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Abstract. We develop an equivariant version of the formalism
of intermediate Jacobian torsor obstructions, and apply it to conic
bundles over rational surfaces, quadric surface bundles over P1,
and Fano threefolds.

1. Introduction

Let X be a rational variety, over C, equipped with a generically
free, regular action of a finite group G. A fundamental problem in
higher-dimensional birational geometry is to identify linearizable and
projectively linearizable actions, i.e., actions that are birational to G-
actions on P(V ), where V is a linear representation of G, respectively,
a linear representation of a central extension of G (see, e.g., [HT22,
Section 2] for definitions of basic terms). Even the classification of
birational types of involutions in dimension 3 is an open problem, see
[Pro13].

We develop an equivariant version of the formalism of intermediate
Jacobian torsor obstructions from [HT21a] and [BW23], and apply it
to conic bundles over P2, quadric surface bundles over P1, and Fano
threefolds. We pursue the analogy with arithmetic considerations in
[HT21b], [HT21a], [BW23], [HT21c], [KP23], [FJS+23] and [JJ23], fo-
cused on rationality of geometrically rational threefolds over nonclosed
fields.

There are certain similarities between birational geometry over non-
closed fields and equivariant birational geometry; rationality should be
viewed as analogous to linearizability, and birationality to a Brauer-
Severi variety as analogous to projective linearizability. In the study
of rationality, the absolute Galois group of the ground field acts on
geometric invariants, such as the Picard group, and all geometric con-
structions have to take into account Galois symmetries. In the study
of (projective) linearizability, the action of the automorphism group
limits the choices for birational transformations.
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On the other hand, there are also substantial differences:

• Existence of fixed points is not an equivariant birational invari-
ant for actions of nonabelian groups, and is not required for
(projective) linearizability.
• The action of cyclic groups on projective space is always lin-

earizable, while a Galois twist of P1 by a cyclic group is not
necessarily rational, as is the case for S2 ' Gal(C/R) acting
on a conic over R without R-points.
• Rationality of smooth quadric hypersurfaces X2 ⊂ Pn, n ≥ 2, is

completely settled, and is equivalent to the existence of rational
points, while linearizability is still an open problem for n ≥ 4,
see [TYZ23, Section 9].
• Some varieties are rational over any field but fail to be lineariz-

able for automorphisms, e.g., a quintic del Pezzo surface or a
quintic del Pezzo threefold, which are birationally rigid, and not
linearizable, for G = A5, see [HT23, Section 8.2] and [CS16].

Main results and constructions. In Sections 2 and 3 we develop
equivariant versions of the theory of intermediate Jacobians and re-
lated torsor obstructions. Regular actions of finite groups on X yield,
by functoriality, actions on a smooth group scheme CH2

X/C whose C-

valued points are naturally identified with the Chow group CH2(X) of
codimension-two cycles. This gives rise to obstructions to projective
linearizability analogous to those in [HT21a, Theorem 6.3] and [BW23,
Theorem C]:

Theorem 1.1 (Theorem 3.3). Let X be a smooth projective rational
threefold over C with a regular, projectively linearizable, action of a
finite group G. Then there exists a smooth projective (possibly discon-
nected) curve C with a regular G-action such that for any G-invariant
connected component M of CH2

X/C there exist a G-invariant connected
component N ⊂ Pic(C) and an equivariant isomorphism of G-varieties

M ∼= N.

In such situations, we say that the equivariant intermediate Jacobian
torsor (IJT) obstruction vanishes. The nonvanishing of this obstruction
allows to prove failure of (projective) linearizability in many new cases,
e.g., for conic bundles (see Section 5, Examples 5.10 and 5.12), and
quadric surface bundles over P1 (see Section 6, Examples 6.9 and 6.10).

Furthermore, this gives criteria for (projective) linearizability, e.g.,
for actions of cyclic groups on conic bundles X → P2 with quartic dis-
criminant, in Theorem 5.4, or quadric surface bundles X → P1 in The-
orem 6.4. Among rational Fano threefolds, projective linearizability
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of actions on smooth complete intersections of two quadrics X2,2 ⊂ P5

was settled in [HT22], via a reduction to rationality considerations over
nonclosed fields; here we give an alternative proof. We establish a sim-
ilar criterion for actions on X16: they are projectively linearizable if
and only if there exists a G-invariant rational cubic curve on the va-
riety. We elucidate issues arising for Fano threefolds of type X18, see
Theorem 7.1 and the discussion in Section 7.

Moreover, the intermediate Jacobian torsor formalism yields new
general results concerning birationality of nonlinearizable actions:

Theorem 1.2 (Corollary 3.5). Let Xi, for i = 1, 2, be smooth projective
rationally connected threefolds with a regular action of a finite group G.
Assume that their intermediate Jacobians are the Jacobians of smooth
projective curves Ci, with transitive action of G on their connected
components. Assume that

• the connected components of Ci have genus ≥ 2, for i = 1, 2,
• the equivariant IJT obstruction does not vanish for X1,
• C1 is not G-equivariantly isomorphic to C2.

Then X1 is not G-equivariantly birational to X2.

In particular, this applies to involutions acting on rational conic bun-
dles over rational surfaces or quadric surface bundles over P1. Recall
that the classification of conjugacy classes of involutions in the Cre-
mona group Cr2(C), the group of birational automorphisms of P2, is
based on the study of non-uniruled divisors in the fixed locus of the in-
volution, see, e.g., [Bla07]. In higher dimensions, birational involutions
are much more difficult to control: there is too much flexibility. The
paper [Pro13] gives a rough classifications of involutions in Cr3(C), in
presence of non-uniruled divisorial components in the fixed locus. Even
then, some of the cases listed in [Pro13, Theorem 1.2] may overlap. In
Examples 5.10, 5.12, 6.9 and 6.10, no such divisors exist; to the best
of our knowledge, these are the first instances when one is able to
distinguish conjugacy classes of such involutions.

An arithmetic version of Theorem 1.2 gives many nonrational, ge-
ometrically rational, threefolds which are not birational to each other
over the ground field; e.g., intersections of two quadrics X2,2 considered
in [HT21a] and [BW23], or conic bundles in [FJS+23].
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2. Equivariant intermediate Jacobians

Throughout, we work over the complex numbers C. Let X be a
smooth projective rationally connected threefold, NS(X) its Neron-
Severi group, and

IJ(X) := H3(X,C)/(H1(X,Ω2
X)⊕ H3(X,Z))

its intermediate Jacobian. This complex torus carries a principal po-
larization θX induced by the cup product

∧2 H3(X,Z)→ H6(X,Z) ∼= Z,
so that (IJ(X), θX) is a principally polarized abelian variety, and we
can consider IJ(X) as a smooth projective variety over C.

Let CH2(X) be the group of codimension-two cycles on X, over C,
up to rational equivalence, and CH2(X)alg ⊂ CH2(X) the subgroup of
cycles algebraically equivalent to 0. Put

NS2(X) := CH2(X)/CH2(X)alg,

it is a finitely generated abelian group.
Let A be an abelian variety over C and

φ : CH2(X)alg → A(C)

a group homomorphism. It is called regular if for any smooth connected
variety T over C, t0 ∈ T (C), and codimension-two cycle Z ∈ Z2(T×X),
the map

T (C) → A(C),
t 7→ φ(Zt − Zt0),

is induced by a morphism T → A, defined over C. Such a morphism
is unique if it exists. An example of a regular homomorphism is the
Abel-Jacobi map

AJ : CH2(X)alg → IJ(X)(C).

This is bijective when X is smooth rationally connected by [BS83, The-
orem I(i)], and universal, i.e., initial object in the category of regular
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homomorphisms from CH2(X)alg, see [Mur85], [Kah21]. This identifi-
cation endows CH2(X)alg with the structure of a principally polarized
abelian variety, and we denote this scheme by (CH2

X/C)0.

Let CH2(X)γ be the preimage of γ ∈ NS2(X) under the map

CH2(X)→ NS2(X).

It is in bijection with CH2(X)alg (via translation by an element of
CH2(X)γ), which is unique up to a unique translation by elements
in CH2(X)alg. This defines a scheme structure on CH2(X)γ, and a
group scheme structure on CH2(X), denoted by (CH2

X/C)γ and CH2
X/C,

respectively. When X is rational, CH2
X/C is the group scheme that

represents the functor CH2
X/C,fppf of Chow groups of codimension-two

cycles on X, constructed in [BW23, Theorem 3.1].
A regular action of a finite group G on X induces a G-action on al-

gebraic cycles, and on CH2(X). It also yields an action on cohomology
and a regular action on the intermediate Jacobian IJ(X). Compatibil-
ity with the cup product implies that the polarization θX ∈ NS(IJ(X))
is G-invariant.

Lemma 2.1. Let X be a smooth projective rationally connected three-
fold with a regular G-action. Then the Abel-Jacobi map

AJ : CH2(X)alg → IJ(X)(C)

is G-equivariant.

Proof. We recall the construction: let γ be a codimension-two cycle
which is algebraically equivalent to 0. Algebraic equivalence and ho-
mological equivalence coincide, provided the Chow group of zero cycles
on X is supported on a surface [BS83, Theorem I(ii)], which is the case,
by the assumption. Thus γ is homologically equivalent to 0. Let α be a
topological 3-cycle with boundary ∂α = γ. Then the linear functional∫

α

· · · ∈ (H1(X,Ω2
X)∨/H3(X,Z)) ∼= IJ(X),

is well-defined and is the image of α under the Abel-Jacobi map. For
any g ∈ G, we have gγ = g∂α = ∂gα on the level of topological
cycles. �

In particular, the G-action on CH2(X)alg is induced by a regular
G-action on (CH2

X/C)0.

Lemma 2.2. The G-action on CH2(X) is induced by a regular G-
action on CH2

X/C.
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Proof. We need to verify that for g ∈ G and γ ∈ NS2(X), the action

g : (CH2
X/C)γ(C)→ (CH2

X/C)gγ(C), [Z] 7→ [gZ],

is algebraic. Let Z0 be an effective 1-cycle representing γ. The above
action is induced by a composition of the morphisms:

(CH2
X/C)γ → (CH2

X/C)0 → (CH2
X/C)0 → (CH2

X/C)gγ,

mapping

[Z] 7→ [Z]− [Z0] 7→ [gZ]− [gZ0] 7→ [gZ],

where the middle map is the G-action on (CH2
X/C)0 and the other two

are translations. �

A G-action on X induces a natural G-action on Chow2(X), the Chow
variety of codimension-two cycles, via Z 7→ gZ, for g ∈ G.

Theorem 2.3. Let X be a smooth projective rationally connected three-
fold with a regular action by a finite group G. The Abel-Jacobi map

AJ : Chow2(X)→ CH2
X/C

is a G-equivariant morphism.

Proof. As in, e.g., [HT21a, Proposition 2.5], one verifies that the Abel-
Jacobi map is a well-defined morphism. The G-equivariance of

AJ : Chow2(X)(C)→ CH2(X), Z 7→ [Z],

is clear from the construction. �

3. Equivariant intermediate Jacobian torsors and
obstructions

Abelian varieties with group actions. We continue to work over C.
A G-abelian variety is an abelian variety with an action of a finite group
G, preserving the origin. Let A be a G-abelian variety. A principal
polarization θA ∈ NS(A) is called G-equivariant if it is G-invariant
with respect to the G-action on NS(A); in this case, (A, θA) is called
a G-equivariant principally polarized abelian variety. A G-equivariant
homomorphism

ι : (A, θA)→ (B, θB)

of G-equivariant principally polarized abelian varieties is a homomor-
phism ι : A→ B of abelian varieties such that ι∗θB = θA. We record:

Lemma 3.1. Let

ι : (A, θA)→ (B, θB)
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be a G-equivariant homomorphism of G-equivariant principally polar-
ized abelian varieties, which is a closed embedding. Then there exists a
G-equivariant principally polarized abelian variety (A′, θA′) such that

(B, θB) ' (A× A′, p∗1θA + p∗2θA′),

as G-equivariant principally polarized abelian varieties, where pi’s are
natural projections.

Proof. Consider the induced primitive, G-equivariant, embedding

ι∗ : H1(A,Z)→ H1(B,Z).

The principal polarization θB ∈ H2(B,Z) = ∧2H1(B,Z) defines an
alternating form on H1(B,Z), and its restriction to H1(A,Z) is the al-
ternating form induced by θA. This alternating form is compatible with
the G-action on these lattices. Let Λ be the orthogonal complement of
H1(A,Z) in H1(B,Z). Then

H1(A,Z)⊕ Λ = H1(B,Z),

since θB and θA are principal polarizations. Since the alternating form
is compatible with G-action, Λ is G-invariant and θB defines a non-
degenerate alternating form on Λ which is selfdual.

The groups H1(A,Z) and H1(B,Z) admit integral Hodge structures
of weight −1, which are compatible with ι∗ and preserved by the G-
action. Since θB is a Hodge class, this induces a principally polarized
integral Hodge structure of weight −1 on Λ which is compatible with
G-action on it, and Λ can be identified with H1(A′,Z), where A′ is a
G-equivariant principally polarized abelian variety. �

Corollary 3.2. A G-equivariant principally polarized abelian variety
admits a decomposition as a product of indecomposable G-equivariant
principally polarized abelian varieties, which is unique, up to permuta-
tion of the factors.

An indecomposable G-equivariant principally polarized abelian vari-
ety is also called irreducible.

Intermediate Jacobian torsor obstructions. The following theo-
rem gives an obstruction to equivariant projective linearizability; it is
analogous to [HT21a, Theorem 6.3] and [BW23, Theorem C]:

Theorem 3.3. Let X be a smooth projective rational threefold with a
regular, projectively linearizable, G-action. Then there exists a smooth
projective (possibly disconnected) curve C with a regular G-action such
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that for any γ ∈ NS2(X)G, one has a G-equivariant isomorphism of
G-varieties

(CH2
X/C)γ ' Picm(C),

for some G-invariant class m. Moreover, we have

(CH2
X/C)0 ' Pic0(C),

as G-equivariant principally polarized abelian varieties.

Proof. We have a G-equivariant birational map

φ : X 99K P3,

where P3 is equipped with a regular action of G. Resolving the indeter-
minacy of φ equivariantly, we have equivariant birational morphisms

X
g← W

f→ P3,

where W is a smooth projective threefold with a regular G-action. By
functorial weak factorization (see [AT19]), f and g are compositions
of equivariant blowups and downs with G-irreducible smooth centers.
Here G-irreducible means that the action on connected components of
the smooth center is transitive. The assertion is reduced to a single
G-equivariant blowup

ψ : X1 → X2,

where one of the Xi’s satisfies the statement of the assertion, and we
need to prove the statement for the other Xj.

Suppose that X2 satisfies the statement, i.e., there exists a smooth
projective G-curve C such that for any γ ∈ NS2(X2)G,

(CH2
X2/C)γ ∼= Picm(C),

for some m, as G-equivariant varieties, and when γ = 0,

(CH2
X2/C)0 ∼= Pic0(C),

as G-equivariant principally polarized abelian varieties. Suppose that
the center of ψ is a G-invariant and G-irreducible curve Γ. The blowup
formula

CH2(X1) = CH2(X2)⊕ CH1(Γ), (3.1)

is G-equivariant, and ψ induces a G-equivariant isomorphism

H3(X1,Z) ∼= H3(X2,Z)⊕ H1(Γ,Z(−1)),

compatible with the cup product as well as the Hodge structures. This
induces an isomorphism

IJ(X1) ∼= IJ(X2)× Pic0(Γ),
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as principally polarized abelian varieties, and an isomorphism

(CH2
X1/C)0 ∼= Pic0(C t Γ), (3.2)

as G-equivariant principally polarized abelian varieties.
For any γ ∈ NS2(X1)G, (3.1) induces a G-equivariant isomorphism

of varieties

(CH2
X1/C)γ ' Picm(C t Γ),

for some m, which is a translation of (3.2), as claimed.
When the center of ψ is 0-dimensional, there is a similar blowup

formula for CH2, after replacing CH1(Γ) by a permutation module of
Z. In particular, connected components of CH2

X2/C are identified with

connected components of CH2
X1/C.

In the other direction, when X1 satisfies the assertion, the proof is
reversed. Assume that ψ is a blowup of a G-invariant and G-irreducible
curve Γ. Then we have a G-equivariant blowup formula:

CH2(X1) = CH2(X2)⊕ CH1(Γ).

As before, Pic0(C) ' (CH2
X2/C)0×Pic0(Γ) as G-equivariant principally

polarized abelian varieties. When every connected component of Γ
has genus 0, the assertion is clear. Thus, we may assume that every
connected component of Γ has genus g ≥ 1. Using Corollary 3.2 and
the Torelli theorem for curves, we can write C = C ′ t Γ, where C ′ is a
smooth projective G-curve, and we have

(CH2
X2/C)0 ∼= Pic0(C ′).

Then, for any γ ∈ NS2(X2)G,

(CH2
X2/C)γ ⊕ Pic0(Γ) ∼= Picm(C),

for some m, as G-varieties. Since an isomorphism

(CH2(X2))γ ⊕ Pic0(Γ) ∼= Picm(C) = Picm
′
(C ′)⊕ Pic0(Γ)

is a translation of an isomorphism

(CH2
X2/C)0 ⊕ Pic0(Γ) ∼= Pic0(C) = Pic0(C ′)⊕ Pic0(Γ),

and the translation preserves the direct sum structure, we see that

(CH2
X2/C)γ ∼= Picm

′
(C ′),

as G-varieties. When the center of ψ is 0-dimensional, the proof is
similar, and we omit it. �
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The intermediate Jacobian torsor formalism yields new obstructions
to equivariant birationality of nonlinearizable actions on rationally con-
nected threefolds, and is a new tool to distinguish finite subgroups of
the Cremona group Cr3(C), up to conjugation in this group. As an
application of Theorem 3.3, we obtain:

Theorem 3.4. Let Xi, with i = 1, 2, be smooth projective rationally
connected G-varieties of dimension 3 such that their intermediate Ja-
cobians are irreducible G-equivariant principally polarized abelian vari-
eties. Assume that

• the equivariant IJT-obstruction does not vanish for X1,
• IJ(X1) is not isomorphic to IJ(X2) as G-equivariant principally

polarized abelian varieties.

Then X1 is not G-equivariantly birational to X2.

Proof. Suppose that X1 is G-equivariantly birational to X2. By as-
sumption, there is a G-invariant class γ of codimension-two cycles on
X1 such that

(CH2(X1))γ 6∼= Pice(C),

for any smooth projective G-curve C and any e. As in Theorem 3.3,
this shows that IJ(X1) must arise in the decomposition of IJ(X2). Since
they are irreducible, as G-principally polarized abelian varieties, this
implies that IJ(X1) ∼= IJ(X2). This contradicts the assumption. �

Corollary 3.5. Let Xi, with i = 1, 2, be smooth projective rationally
connected G-varieties of dimension 3 such that their equivariant inter-
mediate Jacobians are the Jacobians of G-irreducible smooth projective
curves Ci whose connected components have genus gi ≥ 2. Assume that

• the equivariant IJT-obstruction does not vanish for X1,
• C1 is not G-equivariantly isomorphic to C2.

Then X1 is not G-equivariantly birational to X2.

Proof. By Torelli theorem, Pic0(C1) and Pic0(C2) are not isomorphic
to each other as G-equivariant principally polarized abelian varieties.
The assertion follows from Theorem 3.4. �

4. Equivariant Prym varieties

We consider G-equivariant Prym varieties, following the construc-
tions in [FJS+23, Section 4] in the arithmetic context.
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Equivariant Prym varieties. Fix a G-equivariant étale finite mor-

phism $ : ∆̃ → ∆ between connected smooth projective G-curves, of
degree 2. The norm map

Nm : Pic(∆̃)→ Pic(∆),

is a G-equivariant homomorphism of group schemes. A G-equivariant
embedding r : ∆ ↪→ W into a smooth projective rational G-surface
induces a G-equivariant morphism of group schemes

r∗ : Pic(W )→ Pic(∆).

The Pic(W )-polarized Prym scheme is defined as

PPrymPic(W )(∆̃/∆) := Pic(∆̃)×Pic(∆) Pic(W ),

it is a group scheme with diagonal G-action. The identity component

of PPrymPic(W )(∆̃/∆) is the identity component of the kernel of the

norm map Nm which is the Prym variety Prym(∆̃/∆) from [Bea77].
This is a principally polarized abelian variety, and G acts on it. The

polarization associated with a theta divisor on Pic0(∆̃) is a G-principal

polarization. Its restriction to Prym(∆̃/∆) is twice a principal polariza-

tion on Prym(∆̃/∆). In particular, Prym(∆̃/∆) admits a G-invariant
principal polarization.

For D ∈ Pic(W ), denote the fiber of

PPrymPic(W )(∆̃/∆)→ Pic(W )

above D by VD; it is a G-equivariant torsor of V0 when D is G-invariant.
Since $∗$

∗D = 2D, we have

V2D+D′ = $∗D + VD′ , ∀D,D′ ∈ Pic(W ),

compatibly with G-actions. The group scheme V0 consists of two con-
nected components,

P = Prym(∆̃/∆), P̃ = V0 \ P.

Both carry the G-action, and P̃ is an equivariant 2-torsion torsor of P .
For W = P2, ∆ ⊂ P2 is a G-invariant smooth plane quartic, and H

the hyperplane class of P2 we have:

Proposition 4.1 ([Mum74, Section 6, Equation (6.1)]). The parity of
h0 is constant on each of the two connected components of VH , and is
different on these components.

Definition 4.2 ([FJS+23, Definition 4.4]). Let P (1) be the connected

component of VH on which h0 is even, and let P̃ (1) be the connected
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component of VH on which h0 is odd. For each m ∈ Z≥0 and e = 0, 1,
we define

P (2m+e) = P (e) +mH, P̃ (2m+e) = P̃ (e) +mH,

where P (0) = P and P̃ (0) = P̃ . These are G-equivariant torsors of

Prym(∆̃/∆).

Intermediate Jacobians and Prym varieties. We follow [Bea77]
and [FJS+23]. Let X be a smooth projective rational threefold over C
with a regular action of a finite group G, and admitting a G-equivariant
standard conic bundle structure π : X → W , where

• W is a smooth projective rational G-surface,
• the discriminant curve ∆ ⊂ W is smooth,

• the (equivariant) étale double cover $ : ∆̃→ ∆ is irreducible.

Lemma 4.3 ([FJS+23, Proposition 5.3]). Let γ be the class of a line
in a singular fiber of π. Then γ is G-invariant and we have a G-
equivariant exact sequence:

0→ Zγ → NS2(X)
π∗−→ NS(W )→ 0.

Proof. Since π is G-equivariant, π∗ is as well. Moreover, G maps any

line in the singular fibers of π to a line in a singular fiber. Since ∆̃
is irreducible, γ is G-invariant. The exactness of the sequence follows
from [FJS+23, Proposition 5.3]. �

The following is an analog of a key result in [FJS+23], comparing
torsors of intermediate Jacobians and Prym varieties:

Theorem 4.4 ([FJS+23, Theorems 5.1 and 5.8]). For π : X → W as
above, there is a G-equivariant surjective morphism of group schemes

CH2
X/C → PPrymPic(W )(∆̃/∆)

that is an isomorphism when restricted to each connected component.
Moreover, this induces an isomorphism

(CH2
X/C)0 → Prym(∆̃/∆)

of G-equivariant principally polarized abelian varieties.

Proof. A morphism as stated is established in [FJS+23, Theorem 5.1],
so we only need to show that it is G-equivariant. We recall the con-
structions in [FJS+23, Section 5]:

We have a G-equivariant embedding ι : ∆ ↪→ X with G-invariant
image. Let ε : X ′ → X be the G-equivariant blowup along ι(∆). Let
X∆ := π−1(∆) and S be its proper transform in X ′, embedded via
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j : S ↪→ X ′. Note that X∆ is G-invariant, and so is S. Then S admits

a G-equivariant P1-bundle p : S → ∆̃. We have a homomorphism

p∗j
∗ε∗ : CH2(X)→ CH1(∆̃) = Pic(∆̃),

where ε∗ : CH2(X) → CH2(X ′) and j∗ : CH2(X ′) → CH2(S) are the
refined Gysin homomorphisms from [Ful98, Section 6.6]. By [Ful98,
Theorem 6.2], these are G-equivariant, so the above homomorphism is
also G-equivariant. By [FJS+23, Proposition 5.6], the homomorphism

(p∗j
∗ε∗, π∗) : CH2(X)→ Pic(∆̃)× Pic(W )

is G-equivariant, with image contained in PPrymPic(W )(∆̃/∆). This is
the homomorphism used in [FJS+23, Theorem 5.1]. The last statement
follows from [FJS+23, Lemma 5.5 and Theorem 5.8]. �

5. Conic bundles

We turn to the linearizability of actions on smooth rational Fano
threefolds X over C admitting an equivariant conic bundle structure

π : X → P2,

such that the relative Picard rank of π is 1 and the discriminant curve
∆ ⊂ P2 is a smooth plane quartic. We develop a version of intermediate
Jacobian torsor obstructions in this setting, following [FJS+23], and
establish a criterion for linearizability of actions of cyclic groups.

Classification. The classification of Fano threefolds implies that X is
one of the following, see [MM81], [MM83], [MM03], and [Mat95]:

(1) a double cover of P1 × P2 branched along a smooth divisor of
type (2, 2),

(2) the blowup of a quadric hypersurface in P4 along a genus 2,
degree 6 curve,

(3) the blowup of a smooth intersection of two quadrics in P5 along
a plane conic.

In all cases, X is rational, see, e.g., [Pro18, Corollary 5.6.1], and the
automorphism group Aut(X) is finite.

A G-action on X induces a G-action on the Picard group Pic(X),
which has to preserve the extremal rays of the nef cone. In Cases
(2)-(3), this implies that the G-action necessarily preserves the blowup
presentation. Thus, the linearization problem is reduced to the case
of G-actions on quadrics (considered in [TYZ23]) or the case of inter-
sections of two quadrics (considered in [HT23]). Linearizability is still
largely open in Case (2), see [TYZ23, Section 9]. In Case (3), projective
linearizability is equivalent to the existence of a G-stable line.
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The main example. Thus, we focus on Case (1), the double cover

δ : X → P1 × P2, (5.1)

ramified in a smooth divisor of bi-degree (2, 2), with projections

X
π2 //

π1

��

P2

P1

where π2 is a standard conic bundle, with discriminant a smooth quartic

∆ ⊂ P2 and discriminant double cover $ : ∆̃→ ∆.
A regular G-action on X induces actions of G on P1,P2, ∆, and ∆̃,

so that π1, π2 and $ : ∆̃→ ∆ are G-equivariant. Let F1(X/P1) be the
Fano variety of lines in the fibers of π1; it carries the G-action as well,
and we have an equivariant Stein factorization

F1(X/P1)→ C → P1,

where C is a smooth projective curve of genus 2 equipped with a regular
G-action.

Standard linearization construction.

Proposition 5.1 ([Pro18]). Assume that G is cyclic and ∆̃G 6= ∅.
Then the G-action on X is linearizable.

Proof. Let H1, H2 be the pullbacks of hyperplane classes from P1 and
P2, respectively. Let `∪`′ be a singular fiber of π2 corresponding to the

G-fixed point on ∆̃, i.e., both ` and `′ are G-stable. Let p : X̂ → X the

blowup of X along `, with exceptional divisor E. Then X̂ is a smooth
weak Fano threefold with a regular G-action induced by the G-action
on X.

Let L = p∗H1 + p∗H2 −E; we have L3 = 2. The linear system |L| is
4-dimensional and base point free, the associated morphism

Φ|L| : X̂ → P4

defines a G-equivariant birational morphism X̂ → Q ⊂ P4 to a quadric
threefold which is a quadric cone of rank 4; with linear G-action on
the ambient P4. Now ` and `′ meet at a G-fixed point. The fiber S of

π1 : X → P1 containing this fixed point is G-stable. Let Ŝ be its strict

transform on X̂. Then L2.Ŝ = 1, i.e., Q contains a G-stable plane.
Since G is cyclic, Q contains a G-fixed smooth point. Projection from
this point yields an equivariant birational map to P3. �
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Intermediate Jacobians and torsors.

Theorem 5.2. [Bru08], [FJS+23, Theorem 4.5] We have equivariant
isomorphisms

P (0) = Prym(∆̃/∆) ∼= Pic0(C), P (1) ∼= Pic1(C).

Moreover, the first isomorphism is an isomorphism of G-equivariant
principally polarized abelian varieties.

Proof. Choose a general x ∈ C with image t ∈ P1. The fiber St of p is
a smooth quadric surface and x corresponds to a ruling of lines on St.
Let ` be a general line in this ruling. The pushfoward of ` to P2 via π2

is a line so that π∗2∆.` = 4. Since x and ` are general, ` meets π∗2∆ at

smooth points of π∗2∆. In particular, π∗2∆∩ ` and its pushforward to ∆̃

define a degree 4 effective 0-cycle α on ∆̃. Since ` is parametrized by
P1, the linear equivalence class of α only depends on x, and we have a
natural G-equivariant morphism

C → Pic(∆̃).

Since the pushfoward of α to ∆ is the intersection of ∆ and a line on
P2, the above morphism actually defines

C → VK∆
.

Since α is parametrized by P1, we have h0(∆̃,O(α)) ≥ 2. By Clifford’s

theorem, h0(∆̃,O(α)) = 2. Hence we have a G-equivariant morphism

C → P (1),

inducing a G-equivariant morphism

Pic1(C)→ P (1),

which is an isomorphism by [Bru08] and [FJS+23, Theorem 4.5]. The
above construction of this morphism is slightly different from the one in
[Bru08] and [FJS+23, Theorem 4.5], however they are compatible and
they define the same morphism. (See [FJS+23, Proposition 6.3(iii)] for
more details.) Finally, the above G-equivariant isomorphism induces a
G-equivariant isomorphism

Pic0(C)→ P (0).

For the last claim see, e.g., [Bru08, Section 5, Case 4]. �

Let γ1 be the class of lines in the fibers of π1 : X → P1 and γ2 the
class of lines in the fibers of π2 : X → P2. Then NS2(X) is generated
by γ1 and γ2 and both classes are G-invariant.
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Theorem 5.3 ([FJS+23, Theorem 6.4]). In the above setting, we have
equivariant isomorphisms:

(CH2
X/C)mγ1+nγ2 ∼=


P m, n are even;

P̃ m is even and n is odd;

P (1) m is odd and n is even;

P̃ (1) m,n are odd.

Proof. The analogous isomorphisms in [FJS+23, Theorem 6.4] are in-
duced by the morphism in Theorem 4.4, which is equivariant. �

Equivariant IJT obstructions. The following is the equivariant ana-
log of [FJS+23, Theorem 1.5]:

Theorem 5.4. Let G be a cyclic group and δ : X → P1× P2 a smooth
G-double cover ramified along a smooth divisor of bi-degree (2, 2). Then

X is G-linearizable if and only if P̃ or P̃ (1) is a trivial torsor.

Remark 5.5. The triviality of Br(k) in the assumptions in [FJS+23,
Theorem 1.5] translates into the condition H2(G, k×) = 0.

We start with auxiliary constructions. Consider

M0,0(X, γ), γ ∈ NS2(X),

the coarse moduli space of stable maps of genus 0 and class γ and put

F1,1(X) :=M0,0(X, γ1 + γ2).

Proposition 5.6. The moduli space F1,1(X) is smooth and the Abel-
Jacobi map

AJ : F1,1(X)→ (CH2
X/C)γ1+γ2

is a P1-fibration.

Proof. There are two types of stable maps parameterized by F1,1(X):

(1) an embedding f : P1 → X of class γ1 + γ2;
(2) the domain consists of two P1’s, one is isomorphically mapping

to a line R1 in a fiber of π1 and the other to a line R2 in a fiber
of π2.

These have trivial automorphisms. Thus, for the first claim, we only
need to show the smoothness the moduli stack

M0,0(X, γ1 + γ2).

Consider (1), an embedding f : R ∼= P1 → X, and let ` := π2(f(R))
be its image in P2, a line. Its preimage S` := π−1

2 (`) is a normal
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surface with only canonical singularities. Consider the exact sequences
of tangent and normal bundles

0→ TR → TS` |R → Q→ 0,

and

0→ Q→ NR/X → NS`/X |R → 0.

Since NR/X is locally free, Q is torsion-free so that it is locally free.
Thus, TS` |R is also torsion-free. We have

−KS` .R = (−KX − S`).R = 3− 1 = 2

This indicates that c1(Q).R = 0 and Q ∼= O. We also have S`.R = 1, so
that NS`/X |R ∼= O(1) and NR/X

∼= O⊕O(1); we have H1(R,NR/X) = 0.
Thus [f ] is a smooth point of F1,1(X).

Consider an f : R = R1 ∪R2 → X, from Case (2). As above,

NR1/X
∼= O ⊕O and NR2/X

∼= O ⊕O(−1),

so that H1(Ri, f
∗TX |Ri) = 0 for i = 1, 2. Since

TX |R1
∼= O(2)⊕O ⊕O,

it follows from [BLRT23, Proposition 2.3] that

H1(R, f ∗TX) = 0.

By the discussion of [Tes09, Section 1.1], [f ] ∈ F1,1(X) is a smooth
point. Hence F1,1(X) is a smooth projective variety of dimension 3;
and the Abel-Jacobi map

AJ : F1,1(X)→ (CH2
X/C)γ1+γ2

is well-defined. We proceed to show show that it is a P1-fibration.
A stable map [f : R→ X] ∈ F1,1(X) defines a line ` := π2(f(R)) in

P2 and thus a morphism to the dual

F1,1(X)→ (P2)∨.

We denote its Stein factorization by

F1,1(X)→ B → (P2)∨.

The pullback S` := π−1
2 (`) is a normal projective surface with only

canonical singularities, and f(R) is a Weil divisor on S`. A fiber
of F1,1(X) → B is the linear system |f(R)| of the divisorial sheaf
OS`(f(R)) which is isomorphic to P1, thus F1,1(X) → B is a P1-
fibration, and the Abel-Jacobi map factors as

F1,1(X)→ B → (CH2
X/C)γ1+γ2 .
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The assertion follows if we show that AJ is dominant with connected
fibers. Recall that the Abel-Jacobi map is induced by

F1,1(X)→ Pic4(∆̃),

given in the proof of Theorem 4.4, which factors as

F1,1(X)→ B → Pic4(∆̃).

To show that B → Pic4(∆̃) is injective, fix [f ] ∈ F1,1(X) and let D be

its image in Pic4(∆̃). We claim that h0(∆̃,O(D)) = 1. Otherwise, by

Clifford’s theorem, h0(∆̃,O(D)) = 2. However, by Theorem 5.3, the

image of the Abel-Jacobi map is in P̃ (1). This contradicts the fact that

h0(∆̃,O(D)) is even. Thus we have h0(∆̃,O(D)) = 1. This implies

that B → Pic4(∆̃) is injective. �

The following is analogous to [FJS+23, Proposition 6.5]:

Proposition 5.7. Let G be a cyclic group. Assume that P̃ (1) is a trivial
P -torsor. Then X is G-linearizable.

Proof. Assume that P̃ (1) has a G-fixed point. By Theorem 5.3,

(CH2
X/C)γ1+γ2 ,

has a fixed point. Since G is cyclic, Proposition 5.6 implies that

F1,1(X)

has at least two fixed points. In particular, π1 : X → P1 admits two G-
invariant sections. Projection from one of the sections gives a P2-bundle
over P1, with a G-fixed section. Such a P2-bundle is G-linearizable. �

Consider the coarse moduli space

F2,1(X) =M0,0(X, 2γ1 + γ2).

Dimension count shows that it generically parameterizes a stable map
from P1 which is an embedding into X.

Consider Sym8(∆̃) → Pic8(∆̃) and denote the preimage of P̃ (2) ⊂
Pic8(∆̃) by S̃(2). Then

S̃(2) → P̃ (2)

is a P3-bundle over P̃ (2). For a general smooth irreducible curve C of

type 2γ1 +γ2, C∩π−1
2 (∆) induces a degree-8 divisor on ∆̃ which defines

a class on P̃ (2). After taking a G-equivariant resolution F̃2,1(X), we
have a G-equivariant birational morphism

F̃2,1(X)→ S̃(2).
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The following is analogous to [FJS+23, Theorem 6.7]:

Proposition 5.8. Assume that G is cyclic and P̃ is a trivial P -torsor.
Then X is G-linearizable.

Proof. If P̃ is trivial then so is P̃ (2), and S̃(2) has a fixed point. Since
the existence of fixed points is an equivariant birational invariant, for

actions of abelian groups on smooth projective varieties, both F̃2,1(X)
and F2,1(X) have a fixed point. Thus, there is a G-invariant section of
π1 : X → P1. Projecting from it gives a P2-bundle over P1. The generic
fiber Xη is isomorphic to P2

η with a G-invariant line. Such bundles are
linearizable, for cyclic actions. �

Proof of Theorem 5.4. If X is G-linearizable, then Theorems 3.3, 5.2,

and 5.3 show that P̃ and P̃ (1) are isomorphic to P or P (1). Since

[P̃ (1)] = [P (1)] + [P̃ ] ∈ H1(G,P ),

P̃ or P̃ (1) is a trivial torsor.
Conversely, when P̃ (1), respectively P̃ , is trivial, we apply Proposi-

tion 5.7, respectively 5.8.
�

Examples of (non)linearizable actions. As before, δ : X → P1×P2

is a double cover ramified along a smooth divisor of bidegree (2, 2).

Proposition 5.9. Let τ ∈ Aut(X) be an involution such that

• the induced action on P1 via π1 : X → P1 is trivial,
• the induced action on P2 via π2 : X → P2 is non-trivial, and

• ∆̃τ = ∅.
Then X is not 〈τ〉-projectively linearizable.

Proof. Since cyclic actions on projective space are linearizable, we may
assume that the induced action on P2 is given by

τ̄ : [x : y : z] 7→ [x : y : −z].

Then the discriminant curve has the form

z4 + z2Q2(x, y) +Q4(x, y),

where Q2, Q4 ∈ C[x, y] are homogeneous of degree 2 and 4, respectively.
Since we assume that ∆ is smooth, Q4 = 0 has 4 distinct roots.

Suppose that X is 〈τ〉-projectively linearizable. By Theorem 3.3,
there exists a smooth connected projective curve C of genus 2 with S2-
action such that (CH2

X/C)γ1+γ2 is equivariantly isomorphic to Picm(C),
for some m. The quotient of C by a nontrivial involution is either
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an elliptic curve, or P1. In either case, C has a fixed point, and thus
Picm(C) is equivariantly isomorphic to Pic0(C), with a fixed point.

We conclude that (CH2
X/C)γ1+γ2 has a fixed point. Since

F1,1(X)→ (CH2
X/C)γ1+γ2

is a P1-fibration, F1,1(X) also has a fixed point. Let f : R → X be a
stable map which is 〈τ〉-stable. If R is reducible, then f(R) consists of
two lines in fibers of π1 and π2 respectively. However, τ never preserves

a line in fibers of π2 because ∆̃τ = ∅. Thus R is irreducible and
R1 = f(R) is 〈τ〉-stable. If R1 is not fixed, then R1 must be a bisection
of π1 because the induced action on P1 is trivial. This contradicts the
fact that the class of R1 is γ1 + γ2. We conclude that R1 is fixed. Let
` be the image of R1 via π2 : X → P2. Then ` is a line, fixed by the
group action, i.e., ` is defined by z = 0. Let S be the pullback of `
via π2 : X → P2. Then S is a smooth del Pezzo surface of degree 4
because Q4 = 0 has distinct roots.

Consider the double cover S → P1 × ` and let R′ be the image of
R1 via this map. Then R1 → R′ is birational. This means that the
pullback of R′ via S → P1 × ` consists of two curves R1 and R2 and
the involution is swapping those curves. This is a contradiction. �

Example 5.10. Consider the double cover:

X : w2 = t20q0 + 2t0t1q01 + t21q1,

with

q0 := z2 + a0,0x
2 + a0,1xy + a0,2y

2,

q01 := a01,0x
2 + a01,1xy + a01,2y

2,

q1 := z2 + a1,0x
2 + a1,1xy + a1,2y

2,

where ai,j ∈ C. The discriminant curve ∆ is given by

z4 + z2Q2(x, y) +Q4(x, y) = 0,

where Q2, Q4 ∈ C[x, y] are homogeneous polynomials of degree 2 and 4,
respectively. We assume that ∆ is smooth and consider the involutions

µ : ([t0 : t1], [x : y : z], w) 7→ ([t0 : t1], [x : y : −z], w),

σ : ([t0 : t1], [x : y : z], w) 7→ ([t0 : t1], [x : y : z],−w).

The involution µ is linearizable, since ∆̃ has a 〈µ〉-fixed point. The
action of τ := σµ is not projectively linearizable, by Proposition 5.9.

Remark 5.11. The Burnside formalism of [KT22] applies in Exam-
ple 5.10 to G ' S2

2 = 〈σ, τ〉: the σ-action fixes a del Pezzo surface of
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degree 2, and the residual action fixes a curve of genus 3. The formal-
ism of incompressible symbols of, e.g., [TYZ23, Section 3.6] shows that
the G-action on X is not projectively linearizable.

Example 5.12. Consider the double cover:

X : w2 = t20q0 + 2t0t1q01 + t21q1,

with

q0 := a0,0x
2 + a0,1y

2 + a0,2z
2,

q01 := a01,0x
2 + a01,1y

2 + a01,2z
2,

q1 := a1,0x
2 + a1,1y

2 + a1,2z
2,

where ai,j ∈ C. In this case, the discriminant ∆ ⊂ P2 is defined by an
equation of the form

Q(x2, y2, z2) = 0.

We assume that ∆ is a smooth quartic and consider the involutions

τ1 : ([t0 : t1], [x : y : z], w) 7→ ([t0 : t1], [−x : y : z], w)

τ2 : ([t0 : t1], [x : y : z], w) 7→ ([t0 : t1], [x : −y : z], w)

τ : ([t0 : t1], [x : y : z], w) 7→ ([t0 : t1], [x : y : −z],−w).

Then τ1τ2 = τ and G := 〈τ1, τ2〉 ' S2
2 does not contain the involution

σ from Example 5.10. For i = 1, 2, we have ∆̃τi 6= ∅, so that X is
〈τi〉-projectively linearizable. However, by Proposition 5.9, X is not
〈τ〉-projectively linearizable, and thus not G-projectively linearizable.

Remark 5.13. In Examples 5.10 and 5.12, (projective) linearizabil-
ity is equivalent to the vanishing of equivariant IJT obstructions by
Theorem 5.4. It follows from Corollary 3.5 that equivariant birational
classes of conic bundles X,X ′ with involutions τ , respectively, τ ′, are

different as soon as ∆̃, ∆̃′ are not equivariantly isomorphic. In these
examples, there are no non-uniruled divisors in the fixed locus of the
involutions; previously known obstructions do not apply to these conic
bundles, see [Pro13].

The following example shows that ∆̃G 6= ∅ is not a necessary condi-
tion for linearizability.

Example 5.14. Here we prove that X is always 〈σ〉-linearizable, where
σ is the unique nontrivial involution acting trivially on P1 × P2. This

follows from the triviality of P̃ (1), as a P -torsor.
Let ` be a bitangent line to ∆ such that ` ∩ ∆ consists of two

points. Then S` contains two A1-singularities, and there is a curve
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R of class γ1 + γ2 mapping to ` and passing through these two sin-

gularities. Indeed, let S̃` → S` be the minimal resolution. A singular
fiber of π1|S` : S` → P1 at t0 = 0 contains a line `′ of class γ1, and
such a line passes through one singular point but not the other. We

also have −KS` .`
′ = 1. The fibration S̃` → ` comes with two singular

fibers, both consisting of two (−1)-curves connected by one (−2)-curve.
If we contract all (−1)-curves of these singular fibers, we get a weak
del Pezzo surface of degree 8. The strict transform of `′ is a conic of
self-intersection 0. This implies that this weak del Pezzo surface is a
smooth quadric surface. The existence of R follows. Then the existence

of R induces a fixed point on P̃ (1).
When ` ∩ ∆ consists of one point, S` contains a unique singularity

of type A3. The minimal resolution Ŝ` of S` contains a chain of three
(−2)-curves, with two (−1)-curves attached to the edges. Then there

is a curve of class γ1 + γ2 mapping to ` whose strict transform on Ŝ`
meets the central (−2)-curve of the chain. This induces a fixed point

on P̃ (1).

6. Quadric surface bundles

Let X be a smooth projective threefold over C admitting a quadric
surface bundle structure

π : X → P1.

Such threefolds are rational: by Tsen’s theorem, there exists a section
of π, projecting from it gives birationality to a relative P2-bundle, thus
birationality X ∼ P3. However, this may not work equivariantly.

Here, we explore equivariant birational geometry of such quadric
surface bundles, establish a criterion for linearizability of actions of
cyclic groups, and provide examples of nonlinearizable actions.

Geometry. We follow [HT12]. The intermediate Jacobian is given by

IJ(X ) = Pic0(C),

where C → P1 is the discriminant double cover, a hyperelliptic curve
ramified in the discriminant d ⊂ P1 of π (reduced, since X is smooth,
by assumption). Let |d| be the degree of the discriminant divisor,

g(C) =
|d|
2
− 1

the genus of C, and ωπ the relative dualizing sheaf of π. The height of
a section s : P1 → X is defined as

hω−1
π

(s) := deg(s∗ω−1
π ),
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it is equal to the degree of the normal bundle Ns. The space of sections
of π of height h is denoted by

Sec(X/P1, h),

and its closure in the coarse moduli space of stable maps of genus 0 by

Sec(X/P1, h).

The expected dimension of this moduli space is h + 2. Let F1(X/P1)
the relative Fano variety of lines, with the Stein factorization

F1(X/P1)→ C → P1.

Lemma 6.1 ([HT12, Proposition 2]). Assume that C → P1 is non-
split. Fix a class γ of sections of π of sufficiently large height. Then
the Abel-Jacobi map

AJ : Sec(X/P1, γ)→ (CH2
X/C)γ

is an open immersion composed with a projective bundle over (CH2
X/C)γ.

Proof. We include a proof, following [HT12]. Since the Brauer group of
C(C) is trivial, F1(X/P1)→ C is the projectivization PC(V ) of a rank
2 vector bundle V over C. Let OPC(V )(1) be the relative polarization
of PC(V ). There is a bijection between sections of X/P1 and sections
of F1(X/P1)/C, as in [HT12, Section 3], with a natural identification

Sec(X/P1, h) = Sec(F1(X/P1)/C, d),

where d = deg(s∗OPC(V )(1)) and s : C → F1(X/P1) is a section. By
[HT12, (3.2)],

h = 2d+ deg(V )− |d|
2
.

We have a natural morphism

Sec(F1(X/P1)/C, d)→ Picd(C), s 7→ s∗OPC(V )(1).

Let L be the universal line bundle on C×Picd(C). When d is sufficiently
large, (ρ2)∗(L⊗ρ∗1V ) is locally free; here ρi are the projections onto the
factors in C × Picd(C). By [HT12, Proposition 2], the moduli space

Sec(F1(X/P1)/C, d)

is a Zariski open in the projectivization P((ρ2)∗(L⊗ρ∗1V )) over Picd(C).
To show that this morphism coincides with the Abel-Jacobi map,

we follow [LT24, Example 10.4]: after rescaling we may assume that
OPC(V )(1) admits a section C ′; we let B′ be a section of π corresponding
to C ′. We denote the blow up of X along B′ by φ : X ′ → X . Let E ⊂ X
be the divisor swept out by lines of π meeting at B′, we denote its strict
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transform by E ′ ⊂ X ′. This is a P1-bundle over C ′ and we denote this
projection by η : E ′ → C ′. Consider the homomorphism

H3(X ,Z)
φ∗−→ H3(X ′,Z)

∩E′−→ H1(E ′,Z)
η∗−→ H1(C ′,Z),

where φ∗ is the homology pullback defined using the Poincáre duality
twice. It respects the Hodge structures, giving a homomorphism

H2,1(X )∨ → H2,1(X ′)∨ → H1,0(E ′)∨ → H1,0(C ′)∨.

Fix homologous sections B0, B1 of π and denote the strict transforms
of Bi via β by B′i. There is a real 3-cycle α such that ∂α = B1 − B0

and ∂φ∗α = B′1 −B′0. The Abel-Jacobi map sends B1 to∫
α

· ∈ H2,1(X )∨/H3(X ,Z).

This is mapped by the above homomorphism to
∫
φ∗α∩E′ · and

∫
η∗(φ∗α∩E′) ·.

The boundary of η∗(φ
∗α ∩ E) is given by

η(B′1 ∩ E ′)− η(B′0 ∩ E ′).
This gives rise a morphism

Sec(X/P1, γ)→ IJ(X )→ Jac(C) ∼= Pic0(C).

This composition is compatible with the construction of [HT12, Propo-
sition 2] described above. On the other hand, since the fibers are open
subsets of projective spaces, the Abel-Jacobi map must factor as

Sec(X/P1, γ)→ Pic0(C)→ IJ(X ).

�

Automorphisms. Let G ⊆ Aut(X ) be a finite group. Assume that
π is equivariant for G. Easy examples of projectively nonlinearizable
actions on X = P1 ×Q, where Q is a smooth quadric surface, are:

• generically free action of S2
2 on P1 and any action on Q – this

is not linearizable since there are no fixed points on X ;
• S2 acting on P1 and D6 acting on Q – via the Burnside formal-

ism of [KT22], see [CTZ23, Theorem 5.1].

The main example. Consider

X ⊂ P1 × P3,

given by the vanishing of a sufficiently general form F of bi-degree
(n, 2). Projection to the first factor X → P1 is a quadric surface bundle
of relative Picard rank 1, splitting over the discriminant double cover
C → P1 and ramified over the discriminant divisor d of degree |d| = 4n;
so that g(C) = 2n− 1.
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Intermediate Jacobians and torsors. Let π : X → P1 be a smooth
quadric surface bundle with a regular, compatible, action by a finite
group G. This induces a G-action on F1(X/P1) so that

F1(X/P1)→ P1,

and the Stein factorization

F1(X/P1)→ C → P1

are G-equivariant. Let γ` be the class of lines in fibers of π.

Lemma 6.2. Assume that C → P1 is non-split. Then γ` is G-invariant
and we have a G-equivariant isomorphism

(CH2
X/C)γ` ∼= Pic1(C).

Moreover, we have a G-equivariant isomorphism

IJ(X ) ∼= (CH2
X/C)0 ∼= Pic0(C),

as G-equivariant principally polarized abelian varieties.

Proof. Note that F1(X/P1) → C is a P1-bundle over C. The Abel-
Jacobi map

AJ : F1(X/P1)→ (CH2
X/C)γ` ,

factors as

F1(X/P1)→ C → (CH2
X/C)γ`

and induces a G-equivariant isomorphism

Pic1(C) ∼= (CH2
X/C)γ` ,

as in the proof of Lemma 6.1.
The claim concerning principal polarizations follows from the fact

that, in the notation of the proof of Lemma 6.1, X ′ is the blowup of
a P2-bundle over P1 along a curve C ′. Indeed, one can use the blowup
formula to verify compatibility of cup products. �

Linearization criterion.

Lemma 6.3. Let G be a cyclic group and π : X → P1 a G-equivariant
quadric surface bundle with a G-invariant section. Then the G-action
on X is linearizable.

Proof. Projecting from a G-invariant section gives an equivariant bira-
tionality of X to a P2-bundle over P1. Since G is cyclic, the generic fiber
P2
η admits a G-invariant line. Such a P2

η is linearizable, and we obtain a

G-equivariant birationality X ∼G P1×P2, and thus linearizability. �
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Theorem 6.4. Let π : X → P1 be a smooth quadric surface bundle of
relative Picard rank 1 and |d| ≥ 6. Let G ⊆ Aut(X ) be a cyclic group
such that π is G-equivariant. Then the G-action on X is linearizable
if and only if there exists a G-invariant section of π.

Proof. If π admits a G-invariant section, Lemma 6.3 applies. Con-
versely, assume that the G-action on X is linearizable. Fix a class γ of
sections. Since X has Picard rank 2 and G respects π, γ is a G-invariant
class. By Theorem 3.3, we have

(CH2
X/C)γ ∼= Pice(C),

for some e. By Lemma 6.2, we have

[(CH2
X/C)γ+kγ` ] = [e+ k][Pic1(C)].

In particular, whenever e+k ≡ 0 (mod 2g(C)−2), this torsor is trivial.
Let k be sufficiently large so that the height of γ + kγ` is large and

e+ k ≡ 0 (mod 2g(C)− 2). By Lemma 6.1, the Abel-Jacobi map

AJ : Sec(X/P1, γ + kγ`)→ (CH2
X/C)γ+kγ`

is a composition of an open immersion followed by a projective bundle

P → (CH2
X/C)γ+kγ` .

Since (CH2
X/C)γ+kγ` has a fixed point, and G is cyclic, P has a fixed

point as well. This implies that Sec(X/P1, γ + kγ`) has a fixed point,
proving that there is a G-invariant section of π. �

Effective results. Here we establish an effective version of Theo-
rem 6.4. First we recall:

Proposition 6.5 ([HT12, Proposition 14]). Let π : X → P1 be a
smooth quadric surface bundle with discriminant degree |d| such that

• the discriminant cover C → P1 is non-trivial, and
• for any section s : P1 → X , we have

hω−1
π

(s) ≥ −|d|
2
.

Then F1(X/P1)→ C is the projectivization of a semi-stable bundle V
over C.

After rescaling, we may, and will, assume that deg(V ) = 0 or 1.

Proposition 6.6. With the assumptions of Proposition 6.5, consider

PC(V ) = F1(X/P1)→ C
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and suppose that |d| ≥ 6 and

h ≥ 3

2
|d| − 4 + 4 deg(V ).

Then the statement of Lemma 6.1 is valid.

Proof. We use notation from Lemma 6.1. By Proposition 6.5, V is
semi-stable. By Riemann-Roch, there exists a section

s0 : C → PC(V )

with

d0 = deg(s∗ξ) ≤ g(C) =
|d|
2
− 1,

where ξ = OPC(V )(1). The numerical class of the canonical divisor of
PC(V ) is given by

KPC(V ) = −2ξ + (2g(C)− 2 + deg(V ))λ,

where λ is the class of fibers of PC(V )→ C. Thus the degree of Ns0 is

2d0 − deg(V ).

We then glue

b ≥ 2g(C)− 2d0 + deg(V ) = |d| − 2− 2d0 + deg(V )

fibers of PC(V )→ C to s0(C). By assumption,

d0 =
h0

2
− deg(V )

2
+
|d|
4
≥ −deg(V )

2
.

Using [GHS03, Lemma 2.6] and smoothing arguments, the existence of
sections is guaranteed as soon as

d ≥ |d| − 2 +
3

2
deg(V ),

which in turn follows when

h ≥ 3

2
|d| − 4 + 4 deg(V ).

Assuming d ≥ 2g(C), it follows from Proposition 6.5 and [LRT23,
Corollary 2.7] that V ⊗ s∗OPC(V )(1) is globally generated and

H1(C, V ⊗ s∗OPC(V )(1)) = 0,

where s : C → PC(V ) is a section such that deg(s∗ξ) = d. This implies
that (ρ2)∗(L ⊗ ρ∗1V ) is locally free. The above condition translates to

h ≥ 4g(C) + deg(V )− |d|
2

=
3

2
|d|+ deg(V )− 4.

�
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Here is an effective version of Theorem 6.4:

Theorem 6.7. Let G be a cyclic group and

π : X → P1

a G-equivariant quadric surface bundle of relative Picard rank 1 and
|d| ≥ 6. With the assumptions of Proposition 6.6, the G-action on X
is linearizable if and only if there exists a G-invariant section of height

≤ 7

2
|d|+ 4 deg(V )− 14.

Proof. In the proof of Theorem 6.4, the height of γ + kγ` needs to be
≥ 3

2
|d| − 4 + 4 deg(V ) and we also must have e+ k ≡ 0 mod (|d| − 4).

This is possible assuming the height is ≥ 7
2
|d|+ 4 deg(V )− 14. �

Example 6.8. Let X ⊂ P1 × P3 be a smooth divisor of type (n, 2),
where n ≥ 2; with π : X → P1 a quadric surface bundle of relative
Picard rank 1 with square-free discriminant and |d| = 4n ≥ 8. By
[HT12, Section 4, Case 1], deg(V ) ≡ n (mod 2).

Any section s : P1 → X has height of the form 2 − n + 2a, with
a = deg(s∗H) ≥ 0, where H is the pullback of the hyperplane class
from P3. Since

2− n ≥ −|d|
2

= −2n,

the assumptions of Proposition 6.5 are verified. By Theorem 6.7, a
cyclic action on π : X → P1 is projectively linearizable if and only if
there exists a G-invariant section of height ≤ 14n+ 4 deg(V )− 14.

Examples of actions. We consider X ⊂ P1×P3, with n ≥ 2, defined
by the vanishing of a form F of bi-degree (n, 2). Let

π : X → P1

be the associated quadric surface bundle.

Example 6.9. Let

F :=
n∑
i=0

ti0t
n−i
1 (fi(x, y) + gi(z, w)),

where fi, gi are general binary quadratic forms, so that d is reduced,
and thus X smooth. The involution

σ : ([t0 : t1], [x : y : z : w]) 7→ ([t0 : t1], [−x : −y : z : w])

acts trivially on P1, and any invariant section of π is pointwise fixed.
However, the fixed locus of σ consists of two nonrational curves, thus
there are no invariant sections. By Theorem 6.4, the 〈σ〉-action on X
is not (projectively) linearizable.
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Example 6.10. Let

F := t20f(x, y, z, w) + t21g(x, y, z, w),

where f, g are general quadratic forms in 4 variables. Consider

σ : ([t0 : t1], [x : y : z : w]) 7→ ([−t0 : t1], [x : y : z : w]).

Note that σ is the covering involution of π2 : X → P3. If we had a
〈σ〉-invariant section R ⊂ X , then π2|R : R → π2(R) = R′ would be
of degree 2. Since R is smooth, R′ must be smooth as well, and the
branch divisor of R→ R′ reduced, showing that R cannot be rational,
contradiction. Thus, the 〈σ〉-action is not projectively linearizable.

Remark 6.11. Examples 6.9 and 6.10 produce moduli of conjugacy
classes of involutions in Cr3(C), by varying the underlying curve C in
the moduli space and applying Corollary 3.5. In these examples, the
non-uniruled divisorial component of the fixed locus of the involution
σ is empty, and the previously known obstructions do not distinguish
these equivariant birational classes.

7. Fano threefolds

Let X be a smooth projective Fano threefold of Picard rank 1 and
Fd(X) the variety of rational curves of anticanonical degree d. Over
nonclosed fields, rationality of geometrically rational varieties of this
type has been recently settled in [HT22], [HT21a], [BW23], [HT21c],
[KP23]. There are three types of such Fano varieties:

• rational over any field: the quintic del Pezzo threefold V5 ⊂ P4,
• rational if and and only if there are rational points: forms of
P3, the smooth quadric Q ⊂ P4, X12 ⊂ P8 and X22 ⊂ P13,
• rational if and only if there are rational points and rational

curves, defined over the ground field, in prescribed degrees:
– X2,2 ⊂ P5, intersection of two quadrics – lines,
– X16 ⊂ P10 – twisted cubics,
– X18 ⊂ P13 – conics.

In [KP23], the intermediate Jacobian torsor obstructions of [HT21b],
[HT21a], and [BW23] are reinterpreted in the framework of derived
categories.

The equivariant situation is markedly different. First of all, the
quintic del Pezzo threefold V5 is not projectively linearizable for the
action of A5 ⊂ Aut(V5) = PGL2(C), by the main result of [CS16]. In
fact, V5 is birationally rigid for this action. Projective linearizability
of quadrics is an open problem; linearizability is unknown even for
some actions of S3. In [BvBT23, Section 5] there is an example of a



30 TUDOR CIURCA, SHO TANIMOTO, AND YURI TSCHINKEL

nonlinearizable action by the Frobenius group F8 on X12 without any
obstructions in the derived category.

The following theorem is a partial equivariant analog:

Theorem 7.1. Let X be a smooth projective Fano threefold of the
following types:

(1) an intersection of two quadrics X2,2 ⊂ P5,
(2) a prime Fano threefold of genus 9, X16 ⊂ P10,
(3) a prime Fano threefold of genus 10, X18 ⊂ P11.

Let G be a finite group acting generically freely and regularly on X.
Assume that the G-action is projectively linearizable. Then

Fd(X)G 6= ∅, (7.1)

for d = 2, 3, or 2, respectively.
In Cases (1) and (2), this condition is also sufficient for projective

linearizability.

We treat the cases separately.

Intersections of two quadrics. This case was settled in [HT22], via
reduction to nonclosed fields. We supply an argument based on the
equivariant intermediate Jacobian torsor formalism of Section 2. After
the completion of this paper, F. Scavia sent us his unpublished note
[Sca21] with a similar proof.

The variety of lines F2(X2,2) is a torsor under IJ(X) = Pic0(C).
When if F2(X2,2)G 6= ∅, there exists a G-stable line, which yields a
standard G-equivariant birationality with P3. To prove the converse,
we need:

Lemma 7.2. Let X2,2 be a smooth complete intersection of two quadrics
in P5 with a regular G-action on X2,2. Then the Abel-Jacobi map de-
fines a G-equivariant isomorphism

AJ : F2(X2,2) ∼= (CH2
X2,2/C)2.

Moreover, as a G-equivariant torsor, we have

2[F2(X2,2)] = [Pic1(C)],

where C is a smooth projective curve of genus 2 with a regular G-action.

Proof. The non-trivial part of the first statement is the G-equivariant
property, established in Theorem 2.3. For the second statement, we
need to show that we have a G-equivariant isomorphism

(CH2
X2,2/C)4 ∼= Pic1(C),
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for some C. We have X2,2 ⊂ P5, with a regular G-action on the ambient
P5, so that X2,2 is the G-invariant base locus of a pencil of quadrics.
Let β : Y → P5 be the G-equivariant blowup along X2,2, it admits
a G-equivariant quadric fibration π : Y → P1. Let W → P1 be the
relative Fano variety of planes of Y/P1, with Stein factorization

W → C → P1,

here C is a smooth projective curve of genus 2 with a regular G-action.
The proof of [LT19, Proposition 7.4] shows that W = F2(X2,2), the
space of plane conics on X2,2. We have the Abel-Jacobi map

AJ :W → (CH2
X2,2/C)4.

The fibers ofW → C are orthogonal Grassmannians, and thus rational.
This shows that the Abel-Jacobi map factors as

W → C → (CH2
X2,2/C)4.

This induces a G-equivariant isomorphism

Pic1(C) ∼= (CH2
X2,2/C)4.

�

Now, assume that the G-action on X2,2 is projectively linearizable.
By Lemma 7.2,

2[F2(X2,2)] = [Pic1(C)].

On the other hand, by Theorem 3.3, there exists a smooth projective
G-curve C ′ such that

[F2(X2,2)] = [Pice(C ′)],

for some e. By Torelli, C ′ is G-equivariantly isomorphic to C. Thus,

0 = 2e[Pic1(C)] = [Pic1(C)],

because C has genus 2. This implies that F2(X2,2) is a trivial IJ(X2,2)-
torsor, as claimed.

Prime Fano threefolds of degree 16. Consider a G-Fano threefold
X16 ⊂ P10 with projectively linearizable G-action. Then there exists
a smooth projective curve C, of genus 3, with a regular G-action such
that

[(CH2
X16/C)1] = [Pice(C)],

for some e. The variety of conics F2(X16) is a P1-bundle over C, see,
e.g., [KP23, Theorem 9.2]. It follows that

2e[Pic1(C)] = [(CH2
X16/C)2] = [Pic1(C)].
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On the other hand, since D has genus 3, we have

4[Pic1(C)] = 0.

Together, these imply that [(CH2
X16/C)3] = 0. The Abel-Jacobi map

induces a G-equivariant isomorphism

AJ : F3(X16)→ (CH2
X16/C)3,

and the assertion of Theorem 7.1 follows.
Over nonclosed fields, we have the converse: the existence of a

twisted cubic curve over the ground field implies birationality to (a
form of) V5, and these are rational, over any ground field.

In the equivariant context, we follow the arguments of [KP23]. Sup-
pose that we have a G-stable twisted cubic R. Assume R does not ad-
mit a bisecant line. Then the Sarkisov link with center at R yields an
equivariant birationality to V5 (see [KP23, Theorem 5.10]). However,
this does not immediately suffice to conclude projective linearizability.
Recall that Aut(V5) = PGL2. We have already mentioned that V5 is
rigid for the action of A5 ⊂ PGL2, by [CS16]. However, A5 cannot
act on X16, since it does not act on the Jacobian of a genus 3 curve.
Linearizations of cyclic and dihedral group actions on V5 are given in
Example 4.34, respectively, Example 4.37 of [ACC+23]. The remaining
case of a possible S4-action on V5 does not allow an equivariant bira-
tionality to X16; indeed this would involve blowing up an S4-invariant
genus 3 and degree 9 curve T ⊂ V5, which would intersect the S4-
invariant hyperplane section of V5 in 9 points, which is impossible (we
are grateful to I. Cheltsov for providing us with the proof and the ref-
erence). When R admits a bisecant line, the intersection of the linear
span of R with X16 is the union of R and a bisecant line ` which is
G-stable. Then equivariant birationality to P3 can be realized using
the Sarkisov link with center at ` (see [KP23, Theorem 5.8]).

In other cases, according to [KP23, Lemma 2.9], either we have a
G-stable line or there is a G-stable union of three lines. When there
is a G-stable line, one may argue as above. Finally when we have a
G-stable union of three lines, they meet at a single point x which is G-
fixed. By [KP23, Lemma 5.11 and Lemma 5.16], the double projection
from x yields equivariant birationality to a complete intersection of
three quadrics X16 containing a G-stable plane Π. Projection from Π
provides an equivariant birational map

X16 99K P3,

see, e.g., [KP23, Corollary 5.15]. Thus X16 is projectively linearizable.
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Prime Fano threefolds of degree 18. Let X18 ⊂ P11 be a projec-
tively linearizable G-Fano threefold. Then there is a smooth projective
genus 2 curve C with a regular G-action such that

[(CH2
X18/C)1] = [Pice(C)],

for some e, and therefore

[(CH2
X18/C)2] = e[Pic2(C)] = 0.

The Abel-Jacobi map gives a G-equivariant isomorphism

AJ : F2(X18) ∼= (CH2
X18/C)2,

and thus F2(X18)G 6= ∅.
Again, over a nonclosed field K, we have a converse statement, which

requires, in addition to a conic R ⊂ X18 over K, a (sufficiently gen-
eral) rational point x ∈ X18(K). These yield birationality of X18 to
a sextic del Pezzo fibration ϕ : X → P1, together with a bisection,
coming from R, and a trisection, from x, over K. Sextic del Pezzo
surfaces are rational over a nonclosed field, provided they have points
over degree 2 and degree 3 extensions; thus, X is rational over K(P1),
and X18 is rational over K. A similar construction in the equivariant
context would require, in addition to a G-invariant conic, a G-fixed
point. However, even a section of a sextic del Pezzo fibration ϕ does
not guarantee linearizability, see [CTZ23, Section 5, Case (F)]!

It would be interesting to settle the (projective) linearizability of
actions on X18.
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