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ABSTRACT. We study linearizability and stable linearizability of
actions of finite groups on the Segre cubic and Burkhardt quartic,
using techniques from group cohomology, birational rigidity, and
the Burnside formalism.

1. INTRODUCTION

Let G be a finite group. We study generically free G-actions on ratio-
nal Fano threefolds, over an algebraically closed field of characteristic
zero, up to equivariant birationality. This is part of a long-standing
program to identify finite subgroups of the Cremona group Crs (see,
e.g., [51] for background and references concerning this problem). One
of the main tools in this area of research is the Equivariant Minimal
Model Program (EMMP), and in particular the study of birational
rigidity (BR). Among the principal achievements is the classification of
finite simple groups that can act on rationally connected threefolds [47].
There is a wealth of results towards distinguishing conjugacy classes of
embeddings of simple groups into the Cremona group, e.g., 25 (see
[19]). There are also many interesting problems: even the classification
of involutions in Cry is still open [49)].

There are two particularly intriguing examples of rational threefolds
with large automorphisms: the Segre cubic X5 C P* C IP%, given by

6 6
(1.1) doal=> z;=0,
i=1 i=1

with Aut(X3) = &g, acting via permutation of variables, and the
Burkhardt quartic X, that can be defined in P* C P° by the vanishing
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of elementary symmetric polynomials in 6 variables of degree 1 and 4

6
(1.2) Z T TRT) = Zml =0,
i=1

1<i<j<k<I<6

and as such carries the action of G4. However, the full automorphism
group of the Burkhardt quartic is PSp,(F3), of order 25920. Another
standard form of the Burkhardt quartic is

(1.3) {vi (i + v5 + ¥ + yi + ¥2) + 3yaysyays = 0} C P,

which we will often use in this paper.

Our goal is to identify subgroups in &g and PSp,(F3) whose actions
on X3 and X, are (projectively) nonlinearizable, i.e., not equivariantly
birational to linear (or projectively linear) actions on P3. To do this,
we explore the range of applicability of group cohomology, birational
rigidity, and the Burnside group formalism [41].

Our main results are:

Theorem 1 (Theorem[6.3). Let G C G = Aut(X3). The G-action on
X3 is linearizable if and only if one of the following conditions holds:

e GG fixes a singular point on Xs,

o G is contained in the nonstandard &%, up to conjugation,

o G = C2, X3 contains three G-invariant planes, and Sing(X)
splits as a union of five C3-orbits of length 2.

Moreover, when the G-action is not linearizable, it is not stably lin-
earizable.

There are 55 conjugacy classes of nontrivial subgroups G C &g, and
19 of these give rise to nonlinearizable actions on Xj.

Theorem 2. Let G C PSp,(F3) = Aut(Xy4). The G-action on Xy is
nonlinearizable if at least one of the following conditions holds:

(1) tkCI(Xy)Y = 1,

(2) G contains an involution that swaps two coordinates in P°,

(3) G contains a subgroup G’ such that H'(G', Pic(Xy)) # 0,

where X, is the standard resolution of Xy.

This gives nonlinearizability for 103 out of 115 conjugacy classes of
nontrivial subgroups of PSp,(Fs).
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Theorem 3. Among the remaining 12 conjugacy classes of subgroups
G C PSp,(Fs3), the G-action is linearizable if G is conjugate to one of
the subgroups

027 037 Cil’n 0227 047 057 067 097
explicitly described in Section [7

See [2I] for additional information concerning the actions of the
groups in Theorems [I} 2]

Thus, we settle completely the (stable) linearizability problem for
the Segre cubic threefold X3. After excluding known cases when either
there is a G-fixed singular point in X3, and the action is linearizable
via projection from this point, or GG is conjugated to a subgroup of the
nonstandard S5 in &g, and such actions have been treated in [3] [34],
the remaining analysis hinges on the existence of G-stable planes. A
key observation in the remaining cases is that if X3 does not contain
a G-stable plane, then there is a cohomological obstruction to stable
linearizability, and if it does contain such a plane, then X3 is birational
to a singular, toric, intersection of two quadrics in P, which can be
analyzed via toric geometry.

As an auxiliary tool, we settle the (stable) linearizability problem for
translation-free actions with fixed points on algebraic tori in dimension
3, in Theorem [5.1

For the Burkhardt quartic X, we settle the linearizability problem
for all finite subgroups of PSp,(IF3) except for 4 (conjugacy classes of)
subgroups isomorphic to

637 ©5a 967 03 X C’47

which are described explicitly in Section[7] We do not know whether or
not the actions of these 4 groups are linearizable. For the subgroups G3
and ®g we present an equivariant birational map from X, to a smooth
quadric threefold, see Section [7]

The proofs of Theorems [T}, 2| and [ imply the following corollary.

Corollary 4. Let G be a group acting faithfully on X3 and X4 and such
that both actions are not linearizable. Then there is no G-equivariant
birational map X3 --+ Xy, with the possible exception when G ~ C3,
conjugate to

((12)(34),(12)(56)) C & = Aut(X;3),
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~—

and the corresponding subgroup in Aut(X,) C PGL5 generated by

1 2 2 2 2 10000
1 1 -2 1 1 00100
1 2 1 1 1],/o1000
1 1 1 1 -2 (oo0oo0o01
1 1 1 -2 1 000710

It would be interesting to clarify what happens in this exceptional
case.

Here is the roadmap of the paper: in Section [2| we recall basic notions
and constructions in equivariant birational geometry, and tabulate re-
sults of computations for the Segre cubic and the Burkhardt quartic.
In Section |3| we recall the main tools from equivariant birational rigid-
ity. Section [4| presents a simplified version of the Burnside formalism
from [41], based on incompressible symbols, that allows to prove new
cases of nonlinearizability. In Section [5| we adopt Kunyavski’s ratio-
nality analysis of 3-dimensional tori over nonclosed fields [43] to the
equivariant context. In Section [6] we turn to the Segre cubic threefold;
we address the linearizability of the Burkhardt quartic in Section[7] In
Section [ we prove that the Burkhardt quartic X, is G-birationally
rigid if G C PSp,(IF3) satisfies tk C1(X4)¢ = 1.

Throughout, we consider group actions from the right, by Magma
conventions; C), denotes cyclic groups of order n; ®,, denotes dihedral
groups of order 2n; 2, and &,, denote alternating groups and symmet-
ric groups of degree n, respectively.

Acknowledgments: The first author was partially supported by the
Leverhulme Trust grant RPG-2021-229. The second author was par-
tially supported by NSF grant 2000099.

2. BACKGROUND

Linearizability. Let G be a group and X a G-variety, i.e., an algebraic
variety with a generically free action of G. We are interested in the
following properties of G-actions:
o Linearizability: X is G-equivariantly birational to P(V'), the
projectivization of a linear representation V' of G;
e Stable linearizability: X x P™, with trivial G-action on the sec-
ond factor, is linearizable.
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One may also consider the related notions of (stable) projective lin-
earizability, where the G-action on X is compared to the G-action on
P(V), the projectivization of a representation V' of a central extension
of GG. Our focus in this paper is on linearizability, since projectively
linear actions on the Segre cubic and the Burkhardt quartic are linear.

Equivariant resolution of singularities (over fields of characteristic
zero) allows to reduce to the case when X is smooth.

Obstructions. Let X be a smooth projective G-variety, over an al-
gebraically closed field of characteristic zero. The geometric action
induces an action on invariants of X, such as the Picard group Pic(X).
Among necessary conditions for stable linearizability of the G-action
on X is

(SP) Pic(X) is a stably permutation G-module.

This condition is not easy to verify, in practice. On the other hand, it
implies the more tractable condition

(H1) HY(G', Pic(X)) = HY(G',Pic(X)¥) =0, VG CG.
This can be checked in Magma, when the G-action on Pic(X) is known
explicitly. Note that these conditions are equivalent for G = Cs.

It should be pointed out that not all failures of birationality are
explained by invariants of the G-action on Picard groups, see Section
and Remark [7.3] For singular G-varieties it is also useful to consider
the induced G-action on the class group CI(X); this is particularly
relevant to the study of G-birational rigidity, see Section [3] and [§]

Remark 2.1. If X is a singular G-variety, then H'(G, C1(X)) is not a
G-birational invariant. For instance, let X = X3 be the Segre cubic in
P> and G = Cs, acting on X via swapping of two coordinates. Then
CI(X) = Z5 and H'(G, C1(X)) = Z/2. But G fixes a singular point on
X and is thus linearizable.

Rational surfaces. Actions of finite groups on Del Pezzo surfaces
have been extensively studied in [28, 50]. The G-action on Picard
groups of Del Pezzo surfaces of degrees 4,3,2,1 factors through sub-
groups of Weyl groups

W(D5)7 W(E6)7 W(E7)> W(ES)a

respectively. Subgroups satisfying (H1) have been enumerated in [58];
the paper [50] contains examples of such subgroups of W(D,,), acting
on Picard groups of conic bundles over P*.
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Applications of the Burnside formalism from [41] to threefolds re-
quire a detailed understanding of birationality of G-actions on surfaces.

Segre cubic. Let X3 be the Segre cubic in P*. We have the following

Gg-equivariant diagram
X;
N
X3 X!

where f is the blowup of the 10 singular points of the cubic, g is the
anticanonical morphism, and X/ is the Igusa quartic threefold in P*.
We say that f is the standard resolution of singularities of X3. Recall
that X3 is Sg-equivariantly isomorphic to My, the moduli space of 6
points on P!, which has a natural Gg-action permuting the 6 points.

The group &g has an outer automorphism, and thus two conjugacy
classes of subgroups G5; one of them we call standard, it acts trivially
on one of the indices, and the other nonstandard; we shall denote it
by &%. By [3, Proposition 4.1], the action of the standard &5 on the
Segre cubic, via permutation of 5 variables in (L.1]), is birationally rigid;
the action of the nonstandard &7 is linearizable.

Recall that Pic()N(g,)GG is generated by 2 classes, corresponding to
the birational contractions to the Segre cubic and the Igusa quartic.
The following table provides additional information about ranks of the
invariant Picard group and class group, as one changes the action:

Group Gg | U | G5 6/5 As 21,5 G310y | Oy x 64 | Cy x GZ
rkPic(X3)¢ | 2 | 22 3|2 3 3 3 4
kCl(X3)Y [ 1 [ 1] 1 21 2 1 1 2

Burkhardt quartic. We also record ranks of invariants in the Picard
group of Xy, the standard resolution of singularities of the Burkhardt

quartic X, obtained by blowing up all its singular points, for various
subgroups G C PSp,(F3):

Group PSp4(IF3) Célglg, Gg | Co. 400y SLQ(]Fg) : Ay | SLo (Fg)
rk Pic(X,4)¢ 2 3 3 4 5 79,11
rk C1(X4)¢ 1 1 1 1 2 3,3,5
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where the last entry reflects the different conjugacy classes. The full
table, obtained with Magma, is available at [21]. Furthermore, we have:

Proposition 2.2. Let X4 be the Burkhardt quartic and G C PSp,(F3)
a subgroup of its automorphism group. Thentk C1(X4)¢ = 1 if and only
if G contains a subgroup conjugate to one of the following subgroups

%Sa 0517 022 X 047 02 X 947 64) 6217 03 X 947 6%) C(32 X C’47 Ql57
explicitly specified in [21].

This extends [15, Corollary 2.10] and [13, Corollary 5.4], which listed
the corresponding subgroups of Gg.

3. BIRATIONAL RIGIDITY

Let X be a Fano threefold with at most terminal singularities and
G C Aut(X) a finite subgroup. Suppose that

rk Pic®(X) = 1.

If X is smooth, then X is a G-Mori fiber space (over a point), and X
lies in 25 deformation families described in [48, Theorem 1.2]. If X is
singular, then it may fail to be GQ-factorial, i.e., we may have

rk C19(X) > rk Pic“(X),

so that X is not necessarily a G-Mori fiber space. However, we can
always take a GQ-factorialization of X, and then apply EMMP to
obtain a G-equivariant birational map from X to some G-Mori fiber
space.

On the other hand, if rk C1°(X) = 1, then X is a G-Mori fiber space.
In this case, one can try to describe all G-birational maps from X to
other GG-Mori fiber spaces. Every such map can be decomposed into
a sequence of G-Sarkisov links [23] [3T], which have a more restricted
structure. If there are no G-Sarkisov links that start at X, then X is
the only GG-Mori fiber space that is G-birational to X and

Bir®(X) = Aut®(X),

i.e., X is G-birationally super-rigid. We say that X is G-birationally
rigid if every G-Sarkisov link that starts at X also ends at X, which
means that X is not G-birational to other G-Mori fiber spaces, but X
may admit non-biregular G-birational selfmaps.

Remark 3.1. If X % P? rkC19(X) = 1, and X is G-birationally rigid,
then the G-action on X is not (projectively) linearizable.
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If X is not G-birational to any G-Mori fiber space with a positive
dimensional base (a conic bundle or a Del Pezzo fibration), we say
that X is G-solid. G-birationally rigid and G-solid Fano threefolds are
studied in |14} 15, 18, 17, 19, 20} 12} 16, 11], with a special focus on
rational threefolds. These studies are based on the following technical
result, which is the engine of the G-equivariant Sarkisov program:

Theorem 3.2 ([I9, Theorem 3.3.1]). Suppose that tk C1(X) = 1, and
let x: X ==+ V be a G-birational non-biregular map such that

o V has terminal singularities,
e 1k C19(V) = 1k Pic%(V), and
o there exists a G-equivariant Mori fiber space w: V — Z.

Set
M = x| = pKv + 7 (H)]),

for p >0, and a sufficiently general very ample divisor H € Pic(Z)
such that [7*(H)] is G-invariant. Then M is a G-invariant non-empty
mobile linear system, and the singularities of the log pair (X, AM) are
not canonical for A € Q= such that AM ~qg —Kx.

This is a G-equivariant version of the classical Noether-Fano inequal-
ity. EMMP and Theorem give a simple criterion for G-birational
super-rigidity:

Corollary 3.3. Suppose that vk C1¢(X) = 1. Then X is G-birationally
super-rigid if and only if for every G-invariant non-empty mobile linear
system M on X, the log pair (X, A\M) has canonical singularities for
A € Qs such that \M ~qg —Kx.

There is a similar (albeit more technical) criterion for G-birational
rigidity, see [19, Chapter 3|. If X is toric, and G contains the maximal
torus in Aut(X), a criterion for G-solidity is given in [12].

Usually, Corollary is applicable when (—Ky)? is “sufficiently
small” or when the group G is “sufficiently large”. For instance, for
(—Kx)? = 2, arguing as in the proof of [14, Theorem A], we obtain:

Theorem 3.4. Let X C P(1,1,1,1,3) be a hypersurface of degree 6
with at most isolated ordinary double points (nodes) and G C Aut(X)
a finite subgroup such that rk CI(X)% = 1. Then X is G-birationally
super-rigid.

This is also expected for nodal quartics, where (—Kx)? = 4, see [44]:
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Conjecture 3.5 ([I3, Conjecture 5.2]). Let X C P* be a nodal quartic
threefold and G C Aut(X) a finite subgroup such that rk C1(X)¢ = 1.
Then X is G-birationally rigid.

In Section [7, we prove this conjecture for the Burkhardt quartic.
Unfortunately, we do not have such precise (conjectural) characteri-
zations of G-birational rigidity for most of the other (singular) Fano
threefolds, apart from sporadic results in this direction. For instance,
for the Segre cubic X3, where (—Kx,)? = 24, Avilov found all possi-
bilities for G C Aut(X3) ~ &g such that X3 is G-birationally rigid:

Theorem 3.6 ([4]). Let X3 C P* be the Segre cubic and G C Aut(X3)
a subgroup such that vk C1(X3)¢ = 1. Then the following are equivalent:
(1) X5 is G-birationally rigid,
(2) X3 is G-birationally super-rigid,
(3) G contains a group isomorphic to A5 that leaves invariant a
hyperplane section of X3.

Returning to general threefolds, if rk C1(X)¢ = 2, then X admits ex-
actly two GQ-factorializations, and we have the following G-equivariant
commutative diagram:

(3.1) | 4

where w and @’ are G-equivariant small resolutions such that
rk Pic(V)% =tk C1(V)¥ = 2 = rk C1(V")¢ = rk Pic(V")%,

the map ¢ is a pseudo-automorphism that flops w-contracted curves,
both ¢ and ¢’ are G-equivariant extremal contractions that can be of
the following three types:

e a birational contraction,
e a fibration into Del Pezzo surfaces over P!,
e a conic bundle over a rational surface.

The diagram is an example of a G-Sarkisov link (with X being
its center). When both V and V' are smooth, such links have been
studied in [55, 37, 38, [5, 26, [T, 25, (6]. Note that is uniquely
determined up to swapping its left and right sides.

If the morphism ¢ in is birational, then Z is a Fano variety
with at most terminal singularities such that tk C1(Z)% = 1, so we are
back to the case when rk C1°(X) = 1 with X replaced by Z. Further, if
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the normalizer of G in Aut(X) contains an automorphism o such that
rk C1»9 (X)) = 1, the diagram (3.1)) simplifies as

(3.2) Voo - - -V

Z X d X Z
In this case, we say that the G-Sarkisov link is symmetric. For instance,
if X = X3 is the Segre cubic, this holds in many (but not all) cases.

4. BURNSIDE FORMALISM

Here we explain a simplified version of the Burnside group formal-
ism introduced in [4I], which yields equivariant birational invariants
of G-actions on algebraic varieties. We continue to work over an alge-
braically closed field k of characteristic zero.

Applying equivariant blowups we may assume that the G-action is
realized as a regular action on a standard model (X, D) of the function
field K = k(X), i.e.,

e X is smooth projective, D a normal crossings divisor,
e G acts freely on U := X \ D,
e for every g € G and every irreducible component D, either
g(D)=D or g(D)ND =0,
see [32, Section 7.2] for details. Given such a model, let

{Da}aeA

be the set of irreducible divisors with nontrivial (thus necessarily cyclic)
stabilizers H, C G; we consider these up to conjugation in G. Each
such D, inherits a residual action of a group Y, C Zg(H,)/H,. Con-
sider the subset A" C A corresponding to those divisors, together
with the respective Y, -action, that cannot be obtained via equivariant
blowups of any standard model of any G-variety.

We have an assignment

(41) XOG =[XOG"™:= > (HaYaC kD), (b)),
a/conj

where the sum is over (G-conjugacy classes of) nontrivial cyclic H,, of

symbols encoding

e the stabilizer H, of the generic point of D,,
e the residual action of Y, C Z5(H,)/H, on D,,
e the character b, of H, in the normal bundle to D,
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Note that G-conjugation extends to symbols in (4.1]), conjugating the
Y,-action as well as the character b,, see [42], Section 2] for more details.

Proposition 4.1. [42, Proposition 3.4] The class [X © G|, taking
values in the free abelian group generated by symbols

(4.2) (H,Y & kD), (), H#1,
up to G-conjugation as above, is a well-defined G-birational invariant.

This is a rough invariant, obliterating information from nontrivial
stabilizers in higher codimensions; but it already allowed to distin-
guish actions not accessible with previous methods [42]. Given this,
it becomes essential to provide a geometric characterization of incom-
pressible divisorial classes. As explained in [59], Section 3.6], this prop-
erty a priori depends on the ambient group G. However, for some
Y-actions on D, there is no such dependence, and we will call such
symbols absolutely incompressible.

For instance, by [42] Proposition 3.6, in dimension 2, a divisorial
symbol is absolutely incompressible iff:

e D is a curve of genus > 1, or
e D is a curve of genus 0, and the residual Y action on D is not
cyclic.
In dimension 3, sufficient conditions for incompressibility include:

e D is not uniruled,

e D is Y-birational to a Y-solid Pezzo surface,

e the Y-action on D has cohomology: H(Y, Pic(D)) # 0,

e the Y-action on D is not equivariantly birational to a Y -action
on a P'-bundle over a curve.

If one is interested in comparing a G-action on a rational threefold to
a linear action on P?, one can exclude symbols (4.2) where D admits a
surjection onto a curve of genus > 1, as such symbols are not produced
by the algorithm from [42] which computes the class of a linear action
in the full Burnside group of [41], see [59 Corollary 6.1].

Thus, for applications to linearizability in dimension 3, we need a
classification of incompressible divisorial symbols of the form

(4.3) (H,Y C k(P?), (b))
This can be obtained by combining classification schemes for G-surfaces,
with the Burnside formalism of [41]. There are two complementary

approaches: via EMMP, as carried out in [28, Section 8], and using
cohomology, as in [50]. The first approach allows to completely settle
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the linearization problem for rational surfaces [54]. But in practice,
the second approach is simpler to apply [6, 40]. For instance, if X is
a minimal G-Del Pezzo surface, then the following are equivalent, by
[50, Theorem 1.2]:

e vanishing cohomology:
(4.4) H'(G',Pic(X)) =0, forall G’ CG.

e no element of G fixes a curve of genus > 1,

e cither the degree of X is at least 5 or G = (3 x Cy and X is
G-birational to a specific nonlinearizable GG-Del Pezzo surface
of degree 4.

While not strictly necessary for the analysis of incompressible symbols,
there is also a complete description of conic bundles satisfying (4.4)),
see [50, Theorems 8.3 and 8.6].

Proposition 4.2. Let Y C PGL3(k) be a finite nonabelian group, act-
ing linearly on D = P%. This action gives rise to an absolutely incom-
pressible divisorial symbol in dimension 3, of the form (4.3), if and
only if the action is transitive.

Proof. By [53], if Y acts transitively, then D is Y-birationally rigid
except for Y =2, or &,4. In particular, such actions are not birational
to actions on Hirzebruch surfaces. If Y = 2y, it follows from [?] or the
proof of [39, Proposition 43| that D is not Y-birational to a Hirzebruch
surface. Alternatively, one can notice that the Klein four subgroup of
204 fixes a point in D, while every faithful action of 2, on a Hirzebruch
surface does not enjoy this property. Same holds for Y = &,4. Hence, if
Y acts transitively on D, then the symbol is absolutely incompressible.

Conversely, if Y fixes a point on P2, then a Y-equivariant blowup
exhibits a Hirzebruch surface, and the symbol is compressible. 0

Proposition 4.3 ([46]). Let D be a Del Pezzo surface of degree 6 and
Y C Aut(D) a finite subgroup acting transitively on (—1)-curves. If
Y %2 Cs and Y % &3 then D is Y-solid, and the Y -action is not
(projectively) linearizable.

In particular, the corresponding divisorial symbols in dimension 3,
of the form (4.3)) are absolutely incompressible.
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5. LINEARIZABILITY OF (G-ACTIONS ON TORI

Recall the structure of automorpisms Aut(7") of an algebraic torus
T =G}, over a field k: there is an exact sequence of groups

1 T(k) — Aut(T) -2 GL,(Z) — 1,

and the homomorphism ¢ admits a section. In particular, the torus T’
admits automorphisms arising from finite subgroups I' C GL,,(Z).

Let X be a smooth projective T-equivariant compactification of T
Its Picard group has a presentation

(5.1) 0 — X*(T) — PL — Pic(X) — 0,

where PL is the free abelian group spanned by irreducible components
of the boundary X \ 7', and X*(T) is the character group of 7. In
presence of G-actions, the sequence (5.1)) is a sequence of I'-modules,
where I' := ¢(G) C GL,(Z); here PL is a permutation module.

Lists of finite groups I', for small n, giving rise to actions on Pic(X)
which satisfy (SP), and thus (H1), can be found in [35]. Lineariz-
ability properties of actions of finite subgroups of Aut(7") have been
studied via birational rigidity techniques in [12| [16], where many ex-
amples of G-birationally rigid toric Fano threefolds were produced, and
the groups G considered typically had a large intersection with T'(k).
The stable linearization problem of toric varieties, with G-actions sat-
isfying G N T'(k) = 0, was settled in [34], Proposition 12].

Linearization of actions on 2-dimensional tori is understood [54]. Let
us recall the analysis in dimension 3, following [43]:

Step 1. There are 4 maximal finite subgroups I' C GL3(Z), and in each
case we can fix an explicit (possibly singular) projective toric Fano
threefold X on which the I'-action is regular:
(F) with T'p := Oy x D, acting on X = P! x S, where S is a degree
6 Del Pezzo surface;
(C) with T'¢ := Cy x &y, acting on X = P! x P! x P;
(S) with T'g := Cy x &y, acting on X = Xy, C P°, a singular
intersection of two quadrics;
(P) with I'p := Cy x &4; acting on the singular divisor

X = {xonZOto = xlylzltl} C P! x P! x P! x PL.

If X is singular, we let X=X be the equivariant blowup of its singular
points. If X is smooth, we let X = X.
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Step 2. By [43 Proposition 1], in absence of an obstruction of type
(SP) for the I'-module Pic(X), one of the following holds:

(a) the I'module X*(T") splits and the action is birational to a
product action,

(b) X*(T)F £0,

(c) the action is via a subgroup of I'¢,

(d) the action is via Cy, &3, or is linear, via a subgroup of &,.

Step 3. Fix the following subgroups in GL3(Z):

~1 0 0 1 -1 -1
U1::< 0 0 —1),lo0o o 1 >
0 -1 0 0 1 0
0 1 1 -1 0 0
4% :< o o 1],[o -1 o >
1 -1 -1 0 0 -1
0 0 1 1 -1 -1 1 0 0
WQ::< 1 -1 =1),{o o 1],[0 -1 o0 >
1 0 0 0 1 0 0 0 -1

Then Uy =~ Cy x Cy, Wy =~ Cy x Cy, Wy =~ C3. Tt follows from [43] that
H' (U7, Pic(X)) # 0.

Hence, if I' contains a subgroup conjugate to U, then I' and G do not
satisfy (H1). There are exactly 12 conjugacy classes of such subgroups
I' C GL3(Z).

Furthermore, if I' contains a subgroup conjugate to Wi or s, then
it also follows from [43] that the I" and G-action on Pic(X) do not
satisfy (SP) (but W; and W, do satisfy (H1)).

Here we adapt this to the study of linearizability of the actions of
these groups on tori, via a case by case study as in Step 1. We identify
subgroups of GL3(Z) with subgroups of Aut(X) via the standard lifts
to Aut(7T) with fixed point (1,1,1) € T

Case (F): Assume that I' C Dg, with trivial action on P!. The action
of ®g on S is not linearizable by Proposition or [36]. However, by
[7, Proposition 12], P! x S is linearizable with the trivial action on P.
The action of every proper subgroup of D¢ on S is linearizable.
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Conversely, if I' = I'p, then the action on the toric threefold con-
tributes an absolutely incompressible, by Proposition symbol

(C2, D6  k(5), (1)),

from the origin in the torus. On the other hand, such symbols do not
arise from projectively linear actions, as S is not ®g-linearizable, nor

birational to a product of (projectively) linear actions [60, Example
9.2].

Case (C): The action of I'c on G3, is generated by

1 1 1 1 1 1 1
($1,$2,$3)|—>($3,I2,_), T Ty T ) RN
T T1 T3 T X1 Ty T3
A birational change of coordinates y; := };;’iz yields the action

(yb Y2, y3) = (y37 Y2, _y1)7 <_y17 —Ys3, _y2)7 <_y17 —Y2, —3/3)7

which is clearly linearizable.

Case (S): By results in Section [6] (Proposition [6.1] and Theorem [6.3),
it suffices to establish the linearizability of the action of I' = C3 on G,
with coordinates x1, xs, x3, via

0T > T3, To > L/ mxens, Tixje— 1)z, j=1,2,3.

This action is conjugate to a subgroup of I'c in Case (C) and is lin-
earizable.

Case (P): For I' C I'p, only five groups G do not appear in Case (F),
(C) or (S), up to conjugation:

I'= Q[4, CQ X Ql4, 64, 6;, or Fp.
Each of them contains a subgroup conjugate to U; and thus is not

linearizable. In summary, a subgroup of I'p is not linearizable if and
only if it contains one of Uy, Wy, or Ws.

We summarize the above discussion:

Theorem 5.1. Let T = G2, and G C Aut(T) be such that T := ¢(G)
contains Uy, Wy, or Wy. Then the G-action on T is not stably lineariz-
able. Assume that T¢ # 0, i.e., G fizes a point in T. Then
o if ' = (5 x D¢, then the action is not linearizable but stably
linearizable,
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o if ' £ Cy x D¢ and does not contain Uy, Wy, or Wy, then the

action 1s linearizable.

Proof. If (G) = Uy, then G has an (H1)-obstruction to stable lin-
earizability. If ¢(G) = Wy or Wy, then G has an (SP)-obstruction to
stable linearizability. When T # (), we can assume (1,1,1) € T¢ up
to translation. Then we are in one of the cases (F), (C), (S) or (P)
discussed above.

Stable linearizability of the Cy x Dg-action is established as in [34],
using the equivariant version of the torsor formalism. O

Remark 5.2. The second part of Theorem does not hold without
the assumption 7% # (). For example, consider I' = C2? C GL3(Z) from
Case (S) above. Up to conjugation, we find two translation-free lifts
G CAw(T) of T, i.e., ¢(G) =TI": the standard lift generated by

1 1 _
Oy = — Y2 <7 Ys, T:yj'_)_a j:172737
Y1 Yj

and a twist of it generated by

1 1 )

Ul:ylH__u Y2 <> Y3, T:yj’_)_u .]:17273
hn Yj

The standard lift is linearizable. The twisted one is not linearizable as

the G-action on the projective model P* x P! x P! does not have a fixed

point. In particular, these two lifts are not equivariantly birational.

6. GEOMETRY OF THE SEGRE CUBIC

Rationality of forms of the Segre cubic threefold over nonclosed fields
has been considered in [30]; there exist nonrational forms over non-
closed fields. All forms over the reals are rational [4, Corollary 2.5].

There are 55 nontrivial conjugacy classes of subgroups of &4. By
[3, 18], everything is known in the minimal case, when

G:Q’l57 657 Ql67 66'

Namely, there are two 25 and G5 classes, corresponding to the standard,
respectively, nonstandard embedding of these groups into Gg. If G is a
standard subgroup 25, then rk Cl(Xg)G = 1 and X3 is G-birationally
super-rigid [3]. This also implies that X3 is G-birationally super-rigid if
G is a standard S5, 2 or the whole group Gg, and the actions of these
groups are not linearizable. Vice versa, if G is a nonstandard subgroup
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S5, then 1k C1(X3)¢ = 2, and we have the following nonsymmetric
G-Sarkisov link:

Vv Vv’
P3 X3 S
where ¢ is a blow up of a G-orbit of length 5, both w and @’ are
flopping contractions, S is a smooth Del Pezzo surface of degree 5,
and ¢ is a P'-bundle. In particular, the actions of all subgroups of
the nonstandard subgroup &5 are linearizable, e.g., the nonstandard
subgroup 25, the unique subgroup Cs, D5, §5.

Next we exclude G-actions with G-fixed singular points, since then
X3 is G-birational to P2. There are 25 such conjugacy classes; all such
G are contained in the unique class of &3 x Cs.

Therefore, all subgroups of the nonstandard &% or &% x Cy yield
linearizable actions. The remaining groups are contained in one of two
nonconjugate Cy X Sy4; one of them preserve a plane II C X3 (this
is a nonstandard subgroup of &), and another one does not preserve
any plane in X3 (this is a standard subgroup, conjugate to the group
generated by the involution (12) and permutations of the remaining
indices).

Proposition 6.1. Suppose that X3 contains a G-invariant plane II.
Then there exists the following G-equivariant diagram:

where

o Xy, C P is the unique singular toric complete intersections of
two quadrics with six nodes,
e f is a small birational morphism, and
e g is a blowdown of the proper transform of the plane 11 to a
smooth point of X .
Moreover, the G-action on Xa o preserves the torus in Xoo, and G fives
a point in the torus.

Proof. Unprojecting from the G-invariant plane, we obtain the required
commutative diagram. O
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The following diagram summarizes the relations between G-actions
on X3, when G is contained in one of two nonconjugate subgroups
Cy x G4 and is not contained in the nonstandard &% or 6% x Cy:

64,8, <—— C2 x G4(no II) Ca x G4(11 G4
l I~ 1 |
Ay =< Co X Uy Cy X Dy Cy x Ay Uy =C2
m,@’ U/g =C3 W1 = Ca x Cy
117(2

By Proposition we can identify subgroups of Aut(X3) leaving a
plane invariant with subgroups of Aut(Xs,,) fixing the origin of the
torus, which also can be identified with finite subgroups of GL3(Z)
as in Section [5 In this way, we identified the subgroups C3,C3 and
Cy x Cy in the diagram with subgroups of GL3(Z), using notations from
Section [t

e U; = (% C GL3(Z) is the group with (H1) obstruction to stable
linearizability,

o W, = Cy x Cy, Wy = C% are groups with (SP) obstruction to
stable linearizability.

Moreover, the other subgroup C% in the diagram can be uniquely char-
acterized by the following geometric conditions:

(1) Sing(X) splits as a union of five C3-orbits of length 2, and
(2) it is not contained in the nonstandard &%, and
(3) it leaves exactly three planes in X3 invariant.

Corollary 6.2. Suppose that the following conditions are satisfied:

(1) G does not fix a singular point of X3, and
(2) G is not contained in the nonstandard S5, and
(3) X3 does not contain G-invariant planes.

Then G does not satisfy (H1), and the G-action is not stably lineariz-
able.

Proof. By the diagram above, G' contains the subgroup C3 with the
(H1) obstruction. This can also be checked directly, via Magma. O
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If G leaves invariant a plane II C X3, the linearization problem is
reduced to G-actions on a three-dimensional torus with G-fixed points,
which was studied in [33, Section 9], and in detail in Section[5] Combin-
ing Proposition [6.1], Corollary [6.2] and results in Section [, we obtain:

Theorem 6.3. The G-action on X3 is linearizable if and only if either

o (G fixes a singular point on X3, or

e G is contained in the nonstandard &Y, or

e G = C2%, X3 contains three G-invariant planes, and Sing(X)
splits as a union of five C2-orbits of length 2.

Moreover, when the G-action is not linearizable, it is not stably lin-
earizable.

Proof. If one of the first two conditions is satisfied, then G is lineariz-
able, as explained above. If X3 does not contain G-invariant planes,
then G is not stably linearizable by Corollary Hence we may as-
sume G does not fix a singular point, GG is not contained in the nonstan-
dard &% and X3 contains a G-invariant plane II. By Proposition ,
there then exists a G-equivariant birational map from X3 to the toric
intersection of two quadrics Xyo C P,

Going through the group diagram above, we see GG is not stably
linearizable when G is not conjugate to the C3 characterized in the
third condition; this C% can be identified with the subgroup in GL3(Z)
generated by

0o 0 1 -1 0 0
-1 -1 =1, 0 -1 0
10 0 0o 0 -1
It is linearizable, as explained in Section [5] 0

Remark 6.4. The Burnside formalism of [41] does not allow to decide
the linearizability of the actions of both C3 at the bottom of the lattice
diagram above. On the other hand, the formalism of incompressible
symbols as in Section [}, proves nonlinearizability in several cases; note
that these cases are obstructed by (SP), as they contain W;.

Let G = Cy x 24, generated by

L ($1,$2,$3,x47x5,x6> — ($3,$5,$17x6,x2,x3),
T (271,1'2,3337554,1'5,1'6) — (1'3,1'5,.:51,1'4,1'2,176),

o ($1,I2,$37$4,I57I6) — ($5,$67$2,I1,I4,9€3)-
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The fixed locus for the involution ¢ is a plane II C X3 given by
T1+ T3 =T+ T5 = X4 + Tg =0

with a residue 2A4-action on it. This produces an absolutely incom-
pressible divisorial symbol (see Proposition [4.2))

5= (CQ,Q/[4 C k(]P2), (1))

The model X3 O G is not in standard form. However, G’ does not leave
invariant any irreducible subvariety of X3 with nontrivial stabilizer ex-
cept I1. Therefore, no equivariant blow-up of X can possibly contribute
the symbol s to the class [X3 © G]°. The class then contains the in-
compressible symbol s with multiplicity 1. On the other hand, the
algorithm in [41], implemented in [59], shows that [P? © G| contains
s with multiplicity 2 for any (projectively) linear action P? © G. We
conclude that this G-action on X3, and thus also the action of Cy x &4
containing GG, are not (projectively) linearizable.

7. GEOMETRY OF THE BURKHARDT QUARTIC

The Burkhardt quartic X, can be defined in P* C P° by (1.2), or in
P* by . Up to projectivity, X, is the unique quartic threefold with
45 nodes [27], and Aut(X4) = PSp,(F3) acts on P* via an irreducible
5-dimensional representation of its central extension Sp(Fs). Our goal
is to identify subgroups G C PSp,(FF3) giving rise to (projectively)
linearizable actions on Xj.

Arithmetic aspects of the Burkhardt quartic, in particular, its ratio-
nality over nonclosed ground fields &, have been explored in [8] 9, [10].
For example, the form is rational over Q. For all forms X of X,
over nonclosed fields of characteristic zero there exist a dominant, de-
gree 6, map M — X, where M is a Brauer-Severi variety of dimension 3
[8, Theorem 1.1]; forms arising from moduli spaces of abelian surfaces
are unirational, in particular, their rational points are Zariski dense
(see [10] and references therein). It is an open problem to determine
which forms X are rational over Q [0, Question 2.9]; there certainly
are k-forms that are not k-rational [10], [§].

Note that [10, Section 3| lists all subgroups G C PSp,(F3) with
nontrivial cohomology

HY(G, Pic(Xy)),

where X, is the standard resolution of singularities of the Burkhardt
quartic, denoted by A3(3) in [I0]. Recall that this is an obstruction to
stable (projective) linearizability of the G-action. In particular, of the
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115 conjugacy classes of nontrivial subgroups of PSp,(F3), only 26 do
not have the cohomological obstruction to (H1).

Remark 7.1. Note that PSp,(F3) C W (Eg), as an index-two subgroup.
If we consider the W (Eg)-action on the Picard lattice of a smooth
cubic surface, then, by [58], every subgroup G C W (Eg) arising from a
minimal action on a cubic surface has nontrivial cohomology.

Proposition 7.2. Assume that G contains an involution exchanging
two coordinates in P°. Then the G-action is not projectively linearizable
and not equivariantly birational to the action on the Segre cubic.

Proof. We apply the formalism of Section [dl The involution action
leads to classes

(C2,Y C k(D) (1)),

where D is a quartic K3 surface with 12 nodes. This is an absolutely
incompressible symbol, since D is not uniruled. Furthermore, it does
not arise from projectively linear actions.

On the other hand, every Cs-action on the Segre cubic fixes a singular
point, and the action is linearizable. 0

Remark 7.3. There are 12 (conjugacy classes of ) subgroups of PSp,(F3)
containing this involution and satisfying (H1):

0270470227067 é7Q87@4702 X 0670127S|—2<F3)7C3 X g, U3 X Dy,

in particular, cohomology does not allow to distinguish linearizability
from nonlinearizability in these cases; the corresponding actions are
specified in [21]. The Burnside obstruction to linearizability in Propo-
sition vanishes for X, x P!, with trivial action on the second factor,
see, e.g., |60} Section 3.5]. The (SP)-obstruction is also trivial, at least
for G = C3. Thus we are led to speculate that the Cy-action on the
threefold X, x P! is linearizable.

Using Proposition , we see that 1k C19(Xy) = 1 for 34 out of 115
conjugacy classes of nontrivial subgroups in PSp,(F3). All these groups
are not linearizable by the following result.

Proposition 7.4. Let G C Aut(X,) be such that tk C1(X,)¢ = 1.
Then X4 is G-birationally super-rigid.

Proof. See Section [§| O

Now, excluding groups with nontrivial cohomological obstructions to
linearizability, those containing an involution fixing a K3 surface in Xy,
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and those with rk C19(X,) = 1, we are left with the following tree of
12 groups, where the left column lists rk C1(X,)¢:

2 D Cs x Oy D5
N N
Cy S; 022 Cs Cy Cy
A
s c Cy
10 Cs

Concretely, put

1 0 0 0 0 2¢+1 2¢+4 0 0 0
0 0 0 0 ¢ —2¢—1 q+2 0 0 0
oc4=[0 0 0 ¢*> O, o9= 0 0 2q+1 —q+1 2¢+11,
01 0 0 0 0 0 —q+1 2¢g+1 2¢+1
00 1 0 0 0 0 —q—2 —q—-2 2¢+1
10 0 0 O -1 2¢ 2¢°> 2 2
00 0 0 1 1 q ¢ 1 2
oa=10 0 O q2 o1, og = q2 2 q q2 q2 s
0 0 g 0 0 @ 1 2¢ ¢ q>
01 0 0 O @ 1 q 2¢ q+1
-1 2q 22 2 -1 2¢ 2¢¢2 2 2
q -2¢> 1 gq ¢ 1 2¢ ¢
o3=]1 -2 ¢ ¢ 1], os=|q ¢ 1 2¢ q|,
11 q ¢ 2 9 ¢ 1 q 2
P ¢ 1 —2¢ 4 ? 2 q ¢ ¢

where ¢ is a primitive third root of unity. The groups in the diagram
are given in the above generators by:

D = (02,06), C3xCy=(03,04), Ds5= (07,05, Cy=/00),
63 = (02,04), CF =(02,05), Cs=(06), Ci= (o),
Cs = (o5), C3={og), Cy={(o3), Ca2=(0}),
The rest of this section is devoted to a case by case analysis of these
actions, organized as follows: First, we recall classical linearization
constructions for Cy and C;. Then we present a new linearization

construction for Cs, which also gives linearization of 'y and C5, and
use this construction to create a ®g-equivariant birational map from
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X4 to a smooth quadric threefold X, C P*, which gives a linearization
for C2. Finally, we present a linearization construction for Cy. The
remaining four subgroups are

S3, D5, D, C3 x Cy.
We do not know whether or not they are linearizable.

To study the linearization problem for ®¢ and &3, one can use their
actions on the quadric X,. For ®j, recall from [13, Example 5.8] that
there exists a ®5-equivariant commutative diagram such that Z
is the smooth Del Pezzo surface of degree 5, and ¢ is a conic bundle,
whose discriminant curve is the union of all (—1)-curves in Z. This
might be a good model for the study of the linearization problem for
®5. Before showing linearization constructions for abelian groups, we
present an explicit C5 x Cy-equivariant birational map from Xj to a
fibration into quartic Del Pezzo surfaces, which could hopefully be used
to study the linearization problem Cj x Cjy.

Example 7.5. Let G = (03,04) ~ C3 x Cy. The defining equation of
X4 C P* can be rewritten as fors = gaho, where
fa =y1v2 + Cyrys — viva — Cyiys — Y5 + ayays + (¢ — yayat
(—q = 2)y2y5 — ¥3 + (—q — 2)ysya + (—2¢ — D)ysys + ¢*y3 — quays + 3,
92 =5 — Y1ys — Q1Ys — qU5 + Y2Us — CY2Ya — @ Y2Ys — ¢Y3 — Y3Ya — YsYs,
ro =quys + Y1Ys + Y3 — CY2ys + ay3,
ha =y} + ¢*y1ya + Q15 + QU5 — Y2ys — Y2Ys — qY2Ys + Y5 — qYsya — qYsYs-
The surfaces {fo = hy = 0} and {g> = 7 = 0} generate a G-invariant
pencil, and there exists a G-equivariant birational morphism )?4 — Xy,
where
X, = {fou+ gov = hou + 190 = 0} C P* x P,

and the G-action on P* x P! is generated by

(1o (1 201
04 q2 -1 (%] 0 q .

The birational morphism )?4 — X4 is given by the projection to the
first factor of P* x P!, while the projection to the second factor X, — P*
is a G-equivariant fibration into Del Pezzo surfaces of degree 4.

Linearization of Cy. By [0, Remark 4.3|, the classical parametriza-
tion of the Burkhardt quartic by Baker is Cy-equivariant, i.e., the action
of Cy pulls back to an action on P3. An explicit description of the base
locus of the birational map ¢ : P* --» X, can be found in [29]:
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Consider a configuration in P? consisting of 9 lines [y, ...,ly with
[; meeting l;11 in a point p;, and [y meeting [; in pg. The points
{p1,p4,07}, {P2,P5, P8} and {ps,ps,po} define lines that intersect in a
common point p;g and

LnNlgNily, LNnilsnls, l3NlgNly

define a further 3 points. There is a unique such configuration, modulo
PGL4, and the linear system of all quartic surfaces in P? containing
these 9 lines gives ¢. The symmetry group of this configuration is
indeed Cy.

Linearization of Cs. There is also another parametrization, due to
Todd [57], and described in detail in [45], Section 5.1]. There is a rigid
configuration of 10 lines and 15 points in P?, and the linear system of
quartic surfaces passing through these 10 lines gives a birational map
from P? to the Burkhardt quartic [45], Figure 5.1]. For example, the 10
lines can be given by equations and visualized as follows

ll:{$0—$3:$1+q2$2+q$320}, loy = {zy = x5 =0},

Is = {z, = 29 + ¢*z3 = 0}, ly = {x1 = 19 = 23},
Is = {wo + w3 = 32 + ¢°x3}, le = {vo = 11 = 22},
Iy = {zo + x5 = 1 — 3}, ls = {rg = 71 = 0},
lg = {zo + q2£131 = T}, Lo = {xg = x5 = 0}.

The symmetry group of this configuration is Cs, and there are exactly
two such configurations in P3, swapped by a ®s-action on P3.
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Linearization of Cs. Let G = (04) ~ Cs C Aut(X,). Fix the follow-
ing eight Jacobi planes:

I = {y1 = y5 = 0},

Iy = {y1 = y2 = 0},

3 = {(—¢+ Dy1 + (=2¢ — Dys = qy1 — ¢°y2 — y3 — y4 — ¢°ys = 0},

Mg ={qy1 —y2 —Ys — qua — ys = @1 — ¢*y2 — Y3 — ya — ¢"ys = O},

s = {qu1 — Y2 — qys — ya — ¥s = a1 — ¢°Y2 — Y3 — ya — ¢°ys = 0},

Moy = {¢*y1 — ¢®y2 —y3 —ya — ys = (¢ + 21 + (g — 2)y2 = 0},

o5 = {y1 — ys = y2 + Y3 + qya = 0},

Mss = {¢*y1 — v2 — qys — ¢°ya — ¢°ys = ay1 — qy2 — Y3 — ya — y5 = 0},
and let Dg = II; + 11y + 113 + 1116 4 I118 + [1og + 155 + I134. Here we keep
the enumeration of Jacobi planes in X, as set in Magma, and recorded
in [21]. Let

M4 = |4<_KX4) - D8’7
it is a G-invariant four-dimensional mobile linear system, since the class
[Dg] € Cl(X}) is G-invariant. Choosing an appropriate basis fi, ..., fs
of My (see [2I] for explicit equations of polynomials of the choice), we
obtain an explicit rational map X, --» P* given by
iy tys i ya sl = [fis for far fa S5l

whose image is a quadric threefold Q C P* with equation
Byt — 3y1y2 + 33 + (20 — 2)yiys + (—4q — 2)yeys+
(5¢ + 4)y1y4 + (—q — 5)y2ys + (—q — 2)ysya + (2¢ + 1)yi+
(—q + Dyays + (20 + Dyays + (¢ — 1ysys + 3yays + (—2¢ — 1)y = 0.

Note that @ is a quadric cone with vertex at [0:0: ¢?: ¢ : 1].

We have constructed a G-equivariant rational map y: Xy --» @,
where the induced G-action on @ is given by the projective transfor-
mation

-3 —3q 0 q—1 qg+2 —2¢-—-1
3 0 q+2 4g+2 49+5
1 qg+1 —2q+2 —-2g—1 q+2

2q+2 —q—3 2¢q—2 2q—2 —q+1

qg+3 3¢q—1 3¢g+3 6g+3 3

Using Magma, one can check that x is birational. Note that G fixes the
point

(7.1) [—24¢:—-3¢—8:3¢+1:3¢+1:7€Q
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Thus, composing y with the projection Q --» P? from this point,
we obtain a G-equivariant birational map X4 --» P3, which gives a
linearization of the subgroup G ~ Cg.

The linearization of G can also be proved as follows. Consider the
following six lines in P4:

Ly ={ys—ys =ys —y5 = y1 + qy2 = 0},

Ly ={2ys —ya — y5 = 2u2 — ya + U5 = 21 — ¢*ya + ¢°y5 = 0},

Ls = {ys — qys = 2ys + ¢’ys = 1 + ¢°y2 — (¢ + 2)ys = 0},

Ly={ya+ ¢ys = y3 = 1 + ¢°y2 + qys = 0},

Ls = {ys + qya + Ys = Y2 — Ya — ¢*ys = y1 + 2qua + (¢ + 2)ys = 0},

Lo ={ys —qus = ys — qys = y1 + qy> = 0}.

They are contained in the quadric cone @), and they form a hexagon.
Now, consider the following two conics in Q:

R = {2y3 — ¢°ya — qys = 291 + 2942 — ¢*ya + qus = 0} N Q,
R={ys—ya=v+y+qs—qy=0}NQ.
Both R and R’ are smooth, they intersect transversally at the G-fixed

point ([7.1)), and they do not contain the singular point of the cone Q.
Note that

e R contains the intersection points Lo N L3, Ly N Ly, Lg N Ly,
e R’ contains the intersection points Ly N Ly, L3N Ly, LN Lg.

Let Z be the curve Ly + -+ + Lg + R+ R'. Then Z is a (singular)
G-invariant curve of degree 10 and arithmetic genus 8, which can be
visualized as follows:
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Let M3 be the linear subsystem in |Og(3)| consisting of all surfaces
that contain Z. Then Mj is a G-invariant mobile four-dimensional
linear system, and it gives a G-equivariant rational map Q --+ P*
whose image is an irreducible quartic threefold X} that has 45 nodes.
This gives X} ~ X, [27], so choosing a suitable basis for M3 (see [21]
for equations of the choice), we get X = Xj.

This gives us a G-equivariant rational map p: ) --+ X,;. One can
check that p is birational. Moreover, choosing a suitable basis of M3,
we get p = x~!'. We conclude that G is linearizable; PSp,(IF3) contains
four subgroups isomorphic to Cs (up to conjugation), and we already
proved that three of them are not linearizable.

Note that the indeterminacy of p can be resolved via the following
G-equivariant commutative diagram:

(7.2) U i 1%
| |s
Xy=-----Q

where ¢ is a blow up of the singular curve R + R’, 7w is a blow up
of a nodal curve of arithmetic genus 1 that is a union of the proper
transforms of the lines L4,..., Lg and the fibers of the morphism ¢
over the points L1 N LQ, LQ N L3, L3 N L4, L4 N L5, L5 N L6> L6 N Lla
and 7 is a birational morphism that contracts 31 disjoint curves to 31
nodes of the quartic X,. The threefold V' has two nodes, and U has 14
nodes, since the curves blown up by 7 form a dodecagon.

Linearization of C3. In the previous subsection, we presented an ex-
plicit Cg-equivariant birational map x: X4 --» @), where () is a quadric
cone in P*. Since Cj fixes a point in @, this gave us a linearization
of Cg. Let us use x to construct a Dg-birational map from X, to a
smooth quadric threefold in P4, which will give us a linearization of
C2 C . Set G = (04,09) ~ D. Recall that our birational map x
is (og)-equivariant, but not G-equivariant, since the involution oy acts
birationally on the quadric cone @) via

(Y1 Yot ys : ya:ys| > [t to ity ity : ts),
where

t1 = 19y1y3 + (18¢ + T)y1ys + (—6q + 4)y1y5 + (=5 — 3)y2y3+
(—=5q — 3)yays + (4 — Nyays + (2¢ — 14)y3 + (2¢ + 5)yzya+
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(11q + 18)ysys + (3¢ — 2)y3 + (=9 + 6)yays + (—9g — 13)y2,

to = (3¢ + 17)hys + (60 — Dyays + (=3¢ + 2)y1ys + (—q — 12)y2y3+
(—10q — 6)y2ys + (—q — 12)y2y5 + (4q — 28)y§ + (—=5q + 16)ysys+
19qysys + (12¢ + 11)y2 + (12 — 18¢)yays + (—12q — 11)32,

t3 = (12q + 11)y1ys + (—2q — 5)y1ya + (5q + 3)y1ys+
(—q — 12)yay3 + (=3¢ + 2)y2ya + (—2q — 5)yays + (8¢ + 1)y +
(—2q — 5)ysya + (2¢ + 5)ysys + (—3q + 2)y3 + (—5q — 3)yZ,

ty = (20q + 12)y1ys + (—9q — 13)y1ys + (4¢ + 10)y1y5+
(—2—5)y2y3+(5¢+3)y2ya+(—9¢—13)yays+(8g+1)y5+(—9g—13)ysys+
(12q — 8)ysys + (—4q + 9)yi + (6 + 15)yays + (—13q — 4)y3,

ts = (¢+ Dyiys + (—q¢ — 12)y1ys + (=3¢ + 2)y1y5 + (—9¢ — 13)y2y5+
(49 + 10)yoys + (—q — 12)yoys + (—10q + 13)y3 + (23¢ — 9)ysyat
(10 + 6)yays + (—17q — 14)yj + (6q + 15)yays + (—12q — 11)y2.

However, the linear system Mj C |Og(3)| constructed in the previous
subsection is G-invariant, and G acts biregularly on the threefold V.
Thus, the birational map 7 on~t: X; --» V in the diagram is
also G-equivariant. Observe that tk C1(V)¢ = rk Pic(V)% =1, so V is
a G-Mori fiber space, cf. [48, Theorem 6.5(iii)].

Now, let pr: @ --» P2 be the projection of the quadric cone @ from
the line passing through the vertex of ) and the G-fixed point .
Choosing appropriate coordinates on P, the projection map pr is given
by

3 0 0
0 3 0
0 0 3
¢+2 Bg+4 —6q

—q+1 qg+5 3¢
One can check that
prx (proc): Q --» P? x P?

Z0,T1,2L2 20,%21,22



EQUIVARIANT GEOMETRY OF THREEFOLDS 29

gives a birational map o: Q — W, where W C P? x P? is a smooth
divisor of bidegree (1,1) that is given by

61’020 — 35(3021 + 2((] — 1).17022 — 31’120 — 31’121 + (5(] + 4)1’122
+2(q — 1)xozg + (5q + 4)xe21 + (—2q + 5)x929 = 0.

The birational map g is G-equivariant, and rk CI(W)% = 1, so W is a G-
Mori fiber space. This gives the G-equivariant commutative diagram:

where « is the blowup of both singular points of V., V --» W is a flop

in the strict transform of the line in () passing through it vertex and

the point , and J is a blow up of a G-irreducible smooth curve

consisting of four irreducible components such that one of them is the

fiber of the projection to the second factor W — P? over [1 : 3¢+2 : 3].
The group G leaves invariant the curve

{821 — (3¢ +2)x2 =321 — (3¢ + 2)2o =0} C W,

which is a curve of degree (1,1). Blowing up this curve ~: W — W,
we obtain the following (classical) G-Sarkisov link:

where X is a smooth quadric 3-fold in P4, and ¢ is a blow up of two
disjoint lines in X,.

To describe the map W --» X, explicitly, observe that G leaves
invariant the affine chart of W given by

3r1 — (3¢+2)x2 #0 and 3z — (3¢ +2)z2 # 0,

which is an affine quadric 3-fold, whose G-equivariant compactification
is Xy. Hence, choosing appropriate coordinates on P4, we may assume
that X5 is given by

Yi1Ys — Yoy + yz = 0,
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and the induced G-action on X5 is generated by
12 ys s ya s ys) = =@y sy qus T —qya s —ys),
(Y1 Y2t Ys i YaYs) > [Ya Y3 Y2ty Ys)

In particular, we see that the subgroup (o, 08) ~ C3 is linearizable,
because the corresponding C3-action on X, has a fixed point.

Linearization of C;. Now, we let G ~ C} be the subgroup in PSp,(FF3)
generated by 4. Consider the G-orbit of four planes given by

s = {(—q+ 1)1 + (—2¢ — D)ys = 0,qy1 — ¢°y2 — ys — ya — ¢°y5 = 0},
s = {¢*y1 — qy2 — ¢*ys — qya — qus = 0, (¢ + 2)y1 + (2¢ + 1)y2 = 0},
M ={¢*y1 — qu2 — qus — €°ya — qys = 0, (¢ + 2)y1 + (2¢ + 1)ys = 0},
s = {q*y1 — qy2 — y3 —ya — qus = 0,qy1 — ¢°y2 — qys — ¢*ya — ¢°ys = 0},
where ¢ is a primitive cube root of unity, as above. Then projection

from each of these planes produces a map X, --» P!. The product of
these four projections results in a G-equivariant map

TiXg--2Py o xPL . xPL X P

x0,T1 20,21 ug,u1

One can check that this map is birational onto its image. Choosing

appropriate coordinates, the image V' is a divisor in (P')? given by
TozoUoto + TozoUot: + Toz1Upts + T121Uoly + 121Uty = 0.

Notice that V' has 5 singular points, which are ordinary double points.
Observe also that rk Pic(V)¢ = 1, but rk CI(V)¢ = 2, so V is not a

G-Mori fiber space.
Let us find a GQ-factorialization of V. To do this, we choose another
G-orbit of four planes in Xjy:

I = {(—¢+ Dy1 + (-2¢ — 1)ys = (¢ + 2)y1 + (2¢ + 1)ys = 0},

s = {(=¢+ Dy1 + (—2¢ — Dys = 0,qy1 + (¢ + Dy2 — qy3 — ¢*ya — ¢°ys = 0},

M = {¢*y1 — qy2 — *y3 — aya — qys = 0, (¢ + 2)y1 + (2¢ + 1)ys = 0},

2o = {¢*y1 — qu2 — 4°ys — aya — ays = 0,qy1 — ¢°y2 — qys — ¢°ya — ¢’y = O}

One can check they are not contracted under the map m, and the
G-invariant divisor 7(I1;) + 7(Il5) + 7(I114) + 7(Ily) is not Q-Cartier.
The linear system

| = Ky — w(Ily) — w(Il5) — m(Ilis) — 7(Ily)]

is G-invariant, and its projective dimension is 5. Moreover, under the

choice of basis

ToZoUoty, ToZiUolo, ToZiUoli, Toziuili, TiziUoti, Tiziuity,
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it gives a G-equivariant birational map p : V' --» Xy, where Xy is a
complete intersection in P?, with equations:
VaUs — U3Vg = V1V + VU3 + v% + v3vu5 + vavs = 0.

The induced G-action on Xy is given by

0 0 0 10 0
0 0 0 01 —1
0 —¢2 -1 11 0
0 ¢ 0 00 0
¢ 0 0 00 1
0 0 0 00 1

Note that this X5 5 has 5 singular points and is not toric, so it is different
from the toric intersection of two quadrics with 6 singular points that
appeared in Section [f] and [6]

The birational map p fits the following G-equivariant commutative

diagram:
1% 1%
P! 1% 4

—————— = Xap

)

where § and ~ are small G-equivariant birational morphisms that re-
solve 4 singular points of V' forming one G-orbit, § is a blow up of 4
singular points of V' forming one G-orbit, and « is a fibration into Del
Pezzo surfaces of degree 4. The small birational morphisms g and
are GQ-factorializations of V, and the composition a0 71 oy o !
is given by the projection P° --» P! from the three-dimensional linear
subspace in P° that contains 4 singular points of X5 blown up by 4.
A similar G-Sarkisov link appeared in the proof of [2, Lemma 2.16].
Now, welet P=1[0:0:0:0:1]. Then P is a G-fixed singular point
of Xy5. Projection from P gives a G-birational map from Xy, to a
smooth quadric threefold X, C P* that fits the following G-equivariant

commutative diagram:
Y

Xog—————- = Xy

where Y — X 5 is the blowup of the point P, and Y — X is the blow
up of a singular connected curve of arithmetic genus 1 and degree 4,
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which is a union of four lines. Note that Y is a singular Fano threefold
in the deformation family Ne2.23, and the constructed G-Sarkisov link
is a degeneration of a classical Sarkisov link that blows up a smooth
quadric threefold along a smooth quartic elliptic curve.

Since the G-action on a smooth quadric threefold has a fixed point,
the action of G is linearizable.

8. EQUIVARIANT BIRATIONAL RIGIDITY

Let X, C P* be the Burkhardt quartic and G C Aut(X,) be such
that rk C19(X,) = 1. In this section we prove Proposition [7.4] i.e., we
show that X, is G-birationally super-rigid. We start by recalling sev-
eral well-known geometric facts about Xy, and proving three technical
lemmas.

The quartic X, has 45 isolated ordinary double points (nodes). One
can also check that

e a line in P* can contain 1, 2 or 3 nodes,
e a plane in P* can contain 1, 2, 3, 4, 6 or 9 nodes,
e a hyperplane in P4 can contain 1, 2, 3, 4, 7, 10, 12 or 18 nodes.

Planes in P* containing 9 nodes of X, are called Jacobi planes — these
planes are contained in X,. The threefold X, contains 40 Jacobi planes,
each of these 40 planes contains exactly 9 nodes of Xy, and there are
exactly 8 planes in X, that pass through a given node. The union
of all planes in X} is a divisor in [10(—Kx,)|, which we denote by J.
Similarly, hyperplanes in P* containing 18 nodes of X, are called Steiner
hyperplanes — their intersections with X, split into unions of 4 Jacobi
planes. We will call such unions of 4 Jacobi planes tetrahedra. There
are 40 Steiner hyperplanes, so X, contains 40 tetrahedra.

Lemma 8.1. Let X be a subset of the singular locus Sing(Xy), of cardi-
nality s = |X| > 1. Suppose that at least one of the following conditions
is satisfied:
(1) s <4,
(2) s € {5,6}, the set X is contained in a plane in P*, no 3 points
i X are collinear,
(3) s =1, the set 3 is contained in a hyperplane in P*, no 4 points
of the set ¥ are contained in a plane in P*.

Then X4 contains a tetrahedron that is disjoint from 3.

Proof. Computer computations. O
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Lemma 8.2. Let C' be an irreducible curve in X4 of degree d < 3, let
¥ = CNSing(Xy), and let s = |X|. If C is a twisted cubic curve, we
also suppose that s € {5,6}. Then there is a Jacobi plane A C Xy such
that AN C' contains a smooth point of Xy.

Proof. Since the locus Sing(X4) is an intersection of cubics in P4, we
see that s < 3d. Thus, if d < 2, then X, contains a tetrahedron T’
that is disjoint from > by Lemma so that T'N C' contains a smooth
point of Xy, since TNC' # @. This proves the lemma in the case d < 2.
Hence, we may assume that C'is either a plane cubic or a twisted cubic.

Suppose that C' is a plane cubic. Let II be the plane in P* that
contains C'. If IT C Xy, we are done. If IT ¢ X, then Xy|p = C + ¢
for some line ¢, which gives s < 4, since ¥ C Sing(C + ¢). Now, the
required assertion follows from Lemma [8.1]

To complete the proof, we may assume that C' is a twisted cubic
curve. If s <4 or s =7, the assertion follows from Lemma [3.1} Thus,
we may assume that s € {8,9}. Let f: X4, — X4 be the blow up of
all singular points of Xy, let J be the strict transform on X, of the
divisor J, let £ be the union of all f-exceptional prime divisors, and
let C' be the strict transform on X, of the curve C'. Then

0<T-C= (f'(~10Kx,) ~4E) - C =30~ 4E-C <30 — 45 < -2,

which is absurd. This completes the proof of the lemma. 0

Lemma 8.3. Let C C Xy be a twisted cubic curve and ¥ = C N
Sing(Xy). Set s = |X| and let M be a non-empty mobile linear sub-
system in | — nKx,| for some positive integer n. Suppose that s < 6.
Then multe(M) < n.

Proof. If s > 1, let g: X4 — X4 be the blow up of . If s = 0,
we let X, = X4 and ¢g = Idx,. Let f: )?4 — X, be the blow up of
the strict transform on X, of the twisted cubic curve C, let F' be the
f-exceptional surface, let Ey, ..., Fy be the (f o g)-exceptional prime
divisors that are mapped to the subset X, and let M be the strict
transform on the threefold X,. Set m = multc(M). Then

—

M ~q f*(—nKX4) —mF—ZaiE,
i=1

where ay, ..., as € Z>o. We have to show that m < n.
If s > 1, then each E; is a Del Pezzo surface of degree 7 and
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which implies that m < 2a;. So, if s > 1, then a; > % for every 1.

Set H = (fog)(— KX4). Then |2H — F — "7 | E;| does not have
base curves, because the curve C is cut out by quadrics in P*. Let D
be a general surface in 2H — F — > | Eil. Then D is nef. Let M,
and M2 be general surfaces in M. Then D - Ml M2 0.

Let us compute D - M1 Mg We have

H3=4, E;-H*>=0, F-E?=0, FP=s5-1, E-F*=—
H-F*=-3, F-H*>=0, E;-F-H=0, E’=2s, H-E:=0.
Then

OgD.]/\\/[/1.]T/[/2:8—5m2+2<2ai—3>m—22a?.

i=1

This gives m < n, since s < 6 and a; > % for i € {1,...,s}. O

Now, we are ready to prove that X, is G-birationally super-rigid.
Suppose it is not. By Corollary [3.3] there is a non-empty G-invariant
mobile linear subsystem M C | — nKx,|, for some positive integer n,
such that the singularities of the pair (X4, =M) are not canonical. Let
us seek a contradiction.

Set A = % Let Z be a center of non-canonical singularities of the
log pair (X4, AM), let M; and M, be two general surfaces in the linear
system M. If Z is a smooth point of Xy, then it follows from [52] or

[24, Corollary 3.4] that
4
(21 Mg) > 45 = 4,

which leads to a contradiction:
4 4
= H MMy > (MI-M2> > 5 =4,
where H is a general hyperplane section of X, passing through P.
Thus, either Z is a singular point of Xy, or Z is an irreducible curve.

Suppose that Z a singular point of Xy. Let f: X4y — X, be the
blow up of this point, let E' be the f-exceptional surface, let M be the
strict transform on X, of the linear system M, and let M be a general

surface in /\/l. Then
MVNQ f*( —nKX4) — CLE,

for some integer a > n, by [22, Theorem 1.7.20] or [24, Theorem 3.10].
Now, let II be a Jacobi plane in X, that contains Z, let L be a general

4n? =
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line in IT that contams Z, and let L be its strict transform on X4 Then
LgZM so that 0 < M - L—n—a<0 which is absurd
Thus, Z is an irreducible curve. Then multy (M) > X = n. Write

M1~M2:mZ—|—A,

where m is a positive integer such that m > n?, and A is an effective
one-cycle whose support does not contain Z. Then

4
2 _ _
4n® = p =
which gives deg(Z) € {1,2,3}. Asin Lemmal[8.2] let ¥ = ZNSing(X,),
and set s = |3|. If Z is a twisted cubic, then s & {5,6} by Lemmalg.3]
Thus, it follows from Lemma that X, contains a Jacobi plane II
such that I N Z contains a smooth point P of X,. Let ¢ be a general

line in this plane that contains P. Then ¢ ¢ M, so

. 1
n=<= My - = multp(M;) = multz(M;) = multz(M) > 1=

—Kx,-M;-My=mdeg(Z)—Kx,-A > mdeg(Z) > n*deg(Z),

which is absurd. This completes the proof of Proposition [7.4]
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