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Abstract. We study linearizability and stable linearizability of
actions of finite groups on the Segre cubic and Burkhardt quartic,
using techniques from group cohomology, birational rigidity, and
the Burnside formalism.

1. Introduction

Let G be a finite group. We study generically free G-actions on ratio-
nal Fano threefolds, over an algebraically closed field of characteristic
zero, up to equivariant birationality. This is part of a long-standing
program to identify finite subgroups of the Cremona group Cr3 (see,
e.g., [51] for background and references concerning this problem). One
of the main tools in this area of research is the Equivariant Minimal
Model Program (EMMP), and in particular the study of birational
rigidity (BR). Among the principal achievements is the classification of
finite simple groups that can act on rationally connected threefolds [47].
There is a wealth of results towards distinguishing conjugacy classes of
embeddings of simple groups into the Cremona group, e.g., A5 (see
[19]). There are also many interesting problems: even the classification
of involutions in Cr3 is still open [49].
There are two particularly intriguing examples of rational threefolds

with large automorphisms: the Segre cubic X3 ⊂ P4 ⊂ P5, given by

(1.1)
6∑

i=1

x3
i =

6∑
i=1

xi = 0,

with Aut(X3) = S6, acting via permutation of variables, and the
Burkhardt quartic X4 that can be defined in P4 ⊂ P5 by the vanishing
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of elementary symmetric polynomials in 6 variables of degree 1 and 4

(1.2)
∑

1≤i<j<k<l≤6

xixjxkxl =
6∑

i=1

xi = 0,

and as such carries the action of S6. However, the full automorphism
group of the Burkhardt quartic is PSp4(F3), of order 25920. Another
standard form of the Burkhardt quartic is

(1.3)
{
y1(y

3
1 + y32 + y33 + y34 + y35) + 3y2y3y4y5 = 0

}
⊂ P4,

which we will often use in this paper.
Our goal is to identify subgroups in S6 and PSp4(F3) whose actions

on X3 and X4 are (projectively) nonlinearizable, i.e., not equivariantly
birational to linear (or projectively linear) actions on P3. To do this,
we explore the range of applicability of group cohomology, birational
rigidity, and the Burnside group formalism [41].

Our main results are:

Theorem 1 (Theorem 6.3). Let G ⊆ S6 = Aut(X3). The G-action on
X3 is linearizable if and only if one of the following conditions holds:

• G fixes a singular point on X3,
• G is contained in the nonstandard S′

5, up to conjugation,
• G = C2

2 , X3 contains three G-invariant planes, and Sing(X)
splits as a union of five C2

2 -orbits of length 2.

Moreover, when the G-action is not linearizable, it is not stably lin-
earizable.

There are 55 conjugacy classes of nontrivial subgroups G ⊆ S6, and
19 of these give rise to nonlinearizable actions on X3.

Theorem 2. Let G ⊆ PSp4(F3) = Aut(X4). The G-action on X4 is
nonlinearizable if at least one of the following conditions holds:

(1) rkCl(X4)
G = 1,

(2) G contains an involution that swaps two coordinates in P5,

(3) G contains a subgroup G′ such that H1(G′,Pic(X̃4)) ̸= 0,

where X̃4 is the standard resolution of X4.

This gives nonlinearizability for 103 out of 115 conjugacy classes of
nontrivial subgroups of PSp4(F3).
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Theorem 3. Among the remaining 12 conjugacy classes of subgroups
G ⊂ PSp4(F3), the G-action is linearizable if G is conjugate to one of
the subgroups

C2, C3, C
′
3, C

2
2 , C4, C5, C6, C9,

explicitly described in Section 7.

See [21] for additional information concerning the actions of the
groups in Theorems 1, 2, 3.

Thus, we settle completely the (stable) linearizability problem for
the Segre cubic threefold X3. After excluding known cases when either
there is a G-fixed singular point in X3, and the action is linearizable
via projection from this point, or G is conjugated to a subgroup of the
nonstandard S5 in S6, and such actions have been treated in [3, 34],
the remaining analysis hinges on the existence of G-stable planes. A
key observation in the remaining cases is that if X3 does not contain
a G-stable plane, then there is a cohomological obstruction to stable
linearizability, and if it does contain such a plane, then X3 is birational
to a singular, toric, intersection of two quadrics in P5, which can be
analyzed via toric geometry.

As an auxiliary tool, we settle the (stable) linearizability problem for
translation-free actions with fixed points on algebraic tori in dimension
3, in Theorem 5.1.

For the Burkhardt quartic X4, we settle the linearizability problem
for all finite subgroups of PSp4(F3) except for 4 (conjugacy classes of)
subgroups isomorphic to

S3, D5, D6, C3 ⋊ C4,

which are described explicitly in Section 7. We do not know whether or
not the actions of these 4 groups are linearizable. For the subgroups S3

and D6 we present an equivariant birational map from X4 to a smooth
quadric threefold, see Section 7.

The proofs of Theorems 1, 2, and 3 imply the following corollary.

Corollary 4. Let G be a group acting faithfully on X3 and X4 and such
that both actions are not linearizable. Then there is no G-equivariant
birational map X3 99K X4, with the possible exception when G ≃ C2

2 ,
conjugate to 〈

(1 2)(3 4), (1 2)(5 6)
〉
⊂ S6 = Aut(X3),
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and the corresponding subgroup in Aut(X4) ⊂ PGL5 generated by
−1 2 2 2 2
1 1 −2 1 1
1 −2 1 1 1
1 1 1 1 −2
1 1 1 −2 1

 ,


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 .

It would be interesting to clarify what happens in this exceptional
case.

Here is the roadmap of the paper: in Section 2 we recall basic notions
and constructions in equivariant birational geometry, and tabulate re-
sults of computations for the Segre cubic and the Burkhardt quartic.
In Section 3 we recall the main tools from equivariant birational rigid-
ity. Section 4 presents a simplified version of the Burnside formalism
from [41], based on incompressible symbols, that allows to prove new
cases of nonlinearizability. In Section 5 we adopt Kunyavski’s ratio-
nality analysis of 3-dimensional tori over nonclosed fields [43] to the
equivariant context. In Section 6 we turn to the Segre cubic threefold;
we address the linearizability of the Burkhardt quartic in Section 7. In
Section 8, we prove that the Burkhardt quartic X4 is G-birationally
rigid if G ⊆ PSp4(F3) satisfies rkCl(X4)

G = 1.

Throughout, we consider group actions from the right, by Magma

conventions; Cn denotes cyclic groups of order n; Dn denotes dihedral
groups of order 2n; An and Sn denote alternating groups and symmet-
ric groups of degree n, respectively.

Acknowledgments: The first author was partially supported by the
Leverhulme Trust grant RPG-2021-229. The second author was par-
tially supported by NSF grant 2000099.

2. Background

Linearizability. LetG be a group andX aG-variety, i.e., an algebraic
variety with a generically free action of G. We are interested in the
following properties of G-actions:

• Linearizability: X is G-equivariantly birational to P(V ), the
projectivization of a linear representation V of G;

• Stable linearizability: X ×Pm, with trivial G-action on the sec-
ond factor, is linearizable.
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One may also consider the related notions of (stable) projective lin-
earizability, where the G-action on X is compared to the G-action on
P(V ), the projectivization of a representation V of a central extension
of G. Our focus in this paper is on linearizability, since projectively
linear actions on the Segre cubic and the Burkhardt quartic are linear.

Equivariant resolution of singularities (over fields of characteristic
zero) allows to reduce to the case when X is smooth.

Obstructions. Let X be a smooth projective G-variety, over an al-
gebraically closed field of characteristic zero. The geometric action
induces an action on invariants of X, such as the Picard group Pic(X).
Among necessary conditions for stable linearizability of the G-action
on X is

(SP) Pic(X) is a stably permutation G-module.

This condition is not easy to verify, in practice. On the other hand, it
implies the more tractable condition

(H1) H1(G′,Pic(X)) = H1(G′,Pic(X)∨) = 0, ∀G′ ⊆ G.

This can be checked in Magma, when the G-action on Pic(X) is known
explicitly. Note that these conditions are equivalent for G = C2.

It should be pointed out that not all failures of birationality are
explained by invariants of the G-action on Picard groups, see Section 4
and Remark 7.3. For singular G-varieties it is also useful to consider
the induced G-action on the class group Cl(X); this is particularly
relevant to the study of G-birational rigidity, see Section 3 and 8.

Remark 2.1. If X is a singular G-variety, then H1(G,Cl(X)) is not a
G-birational invariant. For instance, let X = X3 be the Segre cubic in
P5 and G = C2, acting on X via swapping of two coordinates. Then
Cl(X) = Z6 and H1(G,Cl(X)) = Z/2. But G fixes a singular point on
X and is thus linearizable.

Rational surfaces. Actions of finite groups on Del Pezzo surfaces
have been extensively studied in [28, 50]. The G-action on Picard
groups of Del Pezzo surfaces of degrees 4, 3, 2, 1 factors through sub-
groups of Weyl groups

W (D5), W (E6), W (E7), W (E8),

respectively. Subgroups satisfying (H1) have been enumerated in [58];
the paper [50] contains examples of such subgroups of W (Dn), acting
on Picard groups of conic bundles over P1.
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Applications of the Burnside formalism from [41] to threefolds re-
quire a detailed understanding of birationality of G-actions on surfaces.

Segre cubic. Let X3 be the Segre cubic in P4. We have the following
S6-equivariant diagram

X̃3

f

��

g

  
X3 XI

4

where f is the blowup of the 10 singular points of the cubic, g is the
anticanonical morphism, and XI

4 is the Igusa quartic threefold in P4.
We say that f is the standard resolution of singularities of X3. Recall

that X̃3 is S6-equivariantly isomorphic to M̄0,6, the moduli space of 6
points on P1, which has a natural S6-action permuting the 6 points.

The group S6 has an outer automorphism, and thus two conjugacy
classes of subgroups S5; one of them we call standard, it acts trivially
on one of the indices, and the other nonstandard; we shall denote it
by S′

5. By [3, Proposition 4.1], the action of the standard S5 on the
Segre cubic, via permutation of 5 variables in (1.1), is birationally rigid;
the action of the nonstandard S′

5 is linearizable.

Recall that Pic(X̃3)
S6 is generated by 2 classes, corresponding to

the birational contractions to the Segre cubic and the Igusa quartic.
The following table provides additional information about ranks of the
invariant Picard group and class group, as one changes the action:

Group S6 A6 S5 S′
5 A5 A′

5 S3 ≀ C2 C2 ×S4 C2 ×S′′
4

rkPic(X̃3)
G 2 2 2 3 2 3 3 3 4

rkCl(X3)
G 1 1 1 2 1 2 1 1 2

Burkhardt quartic. We also record ranks of invariants in the Picard

group of X̃4, the standard resolution of singularities of the Burkhardt
quartic X4 obtained by blowing up all its singular points, for various
subgroups G ⊆ PSp4(F3):

Group PSp4(F3) C4
2 .A5 S6 C2.A4 ≀ C2 SL2(F3) : A4 SL2(F3)

rkPic(X̃4)
G 2 3 3 4 5 7,9,11

rkCl(X4)
G 1 1 1 1 2 3,3,5
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where the last entry reflects the different conjugacy classes. The full
table, obtained with Magma, is available at [21]. Furthermore, we have:

Proposition 2.2. Let X4 be the Burkhardt quartic and G ⊆ PSp4(F3)
a subgroup of its automorphism group. Then rkCl(X4)

G = 1 if and only
if G contains a subgroup conjugate to one of the following subgroups

F5, C4
2 , C2

2 ⋊ C4, C2 ×D4, S4, S′
4, C3 ⋊D4, S2

3, C2
3 ⋊ C4, A5,

explicitly specified in [21].

This extends [15, Corollary 2.10] and [13, Corollary 5.4], which listed
the corresponding subgroups of S6.

3. Birational rigidity

Let X be a Fano threefold with at most terminal singularities and
G ⊆ Aut(X) a finite subgroup. Suppose that

rkPicG(X) = 1.

If X is smooth, then X is a G-Mori fiber space (over a point), and X
lies in 25 deformation families described in [48, Theorem 1.2]. If X is
singular, then it may fail to be GQ-factorial, i.e., we may have

rkClG(X) > rkPicG(X),

so that X is not necessarily a G-Mori fiber space. However, we can
always take a GQ-factorialization of X, and then apply EMMP to
obtain a G-equivariant birational map from X to some G-Mori fiber
space.

On the other hand, if rkClG(X) = 1, then X is a G-Mori fiber space.
In this case, one can try to describe all G-birational maps from X to
other G-Mori fiber spaces. Every such map can be decomposed into
a sequence of G-Sarkisov links [23, 31], which have a more restricted
structure. If there are no G-Sarkisov links that start at X, then X is
the only G-Mori fiber space that is G-birational to X and

BirG(X) = AutG(X),

i.e., X is G-birationally super-rigid. We say that X is G-birationally
rigid if every G-Sarkisov link that starts at X also ends at X, which
means that X is not G-birational to other G-Mori fiber spaces, but X
may admit non-biregular G-birational selfmaps.

Remark 3.1. If X ̸≃ P3, rkClG(X) = 1, and X is G-birationally rigid,
then the G-action on X is not (projectively) linearizable.
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If X is not G-birational to any G-Mori fiber space with a positive
dimensional base (a conic bundle or a Del Pezzo fibration), we say
that X is G-solid. G-birationally rigid and G-solid Fano threefolds are
studied in [14, 15, 18, 17, 19, 20, 12, 16, 11], with a special focus on
rational threefolds. These studies are based on the following technical
result, which is the engine of the G-equivariant Sarkisov program:

Theorem 3.2 ([19, Theorem 3.3.1]). Suppose that rkClG(X) = 1, and
let χ : X 99K V be a G-birational non-biregular map such that

• V has terminal singularities,
• rkClG(V ) = rkPicG(V ), and
• there exists a G-equivariant Mori fiber space π : V → Z.

Set

M = χ−1
∗
(
| − pKV + π∗(H)|

)
,

for p ≫ 0, and a sufficiently general very ample divisor H ∈ Pic(Z)
such that [π∗(H)] is G-invariant. Then M is a G-invariant non-empty
mobile linear system, and the singularities of the log pair (X,λM) are
not canonical for λ ∈ Q>0 such that λM ∼Q −KX .

This is a G-equivariant version of the classical Noether–Fano inequal-
ity. EMMP and Theorem 3.2 give a simple criterion for G-birational
super-rigidity:

Corollary 3.3. Suppose that rkClG(X) = 1. Then X is G-birationally
super-rigid if and only if for every G-invariant non-empty mobile linear
system M on X, the log pair (X,λM) has canonical singularities for
λ ∈ Q>0 such that λM ∼Q −KX .

There is a similar (albeit more technical) criterion for G-birational
rigidity, see [19, Chapter 3]. If X is toric, and G contains the maximal
torus in Aut(X), a criterion for G-solidity is given in [12].

Usually, Corollary 3.3 is applicable when (−KX)
3 is “sufficiently

small” or when the group G is “sufficiently large”. For instance, for
(−KX)

3 = 2, arguing as in the proof of [14, Theorem A], we obtain:

Theorem 3.4. Let X ⊂ P(1, 1, 1, 1, 3) be a hypersurface of degree 6
with at most isolated ordinary double points (nodes) and G ⊆ Aut(X)
a finite subgroup such that rkCl(X)G = 1. Then X is G-birationally
super-rigid.

This is also expected for nodal quartics, where (−KX)
3 = 4, see [44]:
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Conjecture 3.5 ([13, Conjecture 5.2]). Let X ⊂ P4 be a nodal quartic
threefold and G ⊆ Aut(X) a finite subgroup such that rkCl(X)G = 1.
Then X is G-birationally rigid.

In Section 7, we prove this conjecture for the Burkhardt quartic.
Unfortunately, we do not have such precise (conjectural) characteri-
zations of G-birational rigidity for most of the other (singular) Fano
threefolds, apart from sporadic results in this direction. For instance,
for the Segre cubic X3, where (−KX3)

3 = 24, Avilov found all possi-
bilities for G ⊂ Aut(X3) ≃ S6 such that X3 is G-birationally rigid:

Theorem 3.6 ([4]). Let X3 ⊂ P4 be the Segre cubic and G ⊆ Aut(X3)
a subgroup such that rkCl(X3)

G = 1. Then the following are equivalent:

(1) X3 is G-birationally rigid,
(2) X3 is G-birationally super-rigid,
(3) G contains a group isomorphic to A5 that leaves invariant a

hyperplane section of X3.

Returning to general threefolds, if rkCl(X)G = 2, then X admits ex-
actly twoGQ-factorializations, and we have the followingG-equivariant
commutative diagram:

(3.1) V
ς //

φ

xx
ϖ   

V ′

ϖ′~~

φ′

&&
Z X Z ′

where ϖ and ϖ′ are G-equivariant small resolutions such that

rkPic(V )G = rkCl(V )G = 2 = rkCl(V ′)G = rkPic(V ′)G,

the map ς is a pseudo-automorphism that flops ϖ-contracted curves,
both φ and φ′ are G-equivariant extremal contractions that can be of
the following three types:

• a birational contraction,
• a fibration into Del Pezzo surfaces over P1,
• a conic bundle over a rational surface.

The diagram (3.1) is an example of a G-Sarkisov link (with X being
its center). When both V and V ′ are smooth, such links have been
studied in [55, 37, 38, 5, 26, 1, 25, 56]. Note that (3.1) is uniquely
determined up to swapping its left and right sides.

If the morphism φ in (3.1) is birational, then Z is a Fano variety
with at most terminal singularities such that rkCl(Z)G = 1, so we are
back to the case when rkClG(X) = 1 with X replaced by Z. Further, if
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the normalizer of G in Aut(X) contains an automorphism σ such that

rkCl⟨σ,G⟩(X) = 1, the diagram (3.1) simplifies as

(3.2) V
ς //

φ

xx
ϖ
��

V

ϖ
��

φ

&&
Z X

σ // X Z

In this case, we say that the G-Sarkisov link is symmetric. For instance,
if X = X3 is the Segre cubic, this holds in many (but not all) cases.

4. Burnside formalism

Here we explain a simplified version of the Burnside group formal-
ism introduced in [41], which yields equivariant birational invariants
of G-actions on algebraic varieties. We continue to work over an alge-
braically closed field k of characteristic zero.

Applying equivariant blowups we may assume that the G-action is
realized as a regular action on a standard model (X,D) of the function
field K = k(X), i.e.,

• X is smooth projective, D a normal crossings divisor,
• G acts freely on U := X \D,
• for every g ∈ G and every irreducible component D, either
g(D) = D or g(D) ∩D = ∅,

see [32, Section 7.2] for details. Given such a model, let

{Dα}α∈A
be the set of irreducible divisors with nontrivial (thus necessarily cyclic)
stabilizers Hα ⊆ G; we consider these up to conjugation in G. Each
such Dα inherits a residual action of a group Yα ⊆ ZG(Hα)/Hα. Con-
sider the subset Ainc ⊆ A corresponding to those divisors, together
with the respective Yα-action, that cannot be obtained via equivariant
blowups of any standard model of any G-variety.

We have an assignment

(4.1) X ý G ⇒ [X ý G]inc :=
∑
α/conj

(Hα, Yα ýk(Dα), (bα)),

where the sum is over (G-conjugacy classes of) nontrivial cyclic Hα, of
symbols encoding

• the stabilizer Hα of the generic point of Dα,
• the residual action of Yα ⊆ ZG(Hα)/Hα on Dα,
• the character bα of Hα in the normal bundle to Dα
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Note that G-conjugation extends to symbols in (4.1), conjugating the
Yα-action as well as the character bα, see [42, Section 2] for more details.

Proposition 4.1. [42, Proposition 3.4] The class [X ý G]inc, taking
values in the free abelian group generated by symbols

(4.2) (H, Y ýk(D), (b)), H ̸= 1,

up to G-conjugation as above, is a well-defined G-birational invariant.

This is a rough invariant, obliterating information from nontrivial
stabilizers in higher codimensions; but it already allowed to distin-
guish actions not accessible with previous methods [42]. Given this,
it becomes essential to provide a geometric characterization of incom-
pressible divisorial classes. As explained in [59, Section 3.6], this prop-
erty a priori depends on the ambient group G. However, for some
Y -actions on D, there is no such dependence, and we will call such
symbols absolutely incompressible.

For instance, by [42, Proposition 3.6], in dimension 2, a divisorial
symbol (4.2) is absolutely incompressible iff:

• D is a curve of genus ≥ 1, or
• D is a curve of genus 0, and the residual Y action on D is not
cyclic.

In dimension 3, sufficient conditions for incompressibility include:

• D is not uniruled,
• D is Y -birational to a Y -solid Pezzo surface,
• the Y -action on D has cohomology: H1(Y,Pic(D)) ̸= 0,
• the Y -action on D is not equivariantly birational to a Y -action
on a P1-bundle over a curve.

If one is interested in comparing a G-action on a rational threefold to
a linear action on P3, one can exclude symbols (4.2) where D admits a
surjection onto a curve of genus ≥ 1, as such symbols are not produced
by the algorithm from [42] which computes the class of a linear action
in the full Burnside group of [41], see [59, Corollary 6.1].

Thus, for applications to linearizability in dimension 3, we need a
classification of incompressible divisorial symbols of the form

(4.3) (H, Y ýk(P2), (b)).

This can be obtained by combining classification schemes forG-surfaces,
with the Burnside formalism of [41]. There are two complementary
approaches: via EMMP, as carried out in [28, Section 8], and using
cohomology, as in [50]. The first approach allows to completely settle
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the linearization problem for rational surfaces [54]. But in practice,
the second approach is simpler to apply [6, 40]. For instance, if X is
a minimal G-Del Pezzo surface, then the following are equivalent, by
[50, Theorem 1.2]:

• vanishing cohomology:

(4.4) H1(G′,Pic(X)) = 0, for all G′ ⊆ G.

• no element of G fixes a curve of genus ≥ 1,
• either the degree of X is at least 5 or G = C3 ⋊ C4 and X is
G-birational to a specific nonlinearizable G-Del Pezzo surface
of degree 4.

While not strictly necessary for the analysis of incompressible symbols,
there is also a complete description of conic bundles satisfying (4.4),
see [50, Theorems 8.3 and 8.6].

Proposition 4.2. Let Y ⊂ PGL3(k) be a finite nonabelian group, act-
ing linearly on D = P2. This action gives rise to an absolutely incom-
pressible divisorial symbol in dimension 3, of the form (4.3), if and
only if the action is transitive.

Proof. By [53], if Y acts transitively, then D is Y -birationally rigid
except for Y = A4 or S4. In particular, such actions are not birational
to actions on Hirzebruch surfaces. If Y = A4, it follows from [?] or the
proof of [39, Proposition 43] that D is not Y -birational to a Hirzebruch
surface. Alternatively, one can notice that the Klein four subgroup of
A4 fixes a point in D, while every faithful action of A4 on a Hirzebruch
surface does not enjoy this property. Same holds for Y = S4. Hence, if
Y acts transitively on D, then the symbol is absolutely incompressible.

Conversely, if Y fixes a point on P2, then a Y -equivariant blowup
exhibits a Hirzebruch surface, and the symbol is compressible. □

Proposition 4.3 ([46]). Let D be a Del Pezzo surface of degree 6 and
Y ⊂ Aut(D) a finite subgroup acting transitively on (−1)-curves. If
Y ̸≃ C6 and Y ̸≃ S3 then D is Y -solid, and the Y -action is not
(projectively) linearizable.

In particular, the corresponding divisorial symbols in dimension 3,
of the form (4.3) are absolutely incompressible.
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5. Linearizability of G-actions on tori

Recall the structure of automorpisms Aut(T ) of an algebraic torus
T = Gn

m, over a field k: there is an exact sequence of groups

1 → T (k) → Aut(T )
ϕ−→ GLn(Z) → 1,

and the homomorphism ϕ admits a section. In particular, the torus T
admits automorphisms arising from finite subgroups Γ ⊂ GLn(Z).

Let X be a smooth projective T -equivariant compactification of T .
Its Picard group has a presentation

(5.1) 0 → X∗(T ) → PL → Pic(X) → 0,

where PL is the free abelian group spanned by irreducible components
of the boundary X \ T , and X∗(T ) is the character group of T . In
presence of G-actions, the sequence (5.1) is a sequence of Γ-modules,
where Γ := ϕ(G) ⊂ GLn(Z); here PL is a permutation module.

Lists of finite groups Γ, for small n, giving rise to actions on Pic(X)
which satisfy (SP), and thus (H1), can be found in [35]. Lineariz-
ability properties of actions of finite subgroups of Aut(T ) have been
studied via birational rigidity techniques in [12, 16], where many ex-
amples of G-birationally rigid toric Fano threefolds were produced, and
the groups G considered typically had a large intersection with T (k).
The stable linearization problem of toric varieties, with G-actions sat-
isfying G ∩ T (k) = ∅, was settled in [34, Proposition 12].

Linearization of actions on 2-dimensional tori is understood [54]. Let
us recall the analysis in dimension 3, following [43]:

Step 1. There are 4 maximal finite subgroups Γ ⊂ GL3(Z), and in each
case we can fix an explicit (possibly singular) projective toric Fano
threefold X on which the Γ-action is regular:

(F) with ΓF := C2×D6, acting on X = P1×S, where S is a degree
6 Del Pezzo surface;

(C) with ΓC := C2 ×S4, acting on X = P1 × P1 × P1;
(S) with ΓS := C2 × S4, acting on X = X2,2 ⊂ P5, a singular

intersection of two quadrics;
(P) with ΓP := C2 ×S4; acting on the singular divisor

X = {x0y0z0t0 = x1y1z1t1} ⊂ P1 × P1 × P1 × P1.

If X is singular, we let X̃ → X be the equivariant blowup of its singular

points. If X is smooth, we let X̃ = X.
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Step 2. By [43, Proposition 1], in absence of an obstruction of type
(SP) for the Γ-module Pic(X), one of the following holds:

(a) the Γ-module X∗(T ) splits and the action is birational to a
product action,

(b) X∗(T )Γ ̸= 0,
(c) the action is via a subgroup of ΓC ,
(d) the action is via C4, S3, or is linear, via a subgroup of S4.

Step 3. Fix the following subgroups in GL3(Z):

U1 :=

〈−1 0 0
0 0 −1
0 −1 0

 ,

−1 −1 −1
0 0 1
0 1 0

〉
,

W1 :=

〈 0 1 1
0 0 1
−1 −1 −1

 ,

−1 0 0
0 −1 0
0 0 −1

〉
,

W2 :=

〈 0 0 1
−1 −1 −1
1 0 0

 ,

−1 −1 −1
0 0 1
0 1 0

 ,

−1 0 0
0 −1 0
0 0 −1

〉
.

Then U1 ≃ C2 ×C2, W1 ≃ C2 ×C4, W2 ≃ C3
2 . It follows from [43] that

H1(U1,Pic(X̃)) ̸= 0.

Hence, if Γ contains a subgroup conjugate to U1, then Γ and G do not
satisfy (H1). There are exactly 12 conjugacy classes of such subgroups
Γ ⊂ GL3(Z).

Furthermore, if Γ contains a subgroup conjugate to W1 or W2, then

it also follows from [43] that the Γ and G-action on Pic(X̃) do not
satisfy (SP) (but W1 and W2 do satisfy (H1)).

Here we adapt this to the study of linearizability of the actions of
these groups on tori, via a case by case study as in Step 1. We identify
subgroups of GL3(Z) with subgroups of Aut(X) via the standard lifts
to Aut(T ) with fixed point (1, 1, 1) ∈ T .

Case (F): Assume that Γ ⊆ D6, with trivial action on P1. The action
of D6 on S is not linearizable by Proposition 4.3 or [36]. However, by
[7, Proposition 12], P1 × S is linearizable with the trivial action on P1.
The action of every proper subgroup of D6 on S is linearizable.
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Conversely, if Γ = ΓF , then the action on the toric threefold con-
tributes an absolutely incompressible, by Proposition 4.3, symbol

(C2,D6 ýk(S), (1)),

from the origin in the torus. On the other hand, such symbols do not
arise from projectively linear actions, as S is not D6-linearizable, nor
birational to a product of (projectively) linear actions [60, Example
9.2].

Case (C): The action of ΓC on G3
m is generated by

(x1, x2, x3) 7→ (x3, x2,
1

x1

), (
1

x1

,
1

x3

,
1

x2

), (
1

x1

,
1

x2

,
1

x3

).

A birational change of coordinates yi :=
1−xi

1+xi
yields the action

(y1, y2, y3) 7→ (y3, y2,−y1), (−y1,−y3,−y2), (−y1,−y2,−y3),

which is clearly linearizable.

Case (S): By results in Section 6 (Proposition 6.1 and Theorem 6.3),
it suffices to establish the linearizability of the action of Γ = C2

2 on G3
m,

with coordinates x1, x2, x3, via

σ : x1 ↔ x3, x2 7→ 1/x1x2x3, τ : xj 7→ 1/xj, j = 1, 2, 3.

This action is conjugate to a subgroup of ΓC in Case (C) and is lin-
earizable.

Case (P): For Γ ⊆ ΓP , only five groups G do not appear in Case (F),
(C) or (S), up to conjugation:

Γ = A4, C2 × A4,S4,S
′
4, or ΓP .

Each of them contains a subgroup conjugate to U1 and thus is not
linearizable. In summary, a subgroup of ΓP is not linearizable if and
only if it contains one of U1,W1, or W2.

We summarize the above discussion:

Theorem 5.1. Let T = G3
m and G ⊂ Aut(T ) be such that Γ := ϕ(G)

contains U1,W1, or W2. Then the G-action on T is not stably lineariz-
able. Assume that TG ̸= ∅, i.e., G fixes a point in T . Then

• if Γ = C2 × D6, then the action is not linearizable but stably
linearizable,
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• if Γ ̸= C2 × D6 and does not contain U1,W1, or W2, then the
action is linearizable.

Proof. If ϕ(G) = U1, then G has an (H1)-obstruction to stable lin-
earizability. If ϕ(G) = W1 or W2, then G has an (SP)-obstruction to
stable linearizability. When TG ̸= ∅, we can assume (1, 1, 1) ∈ TG up
to translation. Then we are in one of the cases (F), (C), (S) or (P)
discussed above.

Stable linearizability of the C2 ×D6-action is established as in [34],
using the equivariant version of the torsor formalism. □

Remark 5.2. The second part of Theorem 5.1 does not hold without
the assumption TG ̸= ∅. For example, consider Γ = C2

2 ⊂ GL3(Z) from
Case (S) above. Up to conjugation, we find two translation-free lifts
G ⊆ Aut(T ) of Γ, i.e., ϕ(G) = Γ: the standard lift generated by

σ : y1 7→
1

y1
, y2 ↔ y3, τ : yj 7→

1

yj
, j = 1, 2, 3,

and a twist of it generated by

σ′ : y1 7→ − 1

y1
, y2 ↔ y3, τ : yj 7→

1

yj
, j = 1, 2, 3.

The standard lift is linearizable. The twisted one is not linearizable as
the G-action on the projective model P1×P1×P1 does not have a fixed
point. In particular, these two lifts are not equivariantly birational.

6. Geometry of the Segre cubic

Rationality of forms of the Segre cubic threefold over nonclosed fields
has been considered in [30]; there exist nonrational forms over non-
closed fields. All forms over the reals are rational [4, Corollary 2.5].

There are 55 nontrivial conjugacy classes of subgroups of S6. By
[3, 18], everything is known in the minimal case, when

G = A5, S5, A6, S6.

Namely, there are two A5 andS5 classes, corresponding to the standard,
respectively, nonstandard embedding of these groups into S6. If G is a
standard subgroup A5, then rkCl(X3)

G = 1 and X3 is G-birationally
super-rigid [3]. This also implies that X3 is G-birationally super-rigid if
G is a standard S5, A6 or the whole group S6, and the actions of these
groups are not linearizable. Vice versa, if G is a nonstandard subgroup
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S5, then rkCl(X3)
G = 2, and we have the following nonsymmetric

G-Sarkisov link:

V
φ

xx
ϖ   

V ′

ϖ′~~

φ′

&&P3 X3 S

where φ is a blow up of a G-orbit of length 5, both ϖ and ϖ′ are
flopping contractions, S is a smooth Del Pezzo surface of degree 5,
and φ′ is a P1-bundle. In particular, the actions of all subgroups of
the nonstandard subgroup S5 are linearizable, e.g., the nonstandard
subgroup A5, the unique subgroup C5,D5,F5.

Next we exclude G-actions with G-fixed singular points, since then
X3 is G-birational to P3. There are 25 such conjugacy classes; all such
G are contained in the unique class of S2

3 ⋊ C2.
Therefore, all subgroups of the nonstandard S′

5 or S2
3 ⋊ C2 yield

linearizable actions. The remaining groups are contained in one of two
nonconjugate C2 × S4; one of them preserve a plane Π ⊂ X3 (this
is a nonstandard subgroup of S6), and another one does not preserve
any plane in X3 (this is a standard subgroup, conjugate to the group
generated by the involution (12) and permutations of the remaining
indices).

Proposition 6.1. Suppose that X3 contains a G-invariant plane Π.
Then there exists the following G-equivariant diagram:

X̃3

f

~~

g

!!
X3 X2,2

where

• X2,2 ⊂ P5 is the unique singular toric complete intersections of
two quadrics with six nodes,

• f is a small birational morphism, and
• g is a blowdown of the proper transform of the plane Π to a
smooth point of X2,2.

Moreover, the G-action on X2,2 preserves the torus in X2,2, and G fixes
a point in the torus.

Proof. Unprojecting from the G-invariant plane, we obtain the required
commutative diagram. □
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The following diagram summarizes the relations between G-actions
on X3, when G is contained in one of two nonconjugate subgroups
C2 ×S4 and is not contained in the nonstandard S′

5 or S2
3 ⋊ C2:

S4,S′
4

��

C2 ×S4(no Π)oo

�� &&

C2 ×S4(Π)

xx ��

// S4

��
A4

��

C2 × A4
oo C2 ×D4

��xx && ++

C2 × A4

''

U1 = C2
2

D4,D′
4

��

C3
2

xx &&

W2 = C3
2

��

W1 = C2 × C4

ww
U1 = C2

2 C2
2

By Proposition 6.1, we can identify subgroups of Aut(X3) leaving a
plane invariant with subgroups of Aut(X2,2) fixing the origin of the
torus, which also can be identified with finite subgroups of GL3(Z)
as in Section 5. In this way, we identified the subgroups C2

2 , C
3
2 and

C2×C4 in the diagram with subgroups of GL3(Z), using notations from
Section 5:

• U1 = C2
2 ⊂ GL3(Z) is the group with (H1) obstruction to stable

linearizability,
• W1 = C2 × C4,W2 = C3

2 are groups with (SP) obstruction to
stable linearizability.

Moreover, the other subgroup C2
2 in the diagram can be uniquely char-

acterized by the following geometric conditions:

(1) Sing(X) splits as a union of five C2
2 -orbits of length 2, and

(2) it is not contained in the nonstandard S′
5, and

(3) it leaves exactly three planes in X3 invariant.

Corollary 6.2. Suppose that the following conditions are satisfied:

(1) G does not fix a singular point of X3, and
(2) G is not contained in the nonstandard S′

5, and
(3) X3 does not contain G-invariant planes.

Then G does not satisfy (H1), and the G-action is not stably lineariz-
able.

Proof. By the diagram above, G contains the subgroup C2
2 with the

(H1) obstruction. This can also be checked directly, via Magma. □
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If G leaves invariant a plane Π ⊂ X3, the linearization problem is
reduced to G-actions on a three-dimensional torus with G-fixed points,
which was studied in [33, Section 9], and in detail in Section 5. Combin-
ing Proposition 6.1, Corollary 6.2 and results in Section 5, we obtain:

Theorem 6.3. The G-action on X3 is linearizable if and only if either

• G fixes a singular point on X3, or
• G is contained in the nonstandard S′

5, or
• G = C2

2 , X3 contains three G-invariant planes, and Sing(X)
splits as a union of five C2

2 -orbits of length 2.

Moreover, when the G-action is not linearizable, it is not stably lin-
earizable.

Proof. If one of the first two conditions is satisfied, then G is lineariz-
able, as explained above. If X3 does not contain G-invariant planes,
then G is not stably linearizable by Corollary 6.2. Hence we may as-
sume G does not fix a singular point, G is not contained in the nonstan-
dard S′

5 and X3 contains a G-invariant plane Π. By Proposition 6.1,
there then exists a G-equivariant birational map from X3 to the toric
intersection of two quadrics X2,2 ⊂ P5.
Going through the group diagram above, we see G is not stably

linearizable when G is not conjugate to the C2
2 characterized in the

third condition; this C2
2 can be identified with the subgroup in GL3(Z)

generated by  0 0 1
−1 −1 −1
1 0 0

 ,

−1 0 0
0 −1 0
0 0 −1

 .

It is linearizable, as explained in Section 5. □

Remark 6.4. The Burnside formalism of [41] does not allow to decide
the linearizability of the actions of both C2

2 at the bottom of the lattice
diagram above. On the other hand, the formalism of incompressible
symbols as in Section 4, proves nonlinearizability in several cases; note
that these cases are obstructed by (SP), as they contain W1.
Let G = C2 × A4, generated by

ι : (x1, x2, x3, x4, x5, x6) 7→ (x3, x5, x1, x6, x2, x3),

τ : (x1, x2, x3, x4, x5, x6) 7→ (x3, x5, x1, x4, x2, x6),

σ : (x1, x2, x3, x4, x5, x6) 7→ (x5, x6, x2, x1, x4, x3).



20 IVAN CHELTSOV, YURI TSCHINKEL, AND ZHIJIA ZHANG

The fixed locus for the involution ι is a plane Π ⊂ X3 given by

x1 + x3 = x2 + x5 = x4 + x6 = 0

with a residue A4-action on it. This produces an absolutely incom-
pressible divisorial symbol (see Proposition 4.2)

s := (C2,A4 ýk(P2), (1)).

The model X3 ý G is not in standard form. However, G does not leave
invariant any irreducible subvariety of X3 with nontrivial stabilizer ex-
cept Π. Therefore, no equivariant blow-up of X can possibly contribute
the symbol s to the class [X3 ý G]inc. The class then contains the in-
compressible symbol s with multiplicity 1. On the other hand, the
algorithm in [41], implemented in [59], shows that [P3 ý G]inc contains
s with multiplicity 2 for any (projectively) linear action P3 ý G. We
conclude that this G-action on X3, and thus also the action of C2×S4

containing G, are not (projectively) linearizable.

7. Geometry of the Burkhardt quartic

The Burkhardt quartic X4 can be defined in P4 ⊂ P5 by (1.2), or in
P4 by (1.3). Up to projectivity, X4 is the unique quartic threefold with
45 nodes [27], and Aut(X4) = PSp4(F3) acts on P4 via an irreducible
5-dimensional representation of its central extension Sp(F3). Our goal
is to identify subgroups G ⊆ PSp4(F3) giving rise to (projectively)
linearizable actions on X4.

Arithmetic aspects of the Burkhardt quartic, in particular, its ratio-
nality over nonclosed ground fields k, have been explored in [8, 9, 10].
For example, the form (1.3) is rational over Q. For all forms X of X4

over nonclosed fields of characteristic zero there exist a dominant, de-
gree 6, mapM → X, whereM is a Brauer-Severi variety of dimension 3
[8, Theorem 1.1]; forms arising from moduli spaces of abelian surfaces
are unirational, in particular, their rational points are Zariski dense
(see [10] and references therein). It is an open problem to determine
which forms X are rational over Q [9, Question 2.9]; there certainly
are k-forms that are not k-rational [10, 8].

Note that [10, Section 3] lists all subgroups G ⊆ PSp4(F3) with
nontrivial cohomology

H1(G,Pic(X̃4)),

where X̃4 is the standard resolution of singularities of the Burkhardt
quartic, denoted by A∗

2(3) in [10]. Recall that this is an obstruction to
stable (projective) linearizability of the G-action. In particular, of the
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115 conjugacy classes of nontrivial subgroups of PSp4(F3), only 26 do
not have the cohomological obstruction to (H1).

Remark 7.1. Note that PSp4(F3) ⊂ W (E6), as an index-two subgroup.
If we consider the W (E6)-action on the Picard lattice of a smooth
cubic surface, then, by [58], every subgroup G ⊆ W (E6) arising from a
minimal action on a cubic surface has nontrivial cohomology.

Proposition 7.2. Assume that G contains an involution exchanging
two coordinates in P5. Then the G-action is not projectively linearizable
and not equivariantly birational to the action on the Segre cubic.

Proof. We apply the formalism of Section 4. The involution action
leads to classes

(C2, Y ýk(D), (1)),

where D is a quartic K3 surface with 12 nodes. This is an absolutely
incompressible symbol, since D is not uniruled. Furthermore, it does
not arise from projectively linear actions.

On the other hand, every C2-action on the Segre cubic fixes a singular
point, and the action is linearizable. □

Remark 7.3. There are 12 (conjugacy classes of) subgroups of PSp4(F3)
containing this involution and satisfying (H1):

C2, C4, C
2
2 , C6, C

′
6, Q8,D4, C2 × C6, C12, SL2(F3), C3 ×Q8, C3 ⋊D4,

in particular, cohomology does not allow to distinguish linearizability
from nonlinearizability in these cases; the corresponding actions are
specified in [21]. The Burnside obstruction to linearizability in Propo-
sition 7.2 vanishes for X4×P1, with trivial action on the second factor,
see, e.g., [60, Section 3.5]. The (SP)-obstruction is also trivial, at least
for G = C2. Thus we are led to speculate that the C2-action on the
threefold X4 × P1 is linearizable.

Using Proposition 2.2, we see that rkClG(X4) = 1 for 34 out of 115
conjugacy classes of nontrivial subgroups in PSp4(F3). All these groups
are not linearizable by the following result.

Proposition 7.4. Let G ⊆ Aut(X4) be such that rkCl(X4)
G = 1.

Then X4 is G-birationally super-rigid.

Proof. See Section 8. □

Now, excluding groups with nontrivial cohomological obstructions to
linearizability, those containing an involution fixing a K3 surface in X4,
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and those with rkClG(X4) = 1, we are left with the following tree of
12 groups, where the left column lists rkCl(X4)

G:

2 D6

~~ �� $$

C3 ⋊ C4

�� ##

D5

��

��

4 C9

��

S3

++((

C2
2

))

C6

##��

C4

��

C5

8 C ′
3 C2

10 C3

Concretely, put

σ4 =


1 0 0 0 0

0 0 0 0 q
0 0 0 q2 0

0 1 0 0 0

0 0 1 0 0

 , σ9 =


2q + 1 2q + 4 0 0 0

−2q − 1 q + 2 0 0 0
0 0 2q + 1 −q + 1 2q + 1

0 0 −q + 1 2q + 1 2q + 1

0 0 −q − 2 −q − 2 2q + 1

 ,

σ2 =


1 0 0 0 0
0 0 0 0 1

0 0 0 q2 0

0 0 q 0 0
0 1 0 0 0

 , σ6 =


−1 2q 2q2 2 2

1 q q2 1 2

q2 2 q q2 q2

q2 1 2q q2 q2

q2 1 q 2q2 q + 1

 ,

σ3 =


−1 2 2q 2q2 2

q q −2q2 1 q
1 −2 q q2 1
1 1 q q2 −2

q2 q2 1 −2q q2

 , σ5 =


−1 2q 2q2 2 2

q2 1 2q q2 q2

q q2 1 2q q
q q2 1 q 2q

q2 2 q q2 q2

 ,

where q is a primitive third root of unity. The groups in the diagram
are given in the above generators by:

D6 = ⟨σ2, σ6⟩, C3 ⋊ C4 = ⟨σ3, σ4⟩, D5 = ⟨σ2
4, σ5⟩, C9 = ⟨σ9⟩,

S3 = ⟨σ2, σ
2
6⟩, C2

2 = ⟨σ2, σ
3
6⟩, C6 = ⟨σ6⟩, C4 = ⟨σ4⟩,

C5 = ⟨σ5⟩, C3 = ⟨σ3
9⟩, C ′

3 = ⟨σ3⟩, C2 = ⟨σ2
4⟩,

The rest of this section is devoted to a case by case analysis of these
actions, organized as follows: First, we recall classical linearization
constructions for C9 and C5. Then we present a new linearization
construction for C6, which also gives linearization of C2 and C3, and
use this construction to create a D6-equivariant birational map from
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X4 to a smooth quadric threefold X2 ⊂ P4, which gives a linearization
for C2

2 . Finally, we present a linearization construction for C4. The
remaining four subgroups are

S3, D5, D6, C3 ⋊ C4.

We do not know whether or not they are linearizable.
To study the linearization problem for D6 and S3, one can use their

actions on the quadric X2. For D5, recall from [13, Example 5.8] that
there exists a D5-equivariant commutative diagram (3.2) such that Z
is the smooth Del Pezzo surface of degree 5, and φ is a conic bundle,
whose discriminant curve is the union of all (−1)-curves in Z. This
might be a good model for the study of the linearization problem for
D5. Before showing linearization constructions for abelian groups, we
present an explicit C3 ⋊ C4-equivariant birational map from X4 to a
fibration into quartic Del Pezzo surfaces, which could hopefully be used
to study the linearization problem C3 ⋊ C4.

Example 7.5. Let G = ⟨σ3, σ4⟩ ≃ C3 ⋊ C4. The defining equation of
X4 ⊂ P4 can be rewritten as f2r2 = g2h2, where

f2 =y1y2 + q2y1y3 − y1y4 − q2y1y5 − q2y22 + qy2y3 + (q − 1)y2y4+

(−q − 2)y2y5 − y23 + (−q − 2)y3y4 + (−2q − 1)y3y5 + q2y24 − qy4y5 + y25 ,

g2 =y21 − q2y1y4 − qy1y5 − qy22 + y2y3 − q2y2y4 − q2y2y5 − q2y23 − q2y3y4 − y3y5,

r2 =qy1y4 + y1y5 + y22 − q2y2y3 + qy23 ,

h2 =y21 + q2y1y4 + qy1y5 + qy22 − y2y3 − y2y4 − qy2y5 + q2y23 − qy3y4 − qy3y5.

The surfaces {f2 = h2 = 0} and {g2 = r2 = 0} generate a G-invariant

pencil, and there exists a G-equivariant birational morphism X̃4 → X4,
where

X̃4 = {f2u+ g2v = h2u+ r2v = 0} ⊂ P4 × P1
u,v,

and the G-action on P4 × P1 is generated by

σ4 ×
(
1 0
q2 −1

)
,

σ3 ×
(
1 −2q − 1
0 q

)
.

The birational morphism X̃4 → X4 is given by the projection to the

first factor of P4×P1, while the projection to the second factor X̃4 → P1

is a G-equivariant fibration into Del Pezzo surfaces of degree 4.

Linearization of C9. By [9, Remark 4.3], the classical parametriza-
tion of the Burkhardt quartic by Baker is C9-equivariant, i.e., the action
of C9 pulls back to an action on P3. An explicit description of the base
locus of the birational map ϕ : P3 99K X4 can be found in [29]:
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Consider a configuration in P3 consisting of 9 lines l1, ..., l9 with
li meeting li+1 in a point pi, and l9 meeting l1 in p9. The points
{p1, p4, p7}, {p2, p5, p8} and {p3, p6, p9} define lines that intersect in a
common point p10 and

l1 ∩ l4 ∩ l7, l2 ∩ l5 ∩ l8, l3 ∩ l6 ∩ l9

define a further 3 points. There is a unique such configuration, modulo
PGL4, and the linear system of all quartic surfaces in P3 containing
these 9 lines gives ϕ. The symmetry group of this configuration is
indeed C9.

Linearization of C5. There is also another parametrization, due to
Todd [57], and described in detail in [45, Section 5.1]. There is a rigid
configuration of 10 lines and 15 points in P3, and the linear system of
quartic surfaces passing through these 10 lines gives a birational map
from P3 to the Burkhardt quartic [45, Figure 5.1]. For example, the 10
lines can be given by equations and visualized as follows

l1 = {x0 − x3 = x1 + q2x2 + qx3 = 0}, l2 = {x2 = x3 = 0},
l3 = {x1 = x2 + q2x3 = 0}, l4 = {x1 = x2 = x3},
l5 = {x0 + q2x3 = x2 + q2x3}, l6 = {x0 = x1 = x2},
l7 = {x0 + q2x3 = x1 − x3}, l8 = {x0 = x1 = 0},
l9 = {x0 + q2x1 = x2}, l10 = {x0 = x3 = 0}.

l4 l6

l8

l10

l2

l3

l1

l9

l7
l5

The symmetry group of this configuration is C5, and there are exactly
two such configurations in P3, swapped by a D5-action on P3.
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Linearization of C6. Let G = ⟨σ6⟩ ≃ C6 ⊂ Aut(X4). Fix the follow-
ing eight Jacobi planes:

Π1 = {y1 = y5 = 0},
Π2 = {y1 = y2 = 0},
Π3 = {(−q + 1)y1 + (−2q − 1)y5 = qy1 − q2y2 − y3 − y4 − q2y5 = 0},
Π16 = {qy1 − y2 − y3 − qy4 − y5 = qy1 − q2y2 − y3 − y4 − q2y5 = 0},
Π18 = {qy1 − y2 − qy3 − y4 − y5 = qy1 − q2y2 − y3 − y4 − q2y5 = 0},
Π22 = {q2y1 − q2y2 − y3 − y4 − y5 = (q + 2)y1 + (−q − 2)y2 = 0},
Π25 = {y1 − y5 = y2 + q2y3 + qy4 = 0},
Π34 = {q2y1 − y2 − qy3 − q2y4 − q2y5 = qy1 − qy2 − y3 − y4 − y5 = 0},

and let D8 = Π1+Π2+Π3+Π16+Π18+Π22+Π25+Π34. Here we keep
the enumeration of Jacobi planes in X4 as set in Magma, and recorded
in [21]. Let

M4 = |4(−KX4)−D8|,
it is a G-invariant four-dimensional mobile linear system, since the class
[D8] ∈ Cl(X4) is G-invariant. Choosing an appropriate basis f1, . . . , f5
of M4 (see [21] for explicit equations of polynomials of the choice), we
obtain an explicit rational map X4 99K P4 given by

[y1 : y2 : y3 : y4 : y5] 7→ [f1 : f2 : f3 : f4 : f5],

whose image is a quadric threefold Q ⊂ P4 with equation

3y21 − 3y1y2 + 3y22 + (2q − 2)y1y3 + (−4q − 2)y2y3+

(5q + 4)y1y4 + (−q − 5)y2y4 + (−q − 2)y3y4 + (2q + 1)y24+

(−q + 1)y1y5 + (2q + 1)y2y5 + (q − 1)y3y5 + 3y4y5 + (−2q − 1)y25 = 0.

Note that Q is a quadric cone with vertex at [0 : 0 : q2 : q : 1].
We have constructed a G-equivariant rational map χ : X4 99K Q,

where the induced G-action on Q is given by the projective transfor-
mation 

−3− 3q 0 q − 1 q + 2 −2q − 1
3 0 q + 2 4q + 2 4q + 5
1 q + 1 −2q + 2 −2q − 1 q + 2

2q + 2 −q − 3 2q − 2 2q − 2 −q + 1
q + 3 3q − 1 3q + 3 6q + 3 3

 .

Using Magma, one can check that χ is birational. Note that G fixes the
point

[−2 + q : −3q − 8 : 3q + 1 : 3q + 1 : 7] ∈ Q(7.1)
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Thus, composing χ with the projection Q 99K P3 from this point,
we obtain a G-equivariant birational map X4 99K P3, which gives a
linearization of the subgroup G ≃ C6.

The linearization of G can also be proved as follows. Consider the
following six lines in P4:

L1 = {y4 − y5 = y3 − y5 = y1 + qy2 = 0},
L2 = {2y3 − y4 − y5 = 2y2 − y4 + y5 = 2y1 − q2y4 + q2y5 = 0},
L3 = {y4 − qy5 = 2y3 + q2y5 = y1 + q2y2 − (q + 2)y5 = 0},
L4 = {y4 + q2y5 = y3 = y1 + q2y2 + qy5 = 0},
L5 = {y3 + qy4 + y5 = y2 − y4 − q2y5 = y1 + 2qy4 + (q + 2)y5 = 0},
L6 = {y4 − qy5 = y3 − qy5 = y1 + qy2 = 0}.

They are contained in the quadric cone Q, and they form a hexagon.
Now, consider the following two conics in Q:

R = {2y3 − q2y4 − qy5 = 2y1 + 2qy2 − q2y4 + qy5 = 0} ∩Q,

R′ = {y3 − y4 = y1 + q2y2 + qy4 − qy5 = 0} ∩Q.

Both R and R′ are smooth, they intersect transversally at the G-fixed
point (7.1), and they do not contain the singular point of the cone Q.
Note that

• R contains the intersection points L2 ∩ L3, L4 ∩ L5, L6 ∩ L1,
• R′ contains the intersection points L1 ∩ L2, L3 ∩ L4, L5 ∩ L6.

Let Z be the curve L1 + · · · + L6 + R + R′. Then Z is a (singular)
G-invariant curve of degree 10 and arithmetic genus 8, which can be
visualized as follows:

L1

L2

L3

L4

L5

L6

R′

R
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Let M3 be the linear subsystem in |OQ(3)| consisting of all surfaces
that contain Z. Then M3 is a G-invariant mobile four-dimensional
linear system, and it gives a G-equivariant rational map Q 99K P4

whose image is an irreducible quartic threefold X ′
4 that has 45 nodes.

This gives X ′
4 ≃ X4 [27], so choosing a suitable basis for M3 (see [21]

for equations of the choice), we get X ′
4 = X4.

This gives us a G-equivariant rational map ρ : Q 99K X4. One can
check that ρ is birational. Moreover, choosing a suitable basis of M3,
we get ρ = χ−1. We conclude that G is linearizable; PSp4(F3) contains
four subgroups isomorphic to C6 (up to conjugation), and we already
proved that three of them are not linearizable.

Note that the indeterminacy of ρ can be resolved via the following
G-equivariant commutative diagram:

(7.2) U

η

��

π // V

ϕ
��

X4 Qρ
oo

where ϕ is a blow up of the singular curve R + R′, π is a blow up
of a nodal curve of arithmetic genus 1 that is a union of the proper
transforms of the lines L1, . . . , L6 and the fibers of the morphism ϕ
over the points L1 ∩ L2, L2 ∩ L3, L3 ∩ L4, L4 ∩ L5, L5 ∩ L6, L6 ∩ L1,
and η is a birational morphism that contracts 31 disjoint curves to 31
nodes of the quartic X4. The threefold V has two nodes, and U has 14
nodes, since the curves blown up by π form a dodecagon.

Linearization of C2
2 . In the previous subsection, we presented an ex-

plicit C6-equivariant birational map χ : X4 99K Q, where Q is a quadric
cone in P4. Since C6 fixes a point in Q, this gave us a linearization
of C6. Let us use χ to construct a D6-birational map from X4 to a
smooth quadric threefold in P4, which will give us a linearization of
C2

2 ⊂ D6. Set G = ⟨σ6, σ2⟩ ≃ D6. Recall that our birational map χ
is ⟨σ6⟩-equivariant, but not G-equivariant, since the involution σ2 acts
birationally on the quadric cone Q via

[y1 : y2 : y3 : y4 : y5] 7→ [t1 : t2 : t3 : t4 : t5],

where

t1 = 19y1y3 + (18q + 7)y1y4 + (−6q + 4)y1y5 + (−5q − 3)y2y3+

(−5q − 3)y2y4 + (4q − 9)y2y5 + (2q − 14)y23 + (2q + 5)y3y4+
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(11q + 18)y3y5 + (3q − 2)y24 + (−9q + 6)y4y5 + (−9q − 13)y25,

t2 = (3q + 17)y1y3 + (6q − 4)y1y4 + (−3q + 2)y1y5 + (−q − 12)y2y3+

(−10q − 6)y2y4 + (−q − 12)y2y5 + (4q − 28)y23 + (−5q + 16)y3y4+

19qy3y5 + (12q + 11)y24 + (12− 18q)y4y5 + (−12q − 11)y25,

t3 = (12q + 11)y1y3 + (−2q − 5)y1y4 + (5q + 3)y1y5+

(−q − 12)y2y3 + (−3q + 2)y2y4 + (−2q − 5)y2y5 + (8q + 1)y23+

(−2q − 5)y3y4 + (2q + 5)y3y5 + (−3q + 2)y24 + (−5q − 3)y25,

t4 = (20q + 12)y1y3 + (−9q − 13)y1y4 + (4q + 10)y1y5+

(−2q−5)y2y3+(5q+3)y2y4+(−9q−13)y2y5+(8q+1)y23+(−9q−13)y3y4+

(12q − 8)y3y5 + (−4q + 9)y24 + (6q + 15)y4y5 + (−13q − 4)y25,

t5 = (q + 1)y1y3 + (−q − 12)y1y4 + (−3q + 2)y1y5 + (−9q − 13)y2y3+

(4q + 10)y2y4 + (−q − 12)y2y5 + (−10q + 13)y23 + (23q − 9)y3y4+

(10q + 6)y3y5 + (−17q − 14)y24 + (6q + 15)y4y5 + (−12q − 11)y25.

However, the linear system M3 ⊂ |OQ(3)| constructed in the previous
subsection is G-invariant, and G acts biregularly on the threefold V .
Thus, the birational map π ◦ η−1 : X4 99K V in the diagram (7.2) is
also G-equivariant. Observe that rkCl(V )G = rkPic(V )G = 1, so V is
a G-Mori fiber space, cf. [48, Theorem 6.5(iii)].

Now, let pr : Q 99K P2 be the projection of the quadric cone Q from
the line passing through the vertex of Q and the G-fixed point (7.1).
Choosing appropriate coordinates on P2, the projection map pr is given
by 

3 0 0
0 3 0
0 0 3

q + 2 5q + 4 −6q
−q + 1 q + 5 3q2

 .

One can check that

pr× (pr ◦ ι) : Q 99K P2
x0,x1,x2

× P2
z0,z1,z2
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gives a birational map ϱ : Q → W , where W ⊂ P2 × P2 is a smooth
divisor of bidegree (1, 1) that is given by

6x0z0 − 3x0z1 + 2(q − 1)x0z2 − 3x1z0 − 3x1z1 + (5q + 4)x1z2

+2(q − 1)x2z0 + (5q + 4)x2z1 + (−2q + 5)x2z2 = 0.

The birational map ϱ isG-equivariant, and rkCl(W )G = 1, soW is aG-
Mori fiber space. This gives the G-equivariant commutative diagram:

Ṽ //

α

��

W̃
β

  
V

ϱ // W

where α is the blowup of both singular points of V , Ṽ 99K W̃ is a flop
in the strict transform of the line in Q passing through it vertex and
the point (7.1), and β is a blow up of a G-irreducible smooth curve
consisting of four irreducible components such that one of them is the
fiber of the projection to the second factor W → P2 over [1 : 3q+2 : 3].

The group G leaves invariant the curve

{3x1 − (3q + 2)x2 = 3z1 − (3q + 2)z2 = 0} ⊂ W,

which is a curve of degree (1, 1). Blowing up this curve γ : Ŵ → W ,
we obtain the following (classical) G-Sarkisov link:

Ŵ //

γ

��

X̂2

δ

  
W X2

where X2 is a smooth quadric 3-fold in P4, and δ is a blow up of two
disjoint lines in X2.

To describe the map W 99K X2 explicitly, observe that G leaves
invariant the affine chart of W given by

3x1 − (3q + 2)x2 ̸= 0 and 3z1 − (3q + 2)z2 ̸= 0,

which is an affine quadric 3-fold, whose G-equivariant compactification
is X2. Hence, choosing appropriate coordinates on P4, we may assume
that X2 is given by

y1y4 − y2y3 + y25 = 0,



30 IVAN CHELTSOV, YURI TSCHINKEL, AND ZHIJIA ZHANG

and the induced G-action on X2 is generated by

[y1 : y2 : y3 : y4 : y5] 7→ [−q2y1 : q
2y2 : qy3 : −qy4 : −y5],

[y1 : y2 : y3 : y4 : y5] 7→ [y4 : y3 : y2 : y1 : y5].

In particular, we see that the subgroup ⟨σ2, σ
3
6⟩ ≃ C2

2 is linearizable,
because the corresponding C2

2 -action on X2 has a fixed point.

Linearization of C4. Now, we letG ≃ C4 be the subgroup in PSp4(F3)
generated by σ4. Consider the G-orbit of four planes given by

Π3 = {(−q + 1)y1 + (−2q − 1)y5 = 0, qy1 − q2y2 − y3 − y4 − q2y5 = 0},
Π8 = {q2y1 − qy2 − q2y3 − qy4 − qy5 = 0, (q + 2)y1 + (2q + 1)y2 = 0},
Π12 = {q2y1 − qy2 − qy3 − q2y4 − qy5 = 0, (q + 2)y1 + (2q + 1)y5 = 0},
Π15 = {q2y1 − qy2 − y3 − y4 − qy5 = 0, qy1 − q2y2 − qy3 − q2y4 − q2y5 = 0},

where q is a primitive cube root of unity, as above. Then projection
from each of these planes produces a map X4 99K P1. The product of
these four projections results in a G-equivariant map

π : X4 99K P1
x0,x1

× P1
z0,z1

× P1
u0,u1

× P1
t0,t1

.

One can check that this map is birational onto its image. Choosing
appropriate coordinates, the image V is a divisor in (P1)4 given by

x0z0u0t0 + x0z0u0t1 + x0z1u0t1 + x1z1u0t1 + x1z1u1t1 = 0.

Notice that V has 5 singular points, which are ordinary double points.
Observe also that rkPic(V )G = 1, but rkCl(V )G = 2, so V is not a
G-Mori fiber space.

Let us find a GQ-factorialization of V . To do this, we choose another
G-orbit of four planes in X4:

Π1 = {(−q + 1)y1 + (−2q − 1)y5 = (q + 2)y1 + (2q + 1)y5 = 0},
Π5 = {(−q + 1)y1 + (−2q − 1)y5 = 0, qy1 + (q + 1)y2 − qy3 − q2y4 − q2y5 = 0},
Π14 = {q2y1 − qy2 − q2y3 − qy4 − qy5 = 0, (q + 2)y1 + (2q + 1)y5 = 0},
Π20 = {q2y1 − qy2 − q2y3 − qy4 − qy5 = 0, qy1 − q2y2 − qy3 − q2y4 − q2y5 = 0}.

One can check they are not contracted under the map π, and the
G-invariant divisor π(Π1) + π(Π5) + π(Π14) + π(Π20) is not Q-Cartier.
The linear system

| −KV − π(Π1)− π(Π5)− π(Π14)− π(Π20)|
is G-invariant, and its projective dimension is 5. Moreover, under the
choice of basis

x0z0u0t1, x0z1u0t0, x0z1u0t1, x0z1u1t1, x1z1u0t1, x1z1u1t1,
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it gives a G-equivariant birational map ρ : V 99K X2,2, where X2,2 is a
complete intersection in P5, with equations:

v4v5 − v3v6 = v1v2 + v1v3 + v23 + v3v5 + v4v5 = 0.

The induced G-action on X2,2 is given by
0 0 0 1 0 0
0 0 0 0 1 −1
0 −q2 −1 1 1 0
0 q 0 0 0 0
q2 0 0 0 0 1
0 0 0 0 0 1

 .

Note that thisX2,2 has 5 singular points and is not toric, so it is different
from the toric intersection of two quadrics with 6 singular points that
appeared in Section 5 and 6.

The birational map ρ fits the following G-equivariant commutative
diagram:

Ṽ

α

��

β

��

V̂

δ

  

γ

��
P1 V

ρ // X2,2

where β and γ are small G-equivariant birational morphisms that re-
solve 4 singular points of V forming one G-orbit, δ is a blow up of 4
singular points of V forming one G-orbit, and α is a fibration into Del
Pezzo surfaces of degree 4. The small birational morphisms β and γ
are GQ-factorializations of V , and the composition α ◦ β−1 ◦ γ ◦ δ−1

is given by the projection P5 99K P1 from the three-dimensional linear
subspace in P5 that contains 4 singular points of X2,2 blown up by δ.
A similar G-Sarkisov link appeared in the proof of [2, Lemma 2.16].

Now, we let P = [0 : 0 : 0 : 0 : 1]. Then P is a G-fixed singular point
of X2,2. Projection from P gives a G-birational map from X2,2 to a
smooth quadric threefold X2 ⊂ P4 that fits the following G-equivariant
commutative diagram:

Y

}}   
X2,2

// X2

where Y → X2,2 is the blowup of the point P , and Y → X2 is the blow
up of a singular connected curve of arithmetic genus 1 and degree 4,
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which is a union of four lines. Note that Y is a singular Fano threefold
in the deformation family №2.23, and the constructed G-Sarkisov link
is a degeneration of a classical Sarkisov link that blows up a smooth
quadric threefold along a smooth quartic elliptic curve.

Since the G-action on a smooth quadric threefold has a fixed point,
the action of G is linearizable.

8. Equivariant birational rigidity

Let X4 ⊂ P4 be the Burkhardt quartic and G ⊆ Aut(X4) be such
that rkClG(X4) = 1. In this section we prove Proposition 7.4, i.e., we
show that X4 is G-birationally super-rigid. We start by recalling sev-
eral well-known geometric facts about X4, and proving three technical
lemmas.

The quartic X4 has 45 isolated ordinary double points (nodes). One
can also check that

• a line in P4 can contain 1, 2 or 3 nodes,
• a plane in P4 can contain 1, 2, 3, 4, 6 or 9 nodes,
• a hyperplane in P4 can contain 1, 2, 3, 4, 7, 10, 12 or 18 nodes.

Planes in P4 containing 9 nodes of X4 are called Jacobi planes — these
planes are contained inX4. The threefoldX4 contains 40 Jacobi planes,
each of these 40 planes contains exactly 9 nodes of X4, and there are
exactly 8 planes in X4 that pass through a given node. The union
of all planes in X4 is a divisor in |10(−KX4)|, which we denote by J.
Similarly, hyperplanes in P4 containing 18 nodes ofX4 are called Steiner
hyperplanes — their intersections with X4 split into unions of 4 Jacobi
planes. We will call such unions of 4 Jacobi planes tetrahedra. There
are 40 Steiner hyperplanes, so X4 contains 40 tetrahedra.

Lemma 8.1. Let Σ be a subset of the singular locus Sing(X4), of cardi-
nality s = |Σ| ≥ 1. Suppose that at least one of the following conditions
is satisfied:

(1) s ⩽ 4,
(2) s ∈ {5, 6}, the set Σ is contained in a plane in P4, no 3 points

in Σ are collinear,
(3) s = 7, the set Σ is contained in a hyperplane in P4, no 4 points

of the set Σ are contained in a plane in P4.

Then X4 contains a tetrahedron that is disjoint from Σ.

Proof. Computer computations. □
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Lemma 8.2. Let C be an irreducible curve in X4 of degree d ⩽ 3, let
Σ = C ∩ Sing(X4), and let s = |Σ|. If C is a twisted cubic curve, we
also suppose that s ̸∈ {5, 6}. Then there is a Jacobi plane Λ ⊂ X4 such
that Λ ∩ C contains a smooth point of X4.

Proof. Since the locus Sing(X4) is an intersection of cubics in P4, we
see that s ⩽ 3d. Thus, if d ⩽ 2, then X4 contains a tetrahedron T
that is disjoint from Σ by Lemma 8.1, so that T ∩C contains a smooth
point of X4, since T ∩C ̸= ∅. This proves the lemma in the case d ⩽ 2.
Hence, we may assume that C is either a plane cubic or a twisted cubic.

Suppose that C is a plane cubic. Let Π be the plane in P4 that
contains C. If Π ⊂ X4, we are done. If Π ̸⊂ X4, then X4|Π = C + ℓ
for some line ℓ, which gives s ⩽ 4, since Σ ⊂ Sing(C + ℓ). Now, the
required assertion follows from Lemma 8.1.

To complete the proof, we may assume that C is a twisted cubic
curve. If s ⩽ 4 or s = 7, the assertion follows from Lemma 8.1. Thus,

we may assume that s ∈ {8, 9}. Let f : X̃4 → X4 be the blow up of

all singular points of X4, let J̃ be the strict transform on X̃4 of the
divisor J, let E be the union of all f -exceptional prime divisors, and

let C̃ be the strict transform on X̃4 of the curve C. Then

0 ⩽ J̃ · C̃ =
(
f ∗(− 10KX4

)
− 4E

)
· C̃ = 30− 4E · C̃ ⩽ 30− 4s ⩽ −2,

which is absurd. This completes the proof of the lemma. □

Lemma 8.3. Let C ⊂ X4 be a twisted cubic curve and Σ = C ∩
Sing(X4). Set s = |Σ| and let M be a non-empty mobile linear sub-
system in | − nKX4| for some positive integer n. Suppose that s ⩽ 6.
Then multC(M) ⩽ n.

Proof. If s ⩾ 1, let g : X4 → X4 be the blow up of Σ. If s = 0,

we let X4 = X4 and g = IdX4 . Let f : X̃4 → X4 be the blow up of
the strict transform on X4 of the twisted cubic curve C, let F be the
f -exceptional surface, let E1, . . . , Es be the (f ◦ g)-exceptional prime

divisors that are mapped to the subset Σ, and let M̃ be the strict

transform on the threefold X̃4. Set m = multC(M). Then

M̃ ∼Q f ∗(− nKX4

)
−mF −

s∑
i=1

aiE,

where a1, . . . , as ∈ Z≥0. We have to show that m ⩽ n.
If s ⩾ 1, then each Ei is a Del Pezzo surface of degree 7 and

M̃
∣∣
Ei

∼ −mF
∣∣
Ei

− nEi

∣∣
Ei
,
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which implies that m ⩽ 2ai. So, if s ⩾ 1, then ai ⩾ m
2
for every i.

Set H = (f ◦ g)∗(−KX4). Then |2H − F −
∑s

i=1 Ei| does not have
base curves, because the curve C is cut out by quadrics in P4. Let D

be a general surface in |2H − F −
∑s

i=1Ei|. Then D is nef. Let M̃1

and M̃2 be general surfaces in M̃. Then D · M̃1 · M̃2 ⩾ 0.

Let us compute D · M̃1 · M̃2. We have

H3 = 4, Ei ·H2 = 0, F · E2
i = 0, F 3 = s− 1, Ei · F 2 = −s,

H · F 2 = −3, F ·H2 = 0, Ei · F ·H = 0, E3
i = 2s, H · E2

i = 0.

Then

0 ⩽ D · M̃1 · M̃2 = 8− 5m2 + 2
( s∑

i=1

ai − 3
)
m− 2

s∑
i=1

a2i .

This gives m ⩽ n, since s ⩽ 6 and ai ⩾ m
2
for i ∈ {1, . . . , s}. □

Now, we are ready to prove that X4 is G-birationally super-rigid.
Suppose it is not. By Corollary 3.3, there is a non-empty G-invariant
mobile linear subsystem M ⊂ | − nKX4|, for some positive integer n,
such that the singularities of the pair (X4,

1
n
M) are not canonical. Let

us seek a contradiction.
Set λ = 1

n
. Let Z be a center of non-canonical singularities of the

log pair (X4, λM), let M1 and M2 be two general surfaces in the linear
system M. If Z is a smooth point of X4, then it follows from [52] or
[24, Corollary 3.4] that(

M1 ·M2

)
Z
>

4

λ2
= 4n2,

which leads to a contradiction:

4n2 =
4

λ2
= H ·M1 ·M2 ⩾

(
M1 ·M2

)
Z
>

4

λ2
= 4n2,

where H is a general hyperplane section of X4 passing through P .
Thus, either Z is a singular point of X4, or Z is an irreducible curve.

Suppose that Z a singular point of X4. Let f : X̃4 → X4 be the

blow up of this point, let E be the f -exceptional surface, let M̃ be the

strict transform on X̃4 of the linear system M, and let M̃ be a general

surface in M̃. Then

M̃ ∼Q f ∗(− nKX4

)
− aE,

for some integer a > n, by [22, Theorem 1.7.20] or [24, Theorem 3.10].
Now, let Π be a Jacobi plane in X4 that contains Z, let L be a general
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line in Π that contains Z, and let L̃ be its strict transform on X̃4. Then

L̃ ̸⊂ M̃ , so that 0 ⩽ M̃ · L̃ = n− a < 0, which is absurd.
Thus, Z is an irreducible curve. Then multZ(M) > 1

λ
= n. Write

M1 ·M2 = mZ +∆,

where m is a positive integer such that m > n2, and ∆ is an effective
one-cycle whose support does not contain Z. Then

4n2 =
4

λ2
=−KX4 ·M1·M2=mdeg(Z)−KX4 ·∆ ⩾ mdeg(Z) > n2deg(Z),

which gives deg(Z) ∈ {1, 2, 3}. As in Lemma 8.2, let Σ = Z∩Sing(X4),
and set s = |Σ|. If Z is a twisted cubic, then s ̸∈ {5, 6} by Lemma 8.3.
Thus, it follows from Lemma 8.2 that X4 contains a Jacobi plane Π
such that Π ∩ Z contains a smooth point P of X4. Let ℓ be a general
line in this plane that contains P . Then ℓ ̸⊂ M1, so

n =
1

λ
= M1 · ℓ ⩾ multP (M1) ⩾ multZ(M1) = multZ(M) >

1

λ
= n,

which is absurd. This completes the proof of Proposition 7.4.
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