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ABSTRACT. We study linearizability of actions of finite groups on
singular cubic threefolds, using cohomological tools, intermediate
Jacobians, Burnside invariants, and the equivariant Minimal Model
Program.

1. INTRODUCTION

In this paper, we continue our investigations of actions of finite
groups on rational threefolds over an algebraically closed field k of
characteristic zero, up to equivariant birationality. The main problem
is to decide linearizability, i.e., birationality of the given action to a
linear action on projective space, see, e.g., [22] for background and ref-
erences. The linearizability problem is essentially settled in dimension
2 [36], 50], but remains largely open in dimension 3. Here, we focus on:

Problem 1. Let X C P* be a singular rational cubic threefold and let
G be a finite subgroup of its automorphisms. When is the G-action on
X linearizable?

Note that linearizability of a G-action for a cubic threefold X is
equivalent to projective linearizability, since the action lifts to GL5 (see
Section [2] for a proof, and [42] for a general discussion of these notions).

Smooth cubic threefolds are not rational, and their automorphisms
have been classified in [57, Theorem 1.1]: there are 6 maximal groups

Cgl X 65, ((Og X 03) X 04) X 63, 024, 016, PSLQ(]FH), 03 X 65.

On the other hand, all singular ones, except cones over smooth cubic
curves, are rational. Cubic threefolds with isolated singularities have
been classified in [55]; but it is not immediately clear how to identify
possible symmetries from that analysis.

Here, we restrict our attention to nodal cubics, i.e., those with or-
dinary double points, as this is the most interesting and difficult class
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of singular cubics, from the perspective of equivariant geometry. In
all these cases the automorphism group Aut(X) is finite, by, e.g., [2,
Theorem 1.1].

Note that the existence of a G-fixed node yields a straightforward lin-
earization construction: projection from this node gives an equivariant
birational map to P?, with linear action. Thus, we will be primarily
interested in actions not fixing a singular point of X. Another such
construction comes from a G-stable plane and a disjoint G-stable line:

Lemma 1.1. Let X be a nodal cubic threefold. Let G C Aut(X) be
such that it preserves a plane I C X and a line | C X, disjoint from
I1. Then the G-action on X is linearizable.

Proof. Let ¢ : X --» X5 be the unprojection from IT; Xy, C P° is a
(nodal) complete intersection of two quadrics. Then ¢ is G-equivariant,
and ¢(l) is a G-invariant line. Taking a projection from this line, we
obtain a G-equivariant birational map X --+ P?; see [29, Proposition
2.2] for an application of this construction over nonclosed fields. O

Let s = s(X) be the cardinality of the set Sing(X') of nodes of X. It
is well known that s < 10. Moreover, there is a unique cubic threefold
X with s = 10, the Segre cubic, treated in [5,24]. In [5], it is shown that
the subgroup 25 C S5 = Aut(X) that leaves invariant a hyperplane
section is not linearizable. In [24], we have completed this analysis by
proving that the action of G C &g is linearizable if and only if:

e (G fixes a singular point of X, or

e (5 is contained in the subgroup &5 C &4 that does not leave
invariant a hyperplane section of X, or

e G ~ (%, X contains three G-invariant planes, and Sing(X)
splits as a union of five G-orbits of length 2.

Using this description one can list all subgroups of &g giving rise to
linearizable actions — there are 37 such subgroups up to conjugation
(among 56 conjugacy classes of subgroups of &g).

In this paper, we study the cases where

2<s(X)<o.
To address the linearizability problem for these outstanding cases, we
use explicit geometric constructions, as well as the following techniques:

e cohomological tools [T4] 45],
e intermediate Jacobians, in the equivariant context [10],
e Burnside invariants and their specialization [40],
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e G-birational rigidity and G-solidity, see, e.g., [20].

To describe our results, we distinguish cases based on linear position
properties of nodes, following [37]. According to [37], there are 15
configurations, labeled (J1), ..., (J15), with (J1), ..., (J5) corresponding
to 1, ..., 5 nodes in general linear position, and (J15) corresponding to
the Segre cubic threefold. The relevant invariants are:

e s, the number of nodes of X,

o d =1k Cl(X) — 1, the defect of X, which equals the number of
dependent linear conditions imposed on H(X, Ox (1)) by the
nodes, and

e p - the number of planes Il C X.

We list all possibilities for the triples (s, d, p), and describe our results
in each of the cases:

e s=2,d=0,p=0: We prove that the G-action is linearizable
if and only if GG fixes each of the two nodes, and classify actions
of cyclic groups not fixing any node, see Section [3]

e s=23,d=0,p=0: We conjecture that the G-action is lineariz-
able if and only if it fixes a node, and classify all automorphism
groups not fixing any node. We provide examples of nonlin-
earizable actions of G = C%, see Section [4]

o s=4:

—d = 0,p = 0: There is an equivariant birational map to
a smooth divisor of degree (1,1,1,1) in (P!)%. Following
considerations over nonclosed fields in [48, Conjecture 1.3],
we conjecture that the G-action is not linearizable if it is
transitive on the nodes. We provide examples of nonlin-
earizable actions of G = C? confirming this conjecture. We
classify all automorphism groups not fixing any node.

— d =1,p = 1: An action is nonlinearizable if and only if it
does not fix a node and X does not contain G-stable lines
disjoint from the unique plane in X, see Section [}

® 5 =0

—d = 0,p = 0: All actions are linearizable, except for ac-
tions of A5 and S5, which are birational to standard ac-
tions on a smooth quadric threefold. The G5-action is not
linearizable [2I]; we conjecture that the 2As-action is also
not linearizable, see Section [6]

—d = 1,p = 1: All actions are linearizable, as there is a
unique node outside the plane and fixed by the action [37].
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o 5 =0
—d = 1,p = 0: We classify all automorphism groups not
fixing any node, establish a sufficient condition for non-
linearizability, and apply it to provide examples of nonlin-
earizable actions of G = (.
— d=1,p=1: All actions are linearizable by Lemma [I.1]
— d=2,p=3: We classify all actions and solve the lineariz-
ability problem for most of them, see Section [7]
e s=T:

— d = 2,p = 2: All actions are linearizable, since each of the
two planes contains 4 nodes, and exactly one of the nodes
is on both planes, thus preserved by the action [37].
—d = 2,p = 3: All actions are linearizable, since there is a
unique node not contained in any plane in X, thus fixed
by the action [37].
e s =8 d=3,p=>5 We classify automorphism groups not fixing
any node, and solve the linearizability problem in Section 8]
s =9,d =4,p =9: Linearizability problem is solved, except for
specific actions of &3 and ®g4, which are birational to actions
on a smooth quadric, see Section [0

We conclude the introduction by summarizing the cases for which
the linearizability problem remains open.

e s =3,d=0,p=0: Actions in Proposition 4.1 not containing
the C% in Example and not fixing any node.

e s=4,d=0,p=0: Actions in Theorem not containing the
C? in Example 5.2 and not fixing any node.

e s=5,d=0,p=0: A unique 2A5-action described in Section [6]
which is equivariantly birational to the 2s-action on a smooth
quadric (6.1]).

e s =06,d =1,p=0: Actions in Proposition not fixing any
node and not containing an involution not fixing any nodes.

e s =0,d=2,p=3: Actions in Proposition [7.11| not containing
the C2 in Lemma [7.14] not containing the C% or &; in Re-
mark [7.15, not contained in the C3 in Lemma [7.13] and not
fixing any node.

e s =9d=4,p =29 The actions of D4, S3 and &} specified
in ; these are also equivariantly birational to actions on a
smooth quadric ((9.2]).
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In many of these cases, equivariant specialization of [46], applied here
in the geometric context for the first time, shows nonlinearizability
of the actions for a very general member of the family, see Proposi-

tions (4.3} 5.3} 5.4} Lemmas [7.17] and Remark [7.19]

Acknowledgments: The first author was partially supported by the
Leverhulme Trust grant RPG-2021-229. The second author was par-
tially supported by NSF grant 2301983. We are grateful to Anton
Mellit for his help with computations in Proposition [3.2| and to Olivier
Wittenberg for his comments.

2. OBSTRUCTIONS TO LINEARIZABILITY

Among available obstruction theories to linearizability are:

e Existence of fixed points upon restriction to abelian subgroups,
e Group cohomology,

e Intermediate Jacobians, and their equivariant versions,

e Burnside invariants,

e Specialization of birational types,

e Birational rigidity.

We briefly review relevant results and constructions.

Fixed points by abelian subgroups. Recall that existence of fixed
points for actions of abelian groups is an equivariant birational invari-
ant, see [51]. Precisely, let G be a finite abelian group acting generically
freely on a smooth projective variety V. Assume that there exists a
G-equivariant birational map W --» V from a smooth G-variety W.
Then

We£) = VYL,

Linear actions of abelian groups on projective spaces always have fixed
points, and thus:

Lemma 2.1. Let V' be a smooth projective variety with generically free
and linearizable action by a finite group G. Then VI = (0 for all abelian
subgroups H C (.

In particular, let X be a nodal cubic threefold and G C Aut(X). The
G-action on X is linearizable if and only if it is projectively linearizable.
To see this, one can apply the argument in [38]. Alternatively, we
provide a direct proof below.

First, we show that the G-action is induced from an action of the
ambient P4, i.e., G C PGLs. Indeed, by Lefschetz hyperplane theorem,
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the Picard group Pic(X) = Z is generated by a general hyperplane
section of X. The induced G-action on Pic(X) is trivial, sending a
hyperplane to another hyperplane in P4. This implies that the G-action
on X lifts to P*.

It follows that the G-action naturally lifts to Ox(—5), the restric-
tion of the canonical bundle of P* to X. Similarly, the G-action lifts
to Ox(—2), the canonical bundle of X. Since Ox(—5) and Ox(—2)
generate Ox (1), we know that the G-action lifts to Ox(1), and thus to
H°(X, Ox (1)) and HY(P*, Op4(1)). Therefore the G-action lifts to GLs.

This also shows that the Amitsur group Am(X, G) (see [I3 Section
6]) is trivial. If the G-action is projectively linearizable, i.e., equivari-
antly birational to a G-action on P?, then Am(P?,G) = 0 since the
Amitsur group is an equivariant birational invariant. This implies that
the G-action on P? is linear, namely, it lifts to GL,. So the notions of
linearizable and projectively linearizable actions on X are equivalent.

Thus, if an abelian subgroup H C G does not fix a point in the
standard desingularization X of X (the blowup of the nodes), then
there exists no G-equivariant birational map X --» P3. We found two
applications of this obstruction, see Example [4.2] and Section 9

Cohomology. Let X be a nodal cubic threefold, X — X its standard
desingularization, and G C Aut(X). Here we consider the induced
G-actions on the Picard group Pic(X) and the class group Cl(X); we
often identify divisors and their classes.

A well-studied obstruction to (stable) linearizability is the failure

of Pic(X) to be a stably permutation module, we call this the (SP)-
obstruction. In turn, this is implied by the nonvanishing of

HY(G',Pic(X)), or HYG, Pic(X)Y), forsome G’ C G.
We call this the (H1)-obstruction, see [24, Section 2].

Proposition 2.2. When s(X) <7 and s(X) # 6, or when s =6 and
the nodes are not in general linear position, Pic(X) is a permutation
module.

Proof. We use labels for configurations of nodes and planes from [37].
es=1,...,5 p=0; (J1-J5):

Cl(X) = Z is freely generated by the hyperplane section, with

trivial G-action, and Pic(X) is freely generated by the excep-

tional divisors of the blowup X — X and the pullback to X
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of the basis of CI(X). The G-action permutes the exceptional
divisors. So Pic(X) is a permutation module.

e s=456,p=1; (J6-J8):
CI(X) = Z? is freely generated by the hyperplane section and
the unique, necessarily G-stable, plane in X, with trivial G-

action on their classes. Thus Pic(X) is a permutation module.
o s="7p=2;(J10):
Cl(X) = Z3 is freely generated by the hyperplane section and
the classes of the two planes in X, with G possibly permuting
these two classes. Thus Pic(X) is a permutation module.
e s=6,7,p=3; (J11-J12):
C1(X) = Z3 is freely generated by the classes of the three planes
in X which form a tetrahedron (with one face missing), with G

possibly permuting these classes. So Pic(X) is a permutation
module.

O

The remaining cases are more involved; we handle these in subse-
quent sections.

Intermediate Jacobians. Applications of intermediate Jacobians to
rationality problems (over & = C) go back to the seminal work of
Clemens-Griffiths [27]: if a smooth threefold X is rational then its
intermediate Jacobian IJ(X) is a product of Jacobians of curves. Re-
finements of this, taking into account group actions, have appeared in,
e.g., [8]; an arithmetic analog of these arguments has been developed in
[10]. In particular, intermediate Jacobians exist over arbitrary fields,
see |11, [11].

The key point is that, geometrically, IJ(X) could be a product of
Jacobians of curves, but this does not necessarily hold equivariantly,
respectively, over a nonclosed base field. This idea is implemented in,
e.g., [10, Theorem 1.1]. Pursuing the analogy, we have:

Theorem 2.3. Let X be a smooth projective rationally connected three-
fold over an algebraically closed field such that its intermediate Jacobian
LJ(X) is isomorphic to the Jacobian of a smooth nonhyperelliptic curve
C of genus g > 3 as a principally polarized abelian variety. Suppose
that Aut(X) contains an involution T acting on 1J(X) by multiplica-
tion by (—1). Then X is not (T)-equivariantly birational to any smooth
projective variety with trivial intermediate Jacobian.
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Proof. Suppose first that there exists a (7)-equivariant blowup 7: X —
Y of a nonhyperelliptic curve C' C Y, where Y is a smooth threefold
with trivial intermediate Jacobian. Since C is not hyperelliptic, it
follows from Theorem 3 in [49, Appendix] that

(2.1) Aut(1J(X)) ~ Aut(C) x Cs,

where the second factor corresponds to the action of multiplication by
(—1). If C is pointwise fixed by 7, then 7 acts trivially on 1J(X). If 7
acts faithfully on C, then its action on IJ(X) = J(C) is induced by the
action on C'; thus, 7 cannot project nontrivially to the second factor in
21).

The general case is treated similarly, using equivariant weak factor-
ization. 0

Example 2.4. Consider the conic bundle
L1y = f(y17y27y3) - A2 X P27

where f is a form of degree > 4 defining a smooth curve in P2, and Cs-
action via permutation on xq,x,. Then this action is not linearizable

by Theorem [2.3] see the proof of Theorem [3.3]

Remark 2.5. In the assumptions and notation of Theorem [2.3] sup-
pose that there exists a G-equivariant birational map X --» P3, for
some subgroup G C Aut(X). From the isomorphism ([2.1), we deduce
that the G-action on IJ(X) gives rise to a homomorphism

v: G — Aut(IJ(X)) = Aut(C) x Cy,

The projection of v(G) to the Cy-factor must be trivial, cf. the proof
of |10, Proposition 3.2].

Burnside obstructions. It is well-known that the classification of in-
volutions 7 € Cry, the plane Cremona group, is based on the geometry
of 7-fixed loci F(7), see, e.g., [7]. The different cases are characterized
by geometric properties of a (necessarily unique) curve C' of genus > 1
in F(7), primarily by whether or not this curve is hyperelliptic. A
more refined birational invariant of actions of general cyclic groups on
rational surfaces, the normalized fized curve with action, appeared in
[34] and [12]; the invariant takes into account the stabilizer of the fixed
curve, as well as the residual action on it.

These invariants are special cases of the Burnside formalism of [46],
which applies to actions of arbitrary finite groups and takes into ac-
count all strata with nontrivial generic stabilizers. We will use a sim-
plified version, explained in [24], Section 4]. It is based on the notion of
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incompressible divisorial symbols, which should be viewed as analogs
of higher-genus curves in the classification of involutions on rational
surfaces. A sample result in our context is the following:

Proposition 2.6. Let X be a nodal cubic threefold, with a regular
action of G, and assume that there is an element T € G such that
(1) the T-fized locus contains a cubic surface S C X,
(2) the subgroup Y C G preserving S acts generically nontrivially
on S and contains an element fizing a curve of genus > 1.

Then the G-action on X is not linearizable.

Proof. Let H = (7); the action produces the symbol
(H,Y/H C k(5), (b)),

By [14], H(Y/H, Pic(S)) # 0, which implies that the symbol is incom-
pressible, see [24, Section 4]. Such symbols cannot appear for linear
actions, see [53, Corollary 6.1]. d

Example 2.7. Let X C P* be a 2-nodal cubic given by

T1ToT3 + 21 (2] + 22) + 2o(2F — 22) + 25 = 0,

with G ~ Cy-action generated by

L ($17$2,$3,$4,$5) = (3527371,373,9547(4355)-

The model satisfies the conditions in Proposition [2.6] In particular, the
subgroup (%) fixes the cubic surface S = X N {x5 = 0}. The residual
Cy-action fixes a genus 1 curve SN {x; = x2}. By Proposition , the
G-action on X is not linearizable.

Specialization of birational types. We will use the specialization
homomorphism for Burnside groups

pS : Burn, (G) — Burn,, (G)

from [46], Definition 6.4], and in particular, [46, Corollary 6.8]. Here K
is the fraction field of a DVR and k its residue field. In applications,
one considers the local geometry of fibrations, seeking to specialize the
birational type of the generic fiber X to a special fiber X. In practice,
the special fiber X, is an irreducible variety, with mild singularities;
the relevant notion of BG-rational singularities on the special fiber X
is in [40, Definition 6.9].

Example 2.8. Let X — B be a G-equivariant flat and projective
morphism onto a smooth curve B, with smooth generic fiber X and a
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special fiber X,y with ordinary double points. Then the singularities of
Xy are BG-rational singularities in the following situations:

e (G-orbits of isolated ordinary double points, with trivial stabi-
lizers [46, Example 6.10];

e G = (,, fixing a singular point; one verifies directly that the
required condition for BG-rational singularities holds, namely,

PF (X ©G) = [Xo O Gl

A Hilbert scheme argument, used in [56], [2§], and [40, Theorem 9]
in the context of specialization of rationality properties, implies:

Proposition 2.9. Let k be an uncountable algebraically closed field of
characteristic zero and G a finite group. Let

T: X — B

be a G-equivariant flat and projective morphism onto a smooth curve
over k with smooth generic fiber, such that

o (G acts trivially on B and generically freely on the fibers of ,
e for some by € B, the special fiber Xy, is irreducible, has BG-
rational singularities, and the G-action on X, is not lineariz-

able.

Then, for very general b € B, the G-action on the special fiber X, is
not linearizable.

Specialization allows to exhibit nonlinearizable actions which are “in-
visible” to classical obstructions, i.e., cannot be distinguished from lin-
earizable actions with other available tools. On the other hand, the
very general condition makes it difficult to determine linearizability for
any specific variety in the family. A central problem is to give criteria
for linearization.

In our applications, we work with models with nodes in the generic
fiber. We reduce to the situation of Proposition by equivariantly
resolving the nodes in the generic fiber.

Example 2.10. Let X — A} be a family of cubic threefolds whose
fibers X, := X, over a € k are given in P* by

2 2 2 2 2
a(zyz; — dxsxy + xawy — 3w505 — T3T5)+
+ (@ + 1) (212923 + T1T2Ty + T1T2T5 — T1T4T5 — ToXyTs)+

+ rw324 — 3xow3ry — 3T 12375 + Tow3Ts + (ha + 3)xzxsws = 0.
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One can check that the family carries a G = (1) ~ Cy-action, with ¢
acting on P* via

(T1,. 05 25) > (=23 + T5, —T3 + T4, —T3, —T3 + T2, —T3 + T1).
For a very general a € k, X, is a 2-nodal cubic threefold with nodes at
pr=1[1:0:0:0:0] and pe=[0:0:0:0:1].

But the special fiber over a = 0 is 6-nodal; the nodes are in general
linear position and ¢ does not fix any of the nodes. By Proposition [7.5]
the G-action on the special fiber X is not stably linearizable. The 4
additional nodes form two G-orbits with trivial stabilizer, so they are
BG-rational singularities, by Example[2.8] Blowing up the singularities
in the generic fiber, we are in the situation of Proposition 2.9 This
allows us to conclude that the G-action on a very general member in
the family X is not stably linearizable.

Birational rigidity. Let X C P* be a nodal cubic threefold and let
G C Aut(X). If tkCI9(X) = 1, then X is a G-Mori fiber space [23,
Definition 1.1.5], and every G-birational map from X to another G-
Mori fiber space can be decomposed into a sequence of elementary links,
known as G-Sarkisov links [31,139]. If there are no G-Sarkisov links that
start at X, we say that X is G-birationally super-rigid. Similarly, if
every G-Sarkisov link that starts at X also ends at X, we say that
X is G-birationally rigid. Finally, if X is not G-birational to any G-
Mori fiber space with a positive dimensional base (a conic bundle or a
Del Pezzo fibration), we say that X is G-solid. We have the following
implications:
G-birationally super-rigid = G-birationally rigid = G-solid.

Note that all of these conditions assume that rk C1°(X) = 1.

Recall that the G-action on X lifts to P*. Using the G-action on P*,
we can state an obstruction for a cubic threefold X to be G-solid:

Lemma 2.11 ([, Lemma 2.6]). If G leaves invariant a line or a plane
in P4, then X is not G-solid.

Proof. Note that G leaves invariant a plane in P* if and only if it leaves
invariant a line. Thus, we may assume that there exists a G-stable
plane in P*. Linear projection P* --» P! from this plane induces a
rational dominant map X --+ P! whose general fiber is a (possibly
singular) cubic surface. Taking a G-equivariant resolution of indeter-
minacies of this map, a G-invariant resolution of singularities (if neces-
sarily), and applying the G-equivariant Minimal Model program over



12 IVAN CHELTSOV, YURI TSCHINKEL, AND ZHIJIA ZHANG

P!, we obtain a G-birational map from X to a G-Mori fiber space with
a positive-dimensional base. 0

This yields the following result:

Theorem 2.12 (Avilov). Let X C P* be a nodal cubic threefold and
G C Aut(X) a finite subgroup such that rkC19(X) = 1. If X is G-
solid, then one of the following holds:
(1) |Sing(X)| = 10, X is the Segre cubic, Aut(X) ~ Sg, and G
contains a subgroup isomorphic to A5 that leaves invariant a

hyperplane section of X,
(2) [Sing(X)| =9, X is given in P° by

6
T1T9T3 — T4T5Te = E x; =0,
=1

Aut(X) ~ &2 x Cy, G acts transitively on Sing(X), and is
isomorphic to &3 x Cy, &3 or C2 x Cy,
(3) |Sing(X)| =5, X C P* is given by

T1T2X3 + X1X9T4 + T1T2T5 + T1T3%4 + L1305+

+ T1X4%5 + ToX3T4 + ToX3T5 + ToXyTs + T3TaTy = 0,
Aut(X) ~ S5, and either G ~ S5 or G ~ Us.

Proof. Suppose that X is G-solid. If there exists a G-equivariant bira-
tional map X --» % then P? is G-solid, which contradicts [20]. Thus,
the G-action on X is not linearizable. It follows from [6l 4], 5] and the
proofs of the main results in these papers that either X and G are as
in (1), (2), (3), or X is the cubic threefold in (3) and G ~ Cy x Cs.
Let us show that X is not G-solid in the latter case, contradicting the
assumption.

Namely, suppose X is the threefold from (3), and G ~ Cy x C5. By
[5, 21], there exists the following &5-Sarkisov link:

where () is the smooth quadric threefold

{2129 + 2ow3 + -+ + 2475 = 0} C P,
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S5 acts on (Q by permuting the coordinates, y is the birational map
induced by the standard Cremona involution of P4, « is the standard
resolution of singularities, [ is a composition of 10 Atiyah flops, 7 is
a blowup of an Gs-orbit of length 5. Let n: Q — P3? be the double
cover induced by the projection from the &s-fixed point in P*. Then 7
is Gs-equivariant, and P3 contains two skew lines L; and L, such that
the curve L; 4+ Lo is G-invariant. Let C; and C, be the preimages of
these lines on ). Then C; and C5 are disjoint conics, and the curve
Ch + (s is G-invariant. Blowing up these two conics, we obtain a G-
equivariant birational map from @ to a conic bundle over P! x P!, in
particular, X is not G-solid, which contradicts our assumption. In fact,
the G-action on @ is linearizable, see Section [6] U

Moreover, in Case (1) in Theorem [2.12] X is G-birationally super-
rigid [6]. Similarly, if follows from [2I] that X is G-solid in Case (3)
when G ~ S;. In Section [9) we show that X is G-birationally super-
rigid in Case (2) when G ~ &3 x Cy. We believe that X is G-solid for
the remaining groups G in Cases (2) and (3).

3. TWO NODES
Standard form. We may assume that Sing(X) consists of the points
1:0:0:0:0], [0:1:0:0:0],
and that G = Aut(X) swaps these points. Then X can be given by:
(3.1) T1T2x3 + T1q1 + 2242 + f3 =0,

for forms q1,qy € klxy, 5], and f3 € k[xs, x4,x5], of degree 2, 2, 3,
respectively.

Conic bundle. Introducing new coordinates y; = x1x3 and yo = xox3

(of weight two), and multiplying (3.1]) by z3, we rewrite (3.1]) as
Y1ye + y1q1 + y2q2 + x3f3 = 0,

which defines a quartic hypersurface V; C P(1, 1, 1, 2, 2); the coordinate
change defines a G-equivariant birational map

x: X --+ V.
We can G-equivariantly simplify the equation of V; further as

22 = 12 — T3 f3,
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where 21 = y; + @2 and 29 = yo + ¢1. Observe that V; has 2 singular
points of type %(1, 1,1) — these are the points

0:0:0:1:0/, and [0:0:0:0:1],

in coordinates (z3, 4,5, 21,29). This yields the following Aut(X)-
equivariant commutative diagram:

X
RN
X---2-- =~ Vi

X

where « is an extremal divisorial contraction of a surface to the line
{r3 =24 =25 =0} C X, and f is an extremal divisorial contraction
of the strict transform of the non-normal cubic surface {z3 = 0} N X.
The description of the morphism a can be found in the proof of [I§],
Proposition 6.1], see also [54]. Note that X has 2 singular points of
type 3(1,1,1), which are mapped to the nodes of X.

Let D be the quartic curve {q;q2 — z3f3 = 0} C P? Then D is

T3,T4,25 "
smooth, and we have the following GG-equivariant commutative diagram

(3.2) Y

x3,%4,T5

where 7 is the blow up of the singular points of Vj, 7 is a conic bundle
with discriminant curve D, and the dashed arrow is the projection

(Ig, X4, Ts, 21, 22) = (1'3, Xy, 3:5)‘
This gives a natural homomorphism

v Aut(X) — Aut(D).

Automorphisms. The full classification of automorphisms of 2-nodal
cubics can be addressed via the conic bundle presentation, combined
with the (classically known) classification of automorphisms of smooth
quartic plane curves, see, e.g., [36, Lemma 6.16 and Table 6], [47];
and using Torelli for nodal cubics, as in [15, Section 7]|. Starting with
equation and passing to the conic bundle, we see that the G-action
on X gives rise to

e a linear representation on P2, preserving a line, corresponding
to x3 = 0, and thus a fixed point in P2,
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e an automorphism of the discriminant curve D.

Combining these two conditions with the list of automorphisms of plane
quartic curves, we find that the possible images of the G-actions on the

2 .
base P, . .. of the conic bundle are

027 037 C47 0227 637 067 077 02 X 047 087 Q87 097 Cza
012, D4 X 02, SLQ(Fg), OD16, @4, 0421)7’02, SLQ(Fg) X Cg.
Here are examples with interesting groups Aut(X):

Example 3.1. We keep the notation of (3.1)), with X C P* and the
discriminant curve D C P2, . with G = Aut(X) and G’ = Aut(D).
(1) Let D = x5 + x} + 23 + (4p + 2)z32%, and X be given by
fa=a3, =25+ 2p+1+20)22, q=ai+02p+1— 20z

Then G = @4 X OQ and G' = SLQ(]F3) X 02.
(2) Let D = x4 + z} + 2, and X be given by

3 2 .2 2 .2
Js=—r3, q =x;+ir5, =] —1T;.

Then G = CywrCy and G’ = C% x &;.

Proposition 3.2. Let X C P* be a 2-nodal cubic threefold with an
action of a cyclic group G = (1) C Aut(X) not fixing any node. Then,
up to a change of coordinates, X 1is given by

T1%2x3 + T1q1 + Taqa + f3 =0,

forqi,qs € k[xy,x5] and f3 € k|xs, x4, x5] that can be described together
with v as follows.

(Cz) L($1,$2>$37$4,9€5) = ($2,$1,$3,5E4,$5),

q1 = Q2 = T4ZTs5,
fs € klxs, x4, 5);

(Oé) L(xla T2, T3, T4, l’5> - (_:C% —T1, T3, T4, _:CEJ);
Q1 = @175 + 1475 + azxs,
G2 = —alxi + X425 — ag.T?),
f3 = c15 + dyx3wy + v3(ex] + esxs) + rah + rava s,

fO’l" some (11,@3,01,(11,61, €3,71,73 € k;
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1"
(02) L<x1a X9, T3, Ty, I5) - (I27 T1,T3, T4, _x5>;
2 2
g1 =42 =Ty + Ty
3 2 2 2 3 2
fs = oy + dixsxy + x3(exy + esws) + ray + r3vaxs,
for some cq,dy,e1,e3,71,13 € k;
2mi
(04) L($1,$2,$3,$4,ZL’5) - (x27$1>$37C45U4a _C4l'5), C4 =e 4,
_ 2 2
Q1 = a1x; + T4x5 + azxs,
2 2
Qo = —1 Ty + T4T5 — G35,
3
f3 = T3 + eax37475,
for some ay,as,e9 € k;
! —
(04) L(xla T2, T3, T4, .I'5> - (1'2, L1, X3, T4, C4l'5),
_ .2 2
q1 = Ty — T,
2 2
G2 = Ty + X,

fs € klxs, x4):

(Célll) L(Ilﬂ T2, X3, T4, 1‘5) = (1’2, X1, T3, —T4, <4l’5),

2 2
qr = Ty — T,

q2 = %21 + .’Eg,
f3= $§ + elxga:Z + 7“351343:%,
for some ey, r3 € k;
27
(06) L<x1ax27$37x4ax5) == (x27$17x3vc3x4a g??xS) f07" C?) =es,
q1 = (2 = T4Ts,

f3 = ng + €0x3T4T5 + 7“1(£Ei + x?),

2mi

for some ey, 1 € k;
(Cé) L<x1’ T2, T3, Ty, ZL'5) = (QGZL'Q, Cﬁmly X3, Cg$4a g62x5) fOT’ gﬁ = eT;

2 2
Q1 = 41Ty + T4x5 + azTs,

2 2
Qo = —a1XTy + T4XT5 — A3T5,

f3 = $§$5,

for some ay,a3 € k;
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2mi

(Cr2) (w1, 29,3, 24, 15) = (CTo2, (o1, T3, (124, Craws) for Ga = 712,
¢ = (v — 23),
2 = (23 + 73),
f3= x%m.
Proof. We can choose the coordinates so that
L (21,9, X3, T4, T5) > (ST, L1, T3, ULy, VT5),
for some s,t,u,v € k*, and X is given by

T1%2x3 + T1q1 + Xaqa + f3 =0,

for
_ 2 2 2
Q1 = Q1T + Q2245 + A3T5 + Q4T3 + A5X3T4 + AeX3Ts5,
2 2 2
g2 = b1$4 + b2$4l’5 + b3I5 + b4I3 —+ b5$3$(34 + b6$(331’5,
3 2
I3 = axy + x3d(xy, x5) + w36(24, T5) + 1(24, T5),
where

d= d1$4 + d2x5,
2 2
€ = e1Ty + e2T4x5 + €3x5,
_ 3 2 2 3
T =TTy + Tek X5 + T3x4Ty + T4T5.

Since X is (¢)-invariant, one has (*(f) = stf, and thus the zero loci
of q1q2 and f3 are preserved; and these polynomials cannot identically
vanish, under our assumptions on singularities of X. Concretely,

(f) = stryxaxs + swat™(qe) + tayt™(qe) + o (f3) = stf
which implies that

(3.3) (q2) =tqr,  (q1) = sqa,
and
(3.4) U (f3) = stfs.

Expanding and substituting into (3.3)) we obtain 12 equations:
u?ay — thy = uvay — thy = vas — thy = 0,
sa; — u?by = sas — uvby = sag — v2by = 0,
ay — thy = uas — tbs = vag — thg = 0,

say — by = sas — ubs = sag — vbg = 0,
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and, writing down the (3.4)) constraints on f3, additional equations

(
(

e1(u? — st) = eg(uv — st) = e3(v? — st) = 0,
( )

ri(u? — st) = ry(uv — st) = r3(uv® — st) = ry(v® — st) =0,
in the variables
ay,...,06,01,...,b6,C1,dy,do,€1,€9,71,...,74 € k.
Since X hasnodes at [1:0:0:0:0] and [0:1:0:0: 0], we have
a3 —4ajaz #0, b3 — 4bybs # 0.
Thus, up to scaling x4, x5 and swapping them, we may further assume

that one of the following holds:

e a,=0by=1, or
oagzblzbgzl,bgzO,or
0&1:blzb3:1,a2:bgzo.

The second option is impossible, since b, = 0 forces a; = 0. Solving
the system of equations for the remaining two options using Magma, we
obtain a complete set of solutions:
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(a1,a2,a3,a4,as, ag) (d1,d2) c1 5 u

(b1, b2,b3,b4,b5,b6) (e1,e2,e3) | (r1,7m2,73,74) | t v

(1) (a171>a3>a4>a57a6) 1 1
(a171>a3>a4>a5>a6) 1 1

(2) (a1717a37a47a57a6) (d],O) -1 1
(_alalu_GS)_a47_a5ua6) (6170563) (T1707T370) -1 -1

(3) 1 (0,1,0,a4,0,0) (0,0) 1 3
(0,1,0,(14,0,0) (076270> (7"1,0,0,7’4) 1 ?%

(4) (ala 1,(13,0,4,0,0) (0’0) 1 <4
(_alala_a37a4a0a0) (0a€2a0) (0707070) 1 _<4

(5) | (a1,1,a3,0,0,0) (0,d2) 0 6 e
(—al,l,—ag,0,0,0) (07070) (0707070) €6 62

(6) (1,0,1,@4,@57616) 1 1
(1,0,1,@4,@5,@6) 1 1

(7) (170717044’@5,&6) (dlvo) 1 1
(1,0717044,@5,—0,6) (6170563) (7’1,0,7"3,0) 1 -1

(8) (1707_17a47a570) (dlao) 1 1
(1,0,17(14’&5,0) (617070> (7"1,0,0,0) 1 C4

(9) | (1,0,—1,a4,as,0) (0,0) 1 -1
(1,0,1,(14, CL5,0) (61,0,0) (0,0,’/“3,0) 1 C4

(10) (1707—1707070) (dlvo) 0 4182 Cil2
(1707 17070)0) (07070) (0707070) C182 <12

Here, we omitted solutions obtained by swapping coordinates x4 and

x5 and scaling coordinates x; and x,. After an additional equivariant

change of coordinates, we obtain the required assertion. U

Intermediate Jacobian. Using arguments as in Section [2] we settle

the linearizability problem for 2-nodal cubic threefolds.

Theorem 3.3. Let X C P* be a 2-nodal cubic, and G C Aut(X) a

subgroup not fixing any node of X. Then the G-action on X is not
linearizable.

Proof. By the assumptions, G contains an element ¢ switching the

nodes of X. It suffices to prove the required assertion for G = (1).
With the notation as above, we may assume that X is given by (3.1)),

ie.,

[ = mmoms + 12 + 2q2 + f3 =0,

and ¢ acts on the coordinates via

L (x1, 29, 3, 4, T5) > (ST, tT1, T3, UTy, VT5),
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for roots of unity s, t,u,v. Introducing new coordinates
wy = Vitr, + VsTa,  wy = Vir, — Vs,
we diagonalize ¢, so that it acts via
(3.5) L (wy, we, T3, Tq, T5) — (AW, —Aws, T3, UT4, VIT5),

where A = v/st. The equation of X in the new coordinates becomes
f=(w} = wd)as + (w1 + w2)2v/s5q1 + (w1 — w2)2Vtge + 4V st f3 = 0

Note that o*(f") = A2 f".

Recall that X is G-birational to the conic bundle . The conic
bundle is not standard. In particular, the intermediate Jacobian of X
and the Jacobian of the curve D are isomorphic, as principally polarized
abelian varieties:

1J(X) ~1J(Y) ~ J(D),
where X is the standard desingularization of X, Y is the conic bundle
in (3.2) and D is its discriminant curve in ]13’9263,3647365 given by the quartic
form h = qiq2 — z3f3. Note that ¢*(h) = A\%h.
Arguing as in the proof of [9, Lemma 1], we see that ¢ acts faithfully

on 1J(X) and preserves the principal polarization. On the other hand,
the t-action on coordinates x3, x4, x5 induces an action on D and its
Jacobian J(D). We claim that the (-actions on 1J(X) and J(D) differ
by multiplication by —1. Since D is not hyperelliptic, this would imply
that the G-action on X is not linearizable, by Remark [2.5]

To compute the action of ¢ on IJ()? ), recall that its tangent space at
zero To1J(X) is isomorphic to H2(X, Q). We show that H2(X, %)Y
is canonically isomorphic to the linear subspace in

HO(P*, Qpi @ Opa(2X)) = HO(P*, Opa (Kps 4 2X)) = H°(P*, Opa(1))

consisting of all sections that vanish at the nodes of X. The proof is
essentially contained in [33]. We follow the proof of [9, Lemma 1]. Let

7 P* — P4 be the blow up of P* centered at two nodes p; and p,
of X, and identify X with the strict transform of X in P4 The exact

sequence
1
P4 X

0— (N;

= - QL =0

V
/ﬁ;z) — 0
gives rise to a (1)-equivariant exact sequence

0 — H2(X, QL) — H(X, (W;

2a)") = (X, QL o) = 0.

P4 X
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By [33], the dimension of H3(X, Qﬁlﬂp?) equals the defect of X, which

is 0 in our case. It follows that

H2(X, Q%) = HY(X, (Mg 50)").

Similarly, the (1)-equivariant exact sequence

0 = Op(—2X) = Op(—X) = Wgm)" =0

and the vanishing of Hi(fP?Z, O[’Pyz(—)? )) ([33, Corollary 2]) provides an
(¢)-isomorphism

H3(X, (N

X/fg;i)v) = H4(IF)4, Oﬁ(-Q}?)),

By Serre duality, we have canonical isomorphisms between
HY(P, Op(—2X))" = HY(P4, K005 (2X)) = H (P4, Q005 (2X)).
So we have a (1)-equivariant isomorphism

H*(X, Q%)Y = HO (P4, K5 © O5(2X))
Let E4 and E, be the exceptional divisors of 7w over p; and p, respec-
tively. By adjunction,

K = 7 (Opi(—=5)) @ Om(3E1 + 3E»),

and
OI’EDZ(QX) = W*(OP4(6)) ® O@(—ZLEH — 4E2).
Then we know

Kz ©® 05(2X) = (0p1(1)) ® Ox(—Ey — Ey).

It follows that we can canonically identify H2(X QL)Y with linear sub-
space in HY(P*, Q5. ® Opa(2X)), (or equivalently, in HO(P*, Opi(1))),
which consists of all sections that vanish at p; and p;. Now we can
compute the induced G-action on TolJ(X )Y explicitly. Set

Wao XT3 Ty Ty

2= T, 23 = T, 24 = ——, % =,

w1 w1 w1 w1

and consider the rational 4-forms
dzo Ndzg Ndzy N\ dzs

(f/(17 22, %3, 24, 25))2 .

23W, Z4W, ZsW, where w =
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These give sections of H(P*, O3, ® Opa(2X)), forming a basis of the
subspace consisting of sections that vanish at the nodes of X. One
computes

1
V(22) = =22, (23) = N3 L (24) = §z4, V(25) = %25
and
’ 2 (1, 29, . .., 25)2
1

Using these, we see that ¢ acts on To1J(X)Y with eigenvalues
uv u?v uv?
e e
Similarly, to compute the action of ¢ on J(D), we note that 7o J(D)Y
is canonically isomorphic to

H?(P?, QF, ® Op(D)).
Set ys = 7% and y5 = 7*. The rational 2-forms
dys N dys y dys A dys y dys N dys
v Y4 v YT
h’<1ay4>y5) h(173/4,y5) h(17y47y5)
define sections of HO(IP?, Q3, ® Op2(D)), forming its basis. One has

Fya) = uys,  C(ys) =vys, (1 ya,y5) = Ah(L, Y4, y5)

and ¢ acts on Ty J(D)Y with eigenvalues

uv UQU UU2

This shows that the t-action on IJ(X) ~ J(D) differs from the action on
J(D) induced by the action on D by multiplication by —1 as claimed.
Therefore, the G-action on X is not linearizable. O

4. THREE NODES

Standard form. The three nodes are necessarily in general linear po-
sition; they span a distinguished G-stable plane, which is not contained
in X. This case is labelled (J3), in [37]. Assume the nodes are

pr=1[1:0:0:0:0], po=1[0:1:0:0:0], p3=[0:0:1:0:0].
The standard form is given by
(4.1) T1T2T3 + T1q1 + 222 + 3q3 + f3 =0,
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with quadratic qi,qo,q3 € klxs,z5], and cubic f3 € k[zy, x5]. Note

that q1, ¢2, g3 must have rank 2, and ¢, ¢, ¢3, f3 do not share common
factors.

Automorphisms. We proceed to classify automorphism groups of 3-
nodal cubics acting transitively on nodes.

Proposition 4.1. Let X C P* be a 3-nodal cubic threefold. As-
sume that Aut(X) contains an element acting transitively on the nodes.
Then, up to a change of coordinates, X is given by

T1%2%3 + T1q1 + Taga + T3q3 + f3 =0,

for 1,42, s, f3 € k[xy, x5] that can be described together with Aut(X)
as follows.

(1) Aut(X) = Cs, generated by

2mi
o1 (z1, %2, T3, Tq, T5) > (ZE27173,1'1,$4,C621‘5), (g=e gz,

o with f3 = ax? + bxd, for b#0, (a,b) # (0,1) and
q1 = T4(T4 + T5),
G2 = T4(z4 + Gs5),
gs = wa(4 + C55), o
o with f3 =dx} + ex?,
¢ = T3 + bryxs + 13,
G2 = T4 + (gbraws + (o3,
g3 = 75 + (5braxs + (Gr:,  d # +e, and b# £2.
(2) Aut(X) = Cs generated by
o9 (71, X9, T3, Tq, T5) > (9, T3, T1, Ty, (6T5),
f3 = dx3 for some d # 0, and
Q=]+ 73,
¢ = af + (53,
g3 = @ + (53,
(3) Aut(X) ~ &3 generated by o1 and

03 : ($1,$2,l’3,$4,$5) = (C(?x%ng17$37ggx57<=62x4>7
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fa = d(z] + z3),
q1 = 15 + bryxs + 12,
G2 = 1 + (§braws + (53,
g3 = o5 + Cgbryws + Gz, d#0,b# £2.
(4) Aut(X) ~ Cy x &3 generated by 01,03 and
L: (w1, @9, 3, 4, T5) — (T1, T2, Ty, — T4, —T5),
with f3 =0 for b # £2 and b* # —2, and
Q1 = 15 + bryxs + 12,
G2 = o3 + (§braws + (53,
gs = % + Csbraws + (F3.
(5) Aut(X) ~ Cy x &3 generated by
oy (71, %9, T3, T4, T5) > (X9, T3, T1, Ty, Ts5),
o5 : (T1, %2, T3, Ta, T5) > (T9, 1, T3, Ty, Ts5),
06 : (21, T9, 3,24, T5) —> (21, Ta, T3, T5, Tg),
with
d(zy + x5)° d#0,or
f3 = d(xy + z5) (24 — 75)* d#0,or
(x4 + x5)(axg + brs)(bxy + axs)  for a,b# 0,
q1 = G2 = {3 = T4Ts.
(6) Aut(X) ~ C5 x D4 generated by oo and
o7+ (21, 82, 03, 04, 35) = (G52, (o1, 73, (G5, Coa),
with f3 =0 and
@ = o3 + 3,
@ = x5 + (53,
g3 = =3 + (s,
(7) Aut(X) ~ &3 x &3 generated by 04,05,06 and
og 1 (71, T, T3, T4, T5) > (71, Ta, T3, (G4, (5 T5),
with f3 = d(z3 + x3) for some d # 0 and

q1 = Q2 = g3 = T4s5.
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(8) Aut(X) ~ GLy(F3) generated by t,01,03 and

Cﬁbx4+x5 C6I4+bl’5
1-¢G 7~ 1-¢

)7

o9 1 (21, 2, T3, Ty, T5) ($2,Cg$1,C6953:

with f3 =0, b* = =2, and
g = xi + bxyxs + xé,
@ =z + (Gbraws + (a3,

g3 = x5 + (gbraws + (Gl

(9) Aut(X) = &3 = (04,05), @1 = @2 = q3 = x4x5 and f3 such that
X is not isomorphic to any cubic in cases (5) and (7).

Proof. Let X C P* be a 3-nodal cubic threefold given by (4.1]), with
Aut(X) not fixing any node. There exists an exact sequence

(4.2) 0— H— Aut(X) 5 S5 =0

and a o193 € Aut(X) acting transitively on the nodes, so that p(oi93) =
(1,2, 3). The zeroes of g1, g2, q3 define at most 6 points on P! thus

T4,T57
0 0 s3 0 0
s; 00 0 O
(43) 0193 = 0 S9 0 0 O
0 0 0 1 O
00 00 ¢

27

for some s1, $9,53 € kX, where (4 = e’s . We have the following cases:
(a) ged(qi, g2, q3) = 1. We may assume that
q1 :$i+b$4$5+flf§7 bek, b+#+2.

The cyclic action on x1, x5, and z3 implies that ¢, and g3 are multiples
of 0795(q1) and 0743(ga), respectively, and o7o5(f3) = s15253 f3. The torus
action on the coordinates z1, z9 and x5 allows us to assume that

G2 = 07a3(q1),

a3 = 0123(q2)-

Since q1, g2, g3 are coprime, we have r # 0,3. Thus, r =1 or r = 2.
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o If r =1, then b = 0, the entries in (4.3) are s; = s9 = s3 = £1,
and

q1 = 33421 + x%?
q2 = $i + ngga
qs = ‘TZ + nggu
There are subcases:
— f3(x4,75) #Z 0. Then o193 fixes the points defined by f3 in
P!. And up to isomorphism, f3 = dz3 or dzx2, for some
d # 0. Since 0y3(f3) = s15253f3, the latter is impossible.
So f3 = dz3 and s; = 1. This gives p(Aut(X)) = C5. On
the other hand, any v € H takes the form
(21, T2, T3, T4, T5) > (t121, L2, t3T3, T4y + 525, tews + t75),
for some t; € k*. Since v leaves (4.1) invariant, one finds
H = Cy = (03) and Aut(X) ~ Cs = (09), where
O9: (xla Xo, T3, Ty, $5) = (l'g, X3, T1, T4, Cﬁx5)'
— f3(x4,25) = 0. Then

H~C3=(,03), Aut(X)~CsxDy = (03,07),

where
(4.4) i (21,9, 3, Tq, T5) > (L1, To, T3, —Tq, —Ts5),
(4.5)  or: (21,72, 23, 24, 25) > (G52, 1, 3, (s, Coa).
o If r =2, then

Q= !Ei + bryxs + $§7
2 2 4.2

q2 = x5 + (gbraxs + (55,

3 = x5 + (gbraws + (Gas,

b+#0and s; = sy = s3 = +1. When b # 1, ¢, ¢2, g3 define 6
points in P!, but when b = 1, they define 3 points. There are
subcases:

— f3(x4,x5) = elilsls, e € k*. Then oy53 permutes the points
defined by f3 in P!, i.e.,

ll :$4+d£€5, l2 :l’4+<gdl’5, l3 :l’4+<§d$5, de k.
In this case, 0123 takes the form

01: (351,962,333,%4,3?5) — ($2,$3,$1>$47Cg$5)-
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One finds that H = 0 and
C3 = (o1) d°® #1,
Aut(X) ~ ¢ &3 = (01,03), d*=1,
&3 = (01,0%), d*=—1.

03: ('Ilv X2, X3, T4, 1'5) = (C62$27 ngla x3, Cg$5a C62$4)a

0/33 (w1, T2, 73, T4, T5) > (C62$2,Cg$17$3756905,Cg%)-

— f3 = l113. Then o493 fixes two points defined by f3 in P!,
and f3 = drizs or dryx2, for some d € k*. But then (4.1))
cannot be oj93-invariant. So this case does not exist.

— f3 =13 Then f3 = dx3 or d, for some d # 0. One finds

HZO, Aut(X) 203: <0'1>.

— f3 = 0. Then Aut(X) contains the involution ¢ from (4.4]).
Up to a twist by ¢, we may assume o193 = 0;. Note that
Aut(X) also contains o3. Using the same argument to find
H as above, one gets that when b? # —2,

H~Cy= (), Aut(X)~Cyx Sz = (1,01,03);
when b? = -2,
H ~ Q87 Aut(X) = GL2<F3) = <L7 01,03, 09>7

C6b954 + x5 C61‘4 + b$5)
1-G 7 1-¢ 7~

(b) When ¢; = l1l,qo = lsl and g3 = I3l and [y, 15,15 are coprime.

Then Aut(X) fixes the point in PL __ defined by [, and acts as

T4,T5

(5 on the three points defined by [y, ls and [3. This implies that
r =2 in (4.3)), and that

=24, L=x4+2x5 L=x44+CGrs5, I[3=24+ C§$5-

09 : (1’1,1'2,{['373174,1'5) — (5527@171,@1'3,

Then either f; = ’® defines one point and ;23 fixes the point, or
fs = 1515, defining three distinct points, with o123 permuting
them, i.e., f3 = az} + bz} for some a,b € k. Since X is 3-nodal,
one has b # 0 and (a,b) # (0,1). From the form of f3, one sees
0123 = 01. And H = 0 since any element in H fixes 4 points on
P!, defined by [,1;, 5, I3, and acts trivially on x4, x5. Moreover,
one can show that no action on P! fixes two points defined by
[ and [; and swaps those defined by [, and I3 at the same time.
Therefore, p(Aut(X)) = C5 and

HZO, Aut(X) 203: <0’1>.
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(¢) 1 = ¢2 = g3 = ¢: We may assume that ¢ = z425. In this case,
the exact sequence ([4.2)) splits and

Aut(X) ~ H x 63,

with the factor &3 acting via permutations of z1, x5 and x3 and
trivially on x4, x5. Moreover, it is easy to see that H must act
faithfully on P} .5 Since H preserves the pair of points defined

by ¢ in P! it is either cyclic or dihedral. Assume that H # 1.

T4,X5)
Then the structure of Aut(X) depends on f3 as follows:

e f3 = dI3, for some d # 0 and linear form [ in x4 and x5. Then
H has a fixed point, i.e., H is a cyclic group. Moreover, H
swaps two points and thus H ~ C5 with [ = x4 + x5 and H is
generated by swapping coordinates x4 and xs.

o f3 = dI?l,, for some d # 0 and linear forms I; and [, defining
two distinct points in P!. Then H fixes two points defined by
Iy and [, and swaps two points defined by ¢. Similarly, we have

i =24 — w5, lo=x4+ x5,

where H is generated by swapping x4 and x5.
e f3 = dlilsl3, defining three distinct points. There are subcases:
— H permutes three points defined by f; and swaps two
points defined by q. Then H ~ &3, generated by

08 (21,2, X3, T4, T5) = (1, T2, T, (324, (55)
06 : (11, 19,13, 14, 75) > (21, Ta, T3, Ts, T4),
and

(4.6) lhh=z4+w5, lp=Cr4+ C§$5, l3 = C§$4 ~+ (3x5.

— H permutes three points defined by f3 and fixes two points
defined by ¢, thus H ~ Cj3, and [,ls,l5 are as in (4.6).
However, we know that X admits an additional symmetry
swapping two points in ¢ as in the case above.

— H fixes the point defined by ;. Then H swaps two points
defined by ¢ and two points defined by [y and [3 because
otherwise H is trivial. In this case H ~ (5, with

ll = X4+ Ts5, l2 :ax4+bx5, l3 :b$5+(1$4,

for some a,b # 0, and (%)3 # 1. Similarly, H is generated
by the involution swapping x4 and xs.

O
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Del Pezzo fibration. We have an Aut(X)-equivariant commutative
diagram:

X-- - -y
WL l(j)
X—-=--—-- > P!

where 7 is a blow up of the nodes of X, o is a composition of flops in
the strict transforms of the lines

{r1=x4=25=0}, {za=ax4=125=0}, {x3=2x4=u1z5=0},
¢ is a fibration into Del Pezzo surfaces of degree 6, and p is the pro-
jection given by

(1, o, T3, T4, T5) — (T4, T5).
The anticanonical model of X is a singular Fano threefold of degree 18

that has 3 nodes, which can be smoothed to a smooth Fano threefold
of the same degree with Picard rank 1.

Fixed point obstruction. Among actions in Proposition [£.1] we find
one example where the linearizability is obstructed by the absence of
fixed points upon restriction to abelian subgroups.

Example 4.2. Consider the 3-nodal X in Case (7), Proposition [4.1]
and the G = C% = (04, 03) action on it. The G-action does not have a

fixed point on X and X¢ = 0. By Lemma , the G-action on X is
not linearizable.

Specialization. Here we exhibit specialization to the 9-nodal cubic
with Cs-action giving an (H1)-obstruction to stable linearizability.

Proposition 4.3. Let X — A} be a family of cubic threefolds X, := X,
given by

fo = mwoxs + (1 + 29 + x3) w475 + (24 + x5) (24 + bxs)(bry + 25) =0
for b € k. Consider the G = C3 action on X, generated by

(21, T2, 3, Ty, T5) — (T2, T3, 21, Ty, Ts).
Then a very general element in X is not G-stably linearizable.

Proof. Arguing as in Example , let X — A} be the family given
by f,. For a very general b, &, := X} is a 3-nodal cubic described as
Case (5) in Proposition [.1] The special fiber X, := X is a 9-nodal
cubic, and the G-action fixes a smooth genus 1 curve on X,. From
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computations in Section [9] there exists an (H1)-obstruction to stable
linearizability of the G-action on Xy. The six additional nodes form
two G-orbits with trivial stabilizer. By Proposition [2.9] a very general
element in the family & is not G-stably linearizable. U

5. FOUR NODES

Factorial cubics. We first consider the case when the four nodes are
in general linear position, forming a “tetrahedron”. This is case (J4)
in [37]. We may assume that the nodes of X are contained in the
hyperplane x5 = 0, and are the points

[1:0:0:0:0},[0:1:0:0:0], [0:0:1:0:0], [0:0:0:1:0].
The intersection X N{x5 = 0} is the unique cubic surface with 4 nodes,
the Cayley cubic surface. Using this, we see that X can be given by
(5.1) 129x3 + T1X2x4 + T1X374 + Tox3T4+

+ ax? + xg (blxl + boxo + b3xs + b4x4)—|—
+ x5 (a1 (2122 + 324) + a2(T123 + T224) + as(2124 + 2273)) =0
for some a, by, b, b3, by, a1, as, a3 € k.
Theorem 5.1. Suppose that X C P* is a 4-nodal cubic threefold and

Aut(X) does not fix any node of X. Then, up to a change of coordi-
nates, one of the following holds:

(Cy) by = by and b = by in (5.1), and Aut(X) ~ Cy, generated by
g1 (x17$27x37 334,.%5) — (x2,$1,x4, 333,.%5).

(04) a = 0, a; = a2 = az = 0, bl == —bg, b3 == —b4 m " and
Aut(X) ~ Cy, generated by

2mi

;- ) . 2mi
Oy (I1,$2,I37$4,l’5) — ($2,$1,9€47I37ZI5); t=e+4.

(C2) by = by = b3 = by in (p.1), and Aut(X) ~ C3, generated by o,
and

02 (I1,$27$3,9€4,$5) — ($3,$47$1,9€2,$5)-

(Cg) GIO, Glzagzagzo, blzl, 62:_<827 b3:—1, b4:C82 mn
(5.1), and Aut(X) ~ Cs, generated by

27i

oy (21, 29, k3,24, x5) — (T4, T1, T2, X3, (sT5), (g=€5 .
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(@4) ay :a3:O, [ ]_, bl :b2:b3:b4 m " and Aut(X) ~

Dy, generated by o1, o9 and
03: (x1,$2,$3,x4,$5) — (x4,$1,x2,x3,$5).

(G4) a#0, a1 =ay=0a3=0, by =by=0bs =by =1 1in (5.1), and
Aut(X) ~ &4, generated by o1, 02, 03 and

04 ($1,$2,l’3,l‘4,$5) — ($2,$3,$1,x4,x5).

Proof. Let ¢: Aut(X) — &4 be the homomorphism given by the action

on the nodes of X. Since Aut(X) does not fix nodes, we may assume

that there is a ¢« € Aut(X) such that ¢(¢) = (12)(34) or ¢(¢) = (1234).
Suppose that ¢(¢) = (12)(34). Then ¢ is given by

(*rla X2,X3,T4, '1:5) — (*IQ + ST5, L1 + ST5, T3 + ST5, T4 + STs, t$5)

for some s,t € k such that ¢ # 0. Considering how ¢ acts on ,
we see that s = 0 or a; = as = az. In the former case, we have
b1 = by and bs = by, which implies ¢ = 1, because otherwise t = —1
and a = a; = as = az = 0, which implies that X is not 4-nodal. Thus,
if (s,t) = (0,1) and im(¢) ~ Cy, then we are in the case (Cy).

If a; = as = as, then, after a coordinate change, we may assume
that a; = as = a3 = 0. In this case, we get

OZSZG(l—tS):bg—b4t2:b4—b3t2:b2—b1t2:bl—b2t2.

Since X is 4-nodal, this gives a = 0, by = —by, b3 = —by and t = =+i.
Hence, if im(¢) ~ Cy, then we are in the case (Cy).
Now, we suppose that ¢(¢) = (1234). Then ¢ is given by

(21, T2, w3, T4, T5) > (T4 + ST5, 71 + ST5, Tg + ST5, T3 + ST5, LX)

for some s,t € k such that ¢t # 0. Then

[ a:2agb4—a§, a1:2a2—a3, bl:bgzb;g:b47 or

® () = asg, b1:b2:b3:b4,or

® 1 — Q9 = as.
In the former case, X is not 4-nodal. If a; = as = a3, then after a
coordinate change, we may assume that a; = as = az = 0, which gives

OZS:CL(]_—tS) :bg—b3t2:b3—b4t2:b4—b1t2 :bl—bth,
SO, after an appropriate scaling of I5, WE See that
L] (1#1, b1:b2:b3:b4:1,0r

0a:O,blzl,b2:—1,b3:1,b4:—1,t:i,or
ea=0,b1=1b=—(, bs=—1bs=C, t=(s,
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which implies that we are in cases (&,), (Cy), (Cs), respectively.

If a; = a3 and by = by = by = by, then, after a coordinate change, we
may assume that a; = ag = 0. If ap = 0, then we are in the case (&,).
Finally, if as # 0, then, scaling 5, we may further assume that a; = 1,
so X is given by

T1T203 + T1T2Ty + X1X3T4 + T2X30T4+
3 2
+ azr; + byzg (a71 + X9 + 23 + x4) + x5 ([L‘ll'g + x2x4) =0,

which gives Aut(X) = (01, 02, 03) = Dy, so we are in the case (D).
To proceed, we may assume that im(¢) % Cy and im(¢) % Cy. Then,
up to a coordinate change, one of the following four cases holds:

o im(¢) = ((12)(34), (14)(23)) ~ C3,

o im(¢) = ((12)(34), (1234)) = D,

o im(¢) = ((12)(34), (14)(23), (123)) = 2y,

o im(¢) = ((12)(34), (14)(23), (1234), (123)) ~ &,.

Since im(¢) contains (12)(34) or (1234), the cubic X must be given
by one of the equations explicitly described above. Using additional
symmetries of X, we conclude that we are in one of the cases (C3),

(D4), (64), or the cubic X is given by (5.1)) with
CL?AO, CL1:CL2:CL3:0, b1:b3:1, b2:b4:—1,

or
a=1, ay=(, a3=(;, bi=by=bs=0by=0.

In the first of the latter two cases, X has 8 nodes, and in the last case,

the singularities of X are not nodes. This completes the proof of the

theorem. O

Birational model. Let 7: X — X be the blow up of the nodes of X.
Then there exists an Aut(X)-equivariant diagram:

where p is a composition of flops in the strict transform of the lines
passing through pair of nodes, ¢ is a contraction of the strict transform
of the hyperplane section containing 4 nodes (the surface X N{x5 = 0})
to a smooth point of the threefold Y, and Y is a smooth divisor in
(P1)* of degree (1,1,1,1). Implicitly, the birational map X --» Y has
been constructed in the proof of |48 Proposition 4.5]. Note that the
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anticanonical model of X is a singular Fano threefold with 6 nodes of
degree 16, which can be smoothed to a smooth Fano threefold of degree
16 and Picard rank 1.

Burnside formalism. We realize the situation of Proposition [2.6 in
some of the 4-nodal cases.

Example 5.2. Let X be the cubic threefold given in the Case (D,)
or (6,) in Theorem .1} Consider the group G C Aut(X) where G =
(0g,0103) = C%. Then we are in the situation of Proposition , and
the G-action is not linearizable. In particular, o035 fixes a cubic surface
receiving a residual os-action with a G-fixed elliptic curve on it.

Specialization. One can equivariantly specialize 4-nodal cubic three-
folds to an 8-nodal one:

Proposition 5.3. Let X, be the 4-nodal cubic threefold defined by

fo = 12973+ 11 D004 +T1 T34 +ToT3T4+ T3 (x1+x2+b(x3+x4)) = 0.

For allb € k, X, carries a G = Cy-action generated by

o1 (1, T2, T3, T4, T5) > (T2, T1, Ty, T3, T5).
Then X, is not G-stably linearizable for a very general b.
Proof. Let X — A} be the family given by f,. The generic fiber X
is a 4-nodal cubic of the type (C5) in Theorem The special fiber
Xo/a 1= Xy is an 8-nodal cubic, with an (H1)-obstruction to stable
linearizability of the G-action by Corollary[8.3] The additional 4 nodes
have trivial stabilizer and thus are BG-rational singularities. Applying

Proposition 2.9 and Example 2.8, one concludes that a very general
member in the family X is not G-stably linearizable. U

One can also specialize to the Segre cubic threefold:

Proposition 5.4. Let X, be a cubic of type (S4) in Theorem[5.1} i.e.
X, is given by

axg + T122X3 + T1ToTy + T1X3%4 + ToT3Ty + x%(wl +xo+ 23+ 14) =0.
Consider the subgroup G = (01, 09) ~ C% C Aut(X,). Then, for a very
general a € k, the G-action on X, is not stably linearizable.

Proof. Let X — A} be the family consisting of X,. The special fiber
Xy := A is a 10-nodal cubic, with an (H1)-obstruction to stable lin-
earizability of the G-action, from computations in [24]. The additional
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6 nodes have Cy-stabilizers. They are BG-rational singularities, by Ex-

ample 2.8 Applying Proposition and Example [2.8 one concludes
that a very general fiber is not G-stably linearizable. U

Remark 5.5. We note that the degeneration of cubics in Proposi-
tion is equivalent to the degeneration of divisors in (P*)* of degree
(1,1,1,1), which was studied in [48, Section 7] and [I7]. In particular,
the product of projections from four planes in the tetrahedron formed
by the four nodes of the cubics gives an G-equivariant birational map
from the cubics to divisors in (P!)* of degree (1,1,1,1).

Cubics with a plane. Now we treat the case when the four nodes
are contained in a distinguished, G-stable plane II. This is case (J6) in
[37]. Unprojecting from II, we have a G-equivariant birational map

¢ . X -——> X272,

where Xy, is a smooth complete intersection in P° of two quadrics
with a G-fixed point P € X55, and the map ¢! is a projection from
P. Linearizability of actions on smooth X} 5 is determined by existence
of invariant lines [42], Theorem 24]. In particular, we have

Proposition 5.6. The G-action on X is not linearizable if and only if
no singular points of X are fized by G, and X does not contain G-stable
lines that are disjoint from 1I.

Proof. We may assume that no singular points of X is G-fixed. If X
contains a G-stable line that is disjoint from II, then the G-action on
Xs 2 is linearizable, by Lemma . Conversely, if the G-action on X5 o
is linearizable, then it follows from [42], Theorem 24] that X, 5 contains
a G-stable line /. And P & /¢, because otherwise the preimage of ¢ on
X would be a G-fixed singular point. Similarly, we see that ¢ must be
disjoint from the four lines in X5 containing P. Then ¢ is mapped by
¢! to a G-stable line in X that is disjoint from the plane II. U

Examples of nonlinearizable actions, based on the Burnside formal-
ism [46] or the adaptation to the equivariant context of the torsors over
intermediate Jacobians formalism from [43], [11], can be found in [42],
Sections 8.3 and 8.4]. As a special case, we have:

Example 5.7. We may assume that X is given by
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Let G = (o), with o acting diagonally by (1,1,1,1,—1,—1). Then
G does not leave invariant any line on Xs5 and the action is not lin-
earizable. On the other hand, there is a genus 1 curve C' fixed by G,
obtained by intersecting X, with 25 = x4 = 0. Projecting from any of
the points on C', we obtain a singular cubic threefold, generically with
four nodes.

Example 5.8. Let X C P, be the 4-nodal cubic given by

(Y1 — y3)yaya + (y2 — Y3)y1ys + (Ya — Ys)yays — Y — vs.
The four nodes lie on the unique plane y4 = y5 = 0. The automorphism
group Aut(X) contains G = C§ generated by

vt (Y1, Y2, Y3, Y, Ys) = (Y1, —Y1 + Y, — Y1 + Yo, Ya, Us)

va (Y1, Y2, Y3, Yan Ys) = (Y2 — Y3, Y1 — Y3, — Y3, Ya, Us).-
and
v3 1 (Y1, Y2, Y35 Yar Ys) = (Y1, Y2, Y3, —¥Ya, —Vs)-
Unprojecting X from the unique plane under the map

(yh e 795) — (y1y57 Y2Ys, Y3Ys, YaYs, y§> MNY2 — Y2Ys — yi>7

one sees that X is G-equivariantly birational to a smooth intersection
of two quadrics Xy C P - given by

2 2 2
T1To — X3 — Ty — Tx5Lg = T1L2 — T1T3 + Xy — Ty — Ty + Tyrg = 0.

The G = C§ action on the first five coordinates is the same as that on
P4, 1; and 1y acts trivially on g and ¢35 changes the sign of z4. For any
subgroup G’ C G, there is a G'-stable line in Xy 5 if and only if G' = Cy
and the character of the G’-representation of the ambient AS - is

(6,0) or (6,4). ‘7

In the first case, G’ fixes a singular point of X and thus is lineariz-
able. In the latter case, G’ pointwise fixes a smooth intersection of
two quadrics in dimension 2, i.e., a quartic Del Pezzo surface, which
contains 16 lines. The other Cy subgroups have character (6,2). They
fix an elliptic curve but do not leave any line invariant in Xy . Any of
the other subgroups of G will contain one of the nonlinearizable Cs.

6. FIVE NODES

Now, we suppose that X has 5 nodes.
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Birational model. If the nodes are not in general linear position,
then there is a distinguished G-fixed node, and the G-action on X is
linearizable. Hence, we may assume that the nodes of X are

pr=1[1:0:0:0:0], po=1[0:1:0:0:0], p3=[0:0:1:0:0],
p1=100:0:0:1:0], p;=[0:0:0:0:1].
Then G C &5 acts via permutation of coordinates. We may also assume

that G' does not fix any of the nodes, since otherwise the G-action is
clearly linearizable.

Linearizability. Using the standard Cremona involution
L Pt - P

we obtain a G-birational map y: X --» @, where @ C P* is a smooth
quadric. For more details of this map, see the proof of Theorem |[2.12]

Lemma 6.1. Suppose that G does not act transitively on Sing(X).
Then the G-action on X is linearizable.

Proof. Since GG does not fix any of the nodes, either G ~ (5 x &3 or
G ~ (3 x (5. In both cases, we may assume that G preserves the
subset {p1, p2} and {ps, ps, ps}. Then G pointwise fixes the line [ C P*
that passes through the points [1:1:0:0:0land [0:0:1:1:1].
Observe that «(I) = [, so that the intersection [ N @ contains G-fixed
points, which implies the assertion. O

Thus, we may assume that G acts transitively on the nodes of X,
and G contains the 5-cycle (1,2,3,4,5). Then X is defined by

T1Tox3 + Tox3Ty + T1ToT5 + T1X4X5 + T34 T5+
+ a(x1xomy + X134 + T T35 + Tox3T5 + Tox4x5) = 0,
for some a. And (@ is defined by
(6.1)  x129 + Tox3 + -+ - + 511 + (X123 + Toxy + - - - + x5T5) = 0.

Note that a # —1, since otherwise X would be 6-nodal. Then @ is
smooth. For the group G, we have the following possibilities:

(1) G~ 05,
2) G~ @5,
) G~CyxCysanda=1,
) G ~%As and a =1,
)

(
(3
(4
(5) G~ &5 and a = 1.
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In the first case, G = (C}, the group G fixes a point in (), and the G-
action on X is linearizable. In the second case, the action is necessarily
of the form in the following lemma:

Lemma 6.2. Suppose that G ~ D5 acting on P* = P(I1 o Vo, @ V),
where Va and V3 are two nonisomorphic 2-dimensional irreducible rep-
resentations of 5. Then the G-action on every G-invariant smooth
quadric in P* is linearizable.

Proof. We may assume the G action is generated by
(xb s 73:5) = (33'4, T3, T2,T1, 513'5),

(xla <o 7I5> = (C'rb <2I27 C3I3, g4$4, 1’5),

where ( = e, Smooth G-invariant quadrics @), are given by

ari1Ts — broxs + mg =0

for a,b # 0. Notice that each @, is Ds-isomorphic to ()1, with the
same Ds-action under a change of variables

Ty =+Vaxy, 1y = \/Z_ij,xg = \/l_)xg,az:ﬁl = Vazy, vt = 5.
Consider a G-invariant conic
C:{$2:$3:O}HQ171
and a G-invariant twisted cubic curve
R = {ZE5 = T1T3 — ZL‘% = Ty — $§ = O} N QLl‘

The system of quadric hypersurfaces on P* containing both C' and R
induces a G-equivariant birational map Q1 --+ P?, see e.g., [3, Section
5.10]. O

Lemma 6.3. Suppose that G ~ Cy x C5 and a = 1. Then Q) from
(6.1) contains a G-invariant smooth quintic elliptic curve E, and we
have the following G-Sarkisov link:

Q
N
Q P?

where « is a blow up of the curve E, and (8 is a blow up of a smooth
quintic elliptic curve isomorphic to E.
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Proof. 1t is easy to see that Aut((Q) contains a unique subgroup iso-
morphic to Cy x C5. Thus, we may change coordinates on P* as we
need and, in particular, assume that @) is given by

5
Zazf +1 Z rix; =0,
i=1 1<i<j<5
and that the action of G on @ is given by
(21, T2, 3, Ty, T5) — (T2, T3, Ty, T5, T1),
(21, T2, T3, 4, T5) — (X1, T3, T5, To, Tq).
Then () contains the following smooth quintic elliptic curve:
(2?2 +i(z3my + x025) = 0,
x5 + (2475 + 2371) = 0,
25+ i(v511 + 2479) = 0,

.IZ + i<$1$2 + I5JI3) = 0,

L l’g + i(CL’Q!L‘g + 1711'4) = 0.
Blowing up @ along this curve, we obtain the claim, cf. [19]. O

If G ~ &5 and a = 1, then it follows from [2I] that X is G-solid,
and the only G-Mori fiber spaces G-birational to X are X and @). In
particular, the G-action is not linearizable. If G ~ 25 and a = 1, we
also expect that X and () are the only G-Mori fiber spaces G-birational
to X, which would imply that the G-action is not linearizable.

7. SIX NODES

Cubics without planes. Let X be the 6-nodal cubic threefold such
that the nodes are in general linear position. Then rk C1(X) = 2, so
the defect of X is 1. This is case (J9) in [37]. Note that X does
not contain planes, but it contains two families of cubic scrolls (see
Remark below). Moreover, by [41), Section 3|, X can be given by

det(M) =0
for a 3 x 3 matrix M whose entries are linear forms. Thus, one can

define a rational map X --» P? that maps p — (a, b, ¢), where (a, b, c)
is a non-zero solution of the equation

a
M|b]| =0.

C



EQUIVARIANT GEOMETRY OF CUBIC THREEFOLDS 39

This map is dominant, it is undefined at the nodes of X, and its general
fiber is a line in X. Similarly, we can define another rational map
X --» P? using the transpose of the matrix M. Taking resolution
of singularities X, we resolve indeterminacy of both of these rational
maps, which yields the following commutative diagram:

(7.1)
Xt f X~

where f is the standard resolution, ¢+ and ¢~ are small resolutions, h™
and h~ are birational morphisms such that h~o(h™)~! is a composition
of six Atiyah flops, both p™ and p~ are P!-bundles. The diagram ([7.1))
is implicitly contained in [44], § 7.5], as an illustration of the first row
in the table there. Taking a product of morphisms ptohtand p~oh™,
we obtain a morphism X — P? x P? that is birational onto its image
(a divisor of degree (2,2) with 15 nodes).

Remark 7.1. Let [ be a general line in P2, Set
S=(q)(p ) () and S =(g").(p") 0.

Then S and S are smooth cubic scrolls in X that freely generate the
class group Cl(X).

Remark 7.2. Let G C Aut(X). Then the commutative diagram (7.1))
is G-equivariant if and only if rk C1¢(X) # 1.

To describe possibilities for Aut(X), we can assume that the nodes
of X are the points

pr=1[1:0:0:0:0], ppo=[1:1:1:1:1], p3=[0:0:0:0:1].
ps=100:0:0:1:0], ps=[0:0:1:0:0], pg=[0:1:0:0:0].
Fix the Gg-action on P* generated by

(7.2)
Tag) (@1, .., %5) = (=21, =21 + X2, =21 + T3, —T1 + Ty, —21 + T5),
T6) : (@1, ..., @5) = (=21 + @9, =21 + T3, =1 + Ty, —T1 + T5, —71),

where the indices corresponds to the permutation of 6 nodes. Then
Sing(X) forms an Gg-orbit, but X is not Sg-invariant. Moreover, it
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follows from a classical construction [30] that there exists the following
4-dimensional Gg-Sarkisov link:

U---—"-- -Y

al l’)’

Plo— - — - -V
X

where V' is the 10-nodal Segre cubic threefold in P4, y is given by the

linear system of cubic hypersurfaces singular at the points py, ..., ps, o
is the blowup of py,...,ps, 0 is a composition of antiflips in the strict
transforms of the 15 lines that contain 2 points among py, ..., ps, and

~ is a P'-bundle.
Observe that Aut(X) C G¢. Restricting the above Gg-Sarkisov link
to X, we obtain the following Aut(X)-equivariant diagram:

(7.3) g %
| |
X S

where S is a smooth hyperplane section of the Segre cubic V, X-»X
is a composition of Atiyah flops in the strict transforms of the 15 lines
in X that contains 2 nodes among py,...,ps, 7 is a P-bundle. For
more details, see [41].

Our cubic X is given by

(7.4) arfr+azfo+azfs+asfs+asfs =0
for some aq, as, as, ay, as € k, where
f1 = 212203 — ToT3Ty — ToX3T5 — T1T4T5 + ToTsTs + T3T4Ts,
Jo = T1T2xy — ToT3Ty — T1T4T5 + T3T4Ts,
f3 = T129T5 — XaX3T5 — 17475 + T3T4Ts,
fa = 210374 — ToT3T4 — T1T4T5 + ToT4T5,
f5 = T1T3T5 — ToT3T5 — T1T4T5 + ToT4Ts5.
Enumerating G C &g and searching for G-invariant cubics singular

at p1,...,ps, we can find all possibilities for Aut(X). In particular,
Aut(X) =1 for general aq,...,as. Moreover, one has

Proposition 7.3. Let X C P* be a 6-nodal cubic threefold given by
(7.4). Assume that none of the nodes of X is fixzed by Aut(X). Then
under the Sg-action specified in (7.2)), one of the following holds:
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(1) a1+ as+as+as =0, and
Aut(X) ~ Cy = ((1,3)(2,5)(4,6)).

(2) a1+ a3 =ay —az+as+as =0, and

Aut(X) ~ 63 =((1,3)(2,5)(4,6), (1,4,5)(2,6, 3)).
(3) a1+ a4 =as+as =az —aq =0, and

Aut(X) ~ &, = ((1,3)(2,5)(4,6), (3,4,5,6)).
(4) a1+ a4 =as+as =az+ay =0, and
Aut(X) ~ 9D, = ((3,5),(1,3,2,5)(4,6)).

(5) a1 + a4 + 2a5 = ay — a5 = 0, and

Aut(X) ~ CF = {((1,2)(3,5)(4,6), (1,3)(2,5)(4,6)).
(6) a1 + a4 + 2a5 = ay — a5 = a3 — ag — 2a5 = 0, and

Aut(X) ~ Dg = ((1,3)(2,5)(4,6), (1,6,5,2,4,3)).

(7) a1 =a3=as =1,a3 = a4y = —1, and
Aut(X) ~ &2 x Cy = ((1,3)(2,5)(4,6), (2,4), (1,5)(2,3,4,6)).
(8) a1 =ay=1,a0 =a3 =as = —1, and

Aut(X) ~ &5 = ((1,3)(2,5)(4,6), (1,2,5,6,4)).

Proof. Enumerating all (conjugacy classes of ) subgroups G of &g which
do not fix any point among p1, ..., ps, and computing all G-invariant
cubics singular at py, ..., pg, we obtain the list of (families of) 6-nodal
cubics whose automorphism groups do not fix any of the nodes. These
are the eight families of cubics listed above. Since Aut(X) C Gg, one
can find the full automorphism groups Aut(X). O

As in [4], we find two maximal subgroups &5 and &% x Cy such that
(up to conjugation in Sg) G and X can be described as follows:

(1) G=65=((1,3)(2,5)(4,6),(1,2,5,6,4)) and X is given by
(7.5) T129x3 — 129Xy + T1XT3T4 — ToX3Ty — T1T2X5 — T1T3T5+
+ ToT3T5 + T1T4T5 + TaTaTs — T3T4T5 = 0,
(2) G =63 xCy =((1,3)(2,5)(4,6),(2,4), (1,5)(2,3,4,6)) and X
is given by
(76) T1T2X3 — T1X2T4 — T1X3L4 + ToX3T4 + T1X2X5 + T1X3T5+

+ Xo4T5 — 3Tox3T5 — T1X4X5 + x3T425 = 0.
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In the first case, Aut(X) ~ &;, rkC1®(X) = 1, and is a G;-
Sarkisov link such that S is the Clebsch diagonal cubic surface. In the
second case, Aut(X) ~ &2 x Oy, rk CI1%%C2 (X)) = 1, and is a
&3 x Cy-Sarkisov link such that S is the Fermat cubic surface.

Lemma 7.4. Let X C P* be a 6-nodal cubic threefold such that the
nodes are in general linear position. If Aut(X) contains an involution
o not firing any node, then rk C17 (X)=1.

Proof. Since o does not fix any node, we may assume that
o = (1,3)(2,5)(4,6)

and X is one of the cases in Proposition From the diagram ([7.3),
we know that

rk C1'7(X) + 3 = tk C1'(X) = rtk C1(X) = rk C1)(S) + 1,

where S is a smooth cubic surface contained in a hyperplane H C P*.
By Lefschetz fixed-point theorem, one has [36], Section 6]

1
rk C1'(S) = 5 (T+ T2 (0%)),

Tra(o*) =s—2+ 2(2 —2g:),

where Try(0*) is the trace of o*-action on H?(S,C), s is the number
of isolated o-fixed points on S and g; are the genera of fixed curves.
In our case, we compute that the induced o-action on H ~ P3 has
weights (1,1,1,—1). The fixed locus S consists of one point and a
smooth cubic curve. Substituting into the formulae above we obtain

rk C1')(S) = 3,
which implies rk C17 (X)) = 1. O

Proposition 7.5. Let X C P be a 6-nodal cubic threefold such that the
nodes are in general linear position and Aut(X) contains an involution
o. Let X be the standard resolution of X. Then the action of (o) ~ Oy
on Pic()z) fails (HY) if and only if o does not fix any node.

Proof. We know that Pic(X) is generated by the pullback of the hy-
perplane section H, six exceptional divisors Fj, ..., Eg, and the classes
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of the strict transforms of two cubic scrolls S and S’ (see Remark [7.1)),
subject to the relation

6
2H =S+ S+ Y E;.
i=1
There is a short exact sequence of Aut(X)-modules

6
0— @El — Pic(X) = CI(X) — 0,
=1

giving rise to the long exact sequence of cohomology groups

.. = H'((0), @ E) — H'((0), Pic(X)) — H'({0), CI(X))

- B((0). D E) ...

By our assumption, ¢ permutes the E; without fixing any F;. So

H1(<U>»EBE¢) = H?((0), @Ez) =0,
and ) B )
H' ({0}, Pic(X)) = H'({0), CI(X)).

If o does not fix any node, Lemma implies that rk C1(X) = 1.
So o acts on Cl(X) via

o(H)y=H, o(S)=S5=2H-S.
In another basis of CI(X), namely H and H — S, the action becomes
o(Hy=H, o(H-S)=-H+S.
Then _
H'((0), Pic(X)) = H'({0), CL(X)) = Z/2.
Conversely, if (o) fails (H1), it is not stably linearizable and thus
cannot fix any node. O

Example 7.6. Let X C P* be a 6-nodal cubic threefold in one of the
8 cases in Proposition [7.3] Then Aut(X) contains the involution

o=1(1,3)(2,5)(4,6),

satisfying the conditions in Proposition [7.5] Therefore, the o-action on
any 6-nodal cubic is not stably linearizable.
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Cubics with a plane. This is case (J8) in [37]. Four of the six nodes
of X are contained in a unique, and thus G-stable plane IT C X. The
other two are on a G-stable line /. Note that /NIl = &, since otherwise
the hyperplane containing I1 and ¢ would intersect X by three planes.
So, the action of Aut(X) on X is linearizable by Lemma[l.1]

Cubics with three planes. Let X be a cubic threefold in P* with 6
nodes such that X contains three planes 11, I, II3. Then X belongs
to a four-parameter family, which is denoted by (J11) in [37]. It follows
from [37] that IT; + Ty + II3 is cut out by a hyperplane. Thus, we may
assume that this hyperplane is {x; = 0}, and

I = {z; = 0,2, = 0},
HQ = {ZEl = 0,1’3 = O},
Hg = {.’131 = 0,1'4 = O}

Observe the existence of the following diagram:

X
BN
X Y
where 7 is the standard resolution, Y is the double cover of (P!)3
branched over a singular divisor of degree (2,2, 2), and 7 is a birational
morphism that contracts the strict transforms of II;, IIs, II3. Note

that Aut(Y’) contains a Galois involution of the double cover, and this
involution acts biregularly on X, which follows from:

Proposition 7.7. Up to a change of coordinates, X is given by
(7.7) wow3wy+axs + 25 (byzo + bz +bswy) + a1 (25 + 25+ 25 —22) = 0,
for some a, by, by, bs.

Proof. A priori, the cubic X is given by

ToT3Ta + axi’ + x% (bll'g + byxs + b3xs + cx5)—|—
+ z1 (e123 + €225 + €327 + eaaxs + e5Taxy + €6T374) +
+ T ({L‘5(d11'2 + dgl‘g + d3$4) — l’g) =0

for some a, by, by, b3, ¢, €1, €9, €3, €4, €5, €6, d1, do, d3. Changing xo, x3, x4,
we may assume that e; = e5 = e = 0. Moreover, up to scaling, there
exists a unique such choice of coordinates o, x3, x4 that preserves the
equations of the planes IIy, IIs, II5.
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Similarly, changing the coordinate x5, we may further assume that
c=d; = dy = d3 = 0. As above, we see that there is a unique such
choice for x5 up to scaling.

Finally, using the fact that X has six nodes, we see that e; # 0,
es # 0, e3 # 0. Hence, scaling the coordinates x1, x2, T3, 74, 5, we may
also assume that e; = e3 = e3 = 1, which completes the proof. O

Remark 7.8. If we permute by, by, b3 in ([7.7]), or simultaneously change
signs of two of them, we obtain an isomorphic cubic threefold.

From now on, we assume that the cubic threefold X is given by ((7.7)).
Then the nodes of X are

pr=[0:0:0:1:1], pe=[0:0:0:—-1:1],
ps=1[0:0:1:0:1], pr=100:0:—-1:0:1],
ps=1[0:1:0:0:1], pe=[0:—1:0:0:1].

Remark 7.9. Let S3 be the cubic surface {x5 = 0} N X. Then S;
is smooth. The proof of Proposition shows that S5 is Aut(X)-

invariant.

Remark 7.10. One can find an explicit condition on a, by, by, b3 that
guarantees that defines a 6-nodal cubic, but it is too bulky to
present here. However, if the equation has additional symmetries,
the condition simplifies a lot. For instance, if by = by = b3 = b, then

(7.7) defines a 6-nodal cubic if and only if
(4a — b* + 8b + 16)(4b® + a® — 6ab — 3b* + 4a) # 0.
Moreover, in this very special case, we have the following possibilities:
(1) if 40® + a* — 6ab — 3b*> + 4a = 0 and
(a,b) ¢ {(1,1),(—4,0),(—8,28)}, then (7.7 defines a 7-nodal
cubic;
(2) if (a,b) = (1,1), then (7.7) defines a cubic with six nodes and
one double non-nodal singularity;
(3) if 4a — v* 4+ 8b+ 16 = 0 and

(a,b) & {(—4,0),(—8,28)}, then (7.7) defines a 9-nodal cubic;
(4) if (a,b) € {(—4,0), (—8,28)}, then ([7.7) defines the Segre cubic.

As we mentioned earlier, Aut(X) is never trivial, since it contains
the involution:

s ($1,$2,$3,$47l’5) = ($1,$2,I3,$47 —1’5)-

Moreover, if by, be, b3 in (7.7 are general enough, then Aut(X) = (15).

In fact, we can say more:
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Proposition 7.11. Suppose Aut(X) # (15). Then, up to a permuta-
tion of coordinates xo, x3, x4 and changing signs of two of them, one of
the following holds:

(1) by # by, by = b3, by, by #0, so X is given by
Tow32y4 + ax’s + 23 (b1wg + by(w3 + 24)) + x1 (23 + 23 + 27 — 22) =0,
and Aut(X) ~ C3, generated by v5 and
034 1 (71, X2, T3, T4, x5) > (21, X2, Ty, T3, T5);
(2) by #£0, by =b3 =0, so X is given
Tol3T4 + ax‘rf + b1$%x2 + x1($§ + l’g + IZ - x?) =0,
and Aut(X) ~ C3, generated by 15, 034 and
134 1 (x1, Ta, T3, T4, T5) > (T1, To, —T3, — T4, T5);
(3) by =by =b3 #0, so X is given by
ToT3Ty + ax’ + b2 (Ty + 23 + 14) + 11 (25 + 23 + 25 — 22) =0,
and Aut(X) ~ Cy x &3, generated by 5, 034 and
0934 1 (T1, T2, 3, Ty, T5) > (T1, T3, 4, Ta, T5);
(4) by = by =b3 =0, so X is given by
To3ty + axs + xy (25 + 25 + 2] — 12) =0,
and Aut(X) ~ Cy x &4, generated by s, 034, 0234, L34 and
tog : (T1, Ta, T3, Ty, T5) > (T1, —To, Ty, — T4, T5).

Proof. Permuting the coordinates xs, x3, r4, we may assume that one
of the following four cases hold:

(1) by #0, by # 0, by # 0;
(2) b1:0, bg?éo, b37é0,
(3) b1=0, bQZO, b37é0;
(4) by =0, by =0, b3 =0.

In the first two cases, we may assume b, and bz have the same sign by
changing the signs of two among three variables x5, z3 and 4.

There is a natural homomorphism ¢: Aut(X) — &3 given by the
action of Aut(X) on the planes IT;, Iy, II3. Arguing as in the proof of
Proposition [7.7], we see that an element in the kernel of ¢ is given by

(xh Lo, T3, T4, 1'5) — (xh )\13:27 )\21’3, )\3*%47 )\4:[;5)

for some non-zero A\, Ay, A3, As. Using this, we see that the kernel of ¢
can be described as follows:
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o if by # 0, by # 0, then ker(¢) = (15) =~ Cy,
o if b = bg =0, b3 # 0, then ker(¢) = (15, t23) = C3,
o if by =0y = b3 = 0, then ker(¢) = (15, L23, t24) =~ C5.
Let G = Aut(X). First, assume (2,3) € ¢(G), i.e., there exists an

element o € G swapping the planes II; and II3 and leaving II; invariant.
Then o takes the form

1 0 0 0 O
S1 So 0 0 0
S9 0 0 S10 0
S3 0 S11 0 0

S4 S5 S¢ St S8

for parameters s, ..., s;;. Note that o2 is contained in the kernel of ¢,
which implies that sg = +1. Moreover, we may assume that sg = 1 by
replacing o by o o 5. Furthermore, the fact that o leaves X invariant
imposes relations on the parameters. Solving for the equations, we
obtain solutions

[ J bgzbg, 81:...28720, 8102811289:1,

[ ] bgz—b;g, 81:...287:0, 5102511:—1, 89:1.

Similarly, if (1,2,3) € ¢(G), i.e., there exists an element o € G

translating three planes. As above, we see that o takes the form

1 0 0 0 0

S1 0 0 S9 0

S22 S10 0 0 0

S3 0 S11 0 0

S4 Sp S St 1

In this case, we obtain 4 solutions

0blzbgz—bg,81:...287:0,892811:—1,510:1,
0b1:—bgz—bg,81:...28720,892810:—17811:1,
e by =—by=03, 5=...=5;,=0,8 =1, s190=511 = —1,
.blzbgzbg,81:...25720,89:810:811:1.

Combining these solutions with symmetries, we obtain the result. [

Linearization. Let X be the 6-nodal cubic given by . In this sub-
section we solve the linearizability problem for subgroups in Aut(X),
almost completely. We use notation introduced in the previous subsec-
tion, and let S3 be the cubic surface {z5} N X. Then S; is smooth by
Remark [7.9) which implies:

Lemma 7.12. Let G = (15). Then the G-action on X is linearizable.
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Proof. The surface S5 is pointwise fixed by ¢5, and II; N S3 is a line.
Since S3 is smooth, it contains another line [ disjoint from II; N S5.
Hence, [ is disjoint from II;. Since II; is G-invariant, the G-action is
linearizable by Lemma |1.1] O

Similarly, we prove
Lemma 7.13. Suppose that by = b3 = 0, so X is given by
ToT3T4 + ax’ + bi2i7e + 21 (25 + 75 + 25 — 22) = 0.
Let G = (15, 134) ~ C3. Then the G-action on X is linearizable.

Proof. Note that G leaves invariant the planes II;, Il5, II3. As in the
proof of Lemma [7.12] we see that S3 contains a G-invariant line that is
disjoint from one of these planes. Indeed, if r is a root of r2+b;r+a = 0,
then S3 contains the reducible conic

T5 = Tog — 'Yy zmgm—l—x?;—l—xizo,

and its irreducible components are G-invariant lines disjoint from II,
and II3. Hence, the G-action is linearizable by Lemma [1.1] O

Now, let us discuss nonlinearizable actions. We start with

Lemma 7.14. Suppose that by = bs, and let G = (15,034) = C2. Then
the G-action on X is not linearizable.

Proof. The involution 5 pointwise fixes the G-invariant surface Ss,
while the involution o34 pointwise fixes the cubic curve

C:{$3:$4}ﬂ53C33.

One can check that a singular point on C' is also a singular point of
X. Then C' is necessarily smooth since the six nodes on X are away

from S3. Therefore C' is a genus 1 curve, and by Proposition [2.6], the
G-action is not linearizable. O

Remark 7.15. The same argument shows that the following two G-
actions on X (when they act) are not linearizable:
G = <L5, 0'34L34> ~ 022, and G = <0234, 0’34) ~ 63

In each of the two cases, there is a cubic surface in X fixed by a
subgroup Cy C G and receiving a GG/Cy-residual action which fixes an
elliptic curve. Therefore, Proposition [2.6] is also applicable to these
cases.

Using Proposition [7.11] and Lemma [7.12, we obtain
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Corollary 7.16. The action of Aut(X) on X is linearizable if and
only if Aut(X) = (15).

We proceed to the actions of other subgroups of the full automor-
phism groups from Proposition [7.11]

Lemma 7.17. Let X, C P* be a 6-nodal cubic threefold given by

(7.8) ax? + b(wy + 13 + 24)2] + 21 (05 + 23 + 25 — T2) + Tox374 = 0,

for some b & {0,28}, and let G ~ Cs be a group acting on P* by
(‘rla Xo, T3, T4, I5) — (‘TIJ Xy,T3,T2, I5)'

Then X is G-invariant, and the G-action on X, is not stably lineariz-
able for a very general a € k.

Proof. Fixing b ¢ {0, 28}, consider the family X — A} whose fiber over
a € k is the cubic given by . From Remark , we know that
the generic fiber X, := X, is 6-nodal if a is very general. On the other
hand, the special fiber X, := X, is 9-nodal when € = % —2b — 4 and
the additional 3 nodes have trivial stabilizer.

Now set € = % — 2b — 4. Then the G-action on planes in X, has a

G-orbit of length 3, consisting of three planes
H4 = {562 — 2%1 = (bxl + 2!173 + 2&34 + 21’5) = 0},
II5 = {x3 — 221 = (bxy + 224 + 229 + 2x5) = 0},

HG = {1’4 — 2.%1 = (bxl + 2.T2 + 2]33 + 21‘5) = 0}

Moreover, 114+ 115+ Il is a Cartier divisor on X, then by Remark ,
the G-action on X, is not stably linearizable. Applying Proposition[2.9]
we conclude that the G-action on X, is not stably linearizable for a
very general a € k. O

Lemma 7.18. Let X, C P* be a cubic threefold given by
(7.9) az’ + x1 (3 + 23 + 25 — 12) + T9x374 = 0.
Consider a group G ~ C? acting on P* via

log : (x1, T9, T3, T4, T5) — (T1, —T2, T3, — T4, T5),

L34 : ($1,$2,$37$4,$5) = ($1,$2, —Is3, —$4,$5)-

Then X, is G-invariant, and the G-action on X, is not stably lineariz-
able for a very general a € k.
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Proof. Consider the family X — A! whose fiber over a € k is the cubic
given by . From Remark we know that X, is 6-nodal for a
very general a. On the other hand, the special fiber X/, when a' = —4,
is the Segre cubic with 10 nodes. The G-action on X_,4 leaves invariant
three planes, namely

Hi:{dfl:J]i:O}, 22273,4

The action has an orbit of nodes of length 4 and three orbits of nodes
of length 2. By [24, Section 6], the G-action on X_, does not satisfy
(H1) and is not stably linearizable. Moreover, the four additional
nodes are in one G-orbit, and are BG-rational singularities. Applying
Proposition 2.9} one concludes that a very general member in the family
X is not G-stably linearizable. U

Remark 7.19. The same argument shows that for the same family of
cubics, the action on X, of the group

G = <L5, L230'34> ~ 02 X C4

for a very general a is not stably linearizable. The action specializes
to the unique Cy x Cy-action on the Segre cubic X_4. This action on
X_4 does not satisfy (SP). The four additional nodes have stabilizer
(5, and they are BG-rational singularities, see Example [2.8]

Let us summarize what is left using the notation of Proposition [7.11]

(1) When Aut(X) ~ C2, we are left with (15034) ~ C,
(2) When Aut(X) ~ C3, we are left with 5 groups:

Group | Generators | Orbit of nodes | Orbit of planes
Cs L5034 24242 1+2
Cy 15034034 24242 142
022 L5034, L34 2+4 142
022 L5034, 134034 24242 1+2
022 L5l34,034 24242 142

(3) When Aut(X) ~ Cy x &3 and a, by are very general, we are left
with <L50’34> ~ Cz.
(4) When Aut(X) ~ Cy X Gy, for very general a, we are left with:
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Group | Generators | Orbit of nodes Orbit of planes

Cs L5034 24242 142

03 09234 3+3 3

022 L5034, L34 2—|—4 1+2

Cy 1930734 2+4 142

C3 | 15034, 134034 24242 142

Cﬁ L50234 6 3

S3 L5034, 0234 3+3 3

Dy L5lag, 123034 2+4 1+2
Specialization in Lemma |7.17| does not apply to the second row.

We also note that in each of the remaining cases, the construction in
Lemma does not apply. In particular, every G-invariant line in
these cases intersects with the G-invariant plane (when it exists) at
one point.

8. EIGHT NODES

The 8-nodal cubic threefolds form a two-parameter family, which is
denoted by (J13) in [37]. Let X be one such cubic, and G = Aut(X).
Then C1(X) = Z*, and X contains 5 planes IIy,...,II5 that form a
very special configuration [37]. If py, ..., ps are the nodes of X then

Hl > {p17p27p67p8}7

Iy O {p1, p2, ps, pr},

I3 O {ps, ps, 7, s},

Iy D {ps3, pa, Ps; Ps

115 > {ps, ps, p7, s}
From this configuration, there are two distinguished sets of nodes
(8.1) {p1,p2, 3,0} and  {ps, pe, pr, ps}-

The planes IIy, 15, I3 form one tetrahedron (without a face), and
13, 114, IT5 form another one. In particular, I3 is distinguished, and
must be G-invariant.

Unprojecting from Il3, we obtain a G-equivariant birational map

X-+Xp=0QNnQ CP

to a singular complete intersection of two quadrics @Q and @’ in P® that
are singular along lines. The threefold X5 5 has 4 nodes: ) N Sing((Q)")
and @' N Sing(Q), and G fixes a point in Xy, — the inverse map
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Xa9 --+ X is just a projection from this point. Thus, one could study
the geometry of X using X, as in Section

Standard form. We change the coordinates in P* so that
H3:{Q?4:$5:0}
and
pr=[0:0:0:1:0], p3=1[0:0:0:0:1];

this is possible since the line through p; and ps3 is disjoint from II;.
Changing the variables x, x9, x3, we may assume that

ps=1[1:1:1:0:0], psg=[-1:1:1:0:0],
pr=[1:-1:1:0:0], ps=[1:1:=1:0:0].
This specifies the equations of the planes:
I, = {21 + 23 = 25 = 0},
H2:{$1—$3:$5:O},
I3 = {xy = 25 = 0},
H4:{ZE2—J]3:JZ4:O},
H5:{$C2+£U3:£E4IO}.

A cubic threefold containing I14, . . ., II5 and singular at pq, p3, ps, . . ., Ps
has the form

2 2 2 2
(@221 + @192 + agx3)xaxs + ag(x5 — x7)x4 + ag(x; — x3)xs = 0,
for some ag, ag, ag, a1z, ass. Since X is 8-nodal, we have
ag, ag, a1z, gz # 0.

Scaling coordinates, we may assume that ag = a9 = a1 = 1, and we
let aze = a and ag = b. Thus, X = X, is given by

(8.2) (azy + 29 + bas)r4ws + 14(23 — 22) + 25(23 — 23) = 0,

for parameters a, b, where a # 0. Notice that a and b are defined up

to +1. For very general a and b, (8.2]) defines an 8-nodal cubic with

nodes at pq,...,ps, where p1, ps, ps, . .., psg are described above, and
pp=100:1:0:1:0], and py=[a:0:0:0:1].

For special parameters a and b, (8.2) defines a cubic with additional
singularities, for instance, the Segre cubic, when b =0 and a = 1.
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Automorphisms. Recall that G = Aut(X) and II3 is G-invariant.
Let [15 be the line passing through p; and ps, and l34 the line through
p3 and py. Then the curve ly5 + l34 is G-invariant. On the other hand,
we have a group homomorphism

¢: G — PGL3(k),

arising from the action of G on II3. Since ¢(G) permutes the points
Ds, Pe, D7, Ps, We see that ¢(G) C &, C PGL3(k), permuting the coordi-
nates x1, xa, r3 and changing signs of these variables. Moreover, the set
(l12 + I34) N1I3 is ¢(G)-invariant, which implies that ¢(G) is contained
in ®4 C &4 generated by:

(561,952,553) — (—33279517%3),
(21,22, 23) — (—21, 22, T3).

Lemma 8.1. The kernel ker(¢) of ¢ is nontrivial if and only if b = 0.
Moreover, if b =0, then ker(¢) ~ Cy, generated by

(xlu T2,T3,T4, x5) = ('Il — QT5,T2 — T4,T3, —T4, _.T5).

Proof. An element 7 € ker(¢) preserves Il3, the points pg, pr, ps, Po,
and each line 15 and l34. Moreover, since 7 leaves the subsets {pi, p2}
{ps, ps} invariant, we have the following three possibilities:

(1) 7(p1) = 7(p1), T(p2) = 7(p2), T(p3) = T(pa), T(ps) = T(p3),
(2) T(p1) = 7(p2), T(p2) = T(;), T(p3) = 7(p3), T(pa) = T(pa),
(3) 7(p1) = 7(p2), T(p2) = 7(p1), 7(p3) = 7(pa), T(ps) = 7(p3)-

These impose linear conditions on 7. Solving them, we see that 7 is
one of the following linear transformations:

(1) (21,2, T3, T4, x5) — (T1, T — Ty, T3, —Ty, Ts5),
(2) (w1, 29,23, 4, 25) — (—aT5 + 1, Ta, T3, Ty, —T5)
(3) (w1, 29, 3,24, 5) — (T1 — a5, Ty — Ty, Ty, —Ty, —T5).

However, (8.2) must be preserved by 7, which implies that only the
third case is possible, and only in the case when b = 0. O

We are ready to classify all possibilities for G = Aut(X).
Proposition 8.2. Let X C P* be an 8-nodal cubic threefold given by
(azy + Ty + bxs)waws + 2425 — 27) + 25(05 — 25) =0

and G = Aut(X). Then one of the following holds:
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e b#0 and a # +1, G =~ C% = (11,12), generated by
1y : (21, @9, T3, 4, T5) — (ax5 — X1, Ta, T3, Ty, Ts),
Lot (21, X9, T3, 4, T5) > (T, T4 — Ta, T3, Ty, Ts);

e b=#£0 and a =+1, G~ Dy, generated by 15 and
o1 : (21, T9, 3, T4, T5) > (£X9, T5 F 21, X3, T5, T4);

e b=0, a# +i, G~C3, generated by 1y, 1o and

T (21, T, T3, X4, T5) — (T — ax5, Tg — Ty, T3, —Ty, —T5);

e b=0,a==i, G~ Cy.D,4~C?xCy, generated by 7,15 and

o9 (71, X9, T3, Tq, T5) > (Fro, £, T3,1T5,114).

Proof. Observe that G always contains ¢; and iy, and (11, 15) = C3,
which shows that ¢(G) is at least C. Moreover, if b = 0, then it follows
from Lemma [8.1] that G also contains the involution 7, so together the
involutions ¢y, 1o, T generate a subgroup Cj in this case. If ¢(G) ~ C3,
this gives us all possibilities for G. To complete the proof, we have to
find all @ and b such that ¢(G) ~ ©,4, and describe G in these cases.
This can be done explicitly.
If ¢(G) ~ Dy, then G contains a o such that ¢(o) is given by

(w1, 22, 23) = (22, —21, T3),
which implies that o is given by the matrix

0O -1 0 0 O

1 0 0 0 S95
0O 0 1 0 O
S14 0 0 0 S54
0 S925 0 S45 0

for some s14, So5, S45, S54. Since o preserves (8.2), we obtain constraints
on these entries, which result in the following possibilities:

(1) a=1,514=0, 595 =1, 545 =1, 554 = 1;

(2) a=—1, 514 =—1, 595 =0, 545 =1, 554 = 1;
(3) b=0,a=—i, 514 =0, 95 =0, 845 =1, S54 = 1;
(4) b:O,a:i, 814:—1, 825:i, 845:i, S54Zi.

Using them, we obtain all possibilities for G listed above. O
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Cohomology. Let X — X be the standard resolution, let Ei, ..., Eg
be exceptional divisors over pi, ..., ps, and let II;, ... II; be the strict
transforms of the planes Iy, ..., IT5 on X, respectively. Then Pic(X) is
generated by Ey,..., Eg,Il,... II5. These are subject to the relation
ﬁ1+ﬁ2—ﬁ4—ﬁ5:E1+E2—E3—E4.

Notice that this presentation of the lattice Pic(X) is independent of the
equation of the cubic threefold X. To compute the (H1)-obstruction

on Pic(X), for generality, we may work with the maximal symmetry
group appearing in Proposition Let G = C3x(Cy, as defined above.
Then G acts on nodes via permutation of indices

7:(1,2)(3,4),

111 (3,4)(5,6)(7,8),

12 :(1,2)(5,7)(6,8),

o9 :(1,3)(2,4)(5,7,8,6).
There is a unique (conjugacy class of) Cy = (1119) contributing to

H!(Cy, Pic(X)) = Z/2.
Indeed, this Cy acts on nodes via the permutation of indices

(1,2)(3,4)(5,8)(6,7).
Under the basis
I, — Iy — By + Ey, 1Ly, ..., 105, B, . .., Es,

one can see that Cy acts on II; — II5 — Ey + E4 by —1, and on the rest
as a permutation module.

Note that this Cy is contained in Aut(X) = C% for generic X in
Proposition [8.2] i.e., when b # 0 and a # +1.

Linearization. Let X be an 8-nodal cubic threefold. The classifica-
tion in Proposition [8.2] implies:

e b#0and a # +1: a subgroup of Aut(X) ~ C73 is linearizable
if and only if it fixes a singular point; otherwise, it fails (H1).

e b #0 and a = £1: a subgroup of Aut(X) ~ ®, is linearizable
if and only if it fixes a singular point; otherwise, it fails (H1).

e b =0 and a # +i: Excluding subgroups failing (H1) or with a
fixed singular point, we are left with the following (classes of)
subgroups
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(1) €3 =((3,4)(5,7)(6,8), (1,2)(3,4)), acting via

(xla X2, T3, T4, 1'5) — (xl + ix57 —X2, T3, —T4, —ZC5>,

(1, T, T3, T4, T5) — (1 + ix5, Ty — Ty, T3, —Ty, —T5).
(2) C3 = (11, 7) = ((3,4)(5,6)(7,8), (1,2)(3,4)), acting via

(x17x27x37x47x5) — (_xl - i$5,x2,x3,$4,x5),

(1, T, T3, T4, T5) — (1 + ix5, To — Ty, T3, —Ty, —T5).

e b =0 and a = +i: Excluding groups with an (H1)-obstruction
or with a fixed singular point, we are left with
(1) €3 =((3,4)(5,6)(7,8), (1,2)(3,4)), acting via

($17I27x3,$47x5) — (_'/'Ul - i$5,$2,x3,$4,x5)7

(z1, T2, 3, x4, x5) — (21 + iT5, o — T4, T3, — T4, —Ts5),
(2) Cy =((1,3)(2,4)(5,7,8,6)), acting via
(371,1’2,1‘3,1‘4,335) — (I‘Q, _.Tl,xg,ixf,,iﬂf;l).

We turn to linearization constructions for subgroups unobstructed
by cohomology and not fixing singular points. Consider the maximal
symmetry group, in the case b = 0 and a = +i. We have two unob-
structed cases:

o G = C37 = {((3,4)(5,6)(7,8),(1,2)(3,4)). The group G swaps
the planes II; and II, and preserves 114 and II5. The line passing
through p; and p, is a G-invariant line disjoint from II,. Then
the G-action on X is linearizable by Lemma [1.1]

e G =Cy = ((1,3)(2,4)(5,7,8,6)). In this case, G swaps the
planes ITy,II; and swaps Il4, II5. But Il3 is G-invariant. The
line passing through p; and ps is a G-invariant line disjoint from
[13. The G-action on X is linearizable by Lemma [1.1}

Note that the constructions above only depend on the group actions on
singular points and planes. One can also establish the same lineariza-
tion results for the two unobstructed Cj in the case when b = 0 and
a # £i. We summarize this section by:

Corollary 8.3. Let X be an 8-nodal cubic threefold and G C Aut(X).
The G-action on X is linearizable if and only if it satisfies (H1), if
and only if G does not contain a subgroup isomorphic to Cy which does
not fix any nodes of X ; in particular, if it is not linearizable then it is
not stably linearizable.
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9. NINE NODES

Standard form. We follow [52]: 9-nodal cubic threefolds X, are given
in P° by equations

T1ToT3 — D450 = a(x) + To + T3) F 24 + 5+ 16 =0, a® #0,—1.
Their automorphisms depend on the parameter a as follows:

Aut(X,) = &3 when a® # 1,
“ G% x Cy otherwise.

These groups act via G3-permutations of two sets of coordinates: x1, xs, x3,
and x4, rs5, xg. When a = 1, the additional Cy switches x; <> w3y, i =
1,2, 3. In both cases, the 9 nodes are given by

{xil = Tiy = Tjy = Tjp = 0, Tjy +aTiy = 0}7

where
il%ig%i3€{1,2,3}, jl 7&]2#]36{475%6}

There are also 9 distinguished planes, given by
I ={z; =234, =0} NX, 14,je{l,23}
The G-action on X, fixes a singular point if and only if G is a 2-group.
Fixed point obstruction. Let G = C? be the group generated by
(21, o, T3, T4, T5, Tg) —> (T3, X1, To, Ta, Ty, T),

($1,$2,m3,$4,$5,$6) — ($1,I’2,x3,$6,$4,$5).
Then X& = (), for all a such that a® # 0,—1. By Lemma the
G-action on X is not linearizable.

Cohomology. Let Xa — X, be the blowup of X, at 9 nodes. Then
Pic(X,) is generated by E;,i = 1,...,9, the exceptional divisors over
the 9 nodes, the pullbacks ﬁ” of 1I; ;, and H, the pullback of the
hyperplane section. They are subject to relations

H:ﬁ1,1+ﬁ1,2+ﬁ1,3+E2+E3+E5+E6+E8+E9,
H:ﬁ171+ﬁ271+ﬁ3,1—|—E1+E2—|—E3+E4—|—E5+E6,
H:ﬁ1,2+ﬁ2,2+ﬁ3,2+E1+E2+E3+E7+E8+E9,
H:ﬁ173+ﬁ2,3+ﬁ3,3+E4+E5+E6+E7+E8+E9a
H:ﬁ2,1+ﬁ2,2+ﬁ2,3+E1+E3+E4+E6+E7+E9,
H=10; + 15+ 133+ Ey + By + Ey + Es + Er + Es.
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When a® # 1, computation yields two minimal classes of groups con-
tributing to nonvanishing cohomology:

HY(G', Pic(X,)) = Z/3,
for G' = C3 = ((1,2,3)) or ((4,5,6)), realized as permutations of in-
dices of the coordinates. When a = 1, these two classes of C3 are
conjugate in Aut(X7), and thus we found a unique class of groups con-
tributing to nonvanishing cohomology:

HY(G', Pic(X,)) = Z/3,
for G = C3 = ((1,2,3)). Any subgroup of Aut(X,) containing those
classes has (H1)-obstructions to stable linearizability.

Remark 9.1. One can characterize geometrically the Cs3-action con-
tributing to (H1)-obstructions as follows: let X, be a 9-nodal cubic
threefold, and G = C5 C Aut(X,). Then the G-action on X, does not
satisfy (H1) if and only if there exists a G-orbit of planes of length 3,
which forms a Cartier divisor.

Excluding G C Aut(X,) with (H1)-obstruction or with G-fixed sin-
gular points, one is left with

e When a® = 1, the unobstructed groups are
(91) 33(376376?376%576’37

where Dg acts on {z1,xs, 23} and {x4, x5, 26} via diagonal S;
permutations and Cy swapping them, i.e., x; <> x3.;,7 = 1,2, 3.
The other groups are all subgroups of Dg.
e When a® # 1, we are left with
63 and 03,

where &3 is the diagonal permutation and C'5 its subgroup.
Next, we show that the actions of these unobstructed groups on X, are
equivariantly birational to actions on a smooth quadric threefold. In
particular, the actions of cyclic groups C3 and Cg are linearizable.
Linearization. Consider the family of degree (1,1) divisors in (P?)?

Wy CP; e P2 .., beC\{0,-1,¢, G,
given by
(—t122 + t22’1> + b(—t122 + t323) = O,

with a G = G3-action generated by

L:ity > 29, To 21, 134> 23
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and

oty Cly, tar Cla, 2 Czr, 2 oo
Let p1,p2, p3 € Wy, be the points
Lol x[1:1:1], [C:C:1)x[¢:¢*:1], [¢2:¢C:1]x][¢?:¢:1],
where ( = e’ . Note that {p1,p2,p3} forms one G-orbit. The linear
system

‘H_pl — P2 —p3’

consisting of hyperplanes on P* containing points p;,p, and ps has

projective dimension 4. Under a chosen basis, it gives a birational map
to a 9-nodal cubic hypersurface Y;, C P*, with equation

2 2 2 2 b
Y1Y2Y3 + Y1Ys — YoYa + Y2Yy — Y1Ys5 — b1

b b

Y1Ysya+

3
_ _ =0
+ b+ 1)2y3 I 1y2y3y5 bt 1y3y4y5
Up to a change of variables by
2 —Cb+¢ =41
1 g C b;<2 b5§2
2 —b+¢  =C7b+1
<b}<2 <b€<2 <b€<2 Gte Gie
(b1 v w5 v ws)- brl bl bl b1 brl |

¢ 1 Cz —C2b+1  —(b4C?
b o
¢ ¢ 1 P B

Y} is G-isomorphic to

b—¢2\°
{y192y3+ Notays (1 +y2+ys+ya+ys) = 0} TP Ay = — ( C ) ;

ie.,
X, = {210913 — 2475706 = a(xy + 29 + T3) + 14 + 25 + 16 = 0} C P,
where

b— ?
=
The G-action on X, is given by the diagonal permutation of coordinates
x1, To, 3 and x4, o5, ¥g. When b # 0, —1,¢, (2, ie., a®> # —1,0, one sees
that W} (and thus X,) is G-equivariantly birational to

(92) Qb = {(b + 1)t122 — thl + b22 = O} C IP)4

t1,t2,21,22,2)

a =
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realized as the equivariant compactification of the affine chart of W,
given by
{t3 7& 07Z3 7é 0} C Wba

with the natural action of ¢ and o (acting trivially on z).

When a® =1, ie. b=1,—2 or —3, there is extra symmetry on W,
and )y. For example, when b = —%, Wy and Q) are invariant under
the additional involution

T:t1 < to, 21 & 29.

The group G’ = (1,0, 7) is isomorphic to ®g. The corresponding G'-
action on X is generated by the diagonal G3-permutation and by swap-
ping two sets of coordinates {z1,zs,x3} and {xy, x5, 26}. We do not
know whether or not this action is linearizable.

Corollary 9.2. Let X, be a 9-nodal cubic threefold as above. The
Cs-action on X, via permutation of coordinates

(Il, Xo,T3,Ty4,Ts, l’6) — ($3, X1,T9,Tg, Tyq, LL’5)

is linearizable for all a® # 0,1. When a = 1, the Cg-action on X, via
(Ih X9, T3, Ty, Ts, .176) — (ZL’6, Ty,Ts5,T3,T1, (L’Q).

18 linearizable.

Proof. By constructions above, these actions are equivariantly bira-
tional to actions on the corresponding smooth quadric @)y, necessarily
with fixed points. Projection from a fixed point on @), gives lineariza-
tions. U

Birational rigidity. Let X be the 9-nodal cubic threefold in P* C P®
given by

T1ToT3 — T4TsTg = T1 + To + T3 + T4 + T5 + 26 = 0,

and let G = Aut(X) = &2 x Cy. We claim that X is G-birationally
super-rigid. We start with several preliminary results.

Lemma 9.3. If ¥ is a G-orbit in X of length < 12, then |X| € {6,9}.
Proof. Left to the reader. O

Set
S:{x1+$2+x3—x4—x5—x6}ﬂX.



EQUIVARIANT GEOMETRY OF CUBIC THREEFOLDS 61

Then S is the unique G-invariant hyperplane section of X. Moreover,
the cubic surface S is smooth, and G acts faithfully on it. This implies
that S is isomorphic to the Fermat cubic surface [35, [36]. Consider

the pair (S, AD) is log canonical for every
ag(S) =supq A€ Q :

effective G-invariant Q-divisor D ~g —Kg
Lemma 9.4 (cf. [16, 25]). One has ag(S) = 2.

Proof. One can check that Pic®(S) = Z[~Kg]. Note that the group
G is missed in [36, Theorem 6.14]. Note also that the linear system

| — Kg| does not contain G-invariant divisors, but | — 2Kg| contains
a G-invariant divisor. Applying Lemma and [16, Lemma 5.1], we
obtain ag(S) = 2. O

Lemma 9.5. Let C' C X be a G-irreducible curve of degree < 12. Then
ccs.

Proof. Assume C' ¢ S. Set d = deg(C). Intersecting C' with S, we
immediately obtain d = 6 or d = 9, by Lemma [9.3] Moreover, we also
see that

1SNC| = d,

so that C'is smooth at every point in SNC', and S intersects C' transver-
sally. Hence, if C' is irreducible and C' ¢ S, then G acts faithfully on C,
which implies that the stabilizer of any point in C'N S is cyclic, which
is impossible, since G does not have cyclic subgroups of index 6 and 9.

To complete the proof, we may assume that C' is reducible. Let r be
the number of its irreducible components. Write

C=Ci+ 40

where each C; is an irreducible component of C. Set d; = deg(Cy),
and let H; be the stabilizer of the component C in G. Then d = d;r,
and, since GG does not have subgroups of index 3, we have one of the
following cases:

(1) dzg,TIQ, dlzl, H12®4,

(2) d=6,r=6,d, =1, H ~ Dy,

(3)d=6,r=2,d;, =3, H ~ &3 or H ~C?xCj.
We exclude these cases one by one. In Case (1), there is a unique

class of subgroups isomorphic to D4, and the ®4-linear representation
decomposes as

PIox*aV),
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i.e., a sum of the trivial representation I, two copies of a nontrivial
1-dimensional subrepresentation x, and an irreducible 2-dimensional
representation V. By Schur’s lemma, V' is the unique irreducible 2-
dimensional representation in the ambient space of X. The projec-
tivization P(V') defines an invariant line contained in S,

l:{x1+x2:x3:x5:0}CS.

The plane P(I® x?) C P* intersects X along an irreducible cubic curve,
and contains no line. It follows that [ is the only Hi-invariant line in
X and thus C' C S.

In Case (2), there are two classes of subgroups isomorphic to Dg. In
one class, the Dg-linear representation is

PPexaV),

i.e., the sum of two copies of the trivial 1-dimensional representation
I, a nontrivial 1-dimensional representation x and an irreducible 2-
dimensional representation V. Again, V is the unique irreducible 2-
dimensional representation. But in this case, the line P(V') is not con-
tained in X. And the plane P(I? @ x) intersects X along an irreducible
cubic curve. Therefore, there is no Hi-invariant line. The other class
of D¢ decomposes as representation as

P(ix e Vi W),

i.e., the sum of a nontrivial 1-dimensional representation y and two
nonisomorphic irreducible 2-dimensional representations Vi and V5.
Here, P(V;) defines a line contained in S:

l:{xl—x4:x2—x4:x3+x4+x5:0}CS,

while P(13) is not contained in X. In this case, we also have C' C S.
In Case (3), suppose that d = 6, r = 2, d; = 3. Then the hyperplane

{x1+x2+x3+x4+x5+x620}

is the unique H;i-invariant hyperplane, and every Hi-invariant plane in
P4 is contained in this hyperplane. This implies that C' C S. O

Theorem 9.6. The Fano threefold X is G-birationally super-rigid.

Proof. Suppose that X is not G-birationally super-rigid. Then it fol-
lows from the equivariant version of the Noether—Fano inequality [23]
that there exists a G-invariant non-empty mobile linear system M on
X such that the singularities of the log pair (X, AM) are not canonical
for A € Qs such that AM ~g —Kx. We seek a contradiction.
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First, we claim that the singularities of the log pair (X, AM) are
canonical away from finitely many points. Indeed, if this is not the
case, then there exists a G-irreducible curve C' C X such that

multo (./\/l) > %,
which immediately implies that the degree of C' is less than 12, which
implies that C' C S by Lemma[9.5] so that the log pair (S, AM|g) is not
log canonical, which contradicts Lemma , since AM|g ~g —2K5.

Next, we claim that the log pair (X, A\M) is canonical at every sin-
gular point of X. Indeed, let f: X — X be the blow up of all singular
points of X, let Fy,..., Ey be the f-exceptional surfaces, let M be the

strict transform on X of the linear system M, and let M be a general
surface in M. Then, since Sing(X) forms one G-orbit, we have

9
AM ~Q f*(—KX) _ain7
=1

for some integer a > 1, by [26, Theorem 1.7.20] or [32, Theorem 3.10].
Recall that X contains 9 planes

IL; = {z; =0,23,; = 0} C P,
and each of them contains four singular points of X. Let II be one of

the planes, Cy a general conic in II that contains II N Sing(X ), and Chy
its strict transform on X. Then Cy ¢ M, so that

9
=1

9
:4—aZEi'62:4—4a<0,
=1

which is absurd.

Let P be a point in X such that the log pair (X, AM) is not canonical
at P. Then (X, AM) is canonical in a punctured neighborhood of P,
and it follows from [21, Remark 3.6] that the log pair (X, 2M) is not
log canonical at P. Arguing as in the proof of [21, Proposition 3.5], we
obtain a contradiction. ([l
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