ46x
2
5,

q3 = x24 + ζ46bx4x5 + ζ26x
2
5.

(5) Aut(X) ' C2 ×S3 generated by

σ4 : (x1, x2, x3, x4, x5) 7→ (x2, x3, x1, x4, x5),

σ5 : (x1, x2, x3, x4, x5) 7→ (x2, x1, x3, x4, x5),

σ6 : (x1, x2, x3, x4, x5) 7→ (x1, x2, x3, x5, x4),

with

f3 =


d(x4 + x5)

3 d 6= 0, or

d(x4 + x5)(x4 − x5)2 d 6= 0, or

(x4 + x5)(ax4 + bx5)(bx4 + ax5) for a, b 6= 0,

q1 = q2 = q3 = x4x5.

(6) Aut(X) ' C3 oD4 generated by σ2 and

σ7 : (x1, x2, x3, x4, x5) 7→ (ζ46x2, ζ
2
6x1, x3, ζ

2
6x5, ζ6x4),

with f3 = 0 and

q1 = x24 + x25,

q2 = x24 + ζ26x
2
5,

q3 = x24 + ζ46x
2
5.

(7) Aut(X) ' S3 ×S3 generated by σ4, σ5, σ6 and

σ8 : (x1, x2, x3, x4, x5) 7→ (x1, x2, x3, ζ
2
6x4, ζ

4
6x5),

with f3 = d(x34 + x35) for some d 6= 0 and

q1 = q2 = q3 = x4x5.
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(8) Aut(X) ' GL2(F3) generated by ι, σ1, σ3 and

σ9 : (x1, x2, x3, x4, x5) 7→ (x2, ζ
5
6x1, ζ6x3,

ζ6bx4 + x5
1− ζ26

,
ζ6x4 + bx5

1− ζ26
),

with f3 = 0, b2 = −2, and

q1 = x24 + bx4x5 + x25,

q2 = x24 + ζ26bx4x5 + ζ46x
2
5,

q3 = x24 + ζ46bx4x5 + ζ26x
2
5.

(9) Aut(X) = S3 = 〈σ4, σ5〉, q1 = q2 = q3 = x4x5 and f3 such that
X is not isomorphic to any cubic in cases (5) and (7).

Proof. Let X ⊂ P4 be a 3-nodal cubic threefold given by (4.1), with
Aut(X) not fixing any node. There exists an exact sequence

0→ H → Aut(X)
ρ→ S3 → 0(4.2)

and a σ123 ∈ Aut(X) acting transitively on the nodes, so that ρ(σ123) =
(1, 2, 3). The zeroes of q1, q2, q3 define at most 6 points on P1

x4,x5
, thus

(4.3) σ123 =


0 0 s3 0 0
s1 0 0 0 0
0 s2 0 0 0
0 0 0 1 0
0 0 0 0 ζr6


for some s1, s2, s3 ∈ k×, where ζ6 = e

2πi
6 . We have the following cases:

(a) gcd(q1, q2, q3) = 1. We may assume that

q1 = x24 + bx4x5 + x25, b ∈ k, b 6= ±2.

The cyclic action on x1, x2, and x3 implies that q2 and q3 are multiples
of σ∗123(q1) and σ∗123(q2), respectively, and σ∗123(f3) = s1s2s3f3. The torus
action on the coordinates x1, x2 and x3 allows us to assume that

q2 = σ∗123(q1),

q3 = σ∗123(q2).

Since q1, q2, q3 are coprime, we have r 6= 0, 3. Thus, r = 1 or r = 2.
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• If r = 1, then b = 0, the entries in (4.3) are s1 = s2 = s3 = ±1,
and

q1 = x24 + x25,

q2 = x24 + ζ26x
2
5,

q3 = x24 + ζ46x
2
5,

There are subcases:
– f3(x4, x5) 6≡ 0. Then σ123 fixes the points defined by f3 in
P1. And up to isomorphism, f3 = dx34 or dx4x

2
5, for some

d 6= 0. Since σ∗123(f3) = s1s2s3f3, the latter is impossible.
So f3 = dx34 and s1 = 1. This gives ρ(Aut(X)) = C3. On
the other hand, any γ ∈ H takes the form

(x1, x2, x3, x4, x5) 7→ (t1x1, t2x2, t3x3, t4x4 + t5x5, t6x4 + t7x5),

for some tj ∈ k×. Since γ leaves (4.1) invariant, one finds
H = C2 = 〈σ3

2〉 and Aut(X) ' C6 = 〈σ2〉, where

σ2 : (x1, x2, x3, x4, x5) 7→ (x2, x3, x1, x4, ζ6x5).

– f3(x4, x5) ≡ 0. Then

H ' C2
2 = 〈ι, σ3

2〉, Aut(X) ' C3 oD4 = 〈σ2, σ7〉,
where

ι : (x1, x2, x3, x4, x5) 7→ (x1, x2, x3,−x4,−x5),(4.4)

σ7 : (x1, x2, x3, x4, x5) 7→ (ζ46x2, ζ
2
6x1, x3, ζ

2
6x5, ζ6x4).(4.5)

• If r = 2, then

q1 = x24 + bx4x5 + x25,

q2 = x24 + ζ26bx4x5 + ζ46x
2
5,

q3 = x24 + ζ46bx4x5 + ζ26x
2
5,

b 6= 0 and s1 = s2 = s3 = ±1. When b 6= 1, q1, q2, q3 define 6
points in P1, but when b = 1, they define 3 points. There are
subcases:

– f3(x4, x5) = el1l2l3, e ∈ k×. Then σ123 permutes the points
defined by f3 in P1, i.e.,

l1 = x4 + dx5, l2 = x4 + ζ26dx5, l3 = x4 + ζ46dx5, d ∈ k×.
In this case, σ123 takes the form

σ1 : (x1, x2, x3, x4, x5) 7→ (x2, x3, x1, x4, ζ
2
6x5).
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One finds that H = 0 and

Aut(X) '


C3 = 〈σ1〉 d6 6= 1,

S3 = 〈σ1, σ3〉, d3 = 1,

S3 = 〈σ1, σ′3〉, d3 = −1.

σ3 : (x1, x2, x3, x4, x5) 7→ (ζ26x2, ζ
4
6x1, x3, ζ

4
6x5, ζ

2
6x4),

σ′3 : (x1, x2, x3, x4, x5) 7→ (ζ26x2, ζ
4
6x1, x3, ζ6x5, ζ

5
6x4).

– f3 = l1l
2
2. Then σ123 fixes two points defined by f3 in P1,

and f3 = dx24x5 or dx4x
2
5, for some d ∈ k×. But then (4.1)

cannot be σ123-invariant. So this case does not exist.
– f3 = l3. Then f3 = dx34 or dx35, for some d 6= 0. One finds

H ' 0, Aut(X) ' C3 = 〈σ1〉.
– f3 ≡ 0. Then Aut(X) contains the involution ι from (4.4).

Up to a twist by ι, we may assume σ123 = σ1. Note that
Aut(X) also contains σ3. Using the same argument to find
H as above, one gets that when b2 6= −2,

H ' C2 = 〈ι〉, Aut(X) ' C2 ×S3 = 〈ι, σ1, σ3〉;
when b2 = −2,

H ' Q8, Aut(X) ∼= GL2(F3) = 〈ι, σ1, σ3, σ9〉,

σ9 : (x1, x2, x3, x4, x5) 7→ (x2, ζ
5
6x1, ζ6x3,

ζ6bx4 + x5
1− ζ26

,
ζ6x4 + bx5

1− ζ26
).

(b) When q1 = l1l, q2 = l2l and q3 = l3l and l1, l2, l3 are coprime.
Then Aut(X) fixes the point in P1

x4,x5
defined by l, and acts as

C3 on the three points defined by l1, l2 and l3. This implies that
r = 2 in (4.3), and that

l = x4, l1 = x4 + x5, l2 = x4 + ζ3x5, l3 = x4 + ζ23x5.

Then either f3 = l′3 defines one point and σ123 fixes the point, or
f3 = l′1l

′
2l
′
3, defining three distinct points, with σ123 permuting

them, i.e., f3 = ax34 + bx35 for some a, b ∈ k. Since X is 3-nodal,
one has b 6= 0 and (a, b) 6= (0, 1). From the form of f3, one sees
σ123 = σ1. And H = 0 since any element in H fixes 4 points on
P1, defined by l, l1, l2, l3, and acts trivially on x4, x5. Moreover,
one can show that no action on P1 fixes two points defined by
l and l1 and swaps those defined by l2 and l3 at the same time.
Therefore, ρ(Aut(X)) = C3 and

H ' 0, Aut(X) ' C3 = 〈σ1〉.
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(c) q1 = q2 = q3 = q: We may assume that q = x4x5. In this case,
the exact sequence (4.2) splits and

Aut(X) ' H ×S3,

with the factor S3 acting via permutations of x1, x2 and x3 and
trivially on x4, x5. Moreover, it is easy to see that H must act
faithfully on P1

x4,x5
. Since H preserves the pair of points defined

by q in P1
x4,x5

, it is either cyclic or dihedral. Assume that H 6= 1.
Then the structure of Aut(X) depends on f3 as follows:

• f3 = dl3, for some d 6= 0 and linear form l in x4 and x5. Then
H has a fixed point, i.e., H is a cyclic group. Moreover, H
swaps two points and thus H ' C2 with l = x4 + x5 and H is
generated by swapping coordinates x4 and x5.
• f3 = dl21l2, for some d 6= 0 and linear forms l1 and l2 defining

two distinct points in P1. Then H fixes two points defined by
l1 and l2, and swaps two points defined by q. Similarly, we have
H ' C2 with

l1 = x4 − x5, l2 = x4 + x5,

where H is generated by swapping x4 and x5.
• f3 = dl1l2l3, defining three distinct points. There are subcases:

– H permutes three points defined by f3 and swaps two
points defined by q. Then H ' S3, generated by

σ8 : (x1, x2, x3, x4, x5) 7→ (x1, x2, x3, ζ3x4, ζ
2
3x5)

σ6 : (x1, x2, x3, x4, x5) 7→ (x1, x2, x3, x5, x4),

and

(4.6) l1 = x4 + x5, l2 = ζ3x4 + ζ23x5, l3 = ζ23x4 + ζ3x5.

– H permutes three points defined by f3 and fixes two points
defined by q, thus H ' C3, and l1, l2, l3 are as in (4.6).
However, we know that X admits an additional symmetry
swapping two points in q as in the case above.

– H fixes the point defined by l1. Then H swaps two points
defined by q and two points defined by l2 and l3 because
otherwise H is trivial. In this case H ' C2, with

l1 = x4 + x5, l2 = ax4 + bx5, l3 = bx5 + ax4,

for some a, b 6= 0, and
(
a
b

)3 6= 1. Similarly, H is generated
by the involution swapping x4 and x5.

�
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Del Pezzo fibration. We have an Aut(X)-equivariant commutative
diagram:

X̃

π

��

% // Y

φ
��

X ρ
// P1

where π is a blow up of the nodes of X, % is a composition of flops in
the strict transforms of the lines

{x1 = x4 = x5 = 0}, {x2 = x4 = x5 = 0}, {x3 = x4 = x5 = 0},
φ is a fibration into Del Pezzo surfaces of degree 6, and ρ is the pro-
jection given by

(x1, x2, x3, x4, x5) 7→ (x4, x5).

The anticanonical model of X̃ is a singular Fano threefold of degree 18
that has 3 nodes, which can be smoothed to a smooth Fano threefold
of the same degree with Picard rank 1.

Fixed point obstruction. Among actions in Proposition 4.1, we find
one example where the linearizability is obstructed by the absence of
fixed points upon restriction to abelian subgroups.

Example 4.2. Consider the 3-nodal X in Case (7), Proposition 4.1,
and the G = C2

3 = 〈σ4, σ8〉 action on it. The G-action does not have a

fixed point on X and X̃G = ∅. By Lemma 2.1, the G-action on X is
not linearizable.

Specialization. Here we exhibit specialization to the 9-nodal cubic
with C3-action giving an (H1)-obstruction to stable linearizability.

Proposition 4.3. Let X → A1
k be a family of cubic threefolds Xb := Xb

given by

fb := x1x2x3 + (x1 + x2 + x3)x4x5 + (x4 + x5)(x4 + bx5)(bx4 + x5) = 0

for b ∈ k. Consider the G = C3 action on Xb generated by

(x1, x2, x3, x4, x5) 7→ (x2, x3, x1, x4, x5).

Then a very general element in X is not G-stably linearizable.

Proof. Arguing as in Example 2.10, let X → A1
k be the family given

by fb. For a very general b, Xb := Xb is a 3-nodal cubic described as
Case (5) in Proposition 4.1. The special fiber X0 := X0 is a 9-nodal
cubic, and the G-action fixes a smooth genus 1 curve on X0. From
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computations in Section 9, there exists an (H1)-obstruction to stable
linearizability of the G-action on X0. The six additional nodes form
two G-orbits with trivial stabilizer. By Proposition 2.9, a very general
element in the family X is not G-stably linearizable. �

5. Four nodes

Factorial cubics. We first consider the case when the four nodes are
in general linear position, forming a “tetrahedron”. This is case (J4)
in [37]. We may assume that the nodes of X are contained in the
hyperplane x5 = 0, and are the points

[1 : 0 : 0 : 0 : 0], [0 : 1 : 0 : 0 : 0], [0 : 0 : 1 : 0 : 0], [0 : 0 : 0 : 1 : 0].

The intersection X∩{x5 = 0} is the unique cubic surface with 4 nodes,
the Cayley cubic surface. Using this, we see that X can be given by

(5.1) x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4+

+ ax35 + x25
(
b1x1 + b2x2 + b3x3 + b4x4

)
+

+ x5
(
a1(x1x2 + x3x4) + a2(x1x3 + x2x4) + a3(x1x4 + x2x3)

)
= 0

for some a, b1, b2, b3, b4, a1, a2, a3 ∈ k.

Theorem 5.1. Suppose that X ⊂ P4 is a 4-nodal cubic threefold and
Aut(X) does not fix any node of X. Then, up to a change of coordi-
nates, one of the following holds:

(C2) b1 = b2 and b3 = b4 in (5.1), and Aut(X) ' C2, generated by

σ1 : (x1, x2, x3, x4, x5) 7→ (x2, x1, x4, x3, x5).

(C4) a = 0, a1 = a2 = a3 = 0, b1 = −b2, b3 = −b4 in (5.1), and
Aut(X) ' C4, generated by

σ′1 : (x1, x2, x3, x4, x5) 7→ (x2, x1, x4, x3, ix5), i = e
2πi
4 .

(C2
2) b1 = b2 = b3 = b4 in (5.1), and Aut(X) ' C2

2 , generated by σ1
and

σ2 : (x1, x2, x3, x4, x5) 7→ (x3, x4, x1, x2, x5).

(C8) a = 0, a1 = a2 = a3 = 0, b1 = 1, b2 = −ζ28 , b3 = −1, b4 = ζ28 in
(5.1), and Aut(X) ' C8, generated by

σ′3 : (x1, x2, x3, x4, x5) 7→ (x4, x1, x2, x3, ζ8x5), ζ8 = e
2πi
8 .
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(D4) a1 = a3 = 0, a2 = 1, b1 = b2 = b3 = b4 in (5.1), and Aut(X) '
D4, generated by σ1, σ2 and

σ3 : (x1, x2, x3, x4, x5) 7→ (x4, x1, x2, x3, x5).

(S4) a 6= 0, a1 = a2 = a3 = 0, b1 = b2 = b3 = b4 = 1 in (5.1), and
Aut(X) ' S4, generated by σ1, σ2, σ3 and

σ4 : (x1, x2, x3, x4, x5) 7→ (x2, x3, x1, x4, x5).

Proof. Let φ : Aut(X)→ S4 be the homomorphism given by the action
on the nodes of X. Since Aut(X) does not fix nodes, we may assume
that there is a ι ∈ Aut(X) such that φ(ι) = (12)(34) or φ(ι) = (1234).

Suppose that φ(ι) = (12)(34). Then ι is given by

(x1, x2, x3, x4, x5) 7→ (x2 + sx5, x1 + sx5, x3 + sx5, x4 + sx5, tx5)

for some s, t ∈ k such that t 6= 0. Considering how ι acts on (5.1),
we see that s = 0 or a1 = a2 = a3. In the former case, we have
b1 = b2 and b3 = b4, which implies t = 1, because otherwise t = −1
and a = a1 = a2 = a3 = 0, which implies that X is not 4-nodal. Thus,
if (s, t) = (0, 1) and im(φ) ' C2, then we are in the case (C2).

If a1 = a2 = a3, then, after a coordinate change, we may assume
that a1 = a2 = a3 = 0. In this case, we get

0 = s = a(1− t3) = b3 − b4t2 = b4 − b3t2 = b2 − b1t2 = b1 − b2t2.

Since X is 4-nodal, this gives a = 0, b1 = −b2, b3 = −b4 and t = ±i.
Hence, if im(φ) ' C2, then we are in the case (C4).

Now, we suppose that φ(ι) = (1234). Then ι is given by

(x1, x2, x3, x4, x5) 7→ (x4 + sx5, x1 + sx5, x2 + sx5, x3 + sx5, tx5)

for some s, t ∈ k such that t 6= 0. Then

• a = 2a2b4 − a32, a1 = 2a2 − a3, b1 = b2 = b3 = b4, or
• a1 = a3, b1 = b2 = b3 = b4, or
• a1 = a2 = a3.

In the former case, X is not 4-nodal. If a1 = a2 = a3, then after a
coordinate change, we may assume that a1 = a2 = a3 = 0, which gives

0 = s = a(1− t3) = b2 − b3t2 = b3 − b4t2 = b4 − b1t2 = b1 − b2t2,

so, after an appropriate scaling of x5, we see that

• a 6= 1, b1 = b2 = b3 = b4 = 1, or
• a = 0, b1 = 1, b2 = −1, b3 = 1, b4 = −1, t = i, or
• a = 0, b1 = 1, b2 = −ζ28 , b3 = −1, b4 = ζ28 , t = ζ8,
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which implies that we are in cases (S4), (C4), (C8), respectively.
If a1 = a3 and b1 = b2 = b3 = b4, then, after a coordinate change, we

may assume that a1 = a3 = 0. If a2 = 0, then we are in the case (S4).
Finally, if a2 6= 0, then, scaling x5, we may further assume that a1 = 1,
so X is given by

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4+

+ ax35 + b1x
2
5

(
x1 + x2 + x3 + x4

)
+ x5

(
x1x3 + x2x4

)
= 0,

which gives Aut(X) = 〈σ1, σ2, σ3〉 ∼= D4, so we are in the case (D4).
To proceed, we may assume that im(φ) 6' C2 and im(φ) 6' C4. Then,

up to a coordinate change, one of the following four cases holds:

• im(φ) = 〈(12)(34), (14)(23)〉 ' C2
2 ,

• im(φ) = 〈(12)(34), (1234)〉 ' D4,
• im(φ) = 〈(12)(34), (14)(23), (123)〉 ' A4,
• im(φ) = 〈(12)(34), (14)(23), (1234), (123)〉 ' S4.

Since im(φ) contains (12)(34) or (1234), the cubic X must be given
by one of the equations explicitly described above. Using additional
symmetries of X, we conclude that we are in one of the cases (C2

2),
(D4), (S4), or the cubic X is given by (5.1) with

a 6= 0, a1 = a2 = a3 = 0, b1 = b3 = 1, b2 = b4 = −1,

or
a1 = 1, a2 = ζ3, a3 = ζ23 , b1 = b2 = b3 = b4 = 0.

In the first of the latter two cases, X has 8 nodes, and in the last case,
the singularities of X are not nodes. This completes the proof of the
theorem. �

Birational model. Let π : X̃ → X be the blow up of the nodes of X.
Then there exists an Aut(X)-equivariant diagram:

X̃
ρ //

π

��

X̂

φ
��

X Y

where ρ is a composition of flops in the strict transform of the lines
passing through pair of nodes, φ is a contraction of the strict transform
of the hyperplane section containing 4 nodes (the surface X∩{x5 = 0})
to a smooth point of the threefold Y , and Y is a smooth divisor in
(P1)4 of degree (1, 1, 1, 1). Implicitly, the birational map X 99K Y has
been constructed in the proof of [48, Proposition 4.5]. Note that the
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anticanonical model of X̃ is a singular Fano threefold with 6 nodes of
degree 16, which can be smoothed to a smooth Fano threefold of degree
16 and Picard rank 1.

Burnside formalism. We realize the situation of Proposition 2.6 in
some of the 4-nodal cases.

Example 5.2. Let X be the cubic threefold given in the Case (D4)
or (S4) in Theorem 5.1. Consider the group G ⊂ Aut(X) where G =
〈σ2, σ1σ3〉 = C2

2 . Then we are in the situation of Proposition 2.6, and
the G-action is not linearizable. In particular, σ1σ3 fixes a cubic surface
receiving a residual σ2-action with a G-fixed elliptic curve on it.

Specialization. One can equivariantly specialize 4-nodal cubic three-
folds to an 8-nodal one:

Proposition 5.3. Let Xb be the 4-nodal cubic threefold defined by

fb = x1x2x3+x1x2x4+x1x3x4+x2x3x4+x25
(
x1+x2+b(x3+x4)

)
= 0.

For all b ∈ k, Xb carries a G = C2-action generated by

σ1 : (x1, x2, x3, x4, x5) 7→ (x2, x1, x4, x3, x5).

Then Xb is not G-stably linearizable for a very general b.

Proof. Let X → A1
k be the family given by fb. The generic fiber Xb

is a 4-nodal cubic of the type (C2) in Theorem 5.1. The special fiber
X9/4 := X9/4 is an 8-nodal cubic, with an (H1)-obstruction to stable
linearizability of the G-action by Corollary 8.3. The additional 4 nodes
have trivial stabilizer and thus are BG-rational singularities. Applying
Proposition 2.9 and Example 2.8, one concludes that a very general
member in the family X is not G-stably linearizable. �

One can also specialize to the Segre cubic threefold:

Proposition 5.4. Let Xa be a cubic of type (S4) in Theorem 5.1, i.e.
Xa is given by

ax35 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x25(x1 + x2 + x3 + x4) = 0.

Consider the subgroup G = 〈σ1, σ2〉 ' C2
2 ⊂ Aut(Xa). Then, for a very

general a ∈ k, the G-action on Xa is not stably linearizable.

Proof. Let X → A1
k be the family consisting of Xa. The special fiber

X0 := X0 is a 10-nodal cubic, with an (H1)-obstruction to stable lin-
earizability of the G-action, from computations in [24]. The additional
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6 nodes have C2-stabilizers. They are BG-rational singularities, by Ex-
ample 2.8. Applying Proposition 2.9 and Example 2.8, one concludes
that a very general fiber is not G-stably linearizable. �

Remark 5.5. We note that the degeneration of cubics in Proposi-
tion 5.4 is equivalent to the degeneration of divisors in (P1)4 of degree
(1, 1, 1, 1), which was studied in [48, Section 7] and [17]. In particular,
the product of projections from four planes in the tetrahedron formed
by the four nodes of the cubics gives an G-equivariant birational map
from the cubics to divisors in (P1)4 of degree (1, 1, 1, 1).

Cubics with a plane. Now we treat the case when the four nodes
are contained in a distinguished, G-stable plane Π. This is case (J6) in
[37]. Unprojecting from Π, we have a G-equivariant birational map

φ : X 99K X2,2,

where X2,2 is a smooth complete intersection in P5 of two quadrics
with a G-fixed point P ∈ X2,2, and the map φ−1 is a projection from
P . Linearizability of actions on smooth X2,2 is determined by existence
of invariant lines [42, Theorem 24]. In particular, we have

Proposition 5.6. The G-action on X is not linearizable if and only if
no singular points of X are fixed by G, and X does not contain G-stable
lines that are disjoint from Π.

Proof. We may assume that no singular points of X is G-fixed. If X
contains a G-stable line that is disjoint from Π, then the G-action on
X2,2 is linearizable, by Lemma 1.1. Conversely, if the G-action on X2,2

is linearizable, then it follows from [42, Theorem 24] that X2,2 contains
a G-stable line `. And P 6∈ `, because otherwise the preimage of ` on
X would be a G-fixed singular point. Similarly, we see that ` must be
disjoint from the four lines in X2,2 containing P . Then ` is mapped by
φ−1 to a G-stable line in X that is disjoint from the plane Π. �

Examples of nonlinearizable actions, based on the Burnside formal-
ism [46] or the adaptation to the equivariant context of the torsors over
intermediate Jacobians formalism from [43], [11], can be found in [42,
Sections 8.3 and 8.4]. As a special case, we have:

Example 5.7. We may assume that X2,2 is given by

6∑
i=1

aix
2
i =

6∑
i=1

x2i = 0.
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Let G = 〈σ〉, with σ acting diagonally by (1, 1, 1, 1,−1,−1). Then
G does not leave invariant any line on X2,2 and the action is not lin-
earizable. On the other hand, there is a genus 1 curve C fixed by G,
obtained by intersecting X2,2 with x5 = x6 = 0. Projecting from any of
the points on C, we obtain a singular cubic threefold, generically with
four nodes.

Example 5.8. Let X ⊂ P4
y1,...,y5

be the 4-nodal cubic given by

(y1 − y3)y2y4 + (y2 − y3)y1y5 + (y4 − y5)y4y5 − y34 − y35.

The four nodes lie on the unique plane y4 = y5 = 0. The automorphism
group Aut(X) contains G = C3

2 generated by

ι1 : (y1, y2, y3, y4, y5) 7→ (−y1,−y1 + y3,−y1 + y2, y4, y5)

ι2 : (y1, y2, y3, y4, y5) 7→ (y2 − y3, y1 − y3,−y3, y4, y5).
and

ι3 : (y1, y2, y3, y4, y5) 7→ (y1, y2, y3,−y4,−y5).
Unprojecting X from the unique plane under the map

(y1, . . . , y5) 7→ (y1y5, y2y5, y3y5, y4y5, y
2
5, y1y2 − y2y3 − y24),

one sees that X is G-equivariantly birational to a smooth intersection
of two quadrics X2,2 ⊂ P5

x1,...,x6
given by

x1x2 − x2x3 − x24 − x5x6 = x1x2 − x1x3 + x24 − x4x5 − x25 + x4x6 = 0.

The G = C3
2 action on the first five coordinates is the same as that on

P4, ι1 and ι2 acts trivially on x6 and ι3 changes the sign of x6. For any
subgroup G′ ⊂ G, there is a G′-stable line in X2,2 if and only if G′ = C2

and the character of the G′-representation of the ambient A6
x1,...,x6

is

(6, 0) or (6, 4).

In the first case, G′ fixes a singular point of X and thus is lineariz-
able. In the latter case, G′ pointwise fixes a smooth intersection of
two quadrics in dimension 2, i.e., a quartic Del Pezzo surface, which
contains 16 lines. The other C2 subgroups have character (6, 2). They
fix an elliptic curve but do not leave any line invariant in X2,2. Any of
the other subgroups of G will contain one of the nonlinearizable C2.

6. Five nodes

Now, we suppose that X has 5 nodes.
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Birational model. If the nodes are not in general linear position,
then there is a distinguished G-fixed node, and the G-action on X is
linearizable. Hence, we may assume that the nodes of X are

p1 = [1 : 0 : 0 : 0 : 0], p2 = [0 : 1 : 0 : 0 : 0], p3 = [0 : 0 : 1 : 0 : 0],

p4 = [0 : 0 : 0 : 1 : 0], p5 = [0 : 0 : 0 : 0 : 1].

ThenG ⊆ S5 acts via permutation of coordinates. We may also assume
that G does not fix any of the nodes, since otherwise the G-action is
clearly linearizable.

Linearizability. Using the standard Cremona involution

ι : P4 99K P4,

we obtain a G-birational map χ : X 99K Q, where Q ⊂ P4 is a smooth
quadric. For more details of this map, see the proof of Theorem 2.12.

Lemma 6.1. Suppose that G does not act transitively on Sing(X).
Then the G-action on X is linearizable.

Proof. Since G does not fix any of the nodes, either G ' C2 × S3 or
G ' C2 × C3. In both cases, we may assume that G preserves the
subset {p1, p2} and {p3, p4, p5}. Then G pointwise fixes the line l ⊂ P4

that passes through the points [1 : 1 : 0 : 0 : 0] and [0 : 0 : 1 : 1 : 1].
Observe that ι(l) = l, so that the intersection l ∩ Q contains G-fixed
points, which implies the assertion. �

Thus, we may assume that G acts transitively on the nodes of X,
and G contains the 5-cycle (1, 2, 3, 4, 5). Then X is defined by

x1x2x3 + x2x3x4 + x1x2x5 + x1x4x5 + x3x4x5+

+ a(x1x2x4 + x1x3x4 + x1x3x5 + x2x3x5 + x2x4x5) = 0,

for some a. And Q is defined by

x1x2 + x2x3 + · · ·+ x5x1 + a(x1x3 + x2x4 + · · ·+ x5x2) = 0.(6.1)

Note that a 6= −1, since otherwise X would be 6-nodal. Then Q is
smooth. For the group G, we have the following possibilities:

(1) G ' C5,
(2) G ' D5,
(3) G ' C4 o C5 and a = 1,
(4) G ' A5 and a = 1,
(5) G ' S5 and a = 1.



EQUIVARIANT GEOMETRY OF CUBIC THREEFOLDS 37

In the first case, G = C5, the group G fixes a point in Q, and the G-
action on X is linearizable. In the second case, the action is necessarily
of the form in the following lemma:

Lemma 6.2. Suppose that G ' D5 acting on P4 = P(I ⊕ V2 ⊕ V ′2),
where V2 and V ′2 are two nonisomorphic 2-dimensional irreducible rep-
resentations of D5. Then the G-action on every G-invariant smooth
quadric in P4 is linearizable.

Proof. We may assume the G action is generated by

(x1, . . . , x5) 7→ (x4, x3, x2, x1, x5),

(x1, . . . , x5) 7→ (ζx1, ζ
2x2, ζ

3x3, ζ
4x4, x5),

where ζ = e
2πi
5 . Smooth G-invariant quadrics Qa,b are given by

ax1x4 − bx2x3 + x25 = 0

for a, b 6= 0. Notice that each Qa,b is D5-isomorphic to Q1,1 with the
same D5-action under a change of variables

x′1 =
√
ax1, x

′
2 =
√
bx2, x

′
3 =
√
bx3, x

′
4 =
√
ax4, x

′
5 = x5.

Consider a G-invariant conic

C = {x2 = x3 = 0} ∩Q1,1

and a G-invariant twisted cubic curve

R = {x5 = x1x3 − x22 = x2x4 − x23 = 0} ∩Q1,1.

The system of quadric hypersurfaces on P4 containing both C and R
induces a G-equivariant birational map Q1,1 99K P3, see e.g., [3, Section
5.10]. �

Lemma 6.3. Suppose that G ' C4 o C5 and a = 1. Then Q from
(6.1) contains a G-invariant smooth quintic elliptic curve E, and we
have the following G-Sarkisov link:

Q̃

α

��

β

��
Q P3

where α is a blow up of the curve E, and β is a blow up of a smooth
quintic elliptic curve isomorphic to E.
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Proof. It is easy to see that Aut(Q) contains a unique subgroup iso-
morphic to C4 o C5. Thus, we may change coordinates on P4 as we
need and, in particular, assume that Q is given by

5∑
i=1

x2i + i
∑

16i<j65

xixj = 0,

and that the action of G on Q is given by

(x1, x2, x3, x4, x5) 7→ (x2, x3, x4, x5, x1),

(x1, x2, x3, x4, x5) 7→ (x1, x3, x5, x2, x4).

Then Q contains the following smooth quintic elliptic curve:

x21 + i(x3x4 + x2x5) = 0,

x22 + i(x4x5 + x3x1) = 0,

x23 + i(x5x1 + x4x2) = 0,

x24 + i(x1x2 + x5x3) = 0,

x25 + i(x2x3 + x1x4) = 0.

Blowing up Q along this curve, we obtain the claim, cf. [19]. �

If G ' S5 and a = 1, then it follows from [21] that X is G-solid,
and the only G-Mori fiber spaces G-birational to X are X and Q. In
particular, the G-action is not linearizable. If G ' A5 and a = 1, we
also expect that X and Q are the only G-Mori fiber spaces G-birational
to X, which would imply that the G-action is not linearizable.

7. Six nodes

Cubics without planes. Let X be the 6-nodal cubic threefold such
that the nodes are in general linear position. Then rk Cl(X) = 2, so
the defect of X is 1. This is case (J9) in [37]. Note that X does
not contain planes, but it contains two families of cubic scrolls (see
Remark 7.1 below). Moreover, by [41, Section 3], X can be given by

det(M) = 0

for a 3 × 3 matrix M whose entries are linear forms. Thus, one can
define a rational map X 99K P2 that maps p 7→ (a, b, c), where (a, b, c)
is a non-zero solution of the equation

M

ab
c

 = 0.
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This map is dominant, it is undefined at the nodes of X, and its general
fiber is a line in X. Similarly, we can define another rational map
X 99K P2 using the transpose of the matrix M . Taking resolution
of singularities X, we resolve indeterminacy of both of these rational
maps, which yields the following commutative diagram:

(7.1) X̃
h+

xx

h−

&&
f

��

X+

p+

��

q+

''

X−

p−

��

q−

wwP2 Xoo // P2

where f is the standard resolution, q+ and q− are small resolutions, h+

and h− are birational morphisms such that h−◦(h+)−1 is a composition
of six Atiyah flops, both p+ and p− are P1-bundles. The diagram (7.1)
is implicitly contained in [44, § 7.5], as an illustration of the first row
in the table there. Taking a product of morphisms p+ ◦h+ and p− ◦h−,

we obtain a morphism X̃ → P2 × P2 that is birational onto its image
(a divisor of degree (2, 2) with 15 nodes).

Remark 7.1. Let l be a general line in P2. Set

S = (q−)∗(p
−)∗(l) and S

′
= (q+)∗(p

+)∗(l).

Then S and S
′

are smooth cubic scrolls in X that freely generate the
class group Cl(X).

Remark 7.2. Let G ⊆ Aut(X). Then the commutative diagram (7.1)
is G-equivariant if and only if rk ClG(X) 6= 1.

To describe possibilities for Aut(X), we can assume that the nodes
of X are the points

p1 = [1 : 0 : 0 : 0 : 0], p2 = [1 : 1 : 1 : 1 : 1], p3 = [0 : 0 : 0 : 0 : 1].

p4 = [0 : 0 : 0 : 1 : 0], p5 = [0 : 0 : 1 : 0 : 0], p6 = [0 : 1 : 0 : 0 : 0].

Fix the S6-action on P4 generated by

τ(12) : (x1, . . . , x5) 7→ (−x1,−x1 + x2,−x1 + x3,−x1 + x4,−x1 + x5),
(7.2)

τ(1···6) : (x1, . . . , x5) 7→ (−x1 + x2,−x1 + x3,−x1 + x4,−x1 + x5,−x1),
where the indices corresponds to the permutation of 6 nodes. Then
Sing(X) forms an S6-orbit, but X is not S6-invariant. Moreover, it
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follows from a classical construction [30] that there exists the following
4-dimensional S6-Sarkisov link:

U

α
��

β // Y

γ

��
P4

χ
// V

where V is the 10-nodal Segre cubic threefold in P4, χ is given by the
linear system of cubic hypersurfaces singular at the points p1, . . . , p6, α
is the blowup of p1, . . . , p6, β is a composition of antiflips in the strict
transforms of the 15 lines that contain 2 points among p1, . . . , p6, and
γ is a P1-bundle.

Observe that Aut(X) ⊆ S6. Restricting the above S6-Sarkisov link
to X, we obtain the following Aut(X)-equivariant diagram:

(7.3) X̃

f
��

// X̂

π

��
X S

where S is a smooth hyperplane section of the Segre cubic V , X̃ 99K X̂
is a composition of Atiyah flops in the strict transforms of the 15 lines
in X that contains 2 nodes among p1, . . . , p6, π is a P1-bundle. For
more details, see [41].

Our cubic X is given by

a1f1 + a2f2 + a3f3 + a4f4 + a5f5 = 0(7.4)

for some a1, a2, a3, a4, a5 ∈ k, where

f1 = x1x2x3 − x2x3x4 − x2x3x5 − x1x4x5 + x2x4x5 + x3x4x5,

f2 = x1x2x4 − x2x3x4 − x1x4x5 + x3x4x5,

f3 = x1x2x5 − x2x3x5 − x1x4x5 + x3x4x5,

f4 = x1x3x4 − x2x3x4 − x1x4x5 + x2x4x5,

f5 = x1x3x5 − x2x3x5 − x1x4x5 + x2x4x5.

Enumerating G ⊆ S6 and searching for G-invariant cubics singular
at p1, . . . , p6, we can find all possibilities for Aut(X). In particular,
Aut(X) = 1 for general a1, . . . , a5. Moreover, one has

Proposition 7.3. Let X ⊂ P4 be a 6-nodal cubic threefold given by
(7.4). Assume that none of the nodes of X is fixed by Aut(X). Then
under the S6-action specified in (7.2), one of the following holds:
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(1) a1 + a2 + a4 + a5 = 0, and

Aut(X) ' C2 = 〈(1, 3)(2, 5)(4, 6)〉.
(2) a1 + a3 = a2 − a3 + a4 + a5 = 0, and

Aut(X) ' S3 = 〈(1, 3)(2, 5)(4, 6), (1, 4, 5)(2, 6, 3)〉.
(3) a1 + a4 = a2 + a5 = a3 − a4 = 0, and

Aut(X) ' S4 = 〈(1, 3)(2, 5)(4, 6), (3, 4, 5, 6)〉.
(4) a1 + a4 = a2 + a5 = a3 + a4 = 0, and

Aut(X) ' D4 = 〈(3, 5), (1, 3, 2, 5)(4, 6)〉.
(5) a1 + a4 + 2a5 = a2 − a5 = 0, and

Aut(X) ' C2
2 = 〈(1, 2)(3, 5)(4, 6), (1, 3)(2, 5)(4, 6)〉.

(6) a1 + a4 + 2a5 = a2 − a5 = a3 − a4 − 2a5 = 0, and

Aut(X) ' D6 = 〈(1, 3)(2, 5)(4, 6), (1, 6, 5, 2, 4, 3)〉.
(7) a1 = a3 = a5 = 1, a2 = a4 = −1, and

Aut(X) ' S2
3 o C2 = 〈(1, 3)(2, 5)(4, 6), (2, 4), (1, 5)(2, 3, 4, 6)〉.

(8) a1 = a4 = 1, a2 = a3 = a5 = −1, and

Aut(X) ' S5 = 〈(1, 3)(2, 5)(4, 6), (1, 2, 5, 6, 4)〉.

Proof. Enumerating all (conjugacy classes of) subgroups G of S6 which
do not fix any point among p1, . . . , p6, and computing all G-invariant
cubics singular at p1, . . . , p6, we obtain the list of (families of) 6-nodal
cubics whose automorphism groups do not fix any of the nodes. These
are the eight families of cubics listed above. Since Aut(X) ⊂ S6, one
can find the full automorphism groups Aut(X). �

As in [4], we find two maximal subgroups S5 and S2
3 oC2 such that

(up to conjugation in S6) G and X can be described as follows:

(1) G = S5 = 〈(1, 3)(2, 5)(4, 6), (1, 2, 5, 6, 4)〉 and X is given by

(7.5) x1x2x3 − x1x2x4 + x1x3x4 − x2x3x4 − x1x2x5 − x1x3x5+
+ x2x3x5 + x1x4x5 + x2x4x5 − x3x4x5 = 0,

(2) G = S2
3 o C2 = 〈(1, 3)(2, 5)(4, 6), (2, 4), (1, 5)(2, 3, 4, 6)〉 and X

is given by

(7.6) x1x2x3 − x1x2x4 − x1x3x4 + x2x3x4 + x1x2x5 + x1x3x5+

+ x2x4x5 − 3x2x3x5 − x1x4x5 + x3x4x5 = 0.
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In the first case, Aut(X) ' S5, rk ClS5(X) = 1, and (7.3) is a S5-
Sarkisov link such that S is the Clebsch diagonal cubic surface. In the

second case, Aut(X) ' S2
3 o C2, rk ClS

2
3oC2(X) = 1, and (7.3) is a

S2
3 o C2-Sarkisov link such that S is the Fermat cubic surface.

Lemma 7.4. Let X ⊂ P4 be a 6-nodal cubic threefold such that the
nodes are in general linear position. If Aut(X) contains an involution

σ not fixing any node, then rk Cl〈σ〉(X) = 1.

Proof. Since σ does not fix any node, we may assume that

σ = (1, 3)(2, 5)(4, 6)

and X is one of the cases in Proposition 7.3. From the diagram (7.3),
we know that

rk Cl〈σ〉(X) + 3 = rk Cl〈σ〉(X̃) = rk Cl〈σ〉(X̂) = rk Cl〈σ〉(S) + 1,

where S is a smooth cubic surface contained in a hyperplane H ⊂ P4.
By Lefschetz fixed-point theorem, one has [36, Section 6]

rk Cl〈σ〉(S) =
1

2
(7 + Tr2 (σ∗)) ,

Tr2(σ
∗) = s− 2 +

∑
i

(2− 2gi),

where Tr2(σ
∗) is the trace of σ∗-action on H2(S,C), s is the number

of isolated σ-fixed points on S and gi are the genera of fixed curves.
In our case, we compute that the induced σ-action on H ' P3 has
weights (1, 1, 1,−1). The fixed locus Sσ consists of one point and a
smooth cubic curve. Substituting into the formulae above we obtain

rk Cl〈σ〉(S) = 3,

which implies rk Cl〈σ〉(X) = 1. �

Proposition 7.5. Let X ⊂ P4 be a 6-nodal cubic threefold such that the
nodes are in general linear position and Aut(X) contains an involution

σ. Let X̃ be the standard resolution of X. Then the action of 〈σ〉 ' C2

on Pic(X̃) fails (H1) if and only if σ does not fix any node.

Proof. We know that Pic(X̃) is generated by the pullback of the hy-
perplane section H, six exceptional divisors E1, . . . , E6, and the classes
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of the strict transforms of two cubic scrolls S and S ′ (see Remark 7.1),
subject to the relation

2H = S + S ′ +
6∑
i=1

Ei.

There is a short exact sequence of Aut(X)-modules

0→
6⊕
i=1

Ei → Pic(X̃)→ Cl(X)→ 0,

giving rise to the long exact sequence of cohomology groups

. . .→ H1(〈σ〉,
6⊕
i=1

Ei)→ H1(〈σ〉,Pic(X̃))→ H1(〈σ〉,Cl(X))

→ H2(〈σ〉,
6⊕
i=1

Ei)→ . . . .

By our assumption, σ permutes the Ei without fixing any Ei. So

H1(〈σ〉,
6⊕
i=1

Ei) = H2(〈σ〉,
6⊕
i=1

Ei) = 0,

and
H1(〈σ〉,Pic(X̃)) = H1(〈σ〉,Cl(X)).

If σ does not fix any node, Lemma 7.4 implies that rk Cl〈σ〉(X) = 1.
So σ acts on Cl(X) via

σ(H) = H, σ(S) = S ′ = 2H − S.
In another basis of Cl(X), namely H and H − S, the action becomes

σ(H) = H, σ(H − S) = −H + S.

Then
H1(〈σ〉,Pic(X̃)) = H1(〈σ〉,Cl(X)) = Z/2.

Conversely, if 〈σ〉 fails (H1), it is not stably linearizable and thus
cannot fix any node. �

Example 7.6. Let X ⊂ P4 be a 6-nodal cubic threefold in one of the
8 cases in Proposition 7.3. Then Aut(X) contains the involution

σ = (1, 3)(2, 5)(4, 6),

satisfying the conditions in Proposition 7.5. Therefore, the σ-action on
any 6-nodal cubic is not stably linearizable.
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Cubics with a plane. This is case (J8) in [37]. Four of the six nodes
of X are contained in a unique, and thus G-stable plane Π ⊂ X. The
other two are on a G-stable line `. Note that `∩Π = ∅, since otherwise
the hyperplane containing Π and ` would intersect X by three planes.
So, the action of Aut(X) on X is linearizable by Lemma 1.1.

Cubics with three planes. Let X be a cubic threefold in P4 with 6
nodes such that X contains three planes Π1, Π2, Π3. Then X belongs
to a four-parameter family, which is denoted by (J11) in [37]. It follows
from [37] that Π1 + Π2 + Π3 is cut out by a hyperplane. Thus, we may
assume that this hyperplane is {x1 = 0}, and

Π1 =
{
x1 = 0, x2 = 0

}
,

Π2 =
{
x1 = 0, x3 = 0

}
,

Π3 =
{
x1 = 0, x4 = 0

}
.

Observe the existence of the following diagram:

X̃
π

��

η

��
X Y

where π is the standard resolution, Y is the double cover of (P1)3

branched over a singular divisor of degree (2, 2, 2), and η is a birational
morphism that contracts the strict transforms of Π1, Π2, Π3. Note
that Aut(Y ) contains a Galois involution of the double cover, and this
involution acts biregularly on X, which follows from:

Proposition 7.7. Up to a change of coordinates, X is given by

(7.7) x2x3x4 +ax31 +x21(b1x2 +b2x3 +b3x4)+x1(x
2
2 +x23 +x24−x25) = 0,

for some a, b1, b2, b3.

Proof. A priori, the cubic X is given by

x2x3x4 + ax31 + x21
(
b1x2 + b2x3 + b3x4 + cx5

)
+

+ x1
(
e1x

2
2 + e2x

2
3 + e3x

2
4 + e4x2x3 + e5x2x4 + e6x3x4

)
+

+ x1
(
x5(d1x2 + d2x3 + d3x4)− x25

)
= 0

for some a, b1, b2, b3, c, e1, e2, e3, e4, e5, e6, d1, d2, d3. Changing x2, x3, x4,
we may assume that e4 = e5 = e6 = 0. Moreover, up to scaling, there
exists a unique such choice of coordinates x2, x3, x4 that preserves the
equations of the planes Π1, Π2, Π3.
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Similarly, changing the coordinate x5, we may further assume that
c = d1 = d2 = d3 = 0. As above, we see that there is a unique such
choice for x5 up to scaling.

Finally, using the fact that X has six nodes, we see that e1 6= 0,
e2 6= 0, e3 6= 0. Hence, scaling the coordinates x1, x2, x3, x4, x5, we may
also assume that e1 = e2 = e3 = 1, which completes the proof. �

Remark 7.8. If we permute b1, b2, b3 in (7.7), or simultaneously change
signs of two of them, we obtain an isomorphic cubic threefold.

From now on, we assume that the cubic threefold X is given by (7.7).
Then the nodes of X are

p1 = [0 : 0 : 0 : 1 : 1], p2 = [0 : 0 : 0 : −1 : 1],

p3 = [0 : 0 : 1 : 0 : 1], p4 = [0 : 0 : −1 : 0 : 1],

p5 = [0 : 1 : 0 : 0 : 1], p6 = [0 : −1 : 0 : 0 : 1].

Remark 7.9. Let S3 be the cubic surface {x5 = 0} ∩ X. Then S3

is smooth. The proof of Proposition 7.7 shows that S3 is Aut(X)-
invariant.

Remark 7.10. One can find an explicit condition on a, b1, b2, b3 that
guarantees that (7.7) defines a 6-nodal cubic, but it is too bulky to
present here. However, if the equation (7.7) has additional symmetries,
the condition simplifies a lot. For instance, if b1 = b2 = b3 = b, then
(7.7) defines a 6-nodal cubic if and only if

(4a− b2 + 8b+ 16)(4b3 + a2 − 6ab− 3b2 + 4a) 6= 0.

Moreover, in this very special case, we have the following possibilities:

(1) if 4b3 + a2 − 6ab− 3b2 + 4a = 0 and
(a, b) 6∈ {(1, 1), (−4, 0), (−8, 28)}, then (7.7) defines a 7-nodal
cubic;

(2) if (a, b) = (1, 1), then (7.7) defines a cubic with six nodes and
one double non-nodal singularity;

(3) if 4a− b2 + 8b+ 16 = 0 and
(a, b) 6∈ {(−4, 0), (−8, 28)}, then (7.7) defines a 9-nodal cubic;

(4) if (a, b) ∈ {(−4, 0), (−8, 28)}, then (7.7) defines the Segre cubic.

As we mentioned earlier, Aut(X) is never trivial, since it contains
the involution:

ι5 : (x1, x2, x3, x4, x5) 7→ (x1, x2, x3, x4,−x5).
Moreover, if b1, b2, b3 in (7.7) are general enough, then Aut(X) = 〈ι5〉.
In fact, we can say more:
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Proposition 7.11. Suppose Aut(X) 6= 〈ι5〉. Then, up to a permuta-
tion of coordinates x2, x3, x4 and changing signs of two of them, one of
the following holds:

(1) b1 6= b2, b2 = b3, b1, b2 6= 0, so X is given by

x2x3x4 + ax31 + x21(b1x2 + b2(x3 + x4)) + x1(x
2
2 + x23 + x24 − x25) = 0,

and Aut(X) ' C2
2 , generated by ι5 and

σ34 : (x1, x2, x3, x4, x5) 7→ (x1, x2, x4, x3, x5);

(2) b1 6= 0, b2 = b3 = 0, so X is given

x2x3x4 + ax31 + b1x
2
1x2 + x1(x

2
2 + x23 + x24 − x25) = 0,

and Aut(X) ' C3
2 , generated by ι5, σ34 and

ι34 : (x1, x2, x3, x4, x5) 7→ (x1, x2,−x3,−x4, x5);
(3) b1 = b2 = b3 6= 0, so X is given by

x2x3x4 + ax31 + b1x
2
1(x2 + x3 + x4) + x1(x

2
2 + x23 + x24 − x25) = 0,

and Aut(X) ' C2 ×S3, generated by ι5, σ34 and

σ234 : (x1, x2, x3, x4, x5) 7→ (x1, x3, x4, x2, x5);

(4) b1 = b2 = b3 = 0, so X is given by

x2x3x4 + ax31 + x1(x
2
2 + x23 + x24 − x25) = 0,

and Aut(X) ' C2 ×S4, generated by ι5, σ34, σ234, ι34 and

ι24 : (x1, x2, x3, x4, x5) 7→ (x1,−x2, x3,−x4, x5).

Proof. Permuting the coordinates x2, x3, x4, we may assume that one
of the following four cases hold:

(1) b1 6= 0, b2 6= 0, b3 6= 0;
(2) b1 = 0, b2 6= 0, b3 6= 0;
(3) b1 = 0, b2 = 0, b3 6= 0;
(4) b1 = 0, b2 = 0, b3 = 0.

In the first two cases, we may assume b2 and b3 have the same sign by
changing the signs of two among three variables x2, x3 and x4.

There is a natural homomorphism φ : Aut(X) → S3 given by the
action of Aut(X) on the planes Π1, Π2, Π3. Arguing as in the proof of
Proposition 7.7, we see that an element in the kernel of φ is given by

(x1, x2, x3, x4, x5) 7→ (x1, λ1x2, λ2x3, λ3x4, λ4x5)

for some non-zero λ1, λ2, λ3, λ4. Using this, we see that the kernel of φ
can be described as follows:
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• if b2 6= 0, b3 6= 0, then ker(φ) = 〈ι5〉 ' C2,
• if b1 = b2 = 0, b3 6= 0, then ker(φ) = 〈ι5, ι23〉 ' C2

2 ,
• if b1 = b2 = b3 = 0, then ker(φ) = 〈ι5, ι23, ι24〉 ' C3

2 .

Let G = Aut(X). First, assume (2, 3) ∈ φ(G), i.e., there exists an
element σ ∈ G swapping the planes Π2 and Π3 and leaving Π1 invariant.
Then σ takes the form 

1 0 0 0 0
s1 s9 0 0 0
s2 0 0 s10 0
s3 0 s11 0 0
s4 s5 s6 s7 s8


for parameters s1, . . . , s11. Note that σ2 is contained in the kernel of φ,
which implies that s8 = ±1. Moreover, we may assume that s8 = 1 by
replacing σ by σ ◦ ι5. Furthermore, the fact that σ leaves X invariant
imposes relations on the parameters. Solving for the equations, we
obtain solutions

• b2 = b3, s1 = . . . = s7 = 0, s10 = s11 = s9 = 1,
• b2 = −b3, s1 = . . . = s7 = 0, s10 = s11 = −1, s9 = 1.

Similarly, if (1, 2, 3) ∈ φ(G), i.e., there exists an element σ ∈ G
translating three planes. As above, we see that σ takes the form

1 0 0 0 0
s1 0 0 s9 0
s2 s10 0 0 0
s3 0 s11 0 0
s4 s5 s6 s7 1

 .

In this case, we obtain 4 solutions

• b1 = b2 = −b3, s1 = . . . = s7 = 0, s9 = s11 = −1, s10 = 1,
• b1 = −b2 = −b3, s1 = . . . = s7 = 0, s9 = s10 = −1, s11 = 1,
• b1 = −b2 = b3, s1 = . . . = s7 = 0, s9 = 1, s10 = s11 = −1,
• b1 = b2 = b3, s1 = . . . = s7 = 0, s9 = s10 = s11 = 1.

Combining these solutions with symmetries, we obtain the result. �

Linearization. Let X be the 6-nodal cubic given by (7.7). In this sub-
section we solve the linearizability problem for subgroups in Aut(X),
almost completely. We use notation introduced in the previous subsec-
tion, and let S3 be the cubic surface {x5} ∩X. Then S3 is smooth by
Remark 7.9, which implies:

Lemma 7.12. Let G = 〈ι5〉. Then the G-action on X is linearizable.
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Proof. The surface S3 is pointwise fixed by ι5, and Π1 ∩ S3 is a line.
Since S3 is smooth, it contains another line l disjoint from Π1 ∩ S3.
Hence, l is disjoint from Π1. Since Π1 is G-invariant, the G-action is
linearizable by Lemma 1.1. �

Similarly, we prove

Lemma 7.13. Suppose that b2 = b3 = 0, so X is given by

x2x3x4 + ax31 + b1x
2
1x2 + x1(x

2
2 + x23 + x24 − x25) = 0.

Let G = 〈ι5, ι34〉 ' C2
2 . Then the G-action on X is linearizable.

Proof. Note that G leaves invariant the planes Π1, Π2, Π3. As in the
proof of Lemma 7.12, we see that S3 contains a G-invariant line that is
disjoint from one of these planes. Indeed, if r is a root of r2+b1r+a = 0,
then S3 contains the reducible conic

x5 = x2 − rx1 = rx3x4 + x23 + x24 = 0,

and its irreducible components are G-invariant lines disjoint from Π2

and Π3. Hence, the G-action is linearizable by Lemma 1.1. �

Now, let us discuss nonlinearizable actions. We start with

Lemma 7.14. Suppose that b2 = b3, and let G = 〈ι5, σ34〉 ∼= C2
2 . Then

the G-action on X is not linearizable.

Proof. The involution ι5 pointwise fixes the G-invariant surface S3,
while the involution σ34 pointwise fixes the cubic curve

C = {x3 = x4} ∩ S3 ⊂ S3.

One can check that a singular point on C is also a singular point of
X. Then C is necessarily smooth since the six nodes on X are away
from S3. Therefore C is a genus 1 curve, and by Proposition 2.6, the
G-action is not linearizable. �

Remark 7.15. The same argument shows that the following two G-
actions on X (when they act) are not linearizable:

G = 〈ι5, σ34ι34〉 ' C2
2 , and G = 〈σ234, σ34〉 ' S3.

In each of the two cases, there is a cubic surface in X fixed by a
subgroup C2 ⊂ G and receiving a G/C2-residual action which fixes an
elliptic curve. Therefore, Proposition 2.6 is also applicable to these
cases.

Using Proposition 7.11 and Lemma 7.12, we obtain
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Corollary 7.16. The action of Aut(X) on X is linearizable if and
only if Aut(X) = 〈ι5〉.

We proceed to the actions of other subgroups of the full automor-
phism groups from Proposition 7.11.

Lemma 7.17. Let Xa ⊂ P4 be a 6-nodal cubic threefold given by

ax31 + b(x2 + x3 + x4)x
2
1 + x1(x

2
2 + x23 + x24 − x25) + x2x3x4 = 0,(7.8)

for some b 6∈ {0, 28}, and let G ' C3 be a group acting on P4 by

(x1, x2, x3, x4, x5) 7→ (x1, x4, x3, x2, x5).

Then X is G-invariant, and the G-action on Xa is not stably lineariz-
able for a very general a ∈ k.

Proof. Fixing b 6∈ {0, 28}, consider the family X → A1
k whose fiber over

a ∈ k is the cubic given by (7.8). From Remark 7.10, we know that
the generic fiber Xa := Xa is 6-nodal if a is very general. On the other
hand, the special fiber Xε := Xε is 9-nodal when ε = b2

4
− 2b − 4 and

the additional 3 nodes have trivial stabilizer.
Now set ε = b2

4
− 2b − 4. Then the G-action on planes in Xε has a

G-orbit of length 3, consisting of three planes

Π4 = {x2 − 2x1 = (bx1 + 2x3 + 2x4 + 2x5) = 0},

Π5 = {x3 − 2x1 = (bx1 + 2x4 + 2x2 + 2x5) = 0},

Π6 = {x4 − 2x1 = (bx1 + 2x2 + 2x3 + 2x5) = 0}.
Moreover, Π4 +Π5 +Π6 is a Cartier divisor on Xε, then by Remark 9.1,
the G-action on Xε is not stably linearizable. Applying Proposition 2.9,
we conclude that the G-action on Xa is not stably linearizable for a
very general a ∈ k. �

Lemma 7.18. Let Xa ⊂ P4 be a cubic threefold given by

ax31 + x1(x
2
2 + x23 + x24 − x25) + x2x3x4 = 0.(7.9)

Consider a group G ' C2
2 acting on P4 via

ι24 : (x1, x2, x3, x4, x5) 7→ (x1,−x2, x3,−x4, x5),

ι34 : (x1, x2, x3, x4, x5) 7→ (x1, x2,−x3,−x4, x5).
Then Xa is G-invariant, and the G-action on Xa is not stably lineariz-
able for a very general a ∈ k.
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Proof. Consider the family X → A1
a whose fiber over a ∈ k is the cubic

given by (7.9). From Remark 7.10, we know that Xa is 6-nodal for a
very general a. On the other hand, the special fiber X ′a, when a′ = −4,
is the Segre cubic with 10 nodes. The G-action on X−4 leaves invariant
three planes, namely

Πi = {x1 = xi = 0}, i = 2, 3, 4.

The action has an orbit of nodes of length 4 and three orbits of nodes
of length 2. By [24, Section 6], the G-action on X−4 does not satisfy
(H1) and is not stably linearizable. Moreover, the four additional
nodes are in one G-orbit, and are BG-rational singularities. Applying
Proposition 2.9, one concludes that a very general member in the family
X is not G-stably linearizable. �

Remark 7.19. The same argument shows that for the same family of
cubics, the action on Xa of the group

G = 〈ι5, ι23σ34〉 ' C2 × C4

for a very general a is not stably linearizable. The action specializes
to the unique C2 × C4-action on the Segre cubic X−4. This action on
X−4 does not satisfy (SP). The four additional nodes have stabilizer
C2, and they are BG-rational singularities, see Example 2.8.

Let us summarize what is left using the notation of Proposition 7.11.

(1) When Aut(X) ' C2
2 , we are left with 〈ι5σ34〉 ' C2,

(2) When Aut(X) ' C3
2 , we are left with 5 groups:

Group Generators Orbit of nodes Orbit of planes
C2 ι5σ34 2+2+2 1+2
C2 ι5σ34ι34 2+2+2 1+2
C2

2 ι5σ34, ι34 2+4 1+2
C2

2 ι5σ34, ι34σ34 2+2+2 1+2
C2

2 ι5ι34, σ34 2+2+2 1+2

(3) When Aut(X) ' C2×S3 and a, b1 are very general, we are left
with 〈ι5σ34〉 ' C2.

(4) When Aut(X) ' C2 ×S4, for very general a, we are left with:
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Group Generators Orbit of nodes Orbit of planes
C2 ι5σ34 2+2+2 1+2
C3 σ234 3+3 3
C2

2 ι5σ34, ι34 2+4 1+2
C4 ι23σ34 2+4 1+2
C2

2 ι5σ34, ι34σ34 2+2+2 1+2
C6 ι5σ234 6 3
S3 ι5σ34, σ234 3+3 3
D4 ι5ι24, ι23σ34 2+4 1+2

Specialization in Lemma 7.17 does not apply to the second row.

We also note that in each of the remaining cases, the construction in
Lemma 1.1 does not apply. In particular, every G-invariant line in
these cases intersects with the G-invariant plane (when it exists) at
one point.

8. Eight nodes

The 8-nodal cubic threefolds form a two-parameter family, which is
denoted by (J13) in [37]. Let X be one such cubic, and G = Aut(X).
Then Cl(X) = Z4, and X contains 5 planes Π1, . . . ,Π5 that form a
very special configuration [37]. If p1, . . . , p8 are the nodes of X then

Π1 ⊃ {p1, p2, p6, p8},

Π2 ⊃ {p1, p2, p5, p7},
Π3 ⊃ {p5, p6, p7, p8},
Π4 ⊃ {p3, p4, p5, p6},
Π5 ⊃ {p3, p4, p7, p8}.

From this configuration, there are two distinguished sets of nodes

(8.1) {p1, p2, p3, p4} and {p5, p6, p7, p8}.

The planes Π1,Π2,Π3 form one tetrahedron (without a face), and
Π3,Π4,Π5 form another one. In particular, Π3 is distinguished, and
must be G-invariant.

Unprojecting from Π3, we obtain a G-equivariant birational map

X 99K X2,2 = Q ∩Q′ ⊂ P5

to a singular complete intersection of two quadrics Q and Q′ in P5 that
are singular along lines. The threefold X2,2 has 4 nodes: Q ∩ Sing(Q′)
and Q′ ∩ Sing(Q), and G fixes a point in X2,2 — the inverse map
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X2,2 99K X is just a projection from this point. Thus, one could study
the geometry of X using X2,2 as in Section 5.

Standard form. We change the coordinates in P4 so that

Π3 = {x4 = x5 = 0}

and

p1 = [0 : 0 : 0 : 1 : 0], p3 = [0 : 0 : 0 : 0 : 1];

this is possible since the line through p1 and p3 is disjoint from Π3.
Changing the variables x1, x2, x3, we may assume that

p5 = [1 : 1 : 1 : 0 : 0], p6 = [−1 : 1 : 1 : 0 : 0],

p7 = [1 : −1 : 1 : 0 : 0], p8 = [1 : 1 : −1 : 0 : 0].

This specifies the equations of the planes:

Π1 = {x1 + x3 = x5 = 0},
Π2 = {x1 − x3 = x5 = 0},
Π3 = {x4 = x5 = 0},
Π4 = {x2 − x3 = x4 = 0},
Π5 = {x2 + x3 = x4 = 0}.

A cubic threefold containing Π1, . . . ,Π5 and singular at p1, p3, p5, . . . , p8
has the form

(a22x1 + a12x2 + a6x3)x4x5 + a9(x
2
3 − x21)x4 + a8(x

2
3 − x22)x5 = 0,

for some a6, a8, a9, a12, a22. Since X is 8-nodal, we have

a8, a9, a12, a22 6= 0.

Scaling coordinates, we may assume that a8 = a9 = a12 = 1, and we
let a22 = a and a6 = b. Thus, X = Xa,b is given by

(8.2) (ax1 + x2 + bx3)x4x5 + x4(x
2
3 − x21) + x5(x

2
3 − x22) = 0,

for parameters a, b, where a 6= 0. Notice that a and b are defined up
to ±1. For very general a and b, (8.2) defines an 8-nodal cubic with
nodes at p1, . . . , p8, where p1, p3, p5, . . . , p8 are described above, and

p2 = [0 : 1 : 0 : 1 : 0], and p4 = [a : 0 : 0 : 0 : 1].

For special parameters a and b, (8.2) defines a cubic with additional
singularities, for instance, the Segre cubic, when b = 0 and a = 1.



EQUIVARIANT GEOMETRY OF CUBIC THREEFOLDS 53

Automorphisms. Recall that G = Aut(X) and Π3 is G-invariant.
Let l12 be the line passing through p1 and p2, and l34 the line through
p3 and p4. Then the curve l12 + l34 is G-invariant. On the other hand,
we have a group homomorphism

φ : G→ PGL3(k),

arising from the action of G on Π3. Since φ(G) permutes the points
p5, p6, p7, p8, we see that φ(G) ⊆ S4 ⊂ PGL3(k), permuting the coordi-
nates x1, x2, x3 and changing signs of these variables. Moreover, the set
(l12 + l34)∩Π3 is φ(G)-invariant, which implies that φ(G) is contained
in D4 ⊂ S4 generated by:

(x1, x2, x3) 7→ (−x2, x1, x3),
(x1, x2, x3) 7→ (−x1, x2, x3).

Lemma 8.1. The kernel ker(φ) of φ is nontrivial if and only if b = 0.
Moreover, if b = 0, then ker(φ) ' C2, generated by

(x1, x2, x3, x4, x5) 7→ (x1 − ax5, x2 − x4, x3,−x4,−x5).

Proof. An element τ ∈ ker(φ) preserves Π3, the points p6, p7, p8, p9,
and each line l12 and l34. Moreover, since τ leaves the subsets {p1, p2}
{p3, p4} invariant, we have the following three possibilities:

(1) τ(p1) = τ(p1), τ(p2) = τ(p2), τ(p3) = τ(p4), τ(p4) = τ(p3),
(2) τ(p1) = τ(p2), τ(p2) = τ(p1), τ(p3) = τ(p3), τ(p4) = τ(p4),
(3) τ(p1) = τ(p2), τ(p2) = τ(p1), τ(p3) = τ(p4), τ(p4) = τ(p3).

These impose linear conditions on τ . Solving them, we see that τ is
one of the following linear transformations:

(1) (x1, x2, x3, x4, x5) 7→ (x1, x2 − x4, x3,−x4, x5),
(2) (x1, x2, x3, x4, x5) 7→ (−ax5 + x1, x2, x3, x4,−x5)
(3) (x1, x2, x3, x4, x5) 7→ (x1 − ax5, x2 − x4, x3,−x4,−x5).

However, (8.2) must be preserved by τ , which implies that only the
third case is possible, and only in the case when b = 0. �

We are ready to classify all possibilities for G = Aut(X).

Proposition 8.2. Let X ⊂ P4 be an 8-nodal cubic threefold given by

(ax1 + x2 + bx3)x4x5 + x4(x
2
3 − x21) + x5(x

2
3 − x22) = 0

and G = Aut(X). Then one of the following holds:
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• b 6= 0 and a 6= ±1, G ' C2
2 = 〈ι1, ι2〉, generated by

ι1 : (x1, x2, x3, x4, x5) 7→ (ax5 − x1, x2, x3, x4, x5),
ι2 : (x1, x2, x3, x4, x5) 7→ (x1, x4 − x2, x3, x4, x5);

• b 6= 0 and a = ±1, G ' D4, generated by ι2 and

σ1 : (x1, x2, x3, x4, x5) 7→ (±x2, x5 ∓ x1, x3, x5, x4);

• b = 0, a 6= ±i, G ' C3
2 , generated by ι1, ι2 and

τ : (x1, x2, x3, x4, x5) 7→ (x1 − ax5, x2 − x4, x3,−x4,−x5);

• b = 0, a = ±i, G ' C2.D4 ' C2
2 o C4, generated by τ, ι2 and

σ2 : (x1, x2, x3, x4, x5) 7→ (∓x2,±x1, x3, ix5, ix4).

Proof. Observe that G always contains ι1 and ι2, and 〈ι1, ι2〉 ∼= C2
2 ,

which shows that φ(G) is at least C2
2 . Moreover, if b = 0, then it follows

from Lemma 8.1 that G also contains the involution τ , so together the
involutions ι1, ι2, τ generate a subgroup C3

2 in this case. If φ(G) ' C2
2 ,

this gives us all possibilities for G. To complete the proof, we have to
find all a and b such that φ(G) ' D4, and describe G in these cases.
This can be done explicitly.

If φ(G) ' D4, then G contains a σ such that φ(σ) is given by

(x1, x2, x3) 7→ (x2,−x1, x3),

which implies that σ is given by the matrix
0 −1 0 0 0
1 0 0 0 s25
0 0 1 0 0
s14 0 0 0 s54
0 s25 0 s45 0


for some s14, s25, s45, s54. Since σ preserves (8.2), we obtain constraints
on these entries, which result in the following possibilities:

(1) a = 1, s14 = 0, s25 = 1, s45 = 1, s54 = 1;
(2) a = −1, s14 = −1, s25 = 0, s45 = 1, s54 = 1;
(3) b = 0, a = −i, s14 = 0, s25 = 0, s45 = i, s54 = i;
(4) b = 0, a = i, s14 = −1, s25 = i, s45 = i, s54 = i.

Using them, we obtain all possibilities for G listed above. �
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Cohomology. Let X̃ → X be the standard resolution, let E1, . . . , E8

be exceptional divisors over p1, . . . , p8, and let Π̃1, . . . , Π̃5 be the strict

transforms of the planes Π1, . . . ,Π5 on X̃, respectively. Then Pic(X̃) is

generated by E1, . . . , E8, Π̃1, . . . , Π̃5. These are subject to the relation

Π̃1 + Π̃2 − Π̃4 − Π̃5 = E1 + E2 − E3 − E4.

Notice that this presentation of the lattice Pic(X̃) is independent of the
equation of the cubic threefold X. To compute the (H1)-obstruction

on Pic(X̃), for generality, we may work with the maximal symmetry
group appearing in Proposition 8.2. Let G = C2

2oC4, as defined above.
Then G acts on nodes via permutation of indices

τ : (1, 2)(3, 4),

ι1 : (3, 4)(5, 6)(7, 8),

ι2 : (1, 2)(5, 7)(6, 8),

σ2 : (1, 3)(2, 4)(5, 7, 8, 6).

There is a unique (conjugacy class of) C2 = 〈ι1ι2〉 contributing to

H1(C2,Pic(X̃)) = Z/2.

Indeed, this C2 acts on nodes via the permutation of indices

(1, 2)(3, 4)(5, 8)(6, 7).

Under the basis

Π̃1 − Π̃5 − E2 + E4, Π̃1, . . . , Π̃5, E3, . . . , E8,

one can see that C2 acts on Π̃1 − Π̃5 −E2 +E4 by −1, and on the rest
as a permutation module.

Note that this C2 is contained in Aut(X) = C2
2 for generic X in

Proposition 8.2, i.e., when b 6= 0 and a 6= ±1.

Linearization. Let X be an 8-nodal cubic threefold. The classifica-
tion in Proposition 8.2 implies:

• b 6= 0 and a 6= ±1: a subgroup of Aut(X) ' C2
2 is linearizable

if and only if it fixes a singular point; otherwise, it fails (H1).
• b 6= 0 and a = ±1: a subgroup of Aut(X) ' D4 is linearizable

if and only if it fixes a singular point; otherwise, it fails (H1).
• b = 0 and a 6= ±i: Excluding subgroups failing (H1) or with a

fixed singular point, we are left with the following (classes of)
subgroups
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(1) C2
2 = 〈(3, 4)(5, 7)(6, 8), (1, 2)(3, 4)〉, acting via

(x1, x2, x3, x4, x5) 7→ (x1 + ix5,−x2, x3,−x4,−x5),
(x1, x2, x3, x4, x5) 7→ (x1 + ix5, x2 − x4, x3,−x4,−x5).

(2) C2
2 = 〈ι1, τ〉 = 〈(3, 4)(5, 6)(7, 8), (1, 2)(3, 4)〉, acting via

(x1, x2, x3, x4, x5) 7→ (−x1 − ix5, x2, x3, x4, x5),
(x1, x2, x3, x4, x5) 7→ (x1 + ix5, x2 − x4, x3,−x4,−x5).

• b = 0 and a = ±i: Excluding groups with an (H1)-obstruction
or with a fixed singular point, we are left with
(1) C2

2 = 〈(3, 4)(5, 6)(7, 8), (1, 2)(3, 4)〉, acting via

(x1, x2, x3, x4, x5) 7→ (−x1 − ix5, x2, x3, x4, x5),
(x1, x2, x3, x4, x5) 7→ (x1 + ix5, x2 − x4, x3,−x4,−x5),

(2) C4 = 〈(1, 3)(2, 4)(5, 7, 8, 6)〉, acting via

(x1, x2, x3, x4, x5) 7→ (x2,−x1, x3, ix5, ix4).

We turn to linearization constructions for subgroups unobstructed
by cohomology and not fixing singular points. Consider the maximal
symmetry group, in the case b = 0 and a = ±i. We have two unob-
structed cases:

• G = C2
2 = 〈(3, 4)(5, 6)(7, 8), (1, 2)(3, 4)〉. The group G swaps

the planes Π1 and Π2 and preserves Π4 and Π5. The line passing
through p1 and p2 is a G-invariant line disjoint from Π4. Then
the G-action on X is linearizable by Lemma 1.1.
• G = C4 = 〈(1, 3)(2, 4)(5, 7, 8, 6)〉. In this case, G swaps the

planes Π1,Π2 and swaps Π4,Π5. But Π3 is G-invariant. The
line passing through p1 and p3 is a G-invariant line disjoint from
Π3. The G-action on X is linearizable by Lemma 1.1.

Note that the constructions above only depend on the group actions on
singular points and planes. One can also establish the same lineariza-
tion results for the two unobstructed C2

2 in the case when b = 0 and
a 6= ±i. We summarize this section by:

Corollary 8.3. Let X be an 8-nodal cubic threefold and G ⊆ Aut(X).
The G-action on X is linearizable if and only if it satisfies (H1), if
and only if G does not contain a subgroup isomorphic to C2 which does
not fix any nodes of X; in particular, if it is not linearizable then it is
not stably linearizable.
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9. Nine nodes

Standard form. We follow [52]: 9-nodal cubic threefolds Xa are given
in P5 by equations

x1x2x3 − x4x5x6 = a(x1 + x2 + x3) + x4 + x5 + x6 = 0, a3 6= 0,−1.

Their automorphisms depend on the parameter a as follows:

Aut(Xa) =

{
S2

3 when a3 6= 1,

S2
3 o C2 otherwise.

These groups act via S3-permutations of two sets of coordinates: x1, x2, x3,
and x4, x5, x6. When a = 1, the additional C2 switches xi ↔ x3+i, i =
1, 2, 3. In both cases, the 9 nodes are given by

{xi1 = xi2 = xj1 = xj2 = 0, xj3 + axi3 = 0},
where

i1 6= i2 6= i3 ∈ {1, 2, 3}, j1 6= j2 6= j3 ∈ {4, 5, 6}.
There are also 9 distinguished planes, given by

Πi,j = {xi = x3+j = 0} ∩X, i, j ∈ {1, 2, 3}.
The G-action on Xa fixes a singular point if and only if G is a 2-group.

Fixed point obstruction. Let G = C2
3 be the group generated by

(x1, x2, x3, x4, x5, x6) 7→ (x3, x1, x2, x4, x5, x6),

(x1, x2, x3, x4, x5, x6) 7→ (x1, x2, x3, x6, x4, x5).

Then XG
a = ∅, for all a such that a3 6= 0,−1. By Lemma 2.1, the

G-action on X is not linearizable.

Cohomology. Let X̃a → Xa be the blowup of Xa at 9 nodes. Then
Pic(X̃a) is generated by Ei, i = 1, . . . , 9, the exceptional divisors over

the 9 nodes, the pullbacks Π̃i,j of Πi,j, and H, the pullback of the
hyperplane section. They are subject to relations

H = Π̃1,1 + Π̃1,2 + Π̃1,3 + E2 + E3 + E5 + E6 + E8 + E9,

H = Π̃1,1 + Π̃2,1 + Π̃3,1 + E1 + E2 + E3 + E4 + E5 + E6,

H = Π̃1,2 + Π̃2,2 + Π̃3,2 + E1 + E2 + E3 + E7 + E8 + E9,

H = Π̃1,3 + Π̃2,3 + Π̃3,3 + E4 + E5 + E6 + E7 + E8 + E9,

H = Π̃2,1 + Π̃2,2 + Π̃2,3 + E1 + E3 + E4 + E6 + E7 + E9,

H = Π̃3,1 + Π̃3,2 + Π̃3,3 + E1 + E2 + E4 + E5 + E7 + E8.
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When a3 6= 1, computation yields two minimal classes of groups con-
tributing to nonvanishing cohomology:

H1(G′,Pic(X̃a)) = Z/3,
for G′ = C3 = 〈(1, 2, 3)〉 or 〈(4, 5, 6)〉, realized as permutations of in-
dices of the coordinates. When a = 1, these two classes of C3 are
conjugate in Aut(X1), and thus we found a unique class of groups con-
tributing to nonvanishing cohomology:

H1(G′,Pic(X̃a)) = Z/3,
for G′ = C3 = 〈(1, 2, 3)〉. Any subgroup of Aut(Xa) containing those
classes has (H1)-obstructions to stable linearizability.

Remark 9.1. One can characterize geometrically the C3-action con-
tributing to (H1)-obstructions as follows: let Xa be a 9-nodal cubic
threefold, and G = C3 ⊆ Aut(Xa). Then the G-action on Xa does not
satisfy (H1) if and only if there exists a G-orbit of planes of length 3,
which forms a Cartier divisor.

Excluding G ⊆ Aut(Xa) with (H1)-obstruction or with G-fixed sin-
gular points, one is left with

• When a3 = 1, the unobstructed groups are

D6,S3,S
′
3, C6, C3,(9.1)

where D6 acts on {x1, x2, x3} and {x4, x5, x6} via diagonal S3

permutations and C2 swapping them, i.e., xi ↔ x3+i, i = 1, 2, 3.
The other groups are all subgroups of D6.
• When a3 6= 1, we are left with

S3 and C3,

where S3 is the diagonal permutation and C3 its subgroup.

Next, we show that the actions of these unobstructed groups on Xa are
equivariantly birational to actions on a smooth quadric threefold. In
particular, the actions of cyclic groups C3 and C6 are linearizable.

Linearization. Consider the family of degree (1, 1) divisors in (P2)2

Wb ⊂ P2
t1,t2,t3

× P2
z1,z2,z3

, b ∈ C \ {0,−1, ζ3, ζ
2
3},

given by
(−t1z2 + t2z1) + b(−t1z2 + t3z3) = 0,

with a G = S3-action generated by

ι : t1 ↔ z2, t2 ↔ z1, t3 ↔ z3
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and

σ : t1 7→ ζt1, t2 7→ ζ2t2, z1 7→ ζz1, z2 7→ ζ2z2.

Let p1, p2, p3 ∈ Wb be the points

[1 : 1 : 1]× [1 : 1 : 1], [ζ : ζ2 : 1]× [ζ : ζ2 : 1], [ζ2 : ζ : 1]× [ζ2 : ζ : 1],

where ζ = e
2πi
3 . Note that {p1, p2, p3} forms one G-orbit. The linear

system

|H − p1 − p2 − p3|
consisting of hyperplanes on P4 containing points p1, p2 and p3 has
projective dimension 4. Under a chosen basis, it gives a birational map
to a 9-nodal cubic hypersurface Yb ⊂ P4, with equation

y1y2y3 + y1y
2
5 − y22y4 + y2y

2
4 − y21y5 −

b

b+ 1
y1y3y4+

+
b

(b+ 1)2
y33 −

b

b+ 1
y2y3y5 −

1

b+ 1
y3y4y5 = 0

Up to a change of variables by

(
y1 y2 y3 y4 y5

)
·


1 ζ ζ2 −ζb+ζ2

b−ζ2
−ζ2b+1
b−ζ2

1 ζ2 ζ −b+ζ
b−ζ2

−ζ2b+1
b−ζ2

ζb−ζ2
b+1

ζb−ζ2
b+1

ζb−ζ2
b+1

−ζb+ζ2
b+1

−ζb+ζ2
b+1

ζ 1 ζ2 −ζ2b+1
b−ζ2

−ζb+ζ2
b−ζ2

ζ ζ2 1 −b+ζ
b−ζ2

−ζb+ζ2
b−ζ2

 ,

Yb is G-isomorphic to

{y1y2y3+λby4y5(y1+y2+y3+y4+y5) = 0} ⊂ P4, λb = −
(
b− ζ2

b− ζ

)3

,

i.e.,

Xa = {x1x2x3 − x4x5x6 = a(x1 + x2 + x3) + x4 + x5 + x6 = 0} ⊂ P5,

where

a = −b− ζ
2

b− ζ
.

The G-action on Xa is given by the diagonal permutation of coordinates
x1, x2, x3 and x4, x5, x6. When b 6= 0,−1, ζ, ζ2, i.e., a3 6= −1, 0, one sees
that Wb (and thus Xa) is G-equivariantly birational to

Qb = {(b+ 1)t1z2 − t2z1 + bz2 = 0} ⊂ P4
t1,t2,z1,z2,z

,(9.2)
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realized as the equivariant compactification of the affine chart of Wb

given by

{t3 6= 0, z3 6= 0} ⊂ Wb,

with the natural action of ι and σ (acting trivially on z).
When a3 = 1, i.e. b = 1,−2 or −1

2
, there is extra symmetry on Wb

and Qb. For example, when b = −1
2
, Wb and Qb are invariant under

the additional involution

τ : t1 ↔ t2, z1 ↔ z2.

The group G′ = 〈ι, σ, τ〉 is isomorphic to D6. The corresponding G′-
action on X1 is generated by the diagonal S3-permutation and by swap-
ping two sets of coordinates {x1, x2, x3} and {x4, x5, x6}. We do not
know whether or not this action is linearizable.

Corollary 9.2. Let Xa be a 9-nodal cubic threefold as above. The
C3-action on Xa via permutation of coordinates

(x1, x2, x3, x4, x5, x6) 7→ (x3, x1, x2, x6, x4, x5)

is linearizable for all a3 6= 0, 1. When a = 1, the C6-action on X1 via

(x1, x2, x3, x4, x5, x6) 7→ (x6, x4, x5, x3, x1, x2).

is linearizable.

Proof. By constructions above, these actions are equivariantly bira-
tional to actions on the corresponding smooth quadric Qb, necessarily
with fixed points. Projection from a fixed point on Qb gives lineariza-
tions. �

Birational rigidity. Let X be the 9-nodal cubic threefold in P4 ⊂ P5

given by

x1x2x3 − x4x5x6 = x1 + x2 + x3 + x4 + x5 + x6 = 0,

and let G = Aut(X) = S2
3 o C2. We claim that X is G-birationally

super-rigid. We start with several preliminary results.

Lemma 9.3. If Σ is a G-orbit in X of length < 12, then |Σ| ∈ {6, 9}.

Proof. Left to the reader. �

Set

S = {x1 + x2 + x3 − x4 − x5 − x6} ∩X.
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Then S is the unique G-invariant hyperplane section of X. Moreover,
the cubic surface S is smooth, and G acts faithfully on it. This implies
that S is isomorphic to the Fermat cubic surface [35, 36]. Consider

αG(S) = sup

{
λ ∈ Q

∣∣∣∣ the pair (S, λD) is log canonical for every

effective G-invariant Q-divisor D ∼Q −KS

}
.

Lemma 9.4 (cf. [16, 25]). One has αG(S) = 2.

Proof. One can check that PicG(S) = Z[−KS]. Note that the group
G is missed in [36, Theorem 6.14]. Note also that the linear system
| − KS| does not contain G-invariant divisors, but | − 2KS| contains
a G-invariant divisor. Applying Lemma 9.3 and [16, Lemma 5.1], we
obtain αG(S) = 2. �

Lemma 9.5. Let C ⊂ X be a G-irreducible curve of degree < 12. Then
C ⊂ S.

Proof. Assume C 6⊂ S. Set d = deg(C). Intersecting C with S, we
immediately obtain d = 6 or d = 9, by Lemma 9.3. Moreover, we also
see that

|S ∩ C| = d,

so that C is smooth at every point in S∩C, and S intersects C transver-
sally. Hence, if C is irreducible and C 6⊂ S, then G acts faithfully on C,
which implies that the stabilizer of any point in C ∩ S is cyclic, which
is impossible, since G does not have cyclic subgroups of index 6 and 9.

To complete the proof, we may assume that C is reducible. Let r be
the number of its irreducible components. Write

C = C1 + · · ·+ Cr,

where each Ci is an irreducible component of C. Set d1 = deg(C1),
and let H1 be the stabilizer of the component C1 in G. Then d = d1r,
and, since G does not have subgroups of index 3, we have one of the
following cases:

(1) d = 9, r = 9, d1 = 1, H1 ' D4,
(2) d = 6, r = 6, d1 = 1, H1 ' D6,
(3) d = 6, r = 2, d1 = 3, H1 ' S2

3 or H1 ' C2
3 o C4.

We exclude these cases one by one. In Case (1), there is a unique
class of subgroups isomorphic to D4, and the D4-linear representation
decomposes as

P(I⊕ χ2 ⊕ V ),



62 IVAN CHELTSOV, YURI TSCHINKEL, AND ZHIJIA ZHANG

i.e., a sum of the trivial representation I, two copies of a nontrivial
1-dimensional subrepresentation χ, and an irreducible 2-dimensional
representation V . By Schur’s lemma, V is the unique irreducible 2-
dimensional representation in the ambient space of X. The projec-
tivization P(V ) defines an invariant line contained in S,

l = {x1 + x2 = x3 = x5 = 0} ⊂ S.

The plane P(I⊕χ2) ⊂ P4 intersects X along an irreducible cubic curve,
and contains no line. It follows that l is the only H1-invariant line in
X and thus C ⊂ S.

In Case (2), there are two classes of subgroups isomorphic to D6. In
one class, the D6-linear representation is

P(I2 ⊕ χ⊕ V ),

i.e., the sum of two copies of the trivial 1-dimensional representation
I, a nontrivial 1-dimensional representation χ and an irreducible 2-
dimensional representation V . Again, V is the unique irreducible 2-
dimensional representation. But in this case, the line P(V ) is not con-
tained in X. And the plane P(I2⊕χ) intersects X along an irreducible
cubic curve. Therefore, there is no H1-invariant line. The other class
of D6 decomposes as representation as

P(χ⊕ V1 ⊕ V2),
i.e., the sum of a nontrivial 1-dimensional representation χ and two
nonisomorphic irreducible 2-dimensional representations V1 and V2.
Here, P(V1) defines a line contained in S:

l = {x1 − x4 = x2 − x4 = x3 + x4 + x5 = 0} ⊂ S,

while P(V2) is not contained in X. In this case, we also have C ⊂ S.
In Case (3), suppose that d = 6, r = 2, d1 = 3. Then the hyperplane

{x1 + x2 + x3 + x4 + x5 + x6 = 0}
is the unique H1-invariant hyperplane, and every H1-invariant plane in
P4 is contained in this hyperplane. This implies that C ⊂ S. �

Theorem 9.6. The Fano threefold X is G-birationally super-rigid.

Proof. Suppose that X is not G-birationally super-rigid. Then it fol-
lows from the equivariant version of the Noether–Fano inequality [23]
that there exists a G-invariant non-empty mobile linear system M on
X such that the singularities of the log pair (X,λM) are not canonical
for λ ∈ Q>0 such that λM∼Q −KX . We seek a contradiction.
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First, we claim that the singularities of the log pair (X,λM) are
canonical away from finitely many points. Indeed, if this is not the
case, then there exists a G-irreducible curve C ⊂ X such that

multC
(
M
)
>

1

λ
,

which immediately implies that the degree of C is less than 12, which
implies that C ⊂ S by Lemma 9.5, so that the log pair (S, λM|S) is not
log canonical, which contradicts Lemma 9.4, since λM|S ∼Q −2KS.

Next, we claim that the log pair (X,λM) is canonical at every sin-

gular point of X. Indeed, let f : X̃ → X be the blow up of all singular

points of X, let E1, . . . , E9 be the f -exceptional surfaces, let M̃ be the

strict transform on X̃ of the linear system M, and let M̃ be a general

surface in M̃. Then, since Sing(X) forms one G-orbit, we have

λM̃ ∼Q f
∗(−KX

)
− a

9∑
i=1

Ei,

for some integer a > 1, by [26, Theorem 1.7.20] or [32, Theorem 3.10].
Recall that X contains 9 planes

Πi,j = {xi = 0, x3+j = 0} ⊂ P4,

and each of them contains four singular points of X. Let Π be one of

the planes, C2 a general conic in Π that contains Π∩ Sing(X), and C̃2

its strict transform on X̃. Then C̃2 6⊂ M̃ , so that

0 ≤ λM̃ · C̃2 =

(
f ∗
(
−KX

)
− a

9∑
i=1

Ei

)
· C̃2

= 4− a
9∑
i=1

Ei · C̃2 = 4− 4a < 0,

which is absurd.
Let P be a point in X such that the log pair (X,λM) is not canonical

at P . Then (X,λM) is canonical in a punctured neighborhood of P ,
and it follows from [21, Remark 3.6] that the log pair (X, 3λ

2
M) is not

log canonical at P . Arguing as in the proof of [21, Proposition 3.5], we
obtain a contradiction. �
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