RATIONALITY OF FORMS OF M,
BRENDAN HASSETT, YURI TSCHINKEL, AND ZHIJIA ZHANG

ABSTRACT. We study equivariant geometry and rationality of mod-
uli spaces of points on the projective line, for twists associated with
permutations of the points.

1. INTRODUCTION

In this note, we strengthen a theorem of Florence-Reichstein [FR18|
concerning rationality of moduli spaces. They consider forms of Mo,n,
i.e., varieties over nonclosed fields F' which are isomorphic to the moduli
space of n points on P! over an algebraic closure of F. These forms are
obtained by twisting via Galois actions permuting the points over F.
The main results of [FR18]| are:

e if n > 5 is odd, and F' is infinite of characteristic # 2, then
every form over F' is rational;

e if n > 6 is even, and F has nontrivial 2-torsion in its Brauer
group and contains fourth roots of unity, then there exists a

form X of Mo,n over F' such that X is not retract rational over
F.

These were inspired by a classical theorem of Enriques, Manin, and
Swinnerton-Dyer concerning rationality of twists of ﬂ%, a del Pezzo
surface of degree 5, over any field F. The proof for n > 5 uses (a twisted
form of) the Gelfand-MacPherson correspondence, and techniques de-
veloped in connection with Noether’s problem for twisted forms of the
groups in question.

By [FR18], every form over an infinite field F' is unirational over
F. 1t is known that every form of Moﬁ over R is rational [Avi20,
Proposition 2.9]; see Corollary 21 for generalizations.

Here, we strengthen their conclusions in two directions: we prove
rationality in several situations not addressed in [FR18]. On the other
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hand, we show failure of rationality via Galois cohomology in instances
not covered by [FR18], e.g., where the Brauer group of F is trivial.
An important ingredient throughout is a theorem of [BM13]:

Aut(Mo,) =6, n>5,

acting via permutations of the n points on P!. In particular, Galois
twists of Mg, factor through subgroups of &,, and there is a close
link between rationality of twists and linearizability of G-actions on
Mo; see [DR15] for a general discussion of such connections. In both
situations, there is an action of a finite group on the geometric Picard
group

PiC(ﬂo,n),

via a subgroup of G,,.

We present several stable rationality and linearizability results, in-
cluding Propositions 3 and 5 (based on the Kapranov construction) and
Theorem 24 (using torsors and quotients). Section 3 focuses on geomet-
ric constructions. One rationality construction uses Schubert calculus
and the geometry of Grassmannians; Theorem 14 extends results of
[FR18] to small fields (Corollary 16) and some point configurations in
higher-dimensional projective spaces (Corollary 17). Another relies on
fibration structures; see Theorem 20. We close with a comprehensive
discussion of the n = 6 case (Theorem 34).

For nonrationality /nonlinearizability, we focus on situations where
the twisted moduli spaces are toric via the Losev-Manin construction
[LMO00]. We utilize cohomological (H1) and (SP)-obstructions (see
Section 5): In the arithmetic context, the group is replaced by the
absolute Galois group of the ground field F' and the Picard module by
the geometric Picard module. We focus on even n:

Theorem 1 (Corollary 29 and Theorem 30). For every even n > 6
there exists a subgroup G = C3 C &,, such that

HY(G, Pic(My,)) = Z/2.

In particular,

o for all subgroups of &, containing G, the corresponding action
18 not stably linearizable,

e for all fields F admitting a Galois extension L/F with Galois
group Gal(L/F) ~ G there exists a form X of My, over F
such that X s not retract rational over F'.
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Indeed, nonvanishing group cohomology is an obstruction to (sta-
ble) linearizability, see, e.g., [BP13, Corollary 2.5.2.]. In the context
of nonclosed fields, one can find a twist X of My, over F so that the
corresponding Galois action on the geometric Picard group of X fac-
tors through the prescribed action of (G. This yields nontrivial Galois
cohomology, which in turn obstructs retract rationality of X over F.
In particular, our result applies to fields F' with trivial Brauer group,

e.g., F'=C(t).

Remark 2. Florence and Reichstein have pointed out that the proof
of [FR18, Theorem 1.2(b)] — giving forms of M, that are not retract
rational — implicitly assumes that the base field contains fourth roots of
unity. These are needed to harmonize sign choices in the quaternion al-
gebras constructed in [FR18, Section 7]. Indeed, the field R has Brauer
group Z/27 but real forms of M, are rational (see Corollary 21).

Acknowledgments: The first author was partially supported by Si-
mons Foundation Award 546235 and NSF grant 1929284 and the sec-
ond author was partially supported by NSF grant 2301983. We are
grateful to Mathieu Florence, Barry Mazur, and Zinovy Reichstein for
comments on this paper and its results.

2. 6,,-EQUIVARIANT GEOMETRY

We recall some terminology: Let G be a finite group acting regu-
larly on a projective variety X. Assume the action is generically free.
The action is linearizable if X is equivariantly birational to the projec-
tivization P(V') of a linear representation V' of G on a vector space. It
is stably linearizable it X x P" — where G acts trivially on the second
factor — is linearizable. By the No-Name Lemma, this is equivalent to
saying that X x V is linearizable for some linear representation V' of
G, or that the total space of a G-equivariant vector bundle £ — X is
linearizable.

Stable linearizability and stable rationality of forms are tightly linked
[DR15, Theorem 1.1(d)]: A G-action on X is stably linearizable over
F' if and only if for every infinite field K/F and every form of X over
K obtained via twisting by the G-action, the resulting variety is stably
rational.

Kapranov blowup. We make use of the Kapranov blowup realization
B Mon — P73 n>4,
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where 3, is an iterated blowup of n — 1 general points on P"3, lines
through pairs of points, etc., see, e.g., [HT02, Section 3.1]. Precisely,
we regard

P3 = P(k[&,1]/(1,...,1)),

so that the &,,_;-action is linear. Boundary divisors D; are labeled by
partitions

[1,....,n]=1UT° |I,|I°>2.

Recall that the Picard group Pic(My,) has rank 2"~ — (1) — 1, and
an explicit basis is given by

{H7 Eiu Eil,i27 <. 7Ei1,~~~,in74}7

where H is the (pullback of the) hyperplane class on P"~3 and the
other elements are (classes of) exceptional divisors from blowups of
points, lines, etc. The boundary divisors D; expressed in this basis are

Dil,...,ik,n == Eil,...,ik> {7’177Zk} C {17"'777’_ 1}7 k S 7’L—4,
and

Dy ipoam)=H—E;) —Ey,—...— E;y .., — E;

n—4 2,0ein—3"

The &,-action on Pic(My,,) is best understood in terms of the nat-
ural &,,-action on the boundary divisors via permutations of indices
of D;. In particular, there is a distinguished &,,_; C &,, acting via
permutation of indices on E;, for i € {1,...,n — 1}.

The Kapranov construction has applications to linearizability:

Proposition 3. Suppose that G C &,,_1 acts on Mo,n leaving the nth
point invariant. Then the action of G is linearizable.

Forn =2m+ 1 and G C Sy,,41, the G-action on Mo,n 15 stably
linearizable.

More generally, for G C &,, leaving an odd cycle invariant, the G-
action on Ho,n 1s stably linearizable.

Proof. The first assertion reflects the fact that the Kapranov morphism
By is &,,_1 invariant and the &,,_;-action on P"~3 is linear. The second
assertion is a special case of the third. For the third statement, consider
the universal curve

CD,n — MO,n-
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Lemma 4. Let G C &, act on My, by permutation of the marked
points. Then there is a canonical lift of the action to the universal
curve

¢ : EO,n — Mom.
We prove the lemma. Interpreting EM = MOWH, we have
Aut(Co,p) = Gt D 6, — Aut(Mo ),

with the last inclusion an equality when n > 5. The induced action on
Aut(Cy,,) is equivariant under forgetting the (n + 1)st point.
Returning to the Proposition, we assume that G leaves an odd cycle
invariant. Then the forgetting morphism ¢ — an étale P!-bundle over
My, — admits a multisection of odd degree. It must therefore be the
projectivization of a rank-two G-equivariant vector bundle over M ,.
However, we have already seen that the G-action on EO,n = M(),rH_l is
linearizable. We conclude then that ﬂom is stably linearizable. O

A similar argument yields dividends for the Galois-theoretic ques-
tion:

Proposition 5. Let L/F be a Galois extension with Galois group T.
Fiz a representation
p:I'— G,
and let Pﬂo,n denote the corresponding twist ofﬂo,n defined over F.
e If p factors through an &,,_1 C &,, then pﬂom s rational over
F

e If n is odd then P! x My, is rational. The same holds if p
leaves an odd cycle invariant.

This gives a weaker version of [FR18, Theorem 1.2]; however, our
statement is valid over a finite field as well. See Remark 22 below for
a related result.

Proof. The Kapranov morphism 3 : My, — P"~? is equivariant for
&,,—1, which acts linearly on the target. Thus it descends to

Mo = P73

over I, proving rationality. For the second assertion, the Kapranov
construction yields
PCooms1 — P71
moreover
PCoom+1 — P Mo om+1
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is a P!-bundle over a Zariski open subspace of the base. (The generic
fiber is a smooth genus zero curve with a cycle of odd degree.) In
particular, P! X Mg o471 is rational over F. O

Example 6. Let &, act on Mo,n, for n > 5. This action is not
linearizable since &,, does not act linearly and generically freely on
P"—3. Indeed, the smallest faithful representation of &,, has dimension
n — 1. When n = p is a prime, then even the action of the Frobenius
subgroup §, = Aff(F,) C 6, is not linearizable, for the same reason.

The Losev-Manin construction. This construction [LMO00], [Has03,
Section 6.4] is a distinguished factorization

By Moy — Ly — P73

where we blow up linear subspaces spanned by just (n_ — 2) points in
linear general position. (Note that our indexing of L, differs from
[LMO0O].) The first arrow contracts the boundary divisors

Dil,...,ik,(n—l),na {7;17 cee 72k} C {17 cee,— 2}7 k S n— 57
by allowing points indexed by

{1,...,n =23\ {i, ... i}

to coincide.
We record some properties:
e [, is toric [LMOO, Section 2.6];
e the Losev-Manin construction is equivariant under &,,_o xSy C
S, realized as permutations of {1,...,n — 2} and {n — 1,n}
[LMO0O0, Theorem 2.5(b)].
The constructions of Losev-Manin give an explicit realization of the
torus T and its character module X*(T). Let P denote the permutation
module for &,,_5 associated with the first n — 2 letters and L the non-
trivial rank-one module for &5 corresponding to n—1 and n. We regard
these as modules for &,,_» x G,. Consider the short exact sequence

0—-F—>P—>7Z—0
associated with summing over the n — 2 letters. Then we have
(2.1) X(T)=L®hK.

Indeed, we may describe the open torus orbit in L,, in geometric terms:
We identify the points n—1 and n as 0 and oo and the first n— 2 points
as elements of

Hom(P,P*\ {0, 00}) = Hom(P, Ty),
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where T is the rank-one torus associated with L. To get moduli, we
quotient out by the diagonal action of T,.

We record one last observation: Consider the Kapranov blowups
associated with points n — 1 and n:

ﬂn[n - 1]7 Bn[n] : Mo,n — Pnig-
These two maps are related by an elementary Cremona transformation
Cr:pr3 -5 prd

associated with the points indexed by {1,...,n—2}. This is equivariant
for the T-actions and we obtain a birational contraction

L,, — Graph(Cr).
We summarize this as follows:

Proposition 7. Consider a twist of Mom associated with a subgroup
of &, leaving a pair of points invariant. This variety is necessarily
toric, realized as a twist of the Losev-Manin space.

This applies in both equivariant and Galois-theoretic situations.

The Gelfand-MacPherson correspondence. Our main source is
Kapranov [Kap93].

Let Mat(2,n) denote the 2 X n matrices. The group GLs acts via
multiplication from the left

A-M— AM
and the torus T = GJ,, acts via multiplication from the right
M-T— MT, T=diag(ty,...,t,).
Considering the action by the product GLs x G}, with the elements
(t_l I, diag(t,t, . .. ,t))
in the kernel, we obtain a faithful action of the quotient group
(GLy x G) /Gy,
We have an exact sequence
1 = pg — SLy x G, — (GLy x G1) /G, — 1,

where
Ho = (-IQ, dlag(—l, —1, e —1)) .
The invariant theory quotient is

SLy\Mat(2,n) = CGr(2,n),
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the cone over the Grassmannian Gr(2,n) in its Pliicker imbedding. The
residual action of G, on this cone has generic stabilizer po; the action
on the Grassmannian has generic stabilizer G,, = diag(t,t,...,t). On
the other hand, the geometric invariant theory quotient

Mat(2,n)//Gp, G, = diag(t,t, ... 1)

yields (P')™ with factors induced by the columns of the matrix. The
residual SLs acts on this product with the distinguished linearization
introduced above, which is &,-symmetric. Again, this action fails to
be faithful, as pus C SLg acts trivially.

The Gelfand-MacPherson construction yields isomorphisms
(2.2) (CGr(2,n) \ {0}) /Gy, — SLy\\(P')",

where both sides are interpreted as GIT quotients [Kap93, 2.4.7]. Note
that we have numerous choices for how to linearize the actions on the
left- and right-hand sides, reflecting linearizations of the torus action
and ample line bundles on the product; Kapranov’s result makes clear
how to identify these choices. Let X,, denote the quotient arising from
the &,,-symmetric linearization.

Recall that the stable and strictly semistable loci on (P)" are easily
identified

(2.3) (p1,-...,pn) stable if there is no point with multiplicity > g

It is semistable if all points have multiplicity < 7. For odd n, stable
and semistable coincide; for even n = 2m, collections of points where
m indices coincide are strictly semistable, with closed orbits consisting
of collections where

Diy = = Dins Dimir =" = Digms L0155 0om} = {1,...,2m}.

In particular, Xy,,,m > 3 has %(27;”) distinguished singular points over
which the orbits are identified.

The stable loci on the Grassmannian Gr(2,n) for the action of G}, N
SL, may be described as well: Choose a basis diagonalizing the torus
action and let (A4;;),1 < ¢ < j < n denote the associated Pliicker
coordinates. The point (A;;) is stable if there are

(1) no index ¢ with A;; = 0 for every j; and

(2) no subset I C {1,...,n} with [I| > § and A;; = 0 for all
e
i,j €l
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These descriptions yield an &,,-equivariant stratified blowup [Kap93,
0.4.3,4.1.8]

6 : ﬂovn — Xn.

This blows down all the boundary divisors D; except those where |I|
or [I¢] = 2. The divisors D; with 2|I| = n are collapsed to the distin-
guished singular points ¥ C Xy, where m = |I| and n = 2m.

The Gelfand-MacPherson construction is a powerful tool for com-
puting class groups. The induced homomorphism

(2.4) B, : Pic(My,,) = Cl(My,,) — CI(X,,)

is surjective because 3 is a fibration away from the distinguished sin-
gular points. Thus we get an exact sequence

(2.5) 0—+N-—=>M-—=>Q—0,
where
N =ker(B,), M = Pic(My,).

In particular, N is generated by the D; where |I],|I¢] # 2. We can
easily compute @) is well. Write

X(Gy,) = Zg + - + Lgn,
so the quotient acting faithfully on the CGr(2,n) has characters

{Z a;g; : a; € Z, Zai =0 (mod 2)}.

These give rise to line bundles on X, \ ¥ and divisor classes on the full
space. Thus we deduce that

Q C Z[Gn/6n—1]

as an index-two subgroup. Note that the element g;, + ¢i,,71 # i2
corresponds to the boundary divisor D; ;,; indeed, this locus is cut out
by the 2 x 2 determinant on P}, x P} . Since @ is an index-two subgroup
of a permutation module, we have

(26)  HY(G,Q)=0o0rZ/2Z and H' (G, M) =0 or Z/2Z.
When n is odd, i.e., n = 2m + 1, then X5, is nonsingular,
PiC(XQWH—l) == CI(X2m+1)7

and [ is the iteration of a sequence of blowups along smooth disjoint
centers. Precisely, we blow up the strata where m points coincide, then
where m — 1 points coincide, etc. (see [Has03, §8]); this is naturally
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equivariant under the s, 1-action. By the blowup formula [Ful98,
Prop. 6.7], we have

Pic(m0,2m+1) =Pic(Xom+1) @ {free group on the exceptional divisors}.
We summarize this in algebraic terms:

Proposition 8. For odd n = 2m + 1, the exact sequence (2.5) splits
Goma1-equivariantly:
M~N®Q.

On the other hand, for n even, e.g., n = 6, there are examples of
G C G, such that the sequence does not split equivariantly, since in

those cases H'(G, Q) # 0 while H'(G, M) = 0 (see Example 27).

We return to the isomorphism (2.2) over nonclosed fields. Up to this
point, we have been working with schemes but this is compatible with
the ps-gerbe structure over the dense open subset where this is the full
stabilizer. When n = 2m the stabilizers may be larger, e.g., where the
sequence in (P1)?™ consists of m copies of a pair of points conjugate
over a quadratic extension. In the cone over the Grassmannian, 2 (7;) =
m? —m coordinates vanish and the m? remaining coordinates are equal
to the determinant of the conjugate pair.

We can apply the same analysis to nonsplit actions. This includes
working over nonclosed fields, where the n points are a Galois orbit,
or in the equivariant context, where the n points are invariant under
the action of a finite group. In the former situation, over a ground
field F of characteristic zero, let E/F be an étale algebra of degree n
classified by a representation of the Galois group I'r — &,,. We replace
the group (GLy x G7,)/G,, with (GL2 X Rp/rG,,)/G,, and (P')" with
Rp/rP' (see [FR18, §4]). Note however that twisting Mat(2,n) = A"
yields a variety isomorphic to A", albeit with an action of a nonsplit
torus.

The po-gerbe has an explicit geometric interpretation along My ,,: It
is encoded by the universal family

¢ : CO,n — MO,n7

a conic fibration, in general.

3. RATIONALITY CONSTRUCTIONS

In this section, we work over an arbitrary field F', and we let I" be
the absolute Galois group of F.
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Schubert calculus background. Our reference is [Kly85].
Consider the Grassmannian Gr = Gr(p,p + ¢q) of p-dimensional
subspaces of a vector space of dimension p 4+ ¢. The maximal torus
T = G2 acts diagonally on the vector space. Let X be a generic orbit
in Gr.
We set combinatorial notation: Consider shuffles of {1,...,p + ¢}

I={iy<---<ip}, J={j1<- - <Jg}

For each such shuffle, record the pairs (k,¢),k =1,....,p,{ =1,...,q,
such that ¢, > j,. Write

/\p+1—k = #{E : je < ’Lk}
and note that
q= A1 Z 2 A

Write A = (Af,...,\,) and use the same notation for the associated
Young diagram, which fits into a p x ¢ rectangle. The height ht()) is
the number of indices ¢ with \; > 0. Set |A] = Ay +--- 4+ ), and let o),
denote the associated Schubert cycle on Gr, a class in H2Y (Gr, Z).

We recall dimension formulae for representations. Let V' be an n-
dimensional vector space and A = (Aq,...,\,) a partition of |A| as

above; in particular, n > ht(A). The Schur functor Sy(V') is a repre-
sentation of SL(V') with dimension [FH91, Theorem 6.3, Exercise 6.4]:

L ANi—Aj+7—1
d,(N) = dim Sy (V) = H o
1<i<j<n
B H n—a-+ b
= o
(a.b) ’
where a = 1,...,n labels the rows of A (from top to bottom), b labels

the columns (from left to right), and hg, labels the “hook length”. This

is defined as the number of boxes immediately below and to the right

of a given box, including the box. For n < ht(\) we set d,(\) = 0.
For example, when A = (A1, A\3,0,...) and n > 2,

dn<)\1,)\2):
m—14+1)---(n—1+4\) m—2+1)---(n—24 Xo)
1"'(A1_A2)<A1_A2+2)"'(A1+1) 1"'A2

. 7’L—1+)\1 7’L—2—|—)\2 )\1—/\2+1
B Al A2 AM+1
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For instance,
(n+1)n(n —1)
3 )

Another combinatorial quantity is

i (|/\| + 1)dkim.

=0
If A has height k& then my(\) = di()), as the terms in the sum with
1 > 0 are zero.
We record a fact that we will use repeatedly in examples:

da(2,1) = n>1.

Proposition 9. Fiz an integer d > 0. If f(x) is a polynomial of degree
< d then the (d + 1)th iterated difference

d+1
(d+1 ,

ST s -0

i=0
When A = (A1, A2, 0,...) we have:
mk(/\17>\2):
Xk:(—l)i MAd+ 1\ k—i—T1+M\k—i—2+ X\ M —As+1
i—0 i A1 A2 M+1

For instance, when A\ = 2 and Ay = 1 we have

me(2,1) = Z(—ni(j‘) LERESVCEDICEED

i=

{g@ ) ()

For general \; and A,

[\

ma(A1, A2) = A — Ada + 1

and
AM(Ae = 1) (A — A+ 1)

m3(>\1, >\2) = 5
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Theorem 10. [Kly85, Theorem 5| If X is the generic torus orbit in
Gr = Gr(p,p + q) and X is a partition with |[\| =p+q— 1 then

[X] - 05 = my().
For example, take p = 2. For ¢ = 2
[X] 091 =2
and when ¢ = 3 we have
[X]-0902=1, [X]: 031 =3.

For general ¢, we have A\ > Ay =q+1—X; >0, i.e,

1
%s&swl.

Here we have
[X] O q+1-) — 2)‘1 —dq;
in particular, when ¢ = 2m — 1 and A\; = m we find

[(X] - omm = 1.

Remark 11. The signs in the formula for my () obscure the positivity
of the result. An alternate formula [BF17, Theorem 5.1] makes this

clearer:
[X} = Z OXO%,

AC(g—-1)p~1
where X is the complement to A in the rectangle (g — 1)P~":
A= h), A=(@—=1=Xp1,.q—1—=X).

We refer the reader to [Lia24] for the combinatorics directly relating
these formulas.

This extends to general p € N:

Proposition 12. Let V' be a vector space with dim(V) = mp + 1 so
that

g=(m-1p+1 and (p—1)(¢—1)=(m—1)(p—1)p.
Consider the coefficient of
T(m—-1)(p—1)...(m—1)(p—1)

~~
p times

in the expansion of [X] in H2P~D@=V(Gr(p, p+q)). This equals 1, i.e.,
(X]-om...m=1
——

p times
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Indeed, this follows from Klyachko’s formula (Theorem 10) and
my(m,...,m) =dy(m,...,m) = 1.
ti ti
p times p times

Example 13. When dim(V) = 3m + 1 the generic orbit X for the
action of 7" on Gr(3,V’) has codimension 3(3m —2) — 3m = 6(m — 1)
and
[(X] ommm = mz(m,m,m) = dg(m,m,m) = 1.
This is not the case when dim(V) =3m +2,m > 1, e.g., for m = 2
[X] = 100573 + 80’57271 + 150474 + 150’47371 + 6047272 + 3037372.
Grassmann geometry and rationality.

Theorem 14. Let T be a maximal torus — possibly nonsplit - for
SLpmt1 over a field F. Take Gr(p,V) for dimp(V) = pm + 1 with
the resulting T-action. Choose a subspace W C V' with

dimp(W)=(p—-1)m+1

and transverse to T in the sense that Gr(p, W) C Gr(p, V') meets some
stable T-orbit properly. Then Gr(p, W) is a rational section of the
quotient

Gr(pa V) -T-) Gr(pv V)/T
Since Gr(p, W) is rational the same holds true of the quotient.

Florence [Flo13, §3] has obtained similar results when V' carries a
suitable F-algebra structure. An analog of Theorem 14 holds in the
equivariant case, where T is stable under the action of a finite group:
If Gr(p, W) is linearizable or stably linearizable then Gr(p, V')/T is as
well.

Proof. The stability assumption guarantees that the quotient map is
defined over a non-empty open subset of Gr(p, W). Properness of
the intersection — which has degree one by Proposition 12 — implies
Gr(p, W) is mapped birationally to the quotient. O

Proposition 15. Retain the notation of Theorem 14.

If F is infinite then Gr(p, V') admits a codimension-m subspace W C
V' satisfying the transversality condition.

If F is finite and p = 2 then Gr(2,V) admits a stable F-rational
point.

If F s arbitrary and p = 2 then for each stable point there exists a
subspace W satisfying the transversality assumption.
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Combining with Theorem 14 gives a generalization of the results of
[FR18]:

Corollary 16. Let F' be a finile field and p a representation of its
Galois group in Gapiq. Then P Mo om1 ts rational over F.

We also obtain analogs in higher dimensions:

Corollary 17. Let m > 1 and p > 2 be integers. Consider the moduli
space of pm + 1 points in PP~ up to projective equivalence. Let X be
a variety obtained by twisting via permutations of the points, over an
infinite field F'. Then X is rational.

Proof of Proposition 15. Assume F is infinite; here we use [Kap93,
§1.2]. While Kapranov assumes the ground field has characteristic zero,
the toric constructions and interpretation of ﬂo,n as a Chow quotient
for the PGLg-action are valid in positive characteristic [GG14].

The Grassmannian is rational over F' so its F-rational points are
Zariski dense. We note that the torus action determines a collection of
F-subspaces

VicV, O0#1=1{i,...,i,} C{0,...,mp},
spanned by eigenvectors of the torus. Consider the
WeGrimp+1—m,mp+1)
meeting some of these improperly, i.e.,
dim(W N'Vy) > dim(W) + dim(V;) — dim(V).

This is a Zariski closed proper subset of the Grassmannian, defined
over F'; its complement has F-rational points. Given such a subspace
W C V, choose

weACW, dim(A) =p,

defined over F', with w not contained in any of the V; C V and A
meeting all the V; properly. Thus A is stable for the torus action and
the torus orbit of A meets Gr(p, W) transversally there.

Now assume that F' is finite and p = 2. We use the stability cri-
terion (2.3) for points on P! and Kapranov’s analysis of the Gelfand-
MacPherson correspondence. Here the Galois action p on the 2m + 1
points is encoded by a single element ¢ € &g, 1. Express o as a
product of r disjoint cycles of lengths ¢; with

€1++€r:2m+17 6126222€r
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Only ¢ can possibly be greater than m; if /; < m then we have r > 3.
When ¢; > m, choose a configuration of ¢; points defined over a degree-
/1 extension of F'. Allow the remaining points to all coincide. We turn
to the situation where ¢; < m. If r = 3 then we allow ¢; points to
coincide with [0, 1], ¢ points to coincide with [1,0], and ¢3 points to
coincide with [1,1]. We may therefore assume that » > 4 and work
inductively on r. There exists two indices, say ¢3 and ¢4, whose sum
is less than m. Use this to “degenerate” to a new partition of 2m + 1,
refined by (¢q,...,¢.) but of length r — 1, all of whose entries are less
than m. For example, we could take

(617 627 63 + 647 €57 s 7£r>-
Continuing in this way, we generate a partition

{1,2,....,r}=AuBUC

Dl l,Y te<m.

a€A  beB  ceC
Let points coincide in three groups according to this coarsening of our
original partition, the first group to [0, 1], the second to [1,0], and the
third to [1,1].
Assume p = 2 and F' is arbitrary. We continue to assume that A C V
is a two-dimensional subspace that is stable in the sense of Geometric

Invariant Theory. Let T, denote the tangent space to the torus orbit
at A

such that

To,, C Hom(A, V/A),

an 2m-dimensional subspace of the tangent space to Gr(2,V) at A. We
claim there exists a subspace

ACcWcCV,
where W has codimension m in V, such that the composition
Ty, C Hom(A, V/A) — Hom(A, V/W)

has full rank 2m. Since the latter space is the normal directions to
Gr(2,W) at A, this will yield transversality.
We record some basic geometry:

Lemma 18. There is a distinguished orbit
P! x P2 ~ P(A*) x P(V/A) € P(Hom(A, V/A))

invariant under automorphisms of Gr(2,V') fizing [A].
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The subspace P*™~1 ~ P(Ty,,) cuts out the graph of a rational nor-
mal curve

0Pl < P2

80781 2?0,...,1’2m_2
[80, 81] — [ngiZ, cee 8%m72].

In these coordinates, the rational normal curve has equations
S0Tit1 = 8125, 1 =0,...,2m — 1.

Let T C P! denote the length-(2m + 1) subscheme that is the image
of the eigenvectors for Tay,, under V* — A*. Then o realizes the Gale
transform for T' C P! as a subscheme of P*™~2 contained in a rational
normal curve.

The first assertion reflects the fact that the parabolic subgroup of
PGLgy 41 fixing [A] has semisimple part (GLy X GLgy,—1)/G,,. Note
that the unipotent part acts trivially on the tangent space. The second
assertion is true for the generic codimension-(2m — 2) linear slice of
P! xP?m=1 Of course, one has to show that this applies in our situation!
This follows from the third assertion, a special case of [EP00, Corollary
3.2] — the first application following the statement. This completes the
proof of the lemma.

Returning to the proof of the Proposition, we may take W as the
subspace given by

{22;=0,j=0,....,m— 1},
where we interpret z; € (V/A)*a. It is clear that the products
{Sixgj,’i :0,1,j :O,...,m— 1}

have the desired spanning property; the elements

2m—1 2m—1
sy, ., 8]
are a basis for bilinear forms of degree 2m — 1. d

Partitioning the points. We start with a general construction: Let
n > 3 be an integer and n = ¢m a factorization in integers ¢, m > 1.
Suppose that H C &,, A C &,,, are subgroups. The wreath product

AVH=Au +H
is the semidirect product A¢ x H where

(al, ce ,(Zg) ~h = (ahfl(l), e ,ah—l(g)).
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This comes with a natural embedding
p:AVH — Gy,

as permutations of pairs

(1,7), i€{l,....,m},ge{l,... (}.

Now assume that m > 3. Forgetting maps yield an equivariant
morphism

¢ pMo,zm — HaMO,rm
H

where o : A — &,,, and the twisted product denotes ¢ copies of the
moduli space with the associated H-action. The generic fiber of this
morphism is irreducible of dimension

(fm —3) — {(m — 3) = 3( — 3.

It is birational to the Hilbert scheme of multidegree-(1,...,1) curves
in the H-twisted product [[,; C; of £ genus-zero curves. Geometrically,
this is a compactification of the homogeneous space

PGL2 X X PGLQ /PGL2

TV
£ times

with the last PGLs embedded diagonally.
We record some observations on the generic fiber of ¢:

e Suppose { = 2. Geometrically, (1,1) curves in P! x P! are
parametrized by P2 — the dual to the projective space containing
the Segre embedding of P! x P'. Over an arbitrary field the fiber
is a Brauer-Severi threefold.

e Suppose that m is odd. Then the genus-zero curves C; appear-
ing in the twisted product are split and — over the extension/-
subgroup associated with A C A{H — isomorphic to P'’s. Here
the twisted product [ [, C; is rational, as it is isomorphic to the
restriction of scalars of P!,

e Now assume ¢ = 2 and m odd. Here the generic fiber of ¢ is
isomorphic to P? over the function field/linearizable for the full
wreath product.

Example 19. Suppose n = 6 and consider G = G316, C Gg, a
subgroup of index 10 preserving an unordered partition

{1,2,3,4,5,6} = {i,7,k} U{a,b, c}.
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Then the associated pﬂoﬁ is rational /linearizable. These actions cor-
respond to situations where the associated Segre threefold admits an
invariant node (cf. Theorem 34 below).

Theorem 20. Let n = 2m, with m > 3 odd. Fix a subgroup A C &,
and the diagonal subgroup

G::AXGQCAZGQCGQWL.

e For each Galois representation p : I — G the twist PM,,, is
rational over F'.
o The G action on My, is stably linearizable.

Proof. We assume G,,, permutes the points with odd and even indices
respectively.

We focus first on the arithmetic case. Let L/F be the quadratic
extension associated with A. Over L, the generic point of the twisted
moduli space corresponds to P! equipped with reduced and disjoint
zero-cycles Zogq, Zeven C P! of length m. The parity of m ensures that
the underlying curve is P*.

Note that the variety ?Mg,, is already stably rational over L by
Proposition 5.

Consider forgetting the even and odd points

(ﬂ-odd7 Weven) . (pmo7n)L — dedmoﬂn X wevenmoﬂn

where the Galois actions come via restriction to the even and odd
points. These actions are conjugate for the quadratic extension L/F.
Descent therefore gives a morphism over F

¢ Moy, — RL/F(WOddMO,m)7

where the target is the restriction of scalars. The twists of Mo,m are
rational over L by [FR18] and Corollary 16. The restriction of scalars
of a rational variety is rational.

We claim that the generic fiber of ¢ is rational over the function field
of the base, which implies rationality for My, over F. This follows
from the analysis above for ¢ = 2 and odd m.

For the equivariant case, our geometric argument shows that the G-
variety My, is birationally the projectivization of an equivariant vector
bundle over a stably linearizable variety (by Proposition 5). Note that
restriction of scalars in the arithmetic situation corresponds to passing
to an induced representation in the equivariant context; thus stable
linearizability is clearly preserved. We conclude then that M, is
stably linearizable. O
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Corollary 21. Let Cyy,, with m odd, be a cyclic group. Then twists
of Mo, by this group are rational (in the Galois case) and stably lin-
earizable (in the equivariant situation).

Proof. 1f the action has an odd orbit then this follows from Proposi-
tions 3 and 5. Otherwise, all the orbits are even and we may apply
Theorem 20. 0

Remark 22. Similar reasoning applies for a Galois action
p:I'—= 6, X6y C6Gpygmy, Mi,me > 3 odd,

with restricted actions w; and wsy on the first m; points and last msy
points respectively. Proposition 5 already gives stable rationality in
this case. The forgetting morphism

(b : pMo7m1+m2 — w1M07m1 X 122./\/lo,m2

has generic fiber birational toE’ by the reasoning above. Since the
factors ®' My ,,, are rational, M, +m, is rational as well.

4. STABLE LINEARIZABILITY VIA TORSORS

Let G be a finite group and T a G-torus, i.e., a torus equipped with
a representation of G on its character module X*(T). Recall that T
is stably linearizable if X*(T) is stably permutation, see, e.g., [HT23,
Proposition 2].

Proposition 23. Let U be a smooth quasi-projective variety with G-
action. Assume that we have a T-torsor

P—=U,
i.e., a T-principal homogeneous space over U, in the category of G-
varieties. Assume that

e the G-action on U is generically free,
e the characters X*(T) are a stably permutation G-module,
e the G-action on P is stably linearizable.

Then the G-action on U is stably linearizable.
Proof. We claim there is a G-equivariant birational map,

P N TxU

pN 4
U
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which would follow if P — U admits a G-equivariant rational sec-
tion. We clearly have such a section after discarding the G-action, by
Hilbert’s Theorem 90.

Since T is stably permutation, a product T x Ty, where T; is a
permutation torus, is isomorphic to a permutation torus and may be
realized as a dense open subset of affine space. It follows that we have
an open embedding

PXUTl — %

pN e
U

where V — U is a vector bundle with G-action. The vector bundle
admits a rational section (by the No-Name Lemma) thus P does as
well.

We assumed that P is stably linearizable, i.e. P x G, is linearizable
for some r. Thus U x T x G, is as well. We observed that T is stably
linearizable because its character module is stably permutation, i.e.,
T x Ty is a permutation torus. Another application of the No-Name
Lemma, using the assumption that the action on U is generically free,
gives that U is stably linearizable. U

We recall the exact sequence (2.5)
0—>N-—->M-—Q—0,

with M = Pic(My,), N an &,-permutation module, and @Q is an
index-2 submodule of the permutation module Z[S,,/&,,_1]. We record:

o if HY(G,Q) = 0 for some G C &, then also HY(G, M) = 0, by
the long exact sequence in cohomology,
e if () is a stably permutation G-module, then the sequence splits

and Pic(M,, ) is a stably permutation module, by [CTS77,
Lemma 1].

Theorem 24. Let G C &,, be a subgroup such that () is a stably
permutation module. Then the G-action on My, is stably linearizable.

Let X be a form of My, over F such that the action of the absolute
Galois group on Q) gives rise to a stable permutation module. Then X
15 stably rational over F.

Proof. For the equivariant statement, we apply Proposition 23. Here
T, with character module @ acts on CGr(2,n) (see Section 2). Let
V' C CGr(2,n) the open subset over which T acts freely and U C X,
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the corresponding locus in the quotient, i.e., remove all the strictly
semistable points. We have a torsor

v LU
By [HT23, Proposition 19], the &,-action on Gr(2,n) (and its cone) is
stably linearizable. Assuming that Q = X*(T) is a stable permutation
module for G C &,,, and applying Proposition 23, we conclude that
the G-action on U, and thus mo,n, is stably linearizable as well.
The Galois-theoretic result is proven analogously, with [BCTSSD85,

Prop. 3] playing the role of Proposition 23. This is an application of
the torsor formalism of [CTS87]. O

Remark 25. There exist linearizable G-actions on Mom such that the
induced action on () is not stably permutation. Consider n even and
G = Cy generated by o := (1,2) -+ (n — 1,n); we have H(Cy, Q) # 0
(see Remark 32) so @ is not stably permutation. This action is equivari-
antly birational — by Proposition 7 — to an action on a torus T = G™ 3.
Its character module consists of the elements of Z"~2 — the twisted per-
mutation module on {1, ..., n—2} — whose coordinates sum to zero (see
Equation 2.1). The action of Cy on the twisted permutation module
consists of (n—2)/2 copies of <_01 _01) . Hence X*(T) decomposes as
a sum of § —2 permutation modules and one invariant, a permutation
module. We conclude T is linearizable.

Remark 26. By [FR18, Remark 5.5], for odd n, every form of M,
over a nonclosed field F' is an F-rational variety. A priori, this does
not imply that M, is (stably) linearizable for &,,. However, this does
imply that M is a stable permutation module, for the &,-action.

For n odd, we have

(4.1) M~N®Q,

as &,-modules, by Proposition 8. Since N is a permutation module,
for all n, and M a stably permutation module, for odd n, we see that
@ is also stably permutation, for odd n. Thus, the &,-action on ﬂgm
is stably linearizable, by Theorem 24.

The splitting (4.1) can also be seen explicitly: Recall that under the
Kapranov basis, Q = M/N is generated by the image of the classes

H FE;, i=1,...,n—1
in M under the projection modulo N. The Z-linear map
s:Q — M,
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given on these generators by

is a section of the exact sequence (2.5). We check that it is &,-
equivariant. Let ¢ = (1,2) and v = (1,...,n). In @, one has

n—1

H:D12+ZEi

=3

and «(H) = H, «(Ey) = Es, 1(Ey) = Ey and «(E;) = E;. Note that s is
t-equivariant by construction. Next, observe

sy(H)=s (”y <D12+ZEi>> =3 <(n—3)H—(n—4)ZEi>

=2

=(n—3)H—(n—4)ZEz-— Z (n—1|I|—3)-E;

+ Y (I-1-Ep.

(42) =7 |Dnzna+ >, E+ > (II-1)-E

2
™
=
1
™
o
1
™
S
<
T
5
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S D >R S v
1c{2,....n—1},n—1€l, 1c{2,...n—1},n—1€l,
|I|=2,...,n—4. [I|=n—3.
n—2
= Z E[ + H - Z E]
1C{2,...n—1},n—1€l, =2 1C{2,...n—1}i¢1,
|I|=2,...,n—4. [I]=1,...,n—4.
(4.3)
n—2
=(n=3)H—E,.1—(n-4)Y B~ >  (n—|I|-3)E,.
i=2 I1c{2,..,n—1},
[1]=2,...,n—4.

Similarly, we have

gl >, (-1 E
Ic{1,...n—1},

[I]=251,... n—4.

— S (11— 1) Er + > (1 -1)- B

Ic{1,...n—1},n—1€l, Ic{1,...n—1},n—1¢I,
[I=251 ... n—d. [I=251 ... n—d.
(4.4)
= o (-n-E+ > (n-|I-3)-EL.
Ic{1,...,n—1},1€l, I1c{2,....,n—1},
[I|=251,... n—4. [=2,...,251 —1.

Substituting (4.3) and (4.4) into (4.2), we find that vs(H) = sy(H).

To check the actions on E;, for e = 1,...,n — 2, one computes
n—1
sy (E) =s(H— Y E)
k=2, k£i+1
n—1
i- S 5- ¥ B+ ¥ om
k=2, k#£i+1 I1c{l,..,n—1}, Ic{l,..,n—1},
Li+1¢I, 1i+1€l,
I|="52,....n—4. [I]=251,... n—4.
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On the other hand,
vs(E;) = (B + > Er)

—H_ Z E; + Z Emyor

Then one sees that vs(E;) = sy(E;) for i # n — 1. Finally, one can
verify that

s(Y(En-1)) = s(E1) = v(s(En-1)).

5. COMPUTING COHOMOLOGY

In this section, we study the G-module
M = Pic(Mo,,),
and the quotient @ = M/N, from (2.5), for various G C &,,.
Cohomological criteria. We focus on two properties, which are nec-

essary for linearizability of a regular G-action on a smooth projective
rational variety X, see, e.g., [BP13, Proposition 2.5]:

(H1) For all subgroups G’ C G one has
H'(G', Pic(X)) = H(G’, Pic(X)*) = 0.
SP) The G-module Pic(X) is stably permutation.
( y

Since H! vanishes on permutation modules, (SP) implies (H1), but
the converse does not hold, in general. Computationally, it is easier to
check (H1).

Example 27. For n = 6 and G C &g, property (H1) for the action
on M = Pic(Myg) does not imply (SP), e.g., for the action of
G~ 02 X CY4 = <(374)7 (17 27 5,6)>,
and
G~ (C2>3 = <(17 5)(27 6)7 (37 4)7 (17 2)<57 6))7
see the analysis in [CTZ23, Section 6], as well as [Kun87, Section 4].
Furthermore, there are G C G¢ such that
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e () fails (H1) but M satisfies it, e.g., for G = ((1,2)(3,4)(5,6)),

one has
HY(G, M) =0, HY(G,Q)=17/2.

Actually, M is a permutation module while @) is not. Indeed,
under appropriate choices of basis, M is of the form

7' ® Z|Cy)°,
and @ is of the form
Z & Z[Co)? ® Zle,

where G acts on e via —1.
e Both ) and M fail (H1): all groups containing G = C3 from
Proposition 28, in these cases we have

H' (G, M) = H'(G,Q) = Z/2.
Statement of results.
Proposition 28. For ny,ny,n3 € N with 2(ny + ne + ng) = n let
o:=(1,2)---(2(ny + ny) — 1,2(ny + na)),
T:=(2n1 4+ 1,2n1 +2) - (2(n1 + n2) — 1,2(ny +ng2)) -+ (n— 1,n),
and put G := (11, t2). Then
HY(G, M) =7/2.
The first part of Theorem 1 follows:

Corollary 29. For every even n > 5 and every subgroup of &,, con-
taining G, the induced action on My, is not stably linearizable.

For example, when ny =ny =n3 =1
o:=(12)(34), 7 :=(34)(56),

and the corresponding action on ﬂo,ﬁ, which is Gg-equivariantly bira-
tional to the Segre cubic, is not stably linearizable.

We apply the results above to rationality questions over nonclosed
fields, completing the proof of Theorem 1:

Theorem 30. Let F' be a field admitting a biquadratic extension. Then,
for all even n > 6 there exist forms of My, over F' that are not retract
rational, and thus not stably rational, over F.

In particular, this yields nonrational forms over F' = C(t), a field
with trivial Brauer group.
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Proof. Indeed, let G ~ C% be the group identified in Proposition 28,
with HY(G, Pic(My,,)) = Z/2. Let T = Gal(F’/F) be the Galois group
of the biquadratic extension F’/F. We construct a form X of ﬂom
over F such that I' acts on Pic(X) = Pic(My,,) via G. This gives an
(H1)-obstruction to retract rationality. O

Proof of Proposition 28. Put
o:=(1,2)---(2(ny + ny) — 1,2(ny + na)),
T:=(2n1+1,2n1 +2)---(n—1,n),

so that G = (o,7). We will repeatedly use the inflation-restriction
exact sequence

(5.1) 0 — H'((7), A”) — HY(G, A) — H'((0), A)",

with the usual notation for invariants under the actions of o, 7.

Step 1. Observe that M admits a decomposition, as a G-module,
M=L&P,

where L consists of Z-linear combinations of H and Ey, withn—1 ¢ I,
and P is generated, over Z, by E; with n — 1 € I. We have

HY(G, M) = HY(G, L) & H'(G, P).

Step 2. The involution o is contained in &,,_1, permuting (n—1) points
and therefore linearizable. Thus

H'((o), M) = H'({0), L) = H'({0), P) = 0.

Moreover, P is a G-permutation module. Indeed, for I withn—1 € I,
oF; = Ey) € P, and TE; = E(r.(n—1n)) 1) € P. It follows that

HY(G, P) =0,
and
HY(G, M) =HYG, L) =H'({r), L?).

Remark 31. Geometrically, cohomology is already contributed on the
toric model L,,, obtained by blowing up (n — 2) general points on P73,

Step 3. Let N C L be the submodule of Z-linear combinations of E;
with [/] > 2 and n — 1 ¢ I. We have a short exact sequence

0—-N—=>L—->Q—0,
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of G-modules, with () generated by H, Ey,..., E, 5, modulo N, and
the corresponding long exact sequence of (7)-modules:

0— N7 = L% — Q% —H{o),N) = ...

Since o(Er) = Eq(1), the o-action on N yields naturally a permutation
module, realized via permutation of indices of E;. So

H'({c), N) = 0.
The short exact sequence
0 >N —=>L°—=Q°—=0
gives rise to the long exact sequence

(52)  H'({r), N7) = H'({r), L) — H'({r),Q") — H*((r), N").

Step 4. The (r)-module N has the form:
N =Z[(T)] & --- S Z[(1)].
In particular,
H'({(7),N?) = H*({1), N7) = 0.
Indeed, a Z-basis of N7 is given by

o {E1+EU(I) it o(I) #
I -—

I,
E; if o(I)=1,

for
Ic{1,2,....n=2}, 2<|I|<n-—4.

To show that N7 is a direct sum of copies of Z[(7)], it suffices to show
that 7(e;) = ey, for some I' # I and e; # ey Observe that

o()=0o(1°, I°:={1,...,n—2}\1I.
There are four cases:
o Ifo(l)=7() =1, then
7(6]> = T(E[) = DIU{n—l} = E[c = €Jc
and thus e; # eje.
o If 0(I) # I and 7(I) = I, then
T(er) = 7(Er) + T(Ea(f)) = Diufn-1} + Do(nufn-1}
= FEr+ EO—(I)C = FEr+ EU(IC) = €jc

where the last equality follows from the fact that [° # o(I°)
since o(I) # I. Note that the indices 2ny + 1 and 2ny + 2 are
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permuted by both o and 7. Then by the assumption 7(I) = I,
we know that either both of 2n; + 1 and 2n; + 2 are contained
in I or none of them is. It follows that I¢ # o(I). Then we
conclude that e; # eje since it is clear that I # I°.
o If 7(I) # I and o(1) # I, then o(7(I)) # 7(I), and
7(er) = Erye + Eoye = Erne + Eor(n)e
= Erye + Eotr(ne) = €raye

where the last equality follows from
o(r(1)%) = o(r(1))" # 7(I)".
Moreover, we have 7(I)¢ # I since 1 belongs to only one of the
sets 7(I)¢ and I. Similarly, 7(1)¢ # o([) since 2ny+1 belongs to
only one of the sets 7(1)¢ and o([). It follows that e,y # er.
o If 7(I) # I and o(I) = I, then o(7(I)) = 7(I), and
7(er) = 7(Er) = 7(Diugmy) = Er(ne = ex(nye
where the last equality follows from
o(r(1)%) = a(r(1))" = 7(I)*.
Similarly as the previous case, one sees that e, ;). # e;.

In conclusion, 7(ey) # e, in all cases, and N7 is as claimed, and thus
has vanishing first and second cohomology. It follows that

H'((r), M?) = H'((7), L7) = H'((r),Q").
Step 5. To show that HY({7), Q%) = Z/2, let
Sii=>» Er
=

where the sum is over I C {1,2,...,n — 2} with |I| =i. Put ¥ := %4
and set

BQZ:H—E,

€; 2:H—2+(E2i_1+E2i), 1§i§n1+n2,
o n—2

wj = Fyj_q, n1+n2+1§]§77
..o n—2

vj = H =X+ Ey, n1+n2+1§j§T-

Then

{es, wy,v5}
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for0<i<ni+ngandny+n,+1<5 < ”T_Q gives a Z-basis of Q7.
Moreover, for 1 <i<nj;+nsand ny +ns +1< 35 < "T_Z, one has
T(eg) = —eo, T(e;) =e€;, and T(w;) =vj.
Indeed, )7 is generated, over Z, by
H,(E1 + Es), ..., (Eanitna)—1 + Eonitns)s Eonitna)+1s - - - Ena.
We now show that {e;, w;,v;} gives another basis. First, observe that

H-%=Dsy.n—(E1+E)+ > Ej.
1,2¢1,E;€N
— —
EN°
Indeed, if 1,2 ¢ I and E; € N, 1,2 ¢ o(I) and E, () will also appear
in the summand. Then o(H —¥) = H — ¥ (mod N?) and
ej,wj,vj < QU.

Moreover, {e;, w;,v;} generates Q7 since

FEyi1+ Eg = e; —eg, FEaj =v;— e

and
4—n ni+nz nT_Q
H:( 5 )eg—l—Zei—i— Z (U)j—f-?]j).
=1 Jj=ni1+n2+1

To compute the 7-action on this basis, one can first compute
H—-Y=Dsy ,— (Ey+ FE3) (mod N?)
D34 — D11 — Do
=D3y n—2H 4+ 2% — (E; + E3) (mod N7)
=H -+ (Ey+ Ey) —2H +2%¥. — (E1 + E3) (mod N7)
=—H+X,
ie.,
7(eg) = —ep.
Then we have
H—Y+ Ey +Ey+— —H+X+ Doi 11+ Dajpn_1
=—H+YX+2H —2Y 4+ (Ey_1+ Ey) (mod N7)
= H—-X+(Ey_1+ Ey) (mod N7).
Note that the equalities hold for all 1 <7 < Z. In particular,
T(e;) =¢€;, for 1<i<mng+nos.



RATIONALITY OF FORMS OF Mg, 31

Finally,
T(wj) = ngm,l =H — E+E2j - Z E[
2j¢1
EjeN
:H—E+E2J (HlOd NU),
ie.,

—2
T(w;) =v;, for n1+n2+1§j§nT_

In conclusion,

n—2
ni+ng 2
Q" =Zle + Y Zle+ D Zlwj, vy,
=1 j=ni+n2+1

where 7 acts trivially on e;, permutes w; and v;, and the unique (—1)-
eigenvector ey contributes to

H'((1), Q") = Z/2.
This completes the proof of Proposition 28.

Remark 32. Notice that when n; = ny = 0, the argument above
shows

Hl(OQa Q) = Z/Qa
where the Cj is generated by (1,2)(3,4)...(n — 1,n). Computational
experiments suggest that

H'(H, M) =0,
for all cyclic subgroups H C G,,.

Small dimensional examples.

n = 6: By Theorem 1 and the analysis in Section 6 of [CTZ23], we
know that the G-action on Pic(Myg) satisfies (SP) if and only if the
G-action is linearizable, thus, nonlinearizable actions are not stably
linearizable, as they fail (SP).

Remark 33. This indicates an error in the application in [HT23,
p. 295]: Proposition 21 there asserts that the standard and nonstan-
dard actions of 2l; are stably birational, contradicting our cohomology
computation. The gap occurs in the sentence: “However, for any finite
group G and automorphism a : G — G, precomposing by a yields an
action on G-modules; this respects permutation and stably permuta-
tion modules.”
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n = 8: There is a unique (conjugacy class of) G’ = C3 C Sg such that
H' (G, Pic(Mog)) = Z/2,

and all G C &g failing (H1) on M contain G'. With magma, we find:

e There are 66 (conjugacy classes of) groups containing this G’.

e Of the remaining 230 classes, 96 are contained in the (unique)
S, C Gg, the corresponding actions are linearizable.

e After that, there are 56 contained in the (unique) &g x Cy —
these actions are birational to an action on a 5-dimensional
torus; such actions have been analyzed, over nonclosed fields,
in [HY17].

e We are left with 78 classes. Applying [HY17, Algorithm F4] to
these classes, we found at least 37 classes of groups G C Gg
having vanishing cohomology but with Pic(M,g) failing the
(SP) condition.

e Among the 41 remaining classes, 13 leave invariant an odd cycle.
These actions are stably linearizable by Proposition 3.

e There are 28 remaining classes, including a minimal

022 = <(17 2)(3’ 4)(57 6)(77 8)7 (17 3)(27 4)(57 7)(67 8)>7

which (up to conjugation) is contained in every remaining class.
The action of this C% on M yields a permutation module:

Z|C3]" & Z|C3 | Co)’ & Z|C3 /O3 @ Z[C3 /3 & 2.

However, on @, this action fails (H1), and Theorem 24 is not
applicable to any of these cases.

n = 10: We find more minimal groups contributing cohomology:

I‘I1 (G, PiC(MOJO)) = Z/2

when
o G =C5=((1,2)(3,4)(5,6)(7,8),(1,2)(9,10)),
o G =C5=((1,2)(3,4)(5,6), (5,6)(7,8)(9, 10)),
o G=0Cy x(Cy=1((3,6)(8,10),(1,2)(5,9), (1,2)(3,10,6,8)(4,7)),
e G=9,=1((3,6)(8,10),(1,2)(5,9)(8,10),(1,2)(3,10,6,8)(4,7)).
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6. THREE-DIMENSIONAL CASE

Next, we give a criterion for rationality of the Segre cubic, exhibit
forms failing stable rationality over arbitrary fields admitting a bi-
quadratic extension, and establish stable rationality, provided @ is
stably permutation, for the action of the absolute Galois group.

Recall that Xg denotes the symmetrically linearized GIT quotient
with equivalent presentations:

e (P')® under the diagonal action of SLy; or
e Gr(2,6) under the diagonal action of the torus T ~ G?,.

These have ten isolated nodes, the images of the Dy, |I| = 3 under the
blow down [ : ﬂo,ﬁ — Xg. These are classically embedded X C P*
as cubic threefolds, known as Segre cubic threefolds [CTZ23]. The
remaining boundary divisors Dy, |I| = 2 correspond to planes passing
through four nodes.

Theorem 34. Let X be a form of the Segre cubic threefold over a
nonclosed field F of characteristic zero, and X its standard resolution
of singularities, a form of Mog. Then X is rational over I if and only

if the Galois-module Pic(Myg) satisfies (SP).

Proof. This is closely related to the linearizability result [CTZ23, The-
orem 1]. The group-theoretic analysis there shows that the only cases
where the Galois action on the Picard group is stably permutation are:

e when one of the ten nodes is Galois invariant;

e the Galois action is contained in an Gx-action associated with
permutations of five of the marked points;

e the Galois group acts via C%, leaving three planes invariant,
and the set of nodes splits into a union of five Galois orbits of
length two.

Note that the first two cases are easily shown to be rational: Projecting
from a node gives a birational map to P?, cf. Example 19. And when the
action factors through &5, the moduli space arises via the Kapranov
construction, i.e., is a blow-up of P3.

Recall that in the third case, the Galois action factors through G4 x
G4 C G corresponding to a partition of the six points conjugate to

{1,2,3,4,5,6} = {3,4} U{1,2,5,6}.
Our (5 x Oy action is conjugate to

((34), (15)(26)) C Ge
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This leaves the boundary divisors D4, D15, and Dag invariant. Iden-
tifying singular points with the boundary divisors in Mg, the orbits
are

{D123 = Dys6, D124 = D3se},  {D12s = Dsag, D156 = Dasa},
{D126 = Dsus, Dasg = D13a}, {Diss = Daag, D1a5s = Dass},
{D136 = Daus, D14g = Dags }.

We emphasize that the invariant divisor classes reflect boundary di-
visors defined over F'. Indeed, our moduli space has F-rational smooth
points so there is no obstruction to descending Galois-invariant divi-
SOTS.

We claim this moduli space is birational over F' to a toric threefold,
i.e., an equivariant compactification of a nonsplit torus over F.

Consider the Losev-Manin moduli space associated to the partition
above. Specifically, points 3 and 4 are not permitted to collide with
other points but points from {1,2,5,6} may collide with one another.
This is toric by Proposition 7, i.e., the orbits of the homogeneous quar-
tic forms vanishing along {1,2,5,6} modulo the torus fixing {3,4}.
This geometric description is compatible with the Galois action.

Rationality of three-dimensional toric varieties has been settled in
[Kun87, Theorem 2]: The variety is rational over F' iff the Picard
module is stably permutation for the Galois action.

Here is an alternative rationality construction: Pick one of the bound-
ary divisors Dy, |I| = 2 invariant under the Galois action. With our
choice of indexing this could be D34, D15, or Dog; we take Dszyq. This
corresponds to a plane P C X containing four ordinary singularities,
i.e., the images of Ds4;,j = 1,2,5,6. We blow this plane up — inducing
a small resolution of the four singularities — and then blow down the
proper transform of the plane. This yields a complete intersection of
two quadrics Xyo C P5 with six singularities, the images of the singu-
larities of X mnot contained in P. Under the C5 x (5 action, we have
three orbits each with two singular points. For each orbit, the line
joining the singularities is contained in Xy 9. Projecting from that line
gives

S
Xoo —-» P

the birationality is classical cf. [CTSSD87, Proposition 2.2]. O
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