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ABSTRACT. We develop an equivariant version of the formalism
of intermediate Jacobian torsor obstructions, and apply it to conic
bundles over rational surfaces, quadric surface bundles over P!,
and Fano threefolds.

1. INTRODUCTION

Let X be a rational variety, over C, equipped with a generically
free, regular action of a finite group G. A fundamental problem in
higher-dimensional birational geometry is to identify linearizable and
projectively linearizable actions, i.e., actions that are birational to G-
actions on P(V'), where V' is a linear representation of G, respectively,
a linear representation of a central extension of G (see, e.g., [HT22)
Section 2] for definitions of basic terms). Even the classification of
birational types of involutions in dimension 3 is an open problem, see
[Pro13].

We develop an equivariant version of the formalism of intermediate
Jacobian torsor obstructions from [HT21a] and [BW23], and apply it
to conic bundles over P?, quadric surface bundles over P!, and Fano
threefolds. We pursue the analogy with arithmetic considerations in
[HT21b], [HT21a], [BW23], [HT21d], [KP23], [FJST23] and [JJ23], fo-
cused on rationality of geometrically rational threefolds over nonclosed
fields.

There are certain similarities between birational geometry over non-
closed fields and equivariant birational geometry; rationality should be
viewed as analogous to linearizability, and birationality to a Brauer-
Severi variety as analogous to projective linearizability. In the study
of rationality, the absolute Galois group of the ground field acts on
geometric invariants, such as the Picard group, and all geometric con-
structions have to take into account Galois symmetries. In the study
of (projective) linearizability, the action of the automorphism group
limits the choices for birational transformations.
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On the other hand, there are also substantial differences:

e Existence of fixed points is not an equivariant birational invari-
ant for actions of nonabelian groups, and is not required for
(projective) linearizability.

e The action of cyclic groups on projective space is always lin-
earizable, while a Galois twist of P! by a cyclic group is not
necessarily rational, as is the case for &y ~ Gal(C/R) acting
on a conic over R without R-points.

e Rationality of smooth quadric hypersurfaces Xo C P, n > 2, is
completely settled, and is equivalent to the existence of rational
points, while linearizability is still an open problem for n > 4,
see [TYZ23, Section 9.

e Some varieties are rational over any field but fail to be lineariz-
able for automorphisms, e.g., a quintic del Pezzo surface or a
quintic del Pezzo threefold, which are birationally rigid, and not
linearizable, for G = s, see [HT23, Section 8.2] and [CS16].

Main results and constructions. In Sections [2| and [3| we develop
equivariant versions of the theory of intermediate Jacobians and re-
lated torsor obstructions. Regular actions of finite groups on X yield,
by functoriality, actions on a smooth group scheme CH% sc whose C-

valued points are naturally identified with the Chow group CH?(X) of
codimension-two cycles. This gives rise to obstructions to projective
linearizability analogous to those in [HT21a, Theorem 6.3] and [BW23,
Theorem C]:

Theorem 1.1 (Theorem [3.3). Let X be a smooth projective rational
threefold over C with a regular, projectively linearizable, action of a
finite group G. Then there ezists a smooth projective (possibly discon-
nected) curve C with a reqular G-action such that for any G-invariant
connected component M of CHg(/(C there exist a G-invariant connected
component N C Pic(C) and an equivariant isomorphism of G-varieties

M = N.

In such situations, we say that the equivariant intermediate Jacobian
torsor (IJT) obstruction vanishes. The nonvanishing of this obstruction
allows to prove failure of (projective) linearizability in many new cases,
e.g., for conic bundles (see Section [5| Examples |5.10] and |5.12]), and
quadric surface bundles over P! (see Section @ Examples|6.9/and [6.10)).

Furthermore, this gives criteria for (projective) linearizability, e.g.,
for actions of cyclic groups on conic bundles X — P? with quartic dis-
criminant, in Theorem , or quadric surface bundles X — P! in The-
orem [6.4. Among rational Fano threefolds, projective linearizability
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of actions on smooth complete intersections of two quadrics X5 C P?
was settled in [HT22], via a reduction to rationality considerations over
nonclosed fields; here we give an alternative proof. We establish a sim-
ilar criterion for actions on Xj4: they are projectively linearizable if
and only if there exists a G-invariant rational cubic curve on the va-
riety. We elucidate issues arising for Fano threefolds of type Xig, see
Theorem [7.1] and the discussion in Section [7

Moreover, the intermediate Jacobian torsor formalism yields new
general results concerning birationality of nonlinearizable actions:

Theorem 1.2 (Corollary. Let X;, fori1 = 1,2, be smooth projective
rationally connected threefolds with a regular action of a finite group G.
Assume that their intermediate Jacobians are the Jacobians of smooth
projective curves C;, with transitive action of G on their connected
components. Assume that

e the connected components of C; have genus > 2, fori=1,2,
o the equivariant IJT obstruction does not vanish for X,
e (' is not G-equivariantly isomorphic to Cs.

Then X, is not G-equivariantly birational to Xs.

In particular, this applies to involutions acting on rational conic bun-
dles over rational surfaces or quadric surface bundles over P'. Recall
that the classification of conjugacy classes of involutions in the Cre-
mona group Cry(C), the group of birational automorphisms of P2, is
based on the study of non-uniruled divisors in the fixed locus of the in-
volution, see, e.g., [Bla07]. In higher dimensions, birational involutions
are much more difficult to control: there is too much flexibility. The
paper [Prol3] gives a rough classifications of involutions in Cr3(C), in
presence of non-uniruled divisorial components in the fixed locus. Even
then, some of the cases listed in [Prol3, Theorem 1.2] may overlap. In
Examples [5.10] [5.12] and no such divisors exist; to the best
of our knowledge, these are the first instances when one is able to
distinguish conjugacy classes of such involutions.

An arithmetic version of Theorem gives many nonrational, ge-
ometrically rational, threefolds which are not birational to each other
over the ground field; e.g., intersections of two quadrics X5 o considered
in [HT21a] and [BW23], or conic bundles in [FJST23].
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2. EQUIVARIANT INTERMEDIATE JACOBIANS

Throughout, we work over the complex numbers C. Let X be a
smooth projective rationally connected threefold, NS(X) its Neron-
Severi group, and

1J(X) := H3(X,C)/(HY(X,0%) @ H}(X, Z))

its intermediate Jacobian. This complex torus carries a principal po-
larization #x induced by the cup product

N H(X,7) — HY(X,Z) 2 Z,

so that (IJ(X),0x) is a principally polarized abelian variety, and we
can consider IJ(X) as a smooth projective variety over C.

Let CH?(X) be the group of codimension-two cycles on X, over C,
up to rational equivalence, and CH?*(X )., C CH?(X) the subgroup of
cycles algebraically equivalent to 0. Put

NS?*(X) := CH*(X)/CH?(X )ag,

it is a finitely generated abelian group.
Let A be an abelian variety over C and

¢ : CH*(X)e — A(C)
a group homomorphism. It is called regular if for any smooth connected
variety T over C, ty € T(C), and codimension-two cycle Z € Z*(T'x X),
the map
T(C) — A(C),
t — o2y — Zy,),
is induced by a morphism 7" — A, defined over C. Such a morphism

is unique if it exists. An example of a regular homomorphism is the
Abel-Jacobi map

AJ: CH*(X)ae — LJ(X)(C).

This is bijective when X is smooth rationally connected by [BS83|, The-
orem I(i)], and wuniversal, i.e., initial object in the category of regular
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homomorphisms from CH?(X),,, see [Mur85], [Kah21]. This identifi-
cation endows CH?(X ),y with the structure of a principally polarized
abelian variety, and we denote this scheme by (CH% /C)O.

Let CH?(X)” be the preimage of v € NS*(X) under the map

CH?*(X) — NS?*(X).

It is in bijection with CH?(X)., (via translation by an element of
CH?(X)7), which is unique up to a unique translation by elements
in CH?(X).,. This defines a scheme structure on CH*(X)7, and a
group scheme structure on CH?*(X), denoted by (CH?% sc)? and CH% /C
respectively. When X is rational, CHg(/(C is the group scheme that
represents the functor CHi/C’fppf of Chow groups of codimension-two
cycles on X, constructed in [BW23, Theorem 3.1].

A regular action of a finite group G on X induces a G-action on al-
gebraic cycles, and on CH?*(X). It also yields an action on cohomology
and a regular action on the intermediate Jacobian 1J(X). Compatibil-
ity with the cup product implies that the polarization 0x € NS(I1J(X))
is G-invariant.

Lemma 2.1. Let X be a smooth projective rationally connected three-
fold with a reqular G-action. Then the Abel-Jacobi map

AJ: CH*(X)ag — 1J(X)(C)
1s G-equivariant.

Proof. We recall the construction: let v be a codimension-two cycle
which is algebraically equivalent to 0. Algebraic equivalence and ho-
mological equivalence coincide, provided the Chow group of zero cycles
on X is supported on a surface [BS83, Theorem I(ii)], which is the case,
by the assumption. Thus v is homologically equivalent to 0. Let a be a
topological 3-cycle with boundary da = 7. Then the linear functional

/ e (H(X, 020 Ha(X, Z)) = TI(X),

is well-defined and is the image of « under the Abel-Jacobi map. For
any g € (G, we have gy = gda = Odga on the level of topological
cycles. O

In particular, the G-action on CH?*(X )alg is induced by a regular
G-action on (CH¢)°.

Lemma 2.2. The G-action on CH*(X) is induced by a regular G-
action on CH?X/C.
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Proof. We need to verify that for ¢ € G and v € NS?*(X), the action
g+ (CH%c)"(C) = (CHx,0)"(C), [Z] = [9Z],

is algebraic. Let Zy be an effective 1-cycle representing . The above
action is induced by a composition of the morphisms:

(CH?X/C)7 - (CHﬁf/C)O - (CHgf/(C)O - (Cch/c)ma
mapping
(2] = 2] = [Zo] = [9Z] — [9Z0] = [9Z],

where the middle map is the G-action on (CH% /C)O and the other two
are translations. O

A G-action on X induces a natural G-action on Chow?(X), the Chow
variety of codimension-two cycles, via Z +— ¢gZ, for g € G.

Theorem 2.3. Let X be a smooth projective rationally connected three-
fold with a regular action by a finite group G. The Abel-Jacobi map

AJ : Chow*(X) — CHY% ¢
s a G-equivariant morphism.

Proof. As in, e.g., [HT21a, Proposition 2.5], one verifies that the Abel-
Jacobi map is a well-defined morphism. The G-equivariance of

AJ : Chow?(X)(C) — CH*(X), Zw~|[Z],

is clear from the construction. O

3. EQUIVARIANT INTERMEDIATE JACOBIAN TORSORS AND
OBSTRUCTIONS

Abelian varieties with group actions. We continue to work over C.
A G-abelian variety is an abelian variety with an action of a finite group
G, preserving the origin. Let A be a G-abelian variety. A principal
polarization 4 € NS(A) is called G-equivariant if it is G-invariant
with respect to the G-action on NS(A); in this case, (A,604) is called
a G-equivariant principally polarized abelian variety. A G-equivariant
homomorphism

t: (A 04) = (B,0p)
of G-equivariant principally polarized abelian varieties is a homomor-
phism ¢ : A — B of abelian varieties such that t*0g = 0,4. We record:

Lemma 3.1. Let
t: (A 04) = (B,0p)
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be a G-equivariant homomorphism of G-equivariant principally polar-
1zed abelian varieties, which is a closed embedding. Then there exists a
G-equivariant principally polarized abelian variety (A',04/) such that

(BaeB) = (A X AlapTHA +p;914/)7

as G-equivariant principally polarized abelian varieties, where p;’s are
natural projections.

Proof. Consider the induced primitive, G-equivariant, embedding
Ly @ H1<A, Z) — Hl(B,Z)

The principal polarization g € H*(B,Z) = A*H'(B,Z) defines an
alternating form on H;(B,Z), and its restriction to Hy(A,Z) is the al-
ternating form induced by 6 4. This alternating form is compatible with

the G-action on these lattices. Let A be the orthogonal complement of
Hi(A,Z) in Hi(B,Z). Then

Hl(AaZ) DA = Hl(BaZ)a

since 5 and 64 are principal polarizations. Since the alternating form
is compatible with G-action, A is G-invariant and fp defines a non-
degenerate alternating form on A which is selfdual.

The groups H;(A,Z) and H;(B,Z) admit integral Hodge structures
of weight —1, which are compatible with ¢, and preserved by the G-
action. Since fp is a Hodge class, this induces a principally polarized
integral Hodge structure of weight —1 on A which is compatible with
G-action on it, and A can be identified with H;(A’,Z), where A’ is a
G-equivariant principally polarized abelian variety. 0

Corollary 3.2. A G-equivariant principally polarized abelian variety
admits a decomposition as a product of indecomposable G-equivariant
principally polarized abelian varieties, which is unique, up to permuta-
tion of the factors.

An indecomposable G-equivariant principally polarized abelian vari-
ety is also called irreducible.

Intermediate Jacobian torsor obstructions. The following theo-

rem gives an obstruction to equivariant projective linearizability; it is
analogous to [HT21a, Theorem 6.3] and [BW23, Theorem CJ:

Theorem 3.3. Let X be a smooth projective rational threefold with a
reqular, projectively linearizable, G-action. Then there exists a smooth
projective (possibly disconnected) curve C with a reqular G-action such
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that for any v € NS*(X)Y, one has a G-equivariant isomorphism of
G-varieties

(CH%C/C)V ~ Pic™(C),
for some G-invariant class m. Moreover, we have

(CHY )" ~ Pic’(C),

as G-equivariant principally polarized abelian varieties.

Proof. We have a G-equivariant birational map
¢: X - P?,

where P3 is equipped with a regular action of G. Resolving the indeter-
minacy of ¢ equivariantly, we have equivariant birational morphisms

x&wLps,
where W is a smooth projective threefold with a regular G-action. By
functorial weak factorization (see [AT19]), f and g are compositions
of equivariant blowups and downs with G-irreducible smooth centers.
Here G-irreducible means that the action on connected components of
the smooth center is transitive. The assertion is reduced to a single
G-equivariant blowup

Z/} : X1 — XQ,
where one of the X;’s satisfies the statement of the assertion, and we
need to prove the statement for the other X;.

Suppose that X, satisfies the statement, i.e., there exists a smooth
projective G-curve C' such that for any v € NS?*(X;),

(CHY, )" = Pic™(C),
for some m, as G-equivariant varieties, and when v = 0,
(CHY, c)" = Pic’(0),

as G-equivariant principally polarized abelian varieties. Suppose that
the center of ¢ is a G-invariant and G-irreducible curve I'. The blowup
formula

CH?*(X,) = CH*(X,) @ CHY(I'), (3.1)
is G-equivariant, and v induces a G-equivariant isomorphism

H?(X,,7Z) =2 H*(X,,Z) @ HY(T', Z(—1)),

compatible with the cup product as well as the Hodge structures. This
induces an isomorphism

(X)) &2 1J(Xs) x Pic’(T),
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as principally polarized abelian varieties, and an isomorphism
(CH%, c)” = Pic’(CUT), (3.2)

as G-equivariant principally polarized abelian varieties.
For any v € NS?(X;)%, (3.1) induces a G-equivariant isomorphism
of varieties

(CHX, c)" ~ Pic™(C'UT),

for some m, which is a translation of , as claimed.

When the center of 1 is 0-dimensional, there is a similar blowup
formula for CH?, after replacing CH'(T") by a permutation module of
Z. In particular, connected components of CHA%(2 sc are identified with

connected components of CHY, /c-

In the other direction, when X; satisfies the assertion, the proof is
reversed. Assume that 1) is a blowup of a G-invariant and G-irreducible
curve I'. Then we have a G-equivariant blowup formula:

CH*(X,) = CH*(X,) @ CH'(T).

As before, Pic’(C) ~ (CHY, 1)’ X Pic’(T") as G-equivariant principally
polarized abelian varieties. When every connected component of I’
has genus 0, the assertion is clear. Thus, we may assume that every
connected component of I' has genus g > 1. Using Corollary and
the Torelli theorem for curves, we can write C' = C’ U T, where C' is a
smooth projective G-curve, and we have

(CHY, ) = Pic(C"),
Then, for any v € NS?(X;)%,
(CHY, )" @ Pic’() = Pic™(C),
for some m, as G-varieties. Since an isomorphism
(CH%(X,))" & Pic®(T") = Pic™(C) = Pic™ (C") @ Pic’(T)
is a translation of an isomorphism
(CHY, c)’ @ Pic’(T') = Pic’(C) = Pic’(C") & Pic”(T),
and the translation preserves the direct sum structure, we see that
(CH, )" = Pic™ ('),

as G-varieties. When the center of ¢ is O-dimensional, the proof is
similar, and we omit it. O
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The intermediate Jacobian torsor formalism yields new obstructions
to equivariant birationality of nonlinearizable actions on rationally con-
nected threefolds, and is a new tool to distinguish finite subgroups of
the Cremona group Cr3(C), up to conjugation in this group. As an
application of Theorem [3.3] we obtain:

Theorem 3.4. Let X;, with i = 1,2, be smooth projective rationally
connected G-varieties of dimension 3 such that their intermediate Ja-
cobians are irreducible G-equivariant principally polarized abelian vari-
eties. Assume that

e the equivariant IJT-obstruction does not vanish for X,
e 1J(X) is not isomorphic to 1J(Xs) as G-equivariant principally
polarized abelian varieties.

Then X1 is not G-equivariantly birational to Xs.

Proof. Suppose that X; is G-equivariantly birational to X,. By as-
sumption, there is a G-invariant class v of codimension-two cycles on
X such that

(CH?(X1))" # Pic*(C),

for any smooth projective G-curve C and any e. As in Theorem [3.3]
this shows that IJ(X;) must arise in the decomposition of [J(X3). Since
they are irreducible, as G-principally polarized abelian varieties, this
implies that 1J(X;) = [J(X3). This contradicts the assumption. O

Corollary 3.5. Let X;, with « = 1,2, be smooth projective rationally
connected G-varieties of dimension 3 such that their equivariant inter-
mediate Jacobians are the Jacobians of G-irreducible smooth projective
curves C; whose connected components have genus g; > 2. Assume that

o the equivariant 1JT-obstruction does not vanish for X,
e (' is not G-equivariantly isomorphic to Cs.

Then X is not G-equivariantly birational to Xs.

Proof. By Torelli theorem, Pic’(Cy) and Pic’(Cy) are not isomorphic
to each other as G-equivariant principally polarized abelian varieties.
The assertion follows from Theorem [3.4] O

4. EQUIVARIANT PRYM VARIETIES

We consider G-equivariant Prym varieties, following the construc-
tions in [FJST23| Section 4] in the arithmetic context.
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Equivariant Prym varieties. Fix a G-equivariant étale finite mor-
phism @ : A — A between connected smooth projective G-curves, of
degree 2. The norm map

Nm : Pic(A) — Pic(A),

is a G-equivariant homomorphism of group schemes. A G-equivariant
embedding 7 : A < W into a smooth projective rational G-surface
induces a G-equivariant morphism of group schemes

r* : Pic(W) — Pic(A).
The Pic(W)-polarized Prym scheme is defined as
PPrymP M) (A/A) := Pic(A) Xpiea) Pic(W),
it is a group scheme with diagonal G-action. The identity component

of PPrym”“™)(A/A) is the identity component of the kernel of the
norm map Nm which is the Prym variety Prym(A/A) from [Bea77].
This is a principally polarized abelian variety, and G acts on it. The
polarization associated with a theta divisor on Pico(ﬁ) is a G-principal
polarization. Its restriction to Prym(g /A) is twice a principal polariza-
tion on Prym(A/A). In particular, Prym(A/A) admits a G-invariant
principal polarization.

For D € Pic(W), denote the fiber of
PPrym” ™) (A/A) — Pic(W)
above D by Vp; it is a G-equivariant torsor of V) when D is G-invariant.
Since w,w*D = 2D, we have
Vopip = @D + Vp, VD, D' € Pic(W),

compatibly with G-actions. The group scheme Vj consists of two con-
nected components,

P =Prym(A/A), P=V,\P.

Both carry the G-action, and Pisan equivariant 2-torsion torsor of P.
For W = P2, A C P? is a G-invariant smooth plane quartic, and H
the hyperplane class of P2 we have:

Proposition 4.1 ([Mum74, Section 6, Equation (6.1)]). The parity of
h® is constant on each of the two connected components of Vi, and is
different on these components.

Definition 4.2 ([FJST23| Definition 4.4]). Let P be the connected
component of Vi on which h° is even, and let P be the connected
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component of Vi on which A° is odd. For each m € Zs( and e = 0, 1,
we define

PEm) = POy mH, PP = POy mH,

where f(o) = P and P© = P. These are G-equivariant torsors of
Prym(A/A).

Intermediate Jacobians and Prym varieties. We follow [Bea77|
and [FJST23|. Let X be a smooth projective rational threefold over C
with a regular action of a finite group GG, and admitting a G-equivariant
standard conic bundle structure 7= : X — W, where

e W is a smooth projective rational G-surface,

e the discriminant curve A C W is smooth,

e the (equivariant) étale double cover w : A — A is irreducible.

Lemma 4.3 (|[F.JST23, Proposition 5.3|). Let v be the class of a line
mn a singular fiber of m. Then v is G-invariant and we have a G-
equivariant exact sequence:

0 — Zvy — NS*(X) =5 NS(W) — 0.

Proof. Since 7 is G-equivariant, . is as well. Moreover, G maps any
line in the singular fibers of 7 to a line in a singular fiber. Since A
is irreducible, v is G-invariant. The exactness of the sequence follows
from [F.JST23, Proposition 5.3]. O

The following is an analog of a key result in [FJST23|, comparing
torsors of intermediate Jacobians and Prym varieties:

Theorem 4.4 ([FJST23, Theorems 5.1 and 5.8]). Form: X — W as
above, there is a G-equivariant surjective morphism of group schemes

CH% ¢ — PPrym™(")(A/A)
that is an isomorphism when restricted to each connected component.
Moreover, this induces an isomorphism
(CH%,¢)" — Prym(A/A)

of G-equivariant principally polarized abelian varieties.
Proof. A morphism as stated is established in [FJST23, Theorem 5.1],
so we only need to show that it is G-equivariant. We recall the con-
structions in [FJST23| Section 5]:

We have a G-equivariant embedding ¢ : A — X with G-invariant

image. Let € : X’ — X be the G-equivariant blowup along ¢(A). Let
Xa = 7 1(A) and S be its proper transform in X', embedded via
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j:S < X'. Note that X, is G-invariant, and so is S. Then S admits
a G-equivariant P'-bundle p : S — A. We have a homomorphism

p.j € CHA(X) — CH'Y(A) = Pic(A),

where ¢* : CH*(X) — CH?*(X’) and j* : CH*(X') — CH?(S) are the
refined Gysin homomorphisms from [Ful98, Section 6.6]. By [Ful98|
Theorem 6.2], these are G-equivariant, so the above homomorphism is
also G-equivariant. By [FJST23 Proposition 5.6], the homomorphism

(psje*, m.) : CH2(X) — Pic(A) x Pic(W)

is G-equivariant, with image contained in PPrym” ") (A/A). This is
the homomorphism used in [F.JST23, Theorem 5.1]. The last statement
follows from [FJST23, Lemma 5.5 and Theorem 5.8]. O

5. CONIC BUNDLES

We turn to the linearizability of actions on smooth rational Fano
threefolds X over C admitting an equivariant conic bundle structure

7: X — P?

such that the relative Picard rank of 7 is 1 and the discriminant curve
A C P? is a smooth plane quartic. We develop a version of intermediate
Jacobian torsor obstructions in this setting, following [FJST23|, and
establish a criterion for linearizability of actions of cyclic groups.

Classification. The classification of Fano threefolds implies that X is
one of the following, see [MMS1], [MMS83], [MMO03], and [Mat95]:

(1) a double cover of P! x P? branched along a smooth divisor of
type (2,2),

(2) the blowup of a quadric hypersurface in P* along a genus 2,
degree 6 curve,

(3) the blowup of a smooth intersection of two quadrics in P5 along
a plane conic.

In all cases, X is rational, see, e.g., [Prol8, Corollary 5.6.1], and the
automorphism group Aut(X) is finite.

A G-action on X induces a G-action on the Picard group Pic(X),
which has to preserve the extremal rays of the nef cone. In Cases
(2)-(3), this implies that the G-action necessarily preserves the blowup
presentation. Thus, the linearization problem is reduced to the case
of G-actions on quadrics (considered in [TYZ23]) or the case of inter-
sections of two quadrics (considered in [HT23]). Linearizability is still
largely open in Case (2), see [T'YZ23], Section 9]. In Case (3), projective
linearizability is equivalent to the existence of a G-stable line.
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The main example. Thus, we focus on Case (1), the double cover
§: X =P x P2 (5.1)

ramified in a smooth divisor of bi-degree (2,2), with projections
X 2> p?

Y

]P>1
where 7y is a standard conic bundle, with discriminant a smooth quartic
A C P? and discriminant double cover @ : A — A. B
A regular G-action on X induces actions of G on PL P2, A, and A,
so that 71, Ty and @ : A — A are G-equivariant. Let F;(X/P!) be the
Fano variety of lines in the fibers of 7y; it carries the G-action as well,
and we have an equivariant Stein factorization

F(X/PYHY - C — P

where C'is a smooth projective curve of genus 2 equipped with a regular
G-action.

Standard linearization construction.

Proposition 5.1 ([Prol8]). Assume that G is cyclic and AC # 0.
Then the G-action on X is linearizable.

Proof. Let H,, Hy be the pullbacks of hyperplane classes from P! and
P2, respectively. Let U¢" be a singular fiber of 7y corresponding to the
G-fixed point on A, i.e., both £ and ¢ are G-stable. Let p: X — X the
blowup of X along ¢, with exceptional divisor £. Then X is a smooth
weak Fano threefold with a regular G-action induced by the G-action
on X.

Let L = p*H, + p*Hy — E; we have L? = 2. The linear system |L| is
4-dimensional and base point free, the associated morphism

(I)|L| :)?—)]P)Ll

defines a G-equivariant birational morphism X — Q C P* to a quadric
threefold which is a quadric cone of rank 4; with linear G-action on
the ambient P*. Now ¢ and ¢ meet at a G-fixed point. rllhe fiber S of
T X — P! containing this fixed point is G-stable. Let 5 be its strict
transform on X. Then L2.S = 1, i.e.,  contains a G-stable plane.
Since G is cyclic, @) contains a G-fixed smooth point. Projection from
this point yields an equivariant birational map to P3. O
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Intermediate Jacobians and torsors.

Theorem 5.2. [Bru08], [FJST23, Theorem 4.5] We have equivariant
1somorphisms

P® = Prym(A/A) 2 Pic’(C), P 2 Pic'(C).

Moreover, the first isomorphism is an isomorphism of G-equivariant
principally polarized abelian varieties.

Proof. Choose a general x € C' with image t € P*. The fiber S, of p is
a smooth quadric surface and x corresponds to a ruling of lines on S;.
Let ¢ be a general line in this ruling. The pushfoward of ¢ to P? via
is a line so that 73A.¢ = 4. Since x and /¢ are general, ¢ meets ;A at

smooth points of 73 A. In particular, 73 AN ¢ and its pushforward to A

define a degree 4 effective 0-cycle o on A. Since /¢ is parametrized by
P!, the linear equivalence class of o only depends on z, and we have a
natural G-equivariant morphism

C - Pic(A).

Since the pushfoward of a to A is the intersection of A and a line on
P2, the above morphism actually defines

C— VKA‘
Since a is parametrized by P!, we have h°(A, O(a)) > 2. By Clifford’s

theorem, h°(A, O()) = 2. Hence we have a G-equivariant morphism
C — PW,

inducing a G-equivariant morphism

Pic!(C) — PW,
which is an isomorphism by [Bru08] and |[F.JST23, Theorem 4.5]. The
above construction of this morphism is slightly different from the one in
[Bru08] and |[F.JST23, Theorem 4.5], however they are compatible and
they define the same morphism. (See [FJST23, Proposition 6.3(iii)] for
more details.) Finally, the above G-equivariant isomorphism induces a
G-equivariant isomorphism

Pic’(C) — PO
For the last claim see, e.g., [Bru08| Section 5, Case 4]. O

Let v, be the class of lines in the fibers of 7 : X — P! and v, the

class of lines in the fibers of 75 : X — P2. Then NS*(X) is generated
by 1 and 7, and both classes are G-invariant.
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Theorem 5.3 ([FJST23, Theorem 6.4]). In the above setting, we have
equivariant tsomorphisms:

P m,n are even,
m is even and n s odd;

CH? myi1+nyz2 o~
(CHY ) PYm is odd and n is even;

PY  m.n are odd.

Proof. The analogous isomorphisms in [FJS723, Theorem 6.4] are in-
duced by the morphism in Theorem [4.4] which is equivariant. O

Equivariant IJT obstructions. The following is the equivariant ana-
log of [FJS™23, Theorem 1.5]:

Theorem 5.4. Let G be a cyclic group and § : X — Pt x P? a smooth
G-double cover ramified along a smooth divisor of bi-degree (2,2). Then

X is G-linearizable if and only zfﬁ or PW s a trivial torsor.

Remark 5.5. The triviality of Br(k) in the assumptions in [FJST23,
Theorem 1.5] translates into the condition H?(G, k*) = 0.

We start with auxiliary constructions. Consider
Moo(X,7), 7 €NS*(X),
the coarse moduli space of stable maps of genus 0 and class v and put
Fr1(X) :== Moo(X, 71+ 72)-

Proposition 5.6. The moduli space Fy1(X) is smooth and the Abel-
Jacobi map

AJ: Fi(X) — (CH%U(C)’“'HQ
is a PL-fibration.

Proof. There are two types of stable maps parameterized by Fj1(X):

(1) an embedding f : P! — X of class 1 + 7;

(2) the domain consists of two P'’s, one is isomorphically mapping
to a line Ry in a fiber of 7y and the other to a line Ry in a fiber
of 9.

These have trivial automorphisms. Thus, for the first claim, we only
need to show the smoothness the moduli stack

Moo(X, 7+ 72).
Consider (1), an embedding f: R 2 P! — X and let £ := my(f(R))

be its image in P2, a line. Its preimage S; := 7, '(f) is a normal
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surface with only canonical singularities. Consider the exact sequences
of tangent and normal bundles

0—Tr — Ts,|Jr > Q —0,
and
0— Q — NR/X — NSE/X’R — 0.

Since Npg/x is locally free, @ is torsion-free so that it is locally free.
Thus, T, |r is also torsion-free. We have

—Kg,R=(—Kx—5)R=3-1=2

This indicates that ¢;(Q).R = 0 and @ = O. We also have S;.R = 1, so
that Ng,/x|r = O(1) and Ng/x = O®O(1); we have H' (R, Ng/x) = 0.
Thus [f] is a smooth point of Fy ;(X).

Consider an f: R = Ry U Ry — X, from Case (2). As above,

Npy/x 20®0 and Ng,x =20 0(-1),
so that H'(R;, f*Tx|g,) = 0 for i = 1,2. Since
Tx|lr, =202)0® 0,
it follows from [BLRT23, Proposition 2.3] that
HY (R, f*Tx) = 0.

By the discussion of [Tes09, Section 1.1], [f] € F11(X) is a smooth
point. Hence Fj;(X) is a smooth projective variety of dimension 3;
and the Abel-Jacobi map

AJ: Fii(X)— (CH%UC)WFW

is well-defined. We proceed to show show that it is a P!-fibration.
A stable map [f : R — X| € F11(X) defines a line £ := my(f(R)) in

P? and thus a morphism to the dual
Fr1(X) — (P?)Y.
We denote its Stein factorization by
Fi1(X) = B — (P?)".

The pullback Sy := 7, '(f) is a normal projective surface with only
canonical singularities, and f(R) is a Weil divisor on S;. A fiber
of 711(X) — B is the linear system |f(R)| of the divisorial sheaf
Os,(f(R)) which is isomorphic to P!, thus F;;(X) — B is a P-
fibration, and the Abel-Jacobi map factors as

Fii1(X)— B— (CH%MC)%W.
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The assertion follows if we show that AJ is dominant with connected
fibers. Recall that the Abel-Jacobi map is induced by

Fi1(X) = Pic*(A),
given in the proof of Theorem [4.4] which factors as
Fi1(X) = B — Pic*(A).
To show that B — Pic!(A) is injective, fix [f] € F11(X) and let D be
its image in Pic*(A). We claim that h°(A, O(D)) = 1. Otherwise, by
Clifford’s theorem, h°(A,O(D)) = 2. However, by Theorem , the
image of the Abel-Jacobi map is in PO, This contradicts the fact that
h°(A,O(D)) is even. Thus we have h%(A,O(D)) = 1. This implies
that B — Pic*(A) is injective. O
The following is analogous to [F.JST23, Proposition 6.5]:

Proposition 5.7. Let G be a cyclic group. Assume that PW s g trivial
P-torsor. Then X is G-linearizable.

Proof. Assume that P1) has a G-fixed point. By Theorem ,
(CH% )2,
has a fixed point. Since G is cyclic, Proposition [5.6| implies that
Fi1(X)

has at least two fixed points. In particular, 7, : X — P! admits two G-
invariant sections. Projection from one of the sections gives a P2-bundle
over P!, with a G-fixed section. Such a P2-bundle is G-linearizable. [

Consider the coarse moduli space
Fo1(X) = Moo(X, 271 + 72).

Dimension count shows that it generically parameterizes a stable map
from P! which is an embedding into X. N

Consider §ym8(A) — Pic®*(A) and denote the preimage of P?) C
Pic®(A) by S®. Then

5@ _y p?

is a P-bundle over P®. For a general smooth irreducible curve C' of
type 271 +72, CNmy ' (A) induces a degree-8 divisor on A which defines

a class on P@. After taking a G-equivariant resolution F(X), we
have a G-equivariant birational morphism

,%271(X) — 5(2)
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The following is analogous to [FJST23, Theorem 6.7]:

Proposition 5.8. Assume that G is cyclic and P is a trivial P-torsor.
Then X s G-linearizable.

Proof. If P is trivial then so is P®, and S® has a fixed point. Since
the existence of fixed points is an equivariant birational invariant, for
actions of abelian groups on smooth projective varieties, both F51(X)
and F51(X) have a fixed point. Thus, there is a G-invariant section of
m : X — P Projecting from it gives a P2.-bundle over P'. The generic
fiber X, is isomorphic to sz with a G-invariant line. Such bundles are
linearizable, for cyclic actions. U

Proof of Theorem[5.4 1f X is G-linearizable, then Theorems [3.3] [5.2]
and [5.3| show that P and P are isomorphic to P or PV, Since

[P =[PY] +[P] € H'(G, P),

P or PO is a trivial torsor. _
Conversely, when P respectively P, is trivial, we apply Proposi-

tion [5.7], respectively 5.8
]

Examples of (non)linearizable actions. As before, § : X — P! xP?
is a double cover ramified along a smooth divisor of bidegree (2, 2).

Proposition 5.9. Let 7 € Aut(X) be an involution such that

o the induced action on P! via 7 : X — P! is trivial,
o the induced action on P* via wy : X — P is non-trivial, and
o AT =).

Then X is not (T)-projectively linearizable.

Proof. Since cyclic actions on projective space are linearizable, we may

assume that the induced action on P? is given by
Tilz:y:zl—=[r:y:—2]

Then the discriminant curve has the form

2+ 22Qa(,y) + Qu(x,y),

where @2, Q4 € C|x,y] are homogeneous of degree 2 and 4, respectively.
Since we assume that A is smooth, (4 = 0 has 4 distinct roots.
Suppose that X is (r)-projectively linearizable. By Theorem ,
there exists a smooth connected projective curve C' of genus 2 with Ga-
action such that (CH?% sc)* 7% is equivariantly isomorphic to Pic™(C),
for some m. The quotient of C' by a nontrivial involution is either
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an elliptic curve, or P'. In either case, C has a fixed point, and thus
Pic™(C) is equivariantly isomorphic to Pic’(C), with a fixed point.
We conclude that (CH% sc)” 7% has a fixed point. Since

F1a(X) = (CHy )"

is a P!-fibration, F; ;(X) also has a fixed point. Let f: R — X be a
stable map which is (7)-stable. If R is reducible, then f(R) consists of
two lines in fibers of m; and 7y respectively. However, T never preserves
a line in fibers of m because A™ = (). Thus R is irreducible and
Ry = f(R) is (7)-stable. If R, is not fixed, then R; must be a bisection
of m; because the induced action on P! is trivial. This contradicts the
fact that the class of Ry is 1 + 2. We conclude that R; is fixed. Let
¢ be the image of R, via my : X — P2, Then / is a line, fixed by the
group action, i.e., £ is defined by z = 0. Let S be the pullback of ¢
via my : X — P2, Then S is a smooth del Pezzo surface of degree 4
because (), = 0 has distinct roots.

Consider the double cover S — P! x ¢ and let R’ be the image of
Ry via this map. Then R; — R’ is birational. This means that the
pullback of R’ via S — P! x ¢ consists of two curves R; and R, and
the involution is swapping those curves. This is a contradiction. O

Example 5.10. Consider the double cover:
X 1 w? = thqo + 2tot1qo1 + tqu,
with
Qo = 2° 4 agr” + ap Yy + aoy’,
o1 = ap1,08” + ao112Y + ao1,2y°,
@ =27+ a102” + a2y + 1297,
where a; ; € C. The discriminant curve A is given by
24+ 22Qa(x,y) + Qalz,y) =0,

where (2, Q4 € C[x,y] are homogeneous polynomials of degree 2 and 4,
respectively. We assume that A is smooth and consider the involutions

([t t1], [y 2zl w) = ([to = t1], [z 2y 2 —2],w),
o:([to:t1],[x:y: zl,w) = ([to: ta],[x 1y : 2], —w).
The involution p is linearizable, since A has a (u)-fixed point. The
action of 7 := ou is not projectively linearizable, by Proposition [5.9]

Remark 5.11. The Burnside formalism of [KT22] applies in Exam-
ple to G ~ &3 = (0, 7): the o-action fixes a del Pezzo surface of
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degree 2, and the residual action fixes a curve of genus 3. The formal-
ism of incompressible symbols of, e.g., [T'YZ23|, Section 3.6] shows that
the G-action on X is not projectively linearizable.

Example 5.12. Consider the double cover:
X w? = 20 + 2totiqo + 1241,
with
qo = aopxz + a0,1y2 + ao7222,
qo1 = 6101,096’2 + CL01,1y2 + @01,222,
q = aLO:CQ + a1,1y2 + (11,2227

where a; ; € C. In this case, the discriminant A C P? is defined by an
equation of the form

Q(2?, 4%, 2%) = 0.
We assume that A is a smooth quartic and consider the involutions
([t tal, [z iy zl,w)— ([to: t1], [z 1y @ 2], w)
Tyt ([to: ta], [y 2],w) — ([to: tal, [z 1 —y : 2], w)
T ([to:ta], [z y: 2),w) — ([to: tal, [z y : —2], —w).
Then 7175 = 7 and G := (71, T2) =~ &3 does not contain the involution
o from Example [5.10, For i = 1,2, we have AT # (), so that X is

(1i)-projectively linearizable. However, by Proposition , X is not
(T)-projectively linearizable, and thus not G-projectively linearizable.

Remark 5.13. In Examples [5.10] and [5.12 (projective) linearizabil-
ity is equivalent to the vanishing of equivariant IJT obstructions by
Theorem [5.4] It follows from Corollary [3.5 that equivariant birational
classes of conic bundles X, X’ with involutions 7, respectively, 7/, are
different as soon as A A’ are not equivariantly isomorphic. In these
examples, there are no non-uniruled divisors in the fixed locus of the
involutions; previously known obstructions do not apply to these conic
bundles, see [Prol3].

The following example shows that A¢ # () is not a necessary condi-
tion for linearizability.

Example 5.14. Here we prove that X is always (o)-linearizable, where
o is the unique nontrivial involution acting trivially on P* x P?. This
follows from the triviality of P, as a P-torsor.

Let ¢ be a bitangent line to A such that ¢ N A consists of two
points. Then S, contains two Aj-singularities, and there is a curve
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R of class 71 + 72 mapping to ¢ and passing through these two sin-
gularities. Indeed, let Sy — Sy be the minimal resolution. A singular
fiber of mlg, : Sy — P! at to = 0 contains a line ¢ of class 7, and
such a line passes through one singular point but not the other. We
also have —Kg,.¢' = 1. The fibration S; — ¢ comes with two singular
fibers, both consisting of two (—1)-curves connected by one (—2)-curve.
If we contract all (—1)-curves of these singular fibers, we get a weak
del Pezzo surface of degree 8. The strict transform of ¢’ is a conic of
self-intersection 0. This implies that this weak del Pezzo surface is a
smooth quadric surface. The existence of R follows. Then the existence
of R induces a fixed point on P,

When ¢ N A consists of one point,ASg contains a unique singularity
of type As. The minimal resolution S, of Sy, contains a chain of three
(—2)-curves, with two (—1)-curves attached to the edges. Then there
is a curve of class v; + 72 mapping to ¢ whose strict transform on §g
meets the central (—2)-curve of the chain. This induces a fixed point
on PO,

6. QUADRIC SURFACE BUNDLES

Let X be a smooth projective threefold over C admitting a quadric

surface bundle structure
7:X — PL

Such threefolds are rational: by Tsen’s theorem, there exists a section
of 7, projecting from it gives birationality to a relative P2-bundle, thus
birationality X ~ P3. However, this may not work equivariantly.

Here, we explore equivariant birational geometry of such quadric
surface bundles, establish a criterion for linearizability of actions of
cyclic groups, and provide examples of nonlinearizable actions.

Geometry. We follow [HT12]. The intermediate Jacobian is given by
1J(X) = Pic’(0),

where C' — P! is the discriminant double cover, a hyperelliptic curve
ramified in the discriminant @ C P! of 7 (reduced, since X is smooth,
by assumption). Let [d] be the degree of the discriminant divisor,
_ I

2

the genus of ', and w, the relative dualizing sheaf of m. The height of
a section s : P! — X is defined as

hy-1(s) := deg(s*w; "),

9(C)
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it is equal to the degree of the normal bundle N. The space of sections
of 7 of height h is denoted by

Sec(X /P, h),
and its closure in the coarse moduli space of stable maps of genus 0 by

Sec(X /P h).
The expected dimension of this moduli space is h + 2. Let F;(X/P')
the relative Fano variety of lines, with the Stein factorization

Fi(X /P — C — P.

Lemma 6.1 ([HT12, Proposition 2]). Assume that C — P! is non-
split. Fiz a class v of sections of m of sufficiently large height. Then
the Abel-Jacobi map

AJ : Sec(X /P!, ) = (CHY )"
s an open immersion composed with a projective bundle over (CH%UC)'Y.

Proof. We include a proof, following [HT12]. Since the Brauer group of
C(C) is trivial, F; (X /P') — C is the projectivization Po(V) of a rank
2 vector bundle V over C. Let Op,v)(1) be the relative polarization
of Po(V). There is a bijection between sections of X' /P! and sections
of F1(X/P')/C, as in [HT12, Section 3|, with a natural identification

Sec(X /P!, h) = Sec(Fi (X /P')/C,d),
where d = deg(s*Op,v)(1)) and s : C — Fi(X/P') is a section. By
[HTT2, (3.2)],

h =2d+ deg(V) — %

We have a natural morphism
Sec(F(X/PY)/C,d) — Pic*(C), s+ 5" Opgvy(1).

Let £ be the universal line bundle on C'xPic?(C). When d is sufficiently
large, (p2)«(L®piV) is locally free; here p; are the projections onto the
factors in C' x Pic*(C). By [HT12, Proposition 2], the moduli space

Sec(F (X /PY)/C, d)

is a Zariski open in the projectivization P((ps).(£L®ptV)) over Pic?(C).

To show that this morphism coincides with the Abel-Jacobi map,
we follow [LT24, Example 10.4]: after rescaling we may assume that
Op.(vy(1) admits a section C'; we let B’ be a section of m corresponding
to C’'. We denote the blow up of X along B'by ¢ : X’ — X. Let E C X
be the divisor swept out by lines of © meeting at B’, we denote its strict
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transform by E' C X”. This is a P'-bundle over ¢’ and we denote this
projection by n : E/ — C’. Consider the homomorphism

Hs(X,Z) 25 Hy(X', Z) 25 Hy(E, 2) 225 H,(C', Z),

where ¢* is the homology pullback defined using the Poincéare duality
twice. It respects the Hodge structures, giving a homomorphism

H2,l<2()\/ N H2’1(X/)V N Hl,O(E/)\/ N Hl’O(C/)V.
Fix homologous sections By, By of m and denote the strict transforms

of B; via # by Bj]. There is a real 3-cycle a such that da = By — By
and 0¢*a = B} — B(. The Abel-Jacobi map sends B; to

/- € H*'(Xx)Y/H3(X,Z).
This is mapped by the above homomorphism to [ pranp  And fn* (
The boundary of n,(¢*a N E) is given by
n(ByNE) —n(ByN E').
This gives rise a morphism
Sec(X /P!, v) = 1J(X) — Jac(C) = Pic’(C).

This composition is compatible with the construction of [HT12, Propo-
sition 2] described above. On the other hand, since the fibers are open
subsets of projective spaces, the Abel-Jacobi map must factor as

Sec(X /P!, v) — Pic’(C) — 1J(X).

é*anE’)

l

Automorphisms. Let G C Aut(X) be a finite group. Assume that
7 is equivariant for G. Easy examples of projectively nonlinearizable
actions on X = P! x @, where Q is a smooth quadric surface, are:

e generically free action of &3 on P! and any action on @ — this
is not linearizable since there are no fixed points on X’;

e G, acting on P! and Dy acting on ) — via the Burnside formal-
ism of [KT22], see [CTZ23, Theorem 5.1].

The main example. Consider

X C P! x P,
given by the vanishing of a sufficiently general form F' of bi-degree
(n,2). Projection to the first factor X — P! is a quadric surface bundle
of relative Picard rank 1, splitting over the discriminant double cover

C — P! and ramified over the discriminant divisor d of degree [0 = 4n;
so that ¢(C) =2n — 1.
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Intermediate Jacobians and torsors. Let 7 : X — P! be a smooth
quadric surface bundle with a regular, compatible, action by a finite
group G. This induces a G-action on F; (X /P!) so that

Fi(X/Ph) — P,
and the Stein factorization
Fi(X/PY) = C — P!
are GG-equivariant. Let 7, be the class of lines in fibers of 7.

Lemma 6.2. Assume that C' — P! is non-split. Then vy, is G-invariant
and we have a G-equivariant isomorphism

(CH% ¢)" = Pic'(C).
Moreover, we have a G-equivariant isomorphism
1J(X) = (CH},0)° = Pic(C),
as G-equivariant principally polarized abelian varieties.

Proof. Note that Fi(X/P') — C is a P'-bundle over C. The Abel-
Jacobi map

AJ: Fi(X/P') — (CH% o)™,
factors as
Fi(X/P') = C — (CH )™
and induces a G-equivariant isomorphism
Pic'(C) = (CH% )™,

as in the proof of Lemma [6.1]

The claim concerning principal polarizations follows from the fact
that, in the notation of the proof of Lemma [6.1) X’ is the blowup of
a P2-bundle over P! along a curve C’. Indeed, one can use the blowup
formula to verify compatibility of cup products. O

Linearization criterion.

Lemma 6.3. Let G be a cyclic group and 7 : X — P! a G-equivariant
quadric surface bundle with a G-invariant section. Then the G-action
on X s linearizable.

Proof. Projecting from a G-invariant section gives an equivariant bira-
tionality of X to a P2-bundle over P!. Since G is cyclic, the generic fiber
]P?7 admits a G-invariant line. Such a IP’?7 is linearizable, and we obtain a
G-equivariant birationality X ~¢ P! x P2, and thus linearizability. [
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Theorem 6.4. Let m : X — P! be a smooth quadric surface bundle of
relative Picard rank 1 and [0] > 6. Let G C Aut(X) be a cyclic group
such that 7 is G-equivariant. Then the G-action on X is linearizable
if and only if there exists a G-invariant section of .

Proof. If m admits a G-invariant section, Lemma [6.3] applies. Con-
versely, assume that the G-action on X is linearizable. Fix a class v of
sections. Since X has Picard rank 2 and G respects 7, v is a G-invariant
class. By Theorem 3.3 we have

(CHY )" = Pic®(0),
for some e. By Lemma [6.2, we have
[(CHY )] = [e + K][Pic' (C)).

In particular, whenever e+k = 0 (mod 2¢(C')—2), this torsor is trivial.
Let k be sufficiently large so that the height of v 4+ k~, is large and
e+ k=0 (mod 2¢(C) — 2). By Lemmal6.1], the Abel-Jacobi map

AJ s Sec(X /P!,y + k) — (CHE o)
is a composition of an open immersion followed by a projective bundle
P — (CH%K/C)W’W.

Since (CH% sc)7 has a fixed point, and G is cyclic, P has a fixed

point as well. This implies that Sec(X /P!,y + k+,) has a fixed point,
proving that there is a G-invariant section of . U

Effective results. Here we establish an effective version of Theo-
rem [6.4l First we recall:

Proposition 6.5 ([HT12, Proposition 14]). Let 7 : X — P! be a
smooth quadric surface bundle with discriminant degree 0| such that

o the discriminant cover C — P! is non-trivial, and
e for any section s : P* — X, we have

h —1(8) > ——

Wr

Then Fi(X/PY) — C is the projectivization of a semi-stable bundle V
over C.

After rescaling, we may, and will, assume that deg(V) =0 or 1.
Proposition 6.6. With the assumptions of Proposition [6.5, consider
Po(V) = Fi(X/PY) — C
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and suppose that [9| > 6 and

hz;m—4+4@gvy
Then the statement of Lemma|6.1] is valid.

Proof. We use notation from Lemma 6.1} By Proposition Vs
semi-stable. By Riemann-Roch, there exists a section

so: C = Pe(V)
with
o = deg(s6) < g(€) = O 1
where £ = Op,y(1). The numerical class of the canonical divisor of
Pe(V) is given by
Kpovy = =26+ (29(C) — 2 + deg(V))A,
where A is the class of fibers of Po(V) — C. Thus the degree of Ny, is
2dy — deg(V).
We then glue
b>2¢g(C) —2dy + deg(V') = [o| — 2 — 2dy + deg(V)
fibers of Po(V) — C to so(C'). By assumption,
Using [GHS03|, Lemma 2.6] and smoothing arguments, the existence of
sections is guaranteed as soon as

42 [o] -2+ 5 deg(V),
which in turn follows when
hzgm—4+4@gvy
Assuming d > 2¢(C), it follows from Proposition and [LRT23,
Corollary 2.7] that V' ® s*Op (1) is globally generated and
H'(C,V ® 5" Opev(1)) = 0,

where s : C'— P¢(V) is a section such that deg(s*¢) = d. This implies
that (p2)«(L£ ® p;V) is locally free. The above condition translates to
ol _3

h > 4¢(C) + deg(V) — o= 5\0] + deg(V) — 4.
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Here is an effective version of Theorem [6.4t
Theorem 6.7. Let G be a cyclic group and
T:X — P!
a G-equivariant quadric surface bundle of relative Picard rank 1 and

] > 6. With the assumptions of Proposition[6.6, the G-action on X
is linearizable if and only if there exists a G-invariant section of height

< ;]O\ +4deg(V) — 14.

Proof. In the proof of Theorem the height of v + kv, needs to be
> 310] — 4+ 4deg(V) and we also must have e +k =0 mod (o] — 4).
This is possible assuming the height is > I[d| + 4 deg(V) — 14. O

Example 6.8. Let X C P! x P? be a smooth divisor of type (n,2),
where n > 2; with 7 : X — P! a quadric surface bundle of relative
Picard rank 1 with square-free discriminant and [0] = 4n > 8. By
[HT12l, Section 4, Case 1], deg(V) =n (mod 2).

Any section s : P! — X has height of the form 2 — n + 2a, with
a = deg(s*H) > 0, where H is the pullback of the hyperplane class
from P3. Since

Pl

2—n> —2n,

the assumptions of Proposition [6.5] are verified. By Theorem [6.7], a
cyclic action on 7 : X — P! is projectively linearizable if and only if
there exists a G-invariant section of height < 14n + 4 deg(V') — 14.

Examples of actions. We consider X C P! x P3, with n > 2, defined
by the vanishing of a form F' of bi-degree (n,2). Let

T: X — P!
be the associated quadric surface bundle.

Example 6.9. Let

F = i1 (fi(z,y) + gi(z,w)),
=0
where f;, g; are general binary quadratic forms, so that 0 is reduced,
and thus X smooth. The involution

o:([to:ti,[x:y:z:w])— ([to: ta], |-z : —y : 2 : w])

acts trivially on P!, and any invariant section of 7 is pointwise fixed.
However, the fixed locus of o consists of two nonrational curves, thus
there are no invariant sections. By Theorem the (o)-action on X
is not (projectively) linearizable.
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Example 6.10. Let
F = tgf("’U? y? Z? w) —"_ t%g('%‘7 y? Z? w)?
where f, g are general quadratic forms in 4 variables. Consider
o:([to:t],[x:y:z:w]) = ([~to: ta],[x:y: 2z :w]).
Note that o is the covering involution of m : X — P3. If we had a
(o)-invariant section R C X, then m|g : R — m(R) = R would be
of degree 2. Since R is smooth, R’ must be smooth as well, and the

branch divisor of R — R’ reduced, showing that R cannot be rational,
contradiction. Thus, the (o)-action is not projectively linearizable.

Remark 6.11. Examples and produce moduli of conjugacy
classes of involutions in Crs3(C), by varying the underlying curve C' in
the moduli space and applying Corollary [3.5 In these examples, the
non-uniruled divisorial component of the fixed locus of the involution
o is empty, and the previously known obstructions do not distinguish
these equivariant birational classes.

7. FANO THREEFOLDS

Let X be a smooth projective Fano threefold of Picard rank 1 and
Fa(X) the variety of rational curves of anticanonical degree d. Over
nonclosed fields, rationality of geometrically rational varieties of this
type has been recently settled in [HT22], [HT21a], [BW23], [HT21d,
[KP23]. There are three types of such Fano varieties:

e rational over any field: the quintic del Pezzo threefold V5 C P4,
e rational if and and only if there are rational points: forms of
P3, the smooth quadric @ C P*, X5 C P® and X5, C P13,
e rational if and only if there are rational points and rational
curves, defined over the ground field, in prescribed degrees:
— X35 C P% intersection of two quadrics — lines,
— X6 C P9 — twisted cubics,
— X135 C P'3 — conics.

In [KP23], the intermediate Jacobian torsor obstructions of [HT21b],
[HT21a], and [BW23|] are reinterpreted in the framework of derived
categories.

The equivariant situation is markedly different. First of all, the
quintic del Pezzo threefold Vs is not projectively linearizable for the
action of A5 C Aut(V5) = PGLy(C), by the main result of [CS16]. In
fact, V5 is birationally rigid for this action. Projective linearizability
of quadrics is an open problem; linearizability is unknown even for
some actions of &3. In [BvBT23, Section 5] there is an example of a
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nonlinearizable action by the Frobenius group §s on Xi, without any
obstructions in the derived category.
The following theorem is a partial equivariant analog:

Theorem 7.1. Let X be a smooth projective Fano threefold of the
following types:

(1) an intersection of two quadrics Xo5 C P?,
(2) a prime Fano threefold of genus 9, X5 C P10,
(3) a prime Fano threefold of genus 10, X5 C P,

Let G be a finite group acting generically freely and regularly on X.
Assume that the G-action is projectively linearizable. Then

Fa(X) #0, (7.1)

ford = 2,3, or 2, respectively.
In Cases (1) and (2), this condition is also sufficient for projective
linearizability.

We treat the cases separately.

Intersections of two quadrics. This case was settled in [HT22], via
reduction to nonclosed fields. We supply an argument based on the
equivariant intermediate Jacobian torsor formalism of Section [2] After
the completion of this paper, F. Scavia sent us his unpublished note
[Sca21] with a similar proof.

The variety of lines Fy(Xy5) is a torsor under 1J(X) = Pic’(0).
When if F5(X39)¢ # 0, there exists a G-stable line, which yields a
standard G-equivariant birationality with P3. To prove the converse,
we need:

Lemma 7.2. Let X5 9 be a smooth complete intersection of two quadrics
in P5 with a reqular G-action on Xoo. Then the Abel-Jacobi map de-
fines a G-equivariant isomorphism

AJ: Fy(Xap) = (CHY, , c)*.
Moreover, as a G-equivariant torsor, we have
2[F5(X2p)] = [Pic'(C)],
where C'is a smooth projective curve of genus 2 with a reqular G-action.

Proof. The non-trivial part of the first statement is the G-equivariant
property, established in Theorem [2.3] For the second statement, we
need to show that we have a G-equivariant isomorphism

(CH%,,,c)" = Pic'(0),
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for some C'. We have X, 5 C P°, with a regular G-action on the ambient
P, so that Xy, is the G-invariant base locus of a pencil of quadrics.
Let B : Y — P° be the G-equivariant blowup along Xs,, it admits
a G-equivariant quadric fibration 7 : ¥ — P!, Let W — P! be the
relative Fano variety of planes of Y/P!, with Stein factorization

W — C — P,

here C'is a smooth projective curve of genus 2 with a regular G-action.
The proof of [LT19, Proposition 7.4] shows that W = F3(Xs2), the
space of plane conics on X35. We have the Abel-Jacobi map

AJ:W — (CH%,,0)".

The fibers of W — C are orthogonal Grassmannians, and thus rational.
This shows that the Abel-Jacobi map factors as

W — C — (CHY,, )"
This induces a G-equivariant isomorphism
Pic!(C) = (CHY, , c)".
O

Now, assume that the G-action on X, 4 is projectively linearizable.

By Lemma [7.2]
2[Fa(Xy0)] = [Pic'(O)].

On the other hand, by Theorem [3.3] there exists a smooth projective
G-curve C’ such that

[F2(Xo2)] = [Pic“(C)],
for some e. By Torelli, C' is G-equivariantly isomorphic to C'. Thus,
0 = 2e[Pic!(C)] = [Pic'(C)],
because C' has genus 2. This implies that F5(X52) is a trivial 1J(Xs9)-

torsor, as claimed.

Prime Fano threefolds of degree 16. Consider a GG-Fano threefold
X6 C P with projectively linearizable G-action. Then there exists
a smooth projective curve C', of genus 3, with a regular G-action such
that

(CHX,, 0)'] = [Pic*(O)],
for some e. The variety of conics Fa(X1g) is a Pl-bundle over C, see,
e.g., [KP23, Theorem 9.2]. It follows that

2¢[Pic’ (C)] = [(CHX,, ¢)’] = [Pic'(C)].
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On the other hand, since D has genus 3, we have
4[Pic' (C)] = 0.

Together, these imply that [(CH?XIG/(C)?’] = 0. The Abel-Jacobi map
induces a G-equivariant isomorphism

AJ: F3(Xi6) — (CHY,, /0)3,

and the assertion of Theorem [Z.1] follows.

Over nonclosed fields, we have the converse: the existence of a
twisted cubic curve over the ground field implies birationality to (a
form of) Vs, and these are rational, over any ground field.

In the equivariant context, we follow the arguments of [KP23]. Sup-
pose that we have a G-stable twisted cubic R. Assume R does not ad-
mit a bisecant line. Then the Sarkisov link with center at R yields an
equivariant birationality to V5 (see [KP23| Theorem 5.10]). However,
this does not immediately suffice to conclude projective linearizability.
Recall that Aut(Vs5) = PGL,. We have already mentioned that V; is
rigid for the action of A5 C PGLy, by [CS16]. However, 2(5 cannot
act on Xig, since it does not act on the Jacobian of a genus 3 curve.
Linearizations of cyclic and dihedral group actions on Vi are given in
Example 4.34, respectively, Example 4.37 of [ACC™23]. The remaining
case of a possible G4-action on V5 does not allow an equivariant bira-
tionality to Xig; indeed this would involve blowing up an G4-invariant
genus 3 and degree 9 curve T' C V5, which would intersect the G,-
invariant hyperplane section of V5 in 9 points, which is impossible (we
are grateful to I. Cheltsov for providing us with the proof and the ref-
erence). When R admits a bisecant line, the intersection of the linear
span of R with X is the union of R and a bisecant line ¢ which is
G-stable. Then equivariant birationality to P3 can be realized using
the Sarkisov link with center at ¢ (see [KP23, Theorem 5.8]).

In other cases, according to [KP23, Lemma 2.9], either we have a
G-stable line or there is a G-stable union of three lines. When there
is a G-stable line, one may argue as above. Finally when we have a
G-stable union of three lines, they meet at a single point x which is G-
fixed. By [KP23, Lemma 5.11 and Lemma 5.16], the double projection
from x yields equivariant birationality to a complete intersection of
three quadrics X containing a G-stable plane II. Projection from II
provides an equivariant birational map

Xyg - B,

see, e.g., [KP23, Corollary 5.15]. Thus Xi¢ is projectively linearizable.
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Prime Fano threefolds of degree 18. Let X3 C P! be a projec-
tively linearizable G-Fano threefold. Then there is a smooth projective
genus 2 curve C' with a regular G-action such that

[(CH§(18/C)1] = [PiCe(C)],
for some e, and therefore
[(CHX,/c)’] = e[Pic*(C)] = 0.
The Abel-Jacobi map gives a G-equivariant isomorphism
AJ: Fy(Xis) = (CHE,, 0)%,

and thus Fp(X15)¢ # 0.

Again, over a nonclosed field K, we have a converse statement, which
requires, in addition to a conic R C Xj3 over K, a (sufficiently gen-
eral) rational point x € Xig(K). These yield birationality of Xig to
a sextic del Pezzo fibration ¢ : X — P!, together with a bisection,
coming from R, and a trisection, from z, over K. Sextic del Pezzo
surfaces are rational over a nonclosed field, provided they have points
over degree 2 and degree 3 extensions; thus, X is rational over K (P'),
and Xig is rational over K. A similar construction in the equivariant
context would require, in addition to a G-invariant conic, a G-fixed
point. However, even a section of a sextic del Pezzo fibration ¢ does
not guarantee linearizability, see [CTZ23| Section 5, Case (F)]!

It would be interesting to settle the (projective) linearizability of
actions on Xig.
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