

UNRAMIFIED BRAUER GROUP OF QUOTIENT SPACES BY FINITE GROUPS

ANDREW KRESCH AND YURI TSCHINKEL

ABSTRACT. We provide a general algorithm for the computation of the unramified Brauer group of quotients of rational varieties by finite groups.

1. INTRODUCTION

Let V be a variety over an algebraically closed field k of characteristic zero and G a finite group acting generically freely on V . For example, V could be a finite-dimensional faithful representation of G . The rationality problem for the field of invariants

$$K = k(V)^G = k(V/G)$$

has attracted the attention of many mathematicians, e.g., in connection with Noether's problem (see [15] for a survey and further references).

One of the obstructions is the *unramified Brauer group*

$$\mathrm{Br}_{\mathrm{nr}}(K) \cong \mathrm{Br}(X) = H^2(X, \mathbb{G}_m),$$

which coincides with the Brauer group of a smooth projective model X of K . By a result of Bogomolov [7] (see also [15, Thm. 6.1]), this group can be computed in terms of the set \mathcal{B}_G of *bicyclic* subgroups of G :

$$\mathrm{Br}_{\mathrm{nr}}(k(V)^G) = \{\alpha \in \mathrm{Br}(k(V)^G) \mid \alpha_A \in \mathrm{Br}_{\mathrm{nr}}(k(V)^A), \forall A \in \mathcal{B}_G\}. \quad (1.1)$$

This yields explicit formulas in special cases.

(1) If V is a faithful representation of G then (cf. [15, Thm. 7.1])

$$\mathrm{Br}_{\mathrm{nr}}(K) \cong \ker \left(H^2(G, \mathbb{Q}/\mathbb{Z}) \rightarrow \bigoplus_{A \in \mathcal{B}_G} H^2(A, \mathbb{Q}/\mathbb{Z}) \right).$$

(2) If $V = T$ is an algebraic torus over k , with G -action arising from an injective homomorphism $G \rightarrow \mathrm{Aut}(M)$, where $M = \mathfrak{X}^*(T)$, then (cf. [15, Thm. 8.7])

$$\mathrm{Br}_{\mathrm{nr}}(K) \cong \ker \left(H^2(G, \mathbb{Q}/\mathbb{Z} \oplus M) \rightarrow \bigoplus_{A \in \mathcal{B}_G} H^2(A, \mathbb{Q}/\mathbb{Z} \oplus M) \right).$$

Date: January 16, 2024.

(3) The case $V = \mathrm{SL}_n$ with $G \subset \mathrm{SL}_n$ acting by translations, is treated in [13] and, by means of a stable equivariant birational equivalence to a linear action, leads to the same outcome as case (1).

After some preliminary material (Sections 2 and 3), we highlight the role of the Brauer group of the quotient *stack*

$$[V/G]$$

(Section 4) and give a uniform treatment of some known (Section 5) and new cases (V a projective space in Section 5, a Grassmannian variety in Section 6, a flag variety in Section 7). The main result (Section 8) is a general procedure to determine the unramified Brauer group $\mathrm{Br}_{\mathrm{nr}}(k(V)^G)$ for a G -action on a rational variety V .

Acknowledgments: We are grateful to Fedor Bogomolov for his interest and comments. The second author was partially supported by NSF grant 2301983.

2. GENERALITIES

We work over an algebraically closed field k of characteristic zero.

Group cohomology. As recalled in [23, §2.1], there is a natural identification

$$\mathrm{H}^i(G, k^\times) \cong \mathrm{H}^i(G, \mu_\infty) \quad (i \geq 1)$$

of group cohomology for any finite group G with trivial action on k^\times , respectively μ_∞ . We identify μ_∞ with \mathbb{Q}/\mathbb{Z} and write

$$\mathrm{H}^i(G) = \mathrm{H}^i(G, \mathbb{Q}/\mathbb{Z}).$$

For $i = 1$ we have $\mathrm{H}^1(G) := \mathrm{Hom}(G, \mathbb{Q}/\mathbb{Z})$, and for $i = 2$, an interpretation of $\mathrm{H}^2(G)$ in terms of central extensions of G ; see [8, §IV.3].

For any subgroup $A \subseteq G$ we denote by

$$\mathrm{res}_A^i: \mathrm{H}^i(G) \rightarrow \mathrm{H}^i(A)$$

the restriction homomorphism. For a normal subgroup with $Q = G/A$, the Hochschild-Serre spectral sequence yields the long exact sequence

$$0 \rightarrow \mathrm{H}^1(Q) \rightarrow \mathrm{H}^1(G) \rightarrow \mathrm{H}^1(A)^Q \rightarrow \mathrm{H}^2(Q) \rightarrow \mathrm{ker}(\mathrm{res}_A^2) \rightarrow \mathrm{H}^1(Q, \mathrm{H}^1(A)).$$

This gives two split short exact sequences when $G = A \rtimes Q$.

For G cyclic with generator g and a G -module M the group cohomology $\mathrm{H}^i(G, M)$ can be identified with the cohomology of the complex

$$M \xrightarrow{\Delta} M \xrightarrow{N} M \xrightarrow{\Delta} M \dots,$$

where $\Delta = g - 1$ and $N = 1 + g + \dots + g^{n-1}$ ($n = |G|$), cf. [8, Exa. III.1.2]. The case G is abelian, expressed as a product of cyclic groups,

may be treated via tensor product of resolutions corresponding to the factors as described in [8, Prop. V.1.1], e.g., for bicyclic $G \cong G_1 \times G_2$ with corresponding Δ_i and N_i , $i = 1, 2$:

$$M \xrightarrow{\begin{pmatrix} \Delta_1 \\ \Delta_2 \end{pmatrix}} M^2 \xrightarrow{\begin{pmatrix} N_1 & 0 \\ -\Delta_2 & \Delta_1 \\ 0 & N_2 \end{pmatrix}} M^3 \dots$$

We see easily, this way, that $H^2(G) = 0$ when G is cyclic, and

$$H^2(G_1 \times G_2) \cong \mathbb{Z}/d\mathbb{Z}, \quad d = \gcd(n_1, n_2),$$

for cyclic G_i of order n_i for $i = 1, 2$ (cf. [23, §2.1]).

Fields. Throughout, $K = k(V)$ is the function field of an algebraic variety V over k . We write \mathcal{DVal}_K for the set of divisorial valuations of K . Every $\nu \in \mathcal{DVal}_K$ can be realized as a valuation corresponding to a divisor on some smooth projective model of K .

Unramified cohomology. Let $\nu \in \mathcal{DVal}_K$ with residue field κ and absolute Galois group \mathcal{G}_κ of κ . There is a residue homomorphism

$$\partial_\nu: \mathrm{Br}(K) \rightarrow H^1_{\mathrm{cont}}(\mathcal{G}_\kappa) = \mathrm{Hom}_{\mathrm{cont}}(\mathcal{G}_\kappa, \mathbb{Q}/\mathbb{Z})$$

with values in the continuous group cohomology. We have

$$\mathrm{Br}_{\mathrm{nr}}(K) \subset \mathrm{Br}(K), \quad \mathrm{Br}_{\mathrm{nr}}(K) = \bigcap_{\nu \in \mathcal{DVal}_K} \mathrm{Ker}(\partial_\nu),$$

with $\mathrm{Br}_{\mathrm{nr}}(K) \cong \mathrm{Br}(X)$ for any smooth projective model X of K . The group $\mathrm{Br}_{\mathrm{nr}}$ is invariant under purely transcendental extensions. In particular, a rational variety V has $\mathrm{Br}_{\mathrm{nr}}(k(V)) = 0$.

An important result, Fischer's theorem [17], asserts the rationality of V/A for a linear action of an abelian group A . Then $\mathrm{Br}_{\mathrm{nr}}(k(V)^A) = 0$.

Basic exact sequence. Let V be a smooth projective G -variety over k . Assume that V is rational. The Leray spectral sequence, applied to the morphism from the Deligne-Mumford stack (DM stack) $[V/G]$, associated with the G -action on V , to the stack BG of G -torsors, yields the long exact sequence

$$\begin{aligned} 0 \rightarrow \mathrm{Hom}(G, k^\times) &\rightarrow \mathrm{Pic}(V, G) \rightarrow \mathrm{Pic}(V)^G \xrightarrow{\delta_2} H^2(G, k^\times) \\ &\rightarrow \mathrm{Br}([V/G]) \rightarrow H^1(G, \mathrm{Pic}(V)) \xrightarrow{\delta_3} H^3(G, k^\times) \rightarrow H^3([V/G], \mathbb{G}_m), \end{aligned} \tag{2.1}$$

where $\mathrm{Pic}(V, G)$ denotes the group of isomorphism classes of G -linearized line bundles. In [23] this is used to exhibit G -actions on rational surfaces with obstructions to (stable) linearizability of the G -action, e.g., nonvanishing of

- the Amitsur group $\text{Am}(V, G) := \text{im}(\delta_2)$ (see [6, Sect. 6]),
- the image $\text{im}(\delta_3)$,
- the cohomology $H^1(G, \text{Pic}(V))$.

If V has a G -fixed point, then by basic functoriality the map from $H^2(G, k^\times) = \text{Br}(BG)$ to $\text{Br}([V/G])$ is injective, thus $\delta_2 = 0$, and similarly, $\delta_3 = 0$.

If V is quasiprojective then the Leray spectral sequence leads to a basic exact sequence with first term $H^1(G, \mathbb{G}_m(V))$ and $H^i(G, k^\times)$ ($i = 2, 3$) replaced by $H^i(G, \mathbb{G}_m(V))$ and $\text{Br}([V/G])$ by $\ker(\text{Br}([V/G]) \rightarrow \text{Br}(V))$.

We will use the following observation, which appears in [28].

Lemma 2.1. *Suppose $V \rightarrow W$ is a G -equivariant morphism of smooth projective G -varieties, such that the induced homomorphism*

$$\text{Pic}(W) \rightarrow \text{Pic}(V)$$

is injective (resp., an isomorphism). Then $\text{Pic}(W, G) \rightarrow \text{Pic}(V, G)$ is injective (resp., an isomorphism), and $\text{Am}(W, G)$ is contained in (resp., is equal to) $\text{Am}(V, G)$.

Proof. We have the commutative diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & \text{Hom}(G, k^\times) & \longrightarrow & \text{Pic}(W, G) & \longrightarrow & \text{Pic}(W)^G \xrightarrow{\delta_2} H^2(G, k^\times) \\ & & \parallel & & \downarrow & & \downarrow \\ 0 & \longrightarrow & \text{Hom}(G, k^\times) & \longrightarrow & \text{Pic}(V, G) & \longrightarrow & \text{Pic}(V)^G \xrightarrow{\delta_2} H^2(G, k^\times) \end{array}$$

with exact rows. The result follows. \square

Linearized bundles. Let V be a smooth projective G -variety over k and E a vector bundle over V . We suppose that the projectivization $\mathbb{P}(E)$ is endowed with a G -action, so that the projection to V is G -equivariant, and we have a central cyclic extension

$$1 \rightarrow Z \rightarrow \tilde{G} \rightarrow G \rightarrow 1 \tag{2.2}$$

and a compatible \tilde{G} -linearization of E , with scalar action of Z . We may suppose the latter, by replacing Z and \tilde{G} by suitable quotients, to be by the identity character of $Z = \mu_\ell$, $\ell = |Z|$. Then:

- A splitting of (2.2) leads to a G -linearization of E .
- Generally, (2.2) determines a class $\gamma_E \in H^2(G)$, obstruction to existence of a splitting (for sufficiently divisible ℓ).
- We have $\gamma_{E \otimes E'} = \gamma_E + \gamma_{E'}$.
- A line bundle L with $[L] \in \text{Pic}(V)^G$ leads to $\gamma_L = \delta_2([L])$.

If the G -action on V is generically free and E admits a G -linearization, then $k(E)^G$ is a purely transcendental extension of $k(V)^G$; this is known as the No-Name Lemma, see [11, Sect. 4.3].

Example 2.2. Let V° be a k -vector space of dimension n with projectivization $V = \mathbb{P}(V^\circ)$, and let G act on V . We adopt the convention that this is a right action. So it is given by a homomorphism $G \rightarrow \mathrm{PGL}(V^{\circ\vee})$. We have, canonically, a central cyclic extension (2.2) and compatible $\tilde{G} \rightarrow \mathrm{SL}(V^{\circ\vee})$, with $Z = \mu_n$. Then (2.2) determines an n -torsion class

$$\gamma = \delta_2([\mathcal{O}_V(-1)]) \in H^2(G),$$

with

$$\mathrm{Am}(V, G) = \langle \gamma \rangle.$$

For the trivial bundle \underline{V}° associated with the given vector space we have the given G -action on the projectivization and as above a \tilde{G} -linearization, thus $\gamma_{\underline{V}^\circ} = \gamma$. The corresponding \tilde{G} -linearization of $E = \underline{V}^\circ \otimes \mathcal{O}_V(1)$ has trivial Z -character, and we get a canonical G -linearization of E .

3. BOGOMOLOV MULTIPLIER

The description of $\mathrm{Br}_{\mathrm{nr}}(k(V)^G)$ for a faithful representation of G from special case (1) of the Introduction involves a subgroup of $H^2(G)$, known as the *Bogomolov multiplier*:

$$B_0(G) := \ker \left(H^2(G, \mathbb{Q}/\mathbb{Z}) \rightarrow \bigoplus_{A \in \mathcal{B}_G} H^2(A, \mathbb{Q}/\mathbb{Z}) \right).$$

Here, \mathcal{B}_G denotes the set of bicyclic subgroups of G . In this section we recall some facts about $B_0(G)$, including its vanishing for some classes of groups G . All groups G , A , etc., considered in this section, are finite.

The following facts follow from the long exact sequence coming from the Hochschild-Serre spectral sequence, recalled in Section 2:

- If $G \rightarrow A$ is a surjective homomorphism of abelian groups, then the induced homomorphism $H^2(A) \rightarrow H^2(G)$ is injective.
- If G is abelian, $G = G_1 \times \cdots \times G_r$ with cyclic factors G_i , then

$$H^2(G) \cong \bigoplus_{i < j} H^2(G_i \times G_j).$$

By the second fact, the Bogomolov multiplier of a group G may be defined equivalently with direct sum over all abelian subgroups A of G (as in [7]).

Lemma 3.1. *Assume that there is a short exact sequence of groups*

$$1 \rightarrow A \rightarrow G \rightarrow C \rightarrow 1,$$

where A is abelian and $C = \langle c \rangle$ is cyclic, and let $0 \neq \alpha \in H^2(G)$ be given, with $\text{res}_A^2(\alpha) = 0$. Then there exists an element $a \in A$, in the center of G , such that for any lift $b \in G$ of c we have $\text{res}_{\langle a, b \rangle}^2(\alpha) \neq 0$. In particular, $B_0(G) = 0$.

Proofs of this and similar statements make use of the long exact sequence coming from the Hochschild-Serre spectral sequence and the descriptions of group cohomology of abelian groups, given in Section 2.

Proof. The class $\alpha \in \ker(\text{res}_A^2)$ determines a class $0 \neq \tilde{\alpha} \in H^1(C, A^\vee)$, where A^\vee denotes $\text{Hom}(A, \mathbb{Q}/\mathbb{Z})$. We employ the notation Δ and N for A as C -module, and equally well for A^\vee . Under the identification of $H^1(C, A^\vee) \cong \ker(N)/\Delta(A^\vee)$, a representative $\tilde{\chi} \in A^\vee$, $N(\chi) = 0$, may be chosen so that $\ker(\tilde{\chi})$ contains $\Delta^i(A)$ (the image of the i th iterate of Δ) for some positive integer i . We suppose this is done, with i as small as possible. Then $\tilde{\chi}|_{\Delta^{i-1}(A)}$ does not lie in the image of the map

$$(\Delta^i(A)/\Delta^{i+1}(A))^\vee \rightarrow (\Delta^{i-1}(A)/\Delta^i(A))^\vee$$

induced by Δ . (The existence of $\chi \in A^\vee$ with $\Delta^{i+1}(A) \subset \ker(\chi)$ and $\Delta(\chi)|_{\Delta^{i-1}(A)} = \tilde{\chi}|_{\Delta^{i-1}(A)}$ would contradict the minimality of i .) Consequently, there exists

$$\bar{a} \in \ker(\Delta^{i-1}(A)/\Delta^i(A) \rightarrow \Delta^i(A)/\Delta^{i+1}(A)), \quad \bar{a} \notin \ker(\tilde{\chi}).$$

There is then a lift $a \in \Delta^{i-1}(A)$, belonging to the center of G , and this satisfies the desired property. \square

The conclusion $B_0(G) = 0$ is known [7, Lemma 4.9]. We use the description of the indicated bicyclic subgroups of G in Lemma 3.1 to give a direct proof of the next lemma, established using different methods (group homology of certain universal semidirect products) in [2].

Lemma 3.2. *Suppose that $G = A \rtimes B$ is a semidirect product of abelian groups A and B , with B bicyclic. Then $B_0(G) = 0$.*

Proof. Suppose $0 \neq \alpha \in H^2(G)$ with $\text{res}_A^2(\alpha) = 0 = \text{res}_B^2(\alpha)$. Then the class $\tilde{\alpha} \in H^1(B, A^\vee)$, determined by α , is nonzero.

We represent B as a product of a pair of cyclic subgroups and employ corresponding notation $\Delta_1, N_1, \Delta_2, N_2$. Then $\tilde{\alpha}$ may be represented by

$$(\tilde{\chi}, \tilde{\chi}') \in A^\vee \times A^\vee,$$

satisfying $N_1(\tilde{\chi}) = 0 = N_2(\tilde{\chi}')$ and $\Delta_2(\tilde{\chi}) = \Delta_1(\tilde{\chi}')$. This is unique up to coboundaries of the form $(\Delta_1(\chi), \Delta_2(\chi))$ for $\chi \in A^\vee$.

The product representation $B = C_1 \times C_2$ determines subgroups $G_i = A \rtimes C_i$ ($i = 1, 2$) of G . If $\text{res}_{G_2}^2(\alpha) \neq 0$, then Lemma 3.1 supplies a bicyclic subgroup $\langle a, b \rangle$ of G_2 with $\text{res}_{\langle a, b \rangle}^2(\alpha) \neq 0$, so we suppose, instead,

$\text{res}_{G_2}^2(\alpha) = 0$. Then $\tilde{\chi}' = \Delta_2(\chi')$, for some $\chi' \in A^\vee$, and, modifying the cocycle representative by a coboundary, we are reduced to the case

$$\tilde{\chi}' = 0.$$

So $\Delta_2(\tilde{\chi}) = 0$, i.e., $\tilde{\chi} \in (A/\Delta_2(A))^\vee$, and $\tilde{\chi}$ determines

$$\beta \in \ker \left(H^2(A/\Delta_2(A) \rtimes C_1) \rightarrow H^2(A/\Delta_2(A)) \right),$$

mapping to $\alpha \in H^2(G)$.

We apply Lemma 3.1 to β to obtain $\bar{a} \in A/\Delta_2(A)$ in the center of $A/\Delta_2(A) \rtimes C_1$ and a set $\mathcal{B}_{\bar{a}}$ of bicyclic subgroups, to which β restricts nontrivially. Let a be a lift to A . Then $\Delta_1(a) = \Delta_2(b)$ for some $b \in A$. Now the elements of G , obtained by pairing a with chosen generator of C_2 , and b with chosen generator of C_1 , generate an abelian subgroup of G whose image in $A/\Delta_2(A) \rtimes C_1$ is in $\mathcal{B}_{\bar{a}}$. This concludes the proof. \square

Lemma 3.3. *Suppose that G is a central extension of a bicyclic group. Then $B_0(G) = 0$.*

Proof. We write a central exact sequence of groups

$$1 \rightarrow A \rightarrow G \rightarrow B \rightarrow 1,$$

with B bicyclic. The proof will use the easy observation that G is abelian if and only if $H^1(G)$ maps surjectively to A^\vee (cf. the long exact sequence coming from the Hochschild-Serre spectral sequence).

Let a given $0 \neq \alpha \in H^2(G)$, with $\text{res}_A^2(\alpha) = 0$, determine a class $\tilde{\alpha} \in H^1(B, A^\vee) = \text{Hom}(B, A^\vee)$. If $\tilde{\alpha} \neq 0$, then α remains nonzero upon restriction to the pre-image in G of a suitable cyclic subgroup of B , and we may conclude by Lemma 3.1. We suppose $\tilde{\alpha} = 0$, thus $\alpha \in H^2(G)$ is the image under

$$H^2(B) \rightarrow H^2(G)$$

of some $\alpha_0 \in H^2(B)$. We write $B = C_1 \times C_2$, cyclic subgroups of orders $|C_1| = n_1$ and $|C_2| = n_2$, so $H^2(B) \cong \mathbb{Z}/d\mathbb{Z}$ with $d = \text{gcd}(n_1, n_2)$.

Let e denote the order of the image of $A^\vee \rightarrow H^2(B)$ (the transgression map, coming from the Hochschild-Serre spectral sequence) and f the order of $\alpha_0 \in H^2(B)$. We have $f \nmid e$, since $\alpha \neq 0$. Restriction from B to the subgroup eB leads to the class $0 \neq \bar{\alpha}_0 \in H^2(eB) \cong \mathbb{Z}/(d/e)\mathbb{Z}$. Letting G' denote the pre-image of eB in G , the corresponding Hochschild-Serre spectral sequence gives a trivial transgression map, hence surjective $H^1(G') \rightarrow A^\vee$. Therefore G' is abelian, and $\text{res}_{G'}^2(\alpha) \neq 0$. \square

Remark 3.4. Lemmas 3.1 through 3.3 are somewhat sharp. There exist groups G , extensions by abelian groups of bicyclic groups with $B_0(G) \neq 0$; an example is given in [7, Sect. 4]. For p prime, [7, Sect. 5] investigates

and exhibits p -groups G with $[G, [G, G]] = 0$ and $B_0(G) \neq 0$; subject to a minimality condition it is shown that $G/[G, G] \cong (\mathbb{Z}/p\mathbb{Z})^{2m}$, $m \geq 2$.

4. BRAUER GROUP OF THE QUOTIENT STACK

In [23], we explained the computation of $\text{Br}([V/G])$ in case V is a rational surface. Now, V is a smooth projective rational variety of arbitrary dimension, and we give a description of $\text{Br}([V/G])$ as a subgroup of

$$H^2(G, k(V)^\times) \cong \ker(\text{Br}(k(V)^G) \rightarrow \text{Br}(k(V))). \quad (4.1)$$

We refer to the basic exact sequence of Section 2. A subgroup, isomorphic to $H^2(G, k^\times)/\text{Am}(V, G)$, gives rise directly, via $k^\times \hookrightarrow k(V)^\times$, to elements of $H^2(G, k(V)^\times)$. To complete the description, we need to explain how to lift elements of $\ker(\delta_3)$ to the group (4.1). For this, we take a G -invariant collection of divisors D_i , generating $\text{Pic}(V)$, introduce the exact sequences of G -modules

$$0 \rightarrow R \rightarrow \bigoplus_i \mathbb{Z} \cdot [D_i] \rightarrow \text{Pic}(V) \rightarrow 0$$

and, with complement U in V of $D = \bigcup_i D_i$ and corresponding exact sequence

$$0 \rightarrow k^\times \rightarrow \mathbb{G}_m(U) \rightarrow R \rightarrow 0$$

of G -modules, consider the diagram (see [21, Sect. 6]):

$$\begin{array}{ccccccc} & & H^2(G, \mathbb{G}_m(U)) & & & & \\ & & \downarrow & & & & \\ 0 \rightarrow H^1(G, \text{Pic}(V)) & \longrightarrow & H^2(G, R) & \longrightarrow & H^2(G, \bigoplus_i \mathbb{Z} \cdot [D_i]) & & \\ & & \searrow \delta_3 & & \downarrow & & \\ & & H^3(G, k^\times) & & & & \end{array}$$

Given an element of $\ker(\delta_3)$, its image in $H^2(G, R)$ may be lifted to $H^2(G, \mathbb{G}_m(U))$. We obtain a representative in $H^2(G, k(V)^\times)$ of a corresponding Brauer class on $[V/G]$.

We also recall the formulation of purity. Here, V need not be projective or rational, but we suppose that G acts generically freely on V . An element $\alpha \in \text{Br}(k(V)^G)$ comes from $\text{Br}([V/G])$ if and only if it has vanishing residue along the divisors of $[V/G]$ [22, Prop. 2.2]. The residues along divisors of $[V/G]$ are related to the classical residues (Section 2) as follows. We fix an irreducible divisor on $[V/G]$, corresponding to a G -orbit $D = D_1 \cup \dots \cup D_m$ of components on V , and suppose that each D_i has generic stabilizer of order n . Then [23, Lemma 4.1] the residue of α along the divisor $[D/G]$ of $[V/G]$ is equal to $n\delta_\nu(\alpha)$, where $\nu \in \mathcal{D}\text{Val}_{k(V)^G}$ is the associated divisorial valuation of the function field $k(V)^G$ of V/G .

For G acting generically freely on smooth projective rational V we have inclusions

$$\mathrm{Br}_{\mathrm{nr}}(k(V)^G) \subset \mathrm{Br}([V/G]) \subset \mathrm{Br}(k(V)^G).$$

Indeed, the defining conditions for $\mathrm{Br}_{\mathrm{nr}}(k(V)^G)$ are vanishing δ_ν for all $\nu \in \mathcal{DVal}_{k(V)^G}$, while for the purity characterization of $\mathrm{Br}([V/G])$ only the ν associated with divisors on $[V/G]$ are involved, and then only the vanishing of $n_\nu \delta_\nu$ is required, for some positive integer n_ν . Since $\mathrm{Br}([V/G])$ is contained in the kernel of $\mathrm{Br}(k(V)^G) \rightarrow \mathrm{Br}(k(V))$, using (4.1) we have

$$\mathrm{Br}_{\mathrm{nr}}(k(V)^G) \subset \mathrm{Br}([V/G]) \subset H^2(G, k(V)^\times). \quad (4.2)$$

Lemma 4.1. *Let A be an abelian group, acting generically freely on a smooth projective variety V , and let $\alpha \in \mathrm{Br}([V/A])$. For $v \in V^A$ we denote by*

$$i_v^* : \mathrm{Br}([V/A]) \rightarrow H^2(A, k^\times)$$

the corresponding splitting in the basic exact sequence. If $\alpha \in \mathrm{Br}_{\mathrm{nr}}(k(V)^A)$, then $i_v^(\alpha) = 0$, for all $v \in V^A$.*

Proof. Replacing V by $V \times \mathbb{P}^1$ if needed (with trivial A -action on \mathbb{P}^1), we may suppose that V^A has no isolated points. Let $v \in V^A$. We blow up the point v to obtain \tilde{V} and note that A has a faithful linear action on the exceptional divisor E . By Fischer's theorem, $\mathrm{Br}_{\mathrm{nr}}(k(E)^A) = 0$, thus α restricts to $0 \in \mathrm{Br}([E/A])$. We conclude by functoriality. \square

Example 4.2. We consider the action from [23, Rem. 4.3], the projectivization of the regular representation of the Klein 4-group \mathfrak{K}_4 , and determine $\mathrm{Br}([\mathbb{P}^3/\mathfrak{K}_4])$. The action has fixed points, so δ_2 is trivial. We have $H^2(\mathfrak{K}_4, k^\times) \cong \mathbb{Z}/2\mathbb{Z}$ and $H^1(G, \mathrm{Pic}(\mathbb{P}^3)) = 0$, so

$$\mathrm{Br}([\mathbb{P}^3/\mathfrak{K}_4]) \cong \mathbb{Z}/2\mathbb{Z}.$$

The generator α is not in $\mathrm{Br}_{\mathrm{nr}}(K) = 0$, $K = k(\mathbb{P}^3)^{\mathfrak{K}_4}$, so there exists $\nu \in \mathcal{DVal}_K$ with $\partial_\nu(\alpha) \neq 0$. Since the \mathfrak{K}_4 -action is free outside a subset of codimension 2, we have to blow up \mathbb{P}^3 to find a divisor giving such a ν . See Section 8 for a systematic approach to testing for ramification.

5. BASIC CASES

Our formalism permits a uniform treatment of several cases.

Linear actions. The main result of Bogomolov [7] tells us that for a faithful linear representation V° of a finite group G , the field of invariants $K = k(V^\circ)^G$ has unramified Brauer group

$$\mathrm{Br}_{\mathrm{nr}}(K) \cong \mathrm{B}_0(G). \quad (5.1)$$

We apply our formalism to the standard equivariant compactification $V = \mathbb{P}(1 \oplus V^\circ)$ of V° . The G -action on V has a fixed point, thus $\delta_2 = 0$. Moreover, $H^1(G, \text{Pic}(V)) = 0$. It follows that $\text{Br}([V/G])$ is identified with $H^2(G, k^\times)$, which we have already identified with $H^2(G) = H^2(G, \mathbb{Q}/\mathbb{Z})$. The middle term in the chain of inclusions (4.2) is

$$\text{Br}([V/G]) \cong H^2(G).$$

Here, subgroups of each side are identified by Bogomolov's result (5.1).

For the containment $\text{Br}_{\text{nr}}(K) \subset B_0(G)$ we use Fischer's theorem (Section 2). If $\alpha \in \text{Br}_{\text{nr}}(K)$, then $\alpha_A \in \text{Br}_{\text{nr}}(k(V)^A) = 0$ for $A \in \mathcal{B}_G$. Thus the class in $H^2(G)$, corresponding to α , lies in $\ker(\text{res}_A)$.

For the reverse containment we use the equality (1.1), recalled in the Introduction. Suppose $\alpha \in \text{Br}([V/G])$ corresponds to a class in $B_0(G)$. Then $\alpha_A = 0$ for $A \in \mathcal{B}_G$. So $\alpha_A \in \text{Br}_{\text{nr}}(k(V)^A)$, thus $\alpha \in \text{Br}_{\text{nr}}(K)$.

Projectively linear actions. Now we consider an action of G on a projective space $V = \mathbb{P}(V^\circ)$. This arises from a representation V° of a cyclic extension \tilde{G} of G . As for linear actions we have $H^1(G, \text{Pic}(V)) = 0$. From Example 2.2 we have $\gamma \in H^2(G)$, with $\text{Am}(V, G) = \langle \gamma \rangle$. We have

$$\text{Br}([V/G]) \cong H^2(G)/\langle \gamma \rangle.$$

Theorem 5.1. *For a faithful action of a finite group G on a projective space V , corresponding to a faithful linear representation of a central cyclic extension \tilde{G} of G with associated class $\gamma \in H^2(G)$, we have*

$$\text{Br}_{\text{nr}}(k(V)^G) \cong \ker \left(H^2(G)/\langle \gamma \rangle \rightarrow \bigoplus_{A \in \mathcal{B}_G} H^2(A)/\langle \text{res}_A^2(\gamma) \rangle \right).$$

Proof. For the forwards containment, let $A \in \mathcal{B}_G$. We form the extension \tilde{A} of A by restricting the extension \tilde{G} of G and obtain $B_0(\tilde{A}) = 0$ from Lemma 3.3. Bogomolov's result yields

$$\text{Br}_{\text{nr}}(k(V^\circ)^{\tilde{A}}) = 0,$$

and this gives us what we need, since (with $\ell = |Z|$ in the extension (2.2))

$$\text{Br}_{\text{nr}}(k(V)^A) \cong \text{Br}_{\text{nr}}(k(\mathcal{O}_V(-\ell))^A) \cong \text{Br}_{\text{nr}}(k(\mathcal{O}_V(-1))^{\tilde{A}}) \cong \text{Br}_{\text{nr}}(k(V^\circ)^{\tilde{A}})$$

by the stable birational invariance of the unramified Brauer group and the No-Name Lemma (see Section 2). The reverse containment is proved as for linear actions. \square

Toric actions. Finally, we consider the G -action on the torus $T = \mathbb{G}_m^d$ given by an injective homomorphism

$$G \hookrightarrow \mathrm{GL}_d(\mathbb{Z}) = \mathrm{GL}(M),$$

where $M = \mathfrak{X}^*(T)$ is the character lattice, and $K = k(T)^G$.

As equivariant compactification we take V to be a smooth projective toric variety, given by the combinatorial data of a G -invariant smooth projective fan of cones in $N \otimes_{\mathbb{Z}} \mathbb{R}$, where $N = \mathfrak{X}_*(T)$ is the cocharacter lattice. (This exists in general; see [14].)

We use a variant of (4.2), involving $\mathrm{Br}([T/G])$:

$$\mathrm{Br}_{\mathrm{nr}}(K) \subset \ker(\mathrm{Br}([T/G]) \rightarrow \mathrm{Br}(T)) \subset H^2(G, k(T)^\times).$$

The middle group is accessible by the basic exact sequence of Section 2, applied to T . Using the splitting given by the fixed point 1_T and the vanishing of $\mathrm{Pic}(T)$, we obtain

$$\ker(\mathrm{Br}([T/G]) \rightarrow \mathrm{Br}(T)) \cong H^2(G, \mathbb{Q}/\mathbb{Z} \oplus M).$$

According to Saltman [26, Thm. 12], the unramified Brauer group is

$$\mathrm{Br}_{\mathrm{nr}}(K) \cong \ker(H^2(G, \mathbb{Q}/\mathbb{Z} \oplus M) \rightarrow \bigoplus_{A \in \mathcal{B}_G} H^2(A, \mathbb{Q}/\mathbb{Z} \oplus M)).$$

As in the other cases, the forwards containment is implied by the vanishing of $\mathrm{Br}_{\mathrm{nr}}(k(T)^A)$ for $A \in \mathcal{B}_G$, and the reverse containment holds by (1.1). So Saltman's result follows from the vanishing of $\mathrm{Br}_{\mathrm{nr}}(k(T)^A)$ for $A \in \mathcal{B}_G$, which we explain now, following Barge [2].

There is a G -module M' with $M \oplus M'$ of finite index in a permutation module P (e.g., span of boundary divisors of V in the exact sequence $0 \rightarrow M \rightarrow P \rightarrow \mathrm{Pic}(V) \rightarrow 0$, with $M' \subset P$ giving an isomorphism $M' \otimes \mathbb{Q} \rightarrow \mathrm{Pic}(V) \otimes \mathbb{Q}$). With associated tori $T_P = \mathrm{Spec}(k[P])$, etc., we have $T_M = T$ and epimorphism $T_P \rightarrow T \times T_{M'}$ with finite kernel $F \subset T_P$. On T_P the translation action of F and permutation action of G are linear and, together, yield a semidirect product $F \rtimes G$. For $A \in \mathcal{B}_G$ we have

$$\mathrm{Br}_{\mathrm{nr}}(k(T \times T_M)^A) \cong \mathrm{Br}_{\mathrm{nr}}(k(T_P)^{F \rtimes A}) = 0 \tag{5.2}$$

by Lemma 3.2 and Bogomolov's result. The projection $T \times T_{M'} \rightarrow T$ has equivariant section $T \times \{1_{T_{M'}}\}$. Thus the induced map

$$\mathrm{Br}([T/A]) \rightarrow \mathrm{Br}([T \times T_{M'}/A])$$

is injective, and we obtain the desired vanishing from (5.2).

6. GRASSMANNIANS

We fix notation

$$V = \mathrm{Gr}(r, n) = \mathrm{Gr}(r, U^\circ)$$

for the Grassmannian variety of r -dimensional subspaces of a given n -dimensional k -vector space U° . Here, $1 \leq r \leq n - 1$. Since $\mathrm{Pic}(V) \cong \mathbb{Z}$ any action yields $\mathrm{H}^1(G, \mathrm{Pic}(V)) = 0$, and

$$\mathrm{Br}([V/G]) \cong \mathrm{H}^2(G)/\mathrm{Am}(V, G).$$

Automorphisms. When $r = 1$, we have projective space $U = \mathbb{P}(U^\circ)$, with automorphism group $\mathrm{PGL}(U^\circ)$. Suppose $r \geq 2$. It is known classically [12] that when $n \neq 2r$ the automorphism group of V is the same as that of U , i.e., $\mathrm{Aut}(V) = \mathrm{PGL}(U^\circ)$, while for $n = 2r$ there is the identity component $\mathrm{PGL}(U^\circ)$ of $\mathrm{Aut}(V)$ and a second component of automorphisms, given by isomorphisms $U^\circ \rightarrow U^{\circ\vee}$.

Amitsur invariant. We recall the Amitsur invariant of a projectively linear action (Section 2). Let $G \rightarrow \mathrm{PGL}(U^{\circ\vee})$ define a right action of G on U , with extension (2.2) and compatible

$$\tilde{G} \rightarrow \mathrm{GL}(U^{\circ\vee}).$$

We obtain $\gamma \in \mathrm{H}^2(G)$, with $\mathrm{Am}(U, G) = \langle \gamma \rangle$.

Lemma 6.1. *Let a homomorphism $G \rightarrow \mathrm{PGL}(U^{\circ\vee})$ determine G -actions on U and on V . If the action on U gives rise to $\gamma \in \mathrm{H}^2(G)$, with $\mathrm{Am}(U, G) = \langle \gamma \rangle$, then for the action on V we have $\mathrm{Am}(V, G) = \langle r\gamma \rangle$.*

Proof. We consider an extension (2.2) with sufficiently divisible $\ell = |Z|$. Applying the r th exterior power yields the extension

$$1 \rightarrow Z/\mu_r \rightarrow \tilde{G}/\mu_r \rightarrow G \rightarrow 1,$$

thus $\mathrm{Am}(\mathbb{P}(\bigwedge^r U^\circ), G) = \langle r\gamma \rangle$. We conclude by applying Lemma 2.1 to the Plücker embedding $V \rightarrow \mathbb{P}(\bigwedge^r U^\circ)$. \square

Lemma 6.2. *Let the notation be as in Lemma 6.1. Then*

$$\mathrm{Br}_{\mathrm{nr}}(k(U)^G) \cong \mathrm{Br}_{\mathrm{nr}}(k(U \times V)^G).$$

Proof. By Example 2.2 we have a canonical G -linearization of the vector bundle $\underline{U}^\circ \otimes \mathcal{O}_U(1)$ on U , hence also of the sum of r copies $\underline{U}^{\circ\oplus r} \otimes \mathcal{O}_U(1)$. A similar argument supplies a canonical linearization of the tautological bundle S on V , pulled back by the projection $\mathrm{pr}_2: U \times V \rightarrow V$ and tensored with $\mathrm{pr}_1^* \mathcal{O}_U(1)$, hence as well of $\mathrm{pr}_2^* S^{\oplus r} \otimes \mathrm{pr}_1^* \mathcal{O}_U(1)$. We have a G -equivariant birational equivalence

$$\underline{U}^{\circ\oplus r} \otimes \mathcal{O}_U(1) \sim_G \mathrm{pr}_2^* S^{\oplus r} \otimes \mathrm{pr}_1^* \mathcal{O}_U(1)$$

and conclude by the stable birational invariance of the unramified Brauer group and the No-Name Lemma. \square

Lemma 6.3. *Let the notation be as in Lemma 6.1 and A an abelian subgroup of G of index d . We suppose that d divides r , the order of γ is d , and $\gamma \in \ker(\text{res}_A^2)$. Then $V^G \neq \emptyset$.*

Proof. We prove the result by induction on r . For the base case $r = d$, since $\text{res}_A^2(\gamma) = 0$ there is a lift $A \rightarrow \text{GL}(U^{\circ V})$ of the restriction to A of the homomorphism $G \rightarrow \text{PGL}(U^{\circ V})$. Therefore $U^A \neq \emptyset$. We take $z \in U^A$. Then the linear span $\Sigma \subset U^{\circ}$ of the G -orbit of z is G -invariant. Lemma 6.1 implies $\dim(\Sigma) = d$, so $[\Sigma] \in V^G$.

If $r > d$, then we take $\Sigma \subset U^{\circ}$ as above, $\dim(\Sigma) = d$, and let the condition to contain Σ define a Schubert variety in V , isomorphic to $\text{Gr}(r-d, n-d)$. The induction hypothesis is applicable and yields a fixed point. \square

Case of projectively linear automorphisms. Let G act on V via a homomorphism $G \rightarrow \text{PGL}(U^{\circ V})$. By Lemma 6.1, we have

$$\text{Br}([V/G]) \cong H^2(G)/\langle r\gamma \rangle.$$

Theorem 6.4. *Let a faithful linear action of a finite group G on a projective space $U = \mathbb{P}(U^{\circ})$ be given, with associated class $\gamma \in H^2(G)$. Then, for the induced action of G on the Grassmannian $V = \text{Gr}(r, U^{\circ})$, we have*

$$\text{Br}_{\text{nr}}(k(V)^G) \cong \ker \left(H^2(G)/\langle r\gamma \rangle \rightarrow \bigoplus_{A \in \mathcal{B}_G} H^2(A)/\langle \text{res}_A^2(r\gamma) \rangle \right).$$

Proof. As in other cases, we divide the assertion into a forwards containment and a reverse containment. The forwards containment follows from the claim, that for $A \in \mathcal{B}_G$ we have $\text{Br}_{\text{nr}}(k(V)^A) = 0$. The reverse containment holds by (1.1).

We establish the claim. Let $A \in \mathcal{B}_G$ and $\alpha \in \text{Br}([V/A])$. If α lies in $\text{Br}_{\text{nr}}(k(V)^A)$, then the image of α in $\text{Br}([U \times V/A])$ lies in $\text{Br}_{\text{nr}}(k(U \times V)^A)$, which by Lemma 6.2 is isomorphic to $\text{Br}_{\text{nr}}(k(U)^A)$. So by Theorem 5.1,

$$\alpha \in \langle \text{res}_A^2(\gamma) \rangle / \langle \text{res}_A^2(r\gamma) \rangle. \quad (6.1)$$

We write $A \cong \mathbb{Z}/e\mathbb{Z} \oplus \mathbb{Z}/f\mathbb{Z}$ with $e \mid f$ and let d denote the order of the quotient group in (6.1). So, $d = \gcd(r, s)$, where s is the order of $\text{res}_A^2(\gamma)$ in $H^2(A) \cong \mathbb{Z}/e\mathbb{Z}$. We consider the subgroups $A'' \subseteq A' \subseteq A$, corresponding to

$$\mathbb{Z}/\frac{e}{s}\mathbb{Z} \oplus \mathbb{Z}/f\mathbb{Z} \subseteq \mathbb{Z}/\frac{de}{s}\mathbb{Z} \oplus \mathbb{Z}/f\mathbb{Z} \subseteq \mathbb{Z}/e\mathbb{Z} \oplus \mathbb{Z}/f\mathbb{Z}.$$

We have $r\gamma \in \ker(\text{res}_{A'}^2)$, with the quotient group in (6.1) mapping isomorphically to $\langle \text{res}_{A'}^2(\gamma) \rangle$. As well, $\gamma \in \ker(\text{res}_{A''}^2)$. Lemma 6.3 is applicable and gives $V^{A'} \neq \emptyset$. We apply Lemma 4.1 to conclude $\alpha = 0$. \square

General case. Theorem 6.4 gives a complete treatment of faithful actions on Grassmannians, except when $r \geq 2$ and $n = 2r$, which we suppose from now on. With the classical terminology [12], $\text{Aut}(V)$ consists of *collineations*, given by projective linear automorphisms of U° , and *correlations*, given by projective isomorphisms $U^\circ \rightarrow U^{\circ\vee}$. In formulas, for $\psi \in \text{GL}(U^\circ)$ the collineation $L_{[\psi]}$ of $[\psi] \in \text{PGL}(U^\circ)$ is

$$L_{[\psi]}([\Sigma]) = [\psi(\Sigma)],$$

while the correlation $C_{[\varphi]}$, for an isomorphism $\varphi: U^\circ \rightarrow U^{\circ\vee}$, is

$$C_{[\varphi]}([\Sigma]) = [\Sigma'] \quad \text{with} \quad \varphi(\sigma)(\sigma') = 0 \quad \forall \sigma \in \Sigma, \sigma' \in \Sigma'.$$

We have

$$C_{[\varphi]} \circ C_{[\varphi]} = L_{[\varphi^{-1}\vee \circ \varphi]} \quad (6.2)$$

As well, $C_{[\varphi]}$ and $L_{[\psi]}$ commute if and only if

$$[\psi^\vee \circ \varphi \circ \psi] = [\varphi]. \quad (6.3)$$

Theorem 6.5. *Let a faithful action of a finite group G on a Grassmannian $V = \text{Gr}(r, n) = \text{Gr}(r, U^\circ)$ be given, $\dim(U^\circ) = n$, and let $\beta \in H^2(G)$ be the class associated with the projective linear action on Plücker coordinates $G \rightarrow \text{PGL}(\bigwedge^r U^{\circ\vee})$. Then we have*

$$\text{Br}_{\text{nr}}(k(V)^G) \cong \ker \left(H^2(G)/\langle \beta \rangle \rightarrow \bigoplus_{A \in \mathcal{B}_G} H^2(A)/\langle \text{res}_A^2(\beta) \rangle \right).$$

Proof. We have $\text{Am}(V, G) = \langle \beta \rangle$ by Lemma 2.1, applied to the Plücker embedding. The statement is thus just Theorem 6.4, unless $r \geq 2$ and $n = 2r$, and the action of G involves correlations; we suppose this from now on. We need to show that for $A \in \mathcal{B}_G$ we have $\text{Br}_{\text{nr}}(k(V)^A) = 0$. This is already known (proof of Theorem 6.4) unless the action of A involves correlations; we suppose this as well. For the index 2 subgroup A' of A , where the action is by collineations, we have $\text{Br}_{\text{nr}}(k(V)^{A'}) = 0$.

Let $\alpha \in \text{Br}([V/A]) \cong H^2(A)/\langle \text{res}_A^2(\beta) \rangle$. If $\alpha \in \text{Br}_{\text{nr}}(k(V)^A)$, then α lies in the kernel of $\text{Br}([V/A]) \rightarrow \text{Br}([V/A'])$. The nontriviality of this kernel forces the cyclic group $H^2(A)$ to be of even order and the order of β_A to be odd. Then we conclude by Lemma 4.1, using the following lemma for the existence of a fixed point. \square

Lemma 6.6. *Let A be a bicyclic group, acting on $V = \text{Gr}(r, n)$, $n = 2r$. We suppose that if $r \geq 2$ then the action involves correlations. We let*

$\beta \in H^2(A)$ be the class, associated with the projective linear action on Plücker coordinates. Then β is 2-torsion, and we have

$$\beta = 0 \quad \text{if and only if} \quad V^A \neq \emptyset.$$

Proof. If $r = 1$ then the assertions are clear, so we suppose $r \geq 2$. We may write

$$A \cong \mathbb{Z}/e\mathbb{Z} \oplus \mathbb{Z}/f\mathbb{Z},$$

where the respective generators are a correlation $C_{[\varphi]}$ and a collineation $L_{[\psi]}$. They commute. In fact, the corresponding equation (6.3) may be strengthened to

$$\psi^\vee \circ \varphi \circ \psi = \varphi \quad (6.4)$$

by suitably rescaling ψ . From (6.4) and its equivalent form

$$\psi^\vee \circ \varphi^\vee \circ \psi = \varphi^\vee \quad (6.5)$$

we obtain

$$\psi \circ \varphi^{-1\vee} \circ \varphi = \varphi^{-1\vee} \circ \varphi \circ \psi. \quad (6.6)$$

By (6.2) and (6.6), the action of A' (by collineations) lifts to a linear action. So β lies in the kernel of $H^2(A) \rightarrow H^2(A')$ and thus is 2-torsion.

Existence of a fixed point clearly implies that β vanishes. It remains to show that the vanishing of β implies the existence of a fixed point. We do this by induction on r , where the base case $r = 1$ is already clear.

We consider

$$\varphi_+ = \frac{1}{2}(\varphi + \varphi^\vee) \quad \text{and} \quad \varphi_- = \frac{1}{2}(\varphi - \varphi^\vee),$$

which determine a symmetric, respectively skew-symmetric bilinear form on U° . By (6.4)–(6.5) the analogous identities for φ_+ and φ_- also hold. In particular, ψ induces an automorphism of $\ker(\varphi_+)$.

If φ_+ is degenerate, i.e., $\ker(\varphi_+) \neq 0$, then we may take $v \in \ker(\varphi_+)$ to be an eigenvector of ψ . There is a Schubert variety in V , of r -dimensional spaces containing and orthogonal to v (with respect to φ_-). We apply the induction hypothesis and obtain a fixed point.

It remains to treat the case that φ_+ is nondegenerate. Choosing an orthonormal basis of U° for the associated symmetric bilinear form, with dual basis of $U^{\circ\vee}$, we get a representing matrix

$$B = I + B_-$$

for φ , where I denotes the identity matrix, and the matrix B_- represents φ_- and is skew-symmetric. The representing matrix for $\varphi^{-1\vee} \circ \varphi$ is

$$C = (B^{-1})^t B.$$

We let D denote the representing matrix for ψ ; then

$$D^t B D = B \quad \text{and} \quad D C = C D.$$

Suppose $B_- \neq 0$. An orthogonal change of basis can be made to bring the matrix B_- into a normal form [18, §XI.4]. In the simplest case this is a block diagonal matrix with 2×2 -blocks

$$\begin{pmatrix} 0 & \lambda \\ -\lambda & 0 \end{pmatrix}, \quad \lambda \in k^\times, \quad (6.7)$$

and possibly an additional zero block. Generally there can be larger blocks, skew-symmetric analogues of the larger Jordan blocks. But these, if present, would obstruct the diagonalizability of C . Since some power of C is identity, C is diagonalizable, and the normal form of B_- has all nonzero blocks of the form (6.7). The fact that D commutes with C implies that D preserves the eigenspaces of C . (Always $\lambda^2 \neq -1$, since B is invertible, and eigenvalues $1 \pm \lambda\sqrt{-1}$ of B correspond to eigenvalues $(1 \pm \lambda\sqrt{-1})/(1 \mp \lambda\sqrt{-1})$ of C .) We conclude by choosing an eigenvector and appealing to the induction hypothesis, as in the previous case.

We are left with the case $B_- = 0$. Then $B = I$, and the matrix D is orthogonal. The fixed locus

$$V^{C_{[\varphi]}} = \{[\Sigma] \in V \mid \Sigma^\perp = \Sigma\}$$

is a disjoint union of two copies of the maximal orthogonal Grassmannian $\mathrm{SO}_n/\mathrm{P}_r$ (parabolic subgroup P_r corresponding to an end root of the Dynkin diagram D_r), acted upon transitively by the orthogonal group. We fix $[\Sigma] \in V^{C_{[\varphi]}}$ and a lift $\rho \in \mathrm{GL}(\bigwedge^r U^\circ)$ of $C_{[\varphi]}$. A nontrivial homomorphism from the orthogonal group to $\{\pm 1\}$ is defined by $\omega \mapsto \lambda'/\lambda$, where λ and λ' are the respective eigenvalues of $\bigwedge^r \Sigma$ and $\bigwedge^r \omega(\Sigma)$:

$$\rho(v) = \lambda v, \quad \rho(\bigwedge^r \omega(v)) = \lambda' \bigwedge^r \omega(v) \quad \text{for } v \in \bigwedge^r \Sigma.$$

This has to be the determinant. So, $\beta = 0$ implies $\det(D) = 1$. Then $L_{[\psi]}$ maps each component of $V^{C_{[\varphi]}}$ to itself, and $V^A \neq \emptyset$. \square

7. FLAG VARIETIES

We fix a k -vector space U° of dimension n , a positive integer m , and positive integers r_1, \dots, r_m with

$$1 \leq r_1 < \dots < r_m \leq n - 1.$$

In this section we extend our treatment to the partial flag variety

$$V = \mathrm{Fl}(r_1, \dots, r_m; n) = \mathrm{Fl}(r_1, \dots, r_m; U^\circ)$$

of nested subspaces of dimensions r_1, \dots, r_m of U° . When $m = 1$ this is just a Grassmannian variety (Section 6), so we assume $m \geq 2$.

Automorphisms. We obtain a complete description of $\text{Aut}(V)$ from [16]. There is an identity component $\text{PGL}(U^\circ)$, which is the full automorphism group except when the integers r_1, \dots, r_m satisfy the symmetry condition

$$r_i + r_{m+1-i} = n, \quad \forall i.$$

In that case, as in Section 6, $\text{Aut}(V)$ has a second component, consisting of correlations. The action on

$$\text{Pic}(V) \cong \mathbb{Z}^m$$

is trivial (when $\text{Aut}(V) = \text{PGL}(U^\circ)$) or by an involutive permutation (when the symmetry condition holds). So,

$$H^1(G, \text{Pic}(V)) = 0,$$

and

$$\text{Br}([V/G]) \cong H^2(G)/\text{Am}(V, G).$$

Projectively linear action. Suppose that G acts on V via a homomorphism $G \rightarrow \text{PGL}(U^{\circ\vee})$. Let $\gamma \in H^2(G)$ be the associated class (Example 2.2). Applying Lemma 2.1 to the natural morphism from V to the product of the Grassmannians $\text{Gr}(r_i, U^\circ)$, we obtain

$$\text{Am}(V, G) = \langle r_1\gamma, \dots, r_m\gamma \rangle = \langle q\gamma \rangle, \quad q = \gcd(r_1, \dots, r_m).$$

Theorem 7.1. *Let a faithful linear action of a finite group G on a projective space $U = \mathbb{P}(U^\circ)$ be given, with associated class $\gamma \in H^2(G)$. Then, for the induced action of G on the flag variety $V = \text{Fl}(r_1, \dots, r_m; U^\circ)$ we have*

$$\text{Br}_{\text{nr}}(k(V)^G) \cong \ker \left(H^2(G)/\langle q\gamma \rangle \rightarrow \bigoplus_{A \in \mathcal{B}_G} H^2(A)/\langle \text{res}_A^2(q\gamma) \rangle \right),$$

where $q = \gcd(r_1, \dots, r_m)$.

The proof is similar to the case of Grassmannians (Theorem 6.4). We collect the analogous preliminary results.

Lemma 7.2. *Let the notation be as in Theorem 7.1. Then*

$$\text{Br}_{\text{nr}}(k(U)^G) \cong \text{Br}_{\text{nr}}(k(U \times V)^G).$$

Proof. The argument is similar to the case of a Grassmannian (Lemma 6.2), but on V we have m nested tautological bundles

$$S_1 \subset \dots \subset S_m$$

of ranks $r_1 < \dots < r_m$. We have an equivariant birational equivalence

$$\underline{U}^{\circ\oplus r_m} \otimes \mathcal{O}_U(1) \sim_G \text{pr}_2^*(S_1^{\oplus r_1} \oplus S_2^{\oplus r_2 - r_1} \oplus \dots \oplus S_m^{\oplus r_m - r_{m-1}}) \otimes \text{pr}_1^*\mathcal{O}_U(1)$$

of G -linearized bundles and conclude as before. \square

Lemma 7.3. *Let the notation be as in Theorem 7.1 and A an abelian subgroup of G of index d . We suppose that d divides q , the order of γ is d , and $\gamma \in \ker(\text{res}_A^2)$. Then $V^G \neq \emptyset$.*

Proof. We prove the result by induction on r_m . By Lemma 6.3 there exists $[\Sigma] \in \text{Gr}(r_1, U^\circ)^G$. We conclude by applying the induction hypothesis to the Schubert variety of $\Sigma_1 \subset \dots \subset \Sigma_m$ with $\Sigma_1 = \Sigma$. \square

Proof of Theorem 7.1. The argument is just as in the proof of Theorem 6.4. To establish the claim, that $\text{Br}_{\text{nr}}(k(V)^A) = 0$ for $A \in \mathcal{B}_G$, we consider $\text{res}_A^2(\gamma)$, whose order we denote by s , so the quotient group $\langle \text{res}_A^2(\gamma) \rangle / \langle \text{res}_A^2(q\gamma) \rangle$ has order $d = \gcd(q, s)$; we only need to consider elements of this quotient group, by Lemma 7.2. Subgroups $A'' \subseteq A' \subseteq A$ are defined just as before, and we conclude with Lemmas 7.3 and 4.1. \square

Remark 7.4. Here, and also in the case of Grassmannians (Section 6), in case of a projectively linear action with $\gamma = 0$, i.e., coming from a linear action, the action of G on V is stably linearizable. We apply the construction of the proof of Lemma 7.2, respectively Lemma 6.2, just without the factor U and twist by $\mathcal{O}_U(1)$.

Action involving correlations. Suppose r_1, \dots, r_m satisfy the symmetry condition and the action of G on V involves correlations. An index 2 subgroup G' acts by collineations with an associated class $\gamma \in H^2(G')$.

Let $q = \gcd(r_1, \dots, r_{[m/2]})$. If m is odd, then $n = 2r_{(m+1)/2}$, and as in Section 6 we have $\beta \in H^2(G)$, associated with the projective linear action on Plücker coordinates $G \rightarrow \text{PGL}(\bigwedge^{r_{(m+1)/2}} U^{\circ\vee})$. We have

$$\text{Am}(V, G) = \begin{cases} \langle \text{cores}_{G'}^2(q\gamma) \rangle, & \text{if } m \text{ is even,} \\ \langle \beta, \text{cores}_{G'}^2(q\gamma) \rangle, & \text{if } m \text{ is odd,} \end{cases}$$

where $\text{cores}_{G'}^2: H^2(G') \rightarrow H^2(G)$ is the corestriction map. This comes by applying Lemma 2.1 to the product of Grassmannians $\text{Gr}(r_i, U^\circ)$. For $i = 1, \dots, [m/2]$ the projective representation associated with the G -action on $\text{Gr}(r_i, U^\circ) \times \text{Gr}(r_{m+1-i}, U^\circ)$ is obtained from $G' \rightarrow \text{PGL}(U^{\circ\vee})$ by two operations. The first, \bigwedge^{r_i} , multiplies the associated class by r_i . The second, leading to the corestriction, is tensor induction [3, §2B].

Theorem 7.5. *Let a faithful action of a finite group G on a flag variety $V = \text{Fl}(r_1, \dots, r_m; U^\circ)$ be given, with $m \geq 2$. Suppose that the action of G involves correlations, with index 2 subgroup G' acting by collineations leading to $\gamma \in H^2(G')$. Let β be the class associated with the projective linear action on Plücker coordinates $G \rightarrow \text{PGL}(\bigwedge^{r_{(m+1)/2}} U^{\circ\vee})$ when m is*

odd, 0 when m is even. Set $q = \gcd(r_1, \dots, r_{[m/2]})$. Then

$$\begin{aligned} \mathrm{Br}_{\mathrm{nr}}(k(V)^G) \cong \ker \Big(\mathrm{H}^2(G)/\langle \beta, \mathrm{cores}_{G'}^2(q\gamma) \rangle \\ \rightarrow \bigoplus_{A \in \mathcal{B}_G} \mathrm{H}^2(A)/\langle \mathrm{res}_A^2(\beta), \mathrm{res}_A^2(\mathrm{cores}_{G'}^2(q\gamma)) \rangle \Big). \end{aligned}$$

Proof. We argue as in the proof of Theorem 6.5. For $A \in \mathcal{B}_G$, we show $\text{Br}_{\text{nr}}(k(V)^A) = 0$. This is known (proof of Theorem 7.1) when $A \subset G'$, so we suppose this is not the case. Following the proof of Lemma 6.6, we have the index 2 subgroup $A' = A \cap G'$, whose action lifts to a linear action. We are done, provided we can show $\text{res}_A^2(\beta) = 0$ implies $V^A \neq \emptyset$.

We suppose $\text{res}_A^2(\beta) = 0$. Since A' acts linearly, it suffices to show that $\text{Gr}(r_{(m+1)/2}, U^\circ)^A \neq \emptyset$ when m is odd, respectively $\text{Gr}(r_{m/2}, U^\circ)^{A'}$ contains a point $[\Sigma]$ sent by the correlations in A to a point

$$[\Sigma'] \in \text{Gr}(r_{\frac{m}{2}+1}, U^\circ) \quad \text{with} \quad \Sigma \subset \Sigma'$$

when m is even. The argument is as in the proof of Lemma 6.6, exactly so when m is odd, differing slightly in the treatment of the last case when m is even. When $B_- = 0$ (notation of the proof of Lemma 6.6), the fixed locus of $\mathrm{Gr}(r_{m/2}, U^\circ)$ (m even) for the correlation is a single copy of an orthogonal Grassmannian, thus has a fixed point. \square

8. GENERAL APPROACH VIA DESTACKIFICATION

Let $\mathcal{X} = [V/G]$ be given, where V is a smooth projective rational variety and G acts generically freely. We suppose that $\text{Br}(\mathcal{X})$ has been determined, as outlined in Section 4, in particular, an element of $\text{Br}(\mathcal{X})$ is given by an element of $H^2(G, k(V)^\times)$. Here we describe a procedure to decide whether a given element of $\text{Br}(\mathcal{X})$ lies in $\text{Br}_{\text{nr}}(k(V)^G)$.

Root stacks. Let \mathcal{X} be a smooth DM stack and \mathcal{D} a divisor on \mathcal{X} . For a positive integer r there is the *root stack*

$$\sqrt[r]{(\mathcal{X}, \mathcal{D})}$$

of [9, §2], [1, App. B], which is again smooth, provided \mathcal{D} is smooth. The root stack has the same set of k -points and the same coarse moduli space as \mathcal{X} , but has stabilizer groups extended by μ_r along \mathcal{D} .

The *iterated root stack* along a simple normal crossing divisor $\mathcal{D} = \mathcal{D}_1 \cup \dots \cup \mathcal{D}_\ell$ on \mathcal{X} [9, Defn. 2.2.4] is determined by an ℓ -tuple of positive integers $\mathbf{r} = (r_1, \dots, r_\ell)$. This stack $\sqrt[r]{(\mathcal{X}, \mathcal{D})}$ is obtained by iteratively performing the r_i th root stack construction along each divisor \mathcal{D}_i .

An in-depth treatment of the birational geometry of DM stacks, including background on topics such as root stacks, is given in [24].

Set-up. To start, we replace $\mathcal{X} = [V/G]$ by a smooth DM stack \mathcal{X}' with smooth coarse moduli space and proper birational morphism to \mathcal{X} .

This is achieved via functorial destackification [4], [5]. The outcome is a sequence of stacky blow-ups whose composite $\mathcal{X}' \rightarrow \mathcal{X}$ is as desired. Here, a stacky blow-up is either a usual blow-up along a smooth center or a root stack operation along a smooth divisor. The coarse moduli space X' of \mathcal{X}' is a smooth projective variety with a simple normal crossing divisor $D = D_1 \cup \dots \cup D_\ell$ on X' , such that $\mathcal{X}' \cong \sqrt[r]{(X', D)}$ is an iterated root stack of D .

The morphism $\mathcal{X}' \rightarrow \mathcal{X}$ is not necessarily representable. Indeed, a (nontrivial) root stack operation adds stabilizers along a divisor. The corresponding *relative* coarse moduli space is a stack \mathbf{X}' with representable morphism to \mathcal{X} . Since \mathcal{X} has a representable morphism to BG , so does \mathbf{X}' , i.e., $\mathbf{X}' \cong [V'/G]$ for some projective variety V' . The variety V' is normal, but not necessarily smooth. We have the diagram

$$\begin{array}{ccc} \mathcal{X}' & \longrightarrow & [V'/G] \longrightarrow X' \\ & \searrow & \downarrow \\ & & \mathcal{X} \end{array}$$

with 2-commutative triangle. The vertical morphism is representable, induced by a G -equivariant birational proper morphism $V' \rightarrow V$.

Let $M = k(V)$. Suppose we are given $\beta \in H^2(G, M^\times)$, representing $\alpha \in \text{Br}([V/G])$. We explain how to check whether α has vanishing residue along a divisor of X' . It is only necessary to check this for the finitely many divisors of X' , where \mathcal{X}' has nontrivial generic stabilizer. We have $\alpha \in \text{Br}_{\text{nr}}(M^G)$ if and only if these residues vanish.

Let $D' \subset X'$ be such a divisor, and let D be a divisor in V' , mapping to D' in X' . We let Z denote the stabilizer and I the inertia of D , so I is cyclic and central in Z . The induced action of $\bar{Z} = Z/I$ on D is faithful, and we have $k(D)^{\bar{Z}} \cong k(D')$. Let $n = |I|$.

By the standard behavior of residue under extensions [27, Thm. 10.4], the residue of α along D' in X' is equal to the residue of the restriction of α to $\text{Br}(M^Z)$ along D/Z in V'/Z .

We introduce notation for DVRs, fraction fields, and residue fields:

- V'/Z : The local ring of V'/Z at the generic point of D/Z will be denoted by R ; fraction field $K = M^Z$, residue field $\kappa = k(D)^{\bar{Z}}$.
- V'/I : The local ring of V'/I at the generic point of D will be denoted by S ; fraction field $L = M^I$, residue field $\lambda = k(D)$.
- V' : The local ring of V' at the generic point of D will be denoted by T ; fraction field M , residue field λ .

The respective maximal ideals will be denoted by \mathfrak{m}_R , etc.

Residue I. Certainly, a necessary condition for the vanishing of the residue of α along D' is the vanishing of the residue of the restriction of α to $\text{Br}(L)$ along D . We explain the computation of this residue. The restriction of α is represented by

$$\beta|_I \in H^2(I, M^\times) \cong L^\times/\text{N}_{M/L}(M^\times) = S^\times/\text{N}_{M/L}(T^\times).$$

Let $v \in S^\times$ be a representative of $\beta|_I$. Then the residue of the restriction of α to $\text{Br}(L)$ along D is

$$[\bar{v}] \in \lambda^\times/\lambda^{\times n}.$$

If $[\bar{v}] \neq 0$, then we have detected a nontrivial residue of α , and we stop the computation.

Reduction to cocycle for \bar{Z} . Continuing with the above notation, we suppose $[\bar{v}] = 0$. By making a suitable choice of representative v we may suppose that

$$v \in 1 + \mathfrak{m}_S.$$

We let $E \subset 1 + \mathfrak{m}_S$ denote the subgroup generated by $(1 + \mathfrak{m}_B)^n$ and the Galois orbit of v . We define $L' = L(E^{1/n})$ and $M' = L'M$; these are Kummer extensions of L . We now show that, there is a Kummer extension K'/K with $K'L = L'$ and $[K' : K] = [L' : L]$.

A choice of maximal ideal of the integral closure of S in L' determines, by localization, a DVR S' with residue field λ . The Kummer pairing of $\text{Gal}(L'/L)$ with E extends to a pairing

$$\text{Gal}(L'/K) \times E \rightarrow \mu_n.$$

The induced homomorphism $\text{Gal}(L'/K) \rightarrow \text{Hom}(E, \mu_n) \cong \text{Gal}(L'/L)$ determines a direct product decomposition

$$\text{Gal}(L'/K) \cong \text{Gal}(L'/L) \times \bar{Z}$$

and thus a Kummer extension

$$K' = L'^{\bar{Z}}$$

of K with $K'L = L'$. The corresponding DVR R' has residue field κ .

If we replace the tower of fields $M/L/K$ by $M'/L'/K'$ and pass from $\beta|_Z \in H^2(Z, M^\times)$ to $\beta' \in H^2(Z, M'^\times)$, the residue does not change, and we have $v \in (L'^\times)^n$. So

$$\beta' \in \ker(H^2(Z, M'^\times) \rightarrow H^2(I, M'^\times)).$$

Residue II. We keep the above notation but revert to the notation $M/L/K$ for the tower of fields. So we have reduced to the case

$$\beta|_Z \in \ker(H^2(Z, M^\times) \rightarrow H^2(I, M^\times)).$$

Then, by the Hochschild-Serre spectral sequence and Hilbert's Theorem 90, $\beta|_Z$ is the image, under the inflation map, of some

$$\gamma \in H^2(\bar{Z}, L^\times).$$

Since the \bar{Z} -Galois extension L/K is associated with a unramified extension of DVRs, the residue is determined by the procedure described in [19, §III.2]. We apply the valuation

$$\text{val}: L^\times \rightarrow \mathbb{Z}$$

to obtain $\text{val}(\gamma) \in H^2(\bar{Z}, \mathbb{Z})$. Now the residue is the class associated with $\text{val}(\gamma)$ under the isomorphism

$$\text{Hom}(\bar{Z}, \mathbb{Q}/\mathbb{Z}) = H^1(\bar{Z}, \mathbb{Q}/\mathbb{Z}) \cong H^2(\bar{Z}, \mathbb{Z}).$$

Example 8.1. For the quotient stack $[\mathbb{P}^3/\mathfrak{K}_4]$ of Example 4.2, with Brauer group of order 2 generated by α , destackification is achieved by

- blowing up the fixed points to produce exceptional divisors E_i ($i \in \{0, \dots, 3\}$),
- blowing up the proper transforms of the intersections of pairs of coordinate hyperplanes to yield exceptional divisors E_{ij} ($i, j \in \{0, \dots, 3\}$, $i < j$), and
- blowing up the intersections of the proper transforms of the exceptional divisors from the first blow-up with the proper transforms of the coordinate hyperplanes, leading to exceptional divisors E'_{cd} ($c, d \in \{0, \dots, 3\}$, $c \neq d$).

As indicated in [25, Rem. 3.3], since only $\mathbb{Z}/2\mathbb{Z}$ and \mathfrak{K}_4 occur as stabilizer groups, destackification is achieved with just ordinary blow-ups (no nontrivial root stack operations). So $\mathcal{X}' = [V'/\mathfrak{K}_4]$. Along the divisors E_{ij} and E'_{cd} the generic stabilizer has order 2. Let $D \subset V'$, over $D' \subset X'$, be one of the divisors with nontrivial generic stabilizer. In local coordinates x, y, z , we have D given by $x = 0$, where \mathfrak{K}_4 acts by distinct nontrivial characters on x and y and acts trivially on z . We have $|I| = 2$ and $\beta \in H^2(\mathfrak{K}_4, k(x, y, z)^\times)$, given by a μ_2 -valued cocycle and image under the inflation map of $[x^2] \in H^2(\mathfrak{K}_4/I, k(x^2, y, z)^\times)$ (with the conventions of Section 2 for cyclic group cohomology). The residue is given by the nontrivial homomorphism $\mathfrak{K}_4/I \rightarrow \mathbb{Q}/\mathbb{Z}$.

Example 8.2. Consider the action of

$$G = \mathfrak{A}_4 \cong \langle (135)(246), (12)(34), (12)(56) \rangle \subset \mathfrak{S}_6$$

on $V = \overline{\mathcal{M}}_{0,6}$. This is a *nonstandard* \mathfrak{A}_4 in \mathfrak{S}_6 , *not* fixing a plane in the Segre cubic model. Actions fixing a plane, such as the Klein 4-group $\mathfrak{K}_4 \subset G$, are birational to actions on toric varieties, see [10, Section 6]. Restriction to the Klein 4-group induces an isomorphism

$$H^2(G) \cong H^2(\mathfrak{K}_4) \cong \mathbb{Z}/2\mathbb{Z}.$$

As well, V^G is nonempty, with

$$H^1(G, \text{Pic}(V)) \cong H^1(\mathfrak{K}_4, \text{Pic}(V)) \cong \mathbb{Z}/2\mathbb{Z}.$$

So

$$\text{Br}([V/G]) \cong \text{Br}([V/\mathfrak{K}_4]) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}.$$

It is known that $\text{Br}_{\text{nr}}(k(V)^{\mathfrak{K}_4}) = 0$ (since the \mathfrak{K}_4 -action is birational to a toric action, and the rationality of such a quotient is a special case of [20, Thm. 1.2 and 1.3]); consequently,

$$\text{Br}_{\text{nr}}(k(V)^G) = 0.$$

REFERENCES

- [1] D. Abramovich, T. Graber, and A. Vistoli. Gromov-Witten theory of Deligne-Mumford stacks. *Amer. J. Math.*, 130(5):1337–1398, 2008.
- [2] J. Barge. Cohomologie des groupes et corps d’invariants multiplicatifs. *Math. Ann.*, 283(3):519–528, 1989.
- [3] T. R. Berger. Hall-Higman type theorems. V. *Pacific J. Math.*, 73(1):1–62, 1977.
- [4] D. Bergh. Functorial destackification of tame stacks with abelian stabilisers. *Compos. Math.*, 153(6):1257–1315, 2017.
- [5] D. Bergh and D. Rydh. Functorial destackification and weak factorization of orbifolds, 2019. [arXiv:1905.00872](https://arxiv.org/abs/1905.00872).
- [6] J. Blanc, I. Cheltsov, A. Duncan, and Yu. Prokhorov. Finite quasisimple groups acting on rationally connected threefolds. *Math. Proc. Cambridge Philos. Soc.*, 174(3):531–568, 2023.
- [7] F. A. Bogomolov. The Brauer group of quotient spaces of linear representations. *Izv. Akad. Nauk SSSR Ser. Mat.*, 51(3):485–516, 688, 1987.
- [8] K. S. Brown. *Cohomology of groups*, volume 87 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.
- [9] C. Cadman. Using stacks to impose tangency conditions on curves. *Amer. J. Math.*, 129(2):405–427, 2007.
- [10] I. Cheltsov, Yu. Tschinkel, and Zh. Zhang. Equivariant geometry of the Segre cubic and the Burkhardt quartic, 2023. [arXiv:2308.15271](https://arxiv.org/abs/2308.15271).
- [11] V. Chernousov, P. Gille, and Z. Reichstein. Resolving G -torsors by abelian base extensions. *J. Algebra*, 296(2):561–581, 2006.
- [12] W.-L. Chow. On the geometry of algebraic homogeneous spaces. *Ann. of Math.* (2), 50:32–67, 1949.
- [13] J.-L. Colliot-Thélène. Groupe de Brauer non ramifié de quotients par un groupe fini. *Proc. Amer. Math. Soc.*, 142(5):1457–1469, 2014.

- [14] J.-L. Colliot-Thélène, D. Harari, and A. N. Skorobogatov. Compactification équivariante d'un tore (d'après Brylinski et Künnemann). *Expo. Math.*, 23(2):161–170, 2005.
- [15] J.-L. Colliot-Thélène and J.-J. Sansuc. The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group). In *Algebraic groups and homogeneous spaces*, volume 19 of *Tata Inst. Fund. Res. Stud. Math.*, pages 113–186. Tata Inst. Fund. Res., Mumbai, 2007.
- [16] M. Demazure. Automorphismes et déformations des variétés de Borel. *Invent. Math.*, 39(2):179–186, 1977.
- [17] E. Fischer. Die Isomorphie der Invariantenkörper der endlichen Abel'schen Gruppen linearer Transformationen. *Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl.*, 1915:77–80, 1915.
- [18] F. R. Gantmacher. *The theory of matrices. Vols. 1, 2.* Chelsea Publishing Co., New York, 1959. Translated by K. A. Hirsch.
- [19] A. Grothendieck. Le groupe de Brauer. I–III. In *Dix exposés sur la cohomologie des schémas*, volume 3 of *Adv. Stud. Pure Math.*, pages 46–188. North-Holland, Amsterdam, 1968.
- [20] M. Kang and Yu. G. Prokhorov. Rationality of three-dimensional quotients by monomial. *J. Algebra*, 324(9):2166–2197, 2010.
- [21] A. Kresch and Yu. Tschinkel. Effectivity of Brauer-Manin obstructions. *Adv. Math.*, 218(1):1–27, 2008.
- [22] A. Kresch and Yu. Tschinkel. Models of Brauer-Severi surface bundles. *Mosc. Math. J.*, 19(3):549–595, 2019.
- [23] A. Kresch and Yu. Tschinkel. Cohomology of finite subgroups of the plane Cremona group, 2022. [arXiv:2203.01876](https://arxiv.org/abs/2203.01876), to appear in Algebraic Geom. and Physics.
- [24] A. Kresch and Yu. Tschinkel. Birational geometry of Deligne-Mumford stacks, 2023. [arXiv:2312.14061](https://arxiv.org/abs/2312.14061).
- [25] J. Oesinghaus. Conic bundles and iterated root stacks. *Eur. J. Math.*, 5(2):518–527, 2019.
- [26] D. J. Saltman. Multiplicative field invariants and the Brauer group. *J. Algebra*, 133(2):533–544, 1990.
- [27] D. J. Saltman. *Lectures on division algebras*, volume 94 of *CBMS Regional Conference Series in Mathematics*. American Mathematical Society, Providence, RI; on behalf of Conference Board of the Mathematical Sciences, Washington, DC, 1999.
- [28] D. E. Villalobos Paz. Rational curves on algebraic spaces and projectivity criteria, 2022. Ph.D. thesis, Princeton University.

INSTITUT FÜR MATHEMATIK, UNIVERSITÄT ZÜRICH, WINTERTHURERSTRASSE 190, CH-8057 ZÜRICH, SWITZERLAND

COURANT INSTITUTE, 251 MERCER STREET, NEW YORK, NY 10012, USA
Email address: tschinkel@cims.nyu.edu

SIMONS FOUNDATION, 160 FIFTH AVENUE, NEW YORK, NY 10010, USA