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Abstract. We investigate equivariant birational geometry of ra-
tional surfaces and threefolds from the perspective of derived cat-
egories.

1. Introduction

LetX be a smooth projective variety over an algebraically closed field
k, of characteristic zero. Assume that X is equipped with a regular,
generically free, action of a finite group G. A major topic in birational
geometry is to understand equivariant birational types, e.g., to decide
whether or not X is

• (projectively) linearizable, i.e., equivariantly birational to pro-
jective space, with a (projectively) linear action of G, or

• stably (projectively) linearizable, i.e., (projectively) linearizable
after taking a product with Pm, for some m, with trivial action
on the second factor.

One of the motivations is the analogy of this theory with birational
geometry over nonclosed ground fields and, in particular, with the cen-
tral problem of (stable) rationality over such fields, where the role of
G is taken by the absolute Galois group of the ground field, acting on
geometric objects.

Various tools have been developed to distinguish equivariant bira-
tional types, e.g., cohomology, derived categories, and more recently,
equivariant Burnside groups (see [HT23]). In this note, we investigate
the interactions between different perspectives on the (stable) lineariz-
ability problem. We focus on low-dimensional examples, in particular,
Del Pezzo surfaces, rational Fano threefolds and fourfolds. We explore
the compatibility of group actions with standard (stable) rationality
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constructions and conjectures, and produce new examples of stably
linearizable but nonlinearizable actions.

In detail, in Section 2, we discuss basic notions of equivariant bira-
tional geometry, classical invariants of G-actions on varieties, as well as
the recently developed Burnside formalism [KT22b]. We present appli-
cations of a multilinear algebra construction, Proposition 4, to exhibit
new examples of nonlinearizable but stably linearizable actions, e.g.,
we show in Example 7 that, for G = A5, the G-birationally rigid, and
thus not linearizable, quintic Del Pezzo threefold is stably linearizable.

In Section 3, we study exceptional sequences in derived categories, in
presence of G-actions, and their connections with classical invariants.
In Section 4, we prove

Theorem. A smooth projective rational G-surface that is linearizable
has a full G-equivariant exceptional sequence.

The proof relies on the classification of finite subgroups in the Cre-
mona group of [DI09], and subsequent developments in equivariant
geometry of rational surfaces. Over nonclosed fields the situation was
investigated in [AB18] and [BD21], in particular, we view this theorem
as an analog of [AB18, Corollary 1]. However, we also give an exam-
ple, in the equivariant context, where the analog of [AB18, Theorem 1]
fails.

In Section 5, we turn to Fano threefolds. For quintic Del Pezzo three-
folds, with give examples of nonlinearizable actions of finite groups
G with derived categories admitting full exceptional sequences of G-
linearized objects. This disproves the equivariant analog of the well-
known conjecture that a smooth projective variety with a full excep-
tional sequence over the ground field should be rational. The corre-
sponding G-actions are stably linearizable.

For Fano threefolds of genus 7, we show that there are nonlinearizable
actions in presence of G-invariant semiorthogonal decompositions, with
pieces equivalent, as G-categories, to derived categories of G-varieties
of codimension ≥ 2.
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2. Equivariant geometry

Terminology. Throughout, G is a finite group. We consider gener-
ically free regular actions of G on irreducible algebraic varieties over
k, an algebraically closed field of characteristic zero, and refer to such
varieties as G-varieties. We write

X ∼G Y

if the G-varieties X, Y are equivariantly birational, and introduce sub-
categories of the category of G-varieties:

• Lin - G-linearizable,
• PLin - projectively G-linearizable,
• SLin - stably G-linearizable.

A basic result in G-birational geometry is equivariant resolution of
singularities and weak factorization: G-birational varieties are related
via blowups and blowdowns, with centers in smooth G-stable subva-
rieties. Moreover, after a sequence of such blowups, one can reach a
standard model X̃ → X such that on X̃ all stabilizers are abelian, and
G-orbits of divisors with nontrivial stabilizers are smooth, i.e., for ev-
ery such D and g ∈ G, the intersection (D · g)∩D is either all of D or
empty.

Classical invariants. The G-action on X induces actions on coho-
mology groups, and in particular on the Picard group Pic(X). There
is an exact sequence, see, e.g., [KT22a, §3]

Pic(X,G) // Pic(X)G
δ2 // H2(G, k×)

// Br([X/G]) // H1(G,Pic(X))
δ3 // H3(G, k×),

where:

• Pic(X,G) is the group of isomorphism classes of G-linearized
line bundles, and Pic(X)G the group of G-invariant line bundles

• [X/G] is the quotient stack, Br([X/G]) its Brauer group, and

Both δ2 and δ3 are zero when there are G-fixed points; these give sec-
tions of the map [X/G] → BG. Other frequently studied obstructions
to (stable) linearizabilty are:

• Am(X,H), the Amitsur invariant, i.e., the image of

δ2 : Pic(X)H → H2(H, k×), H ⊆ G,
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• (H1): H1(H,Pic(X)) = H1(H,Pic(X)∨) = 0, H ⊆ G,
• (SP): Pic(X) is a stable G-permutation module.

If X ∈ PLin or Lin, then (H1) and (SP) hold; when X ∈ Lin then
the Amitsur invariant vanishes.

Burnside formalism. Let G be a finite group, acting on X, a stan-
dard model for the action. On such a model one computes the class of
the G-action in the Burnside group:

(2.1) [X ý G] =
∑
F,H

(H,Y ýk(F ), β) ∈ Burnn(G), n = dim(X),

as a sum of symbols, recording (G-orbits of) irreducible subvarieties
F ⊂ X with nontrivial generic stabilizer H, together with the induced
action of a subgroup Y ⊆ ZG(H)/H on the function field k(F ) and
the collection β of weights of H in the normal bundle to F (all defined
up to conjugation in G). In particular, this sum contains the trivial
summand

(1, G ýk(X), ()),

The symbols are subject to explicit relations so that the class (2.1) is an
equivariant birational invariant (see [KT22b], [HKT21] for definitions
and examples). The trivial summand does not participate in relations;
we say that the G-action on X has trivial Burnside class if

[X ý G] = (1, G ýk(X), ())

in Burnn(G). Incompressible divisorial symbols (modulo conjugation
relation), in the terminology of [KT22c, Definition 3.3], generate, freely,
a direct summand of Burnn(G); in many situations, it suffices to com-
pare their contribution to [X ý G] to distinguish G-actions up to
equivariant birationality, see [TYZ23, Section 3.6].

The paper [KT22c] provides an algorithm for the computation of
[P(V ) ý G] for linear and projective linear actions of a finite group G;
this algorithm has been implemented in Magma, see [TYZ23]. While the
formalism and the computations can be involved, incompressible divi-
sorial symbols allow to quickly show nonlinearizability of some actions.
Indirectly, they also lead to constraints on possible actions:

Example 1. Let X ⊂ Pn be a prime (smooth) Fano threefold of index
1, in its anticanonical embedding. Let σ ∈ PGLn+1 be an involution
preserving a hyperplane. Does σ preserve X?

If so, we would have Xσ = S, a surface, yielding a symbol

(⟨σ⟩, 1 ýk(S), (1)) ∈ Burn3(C2).
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Generically, S would be a K3 surface, the symbol incompressible, and
thus the action not linearizable.

On the other hand, consider smooth Fano threefolds X = X22 of
genus 12. We know that G-actions on X are linearizable, if there
is a (sufficiently general) fixed point; in the arithmetic setup this is
discussed in [KP23, Theorem 5.17].

This tension can be reconciled, in fact, X cannot carry such invo-
lutions. We sketch an argument: According to Mukai, cf. [Sch01], X
can be constructed as follows: start with a 7-dimensional vector space
V , a 3-dimensional vector space U , and a linear map η : ∧2 (V ) → U∗.
Dually, this arises from a linear map η∗ : U → ∧2(V ∗). Consider the
Grassmannian Gr(3, V ) ⊂ P(∧3(V )), and for the universal subbundle
U notice that H0(Gr(3, V ),U∗) = ∧2(V ∗). The zeros of the sections in
U on Gr(3, V ) yield X. Equivalently, we have a linear map

∧3(V ) → V ⊗ U∗,

induced by wedging elements in ∧3(V ) with elements in U , and the
kernel K is a 14-dimensional subspace of ∧3(V ) such that

X = Gr(3, V ) ∩ P(K).

We can view η∗ as an element in ∧2(V ∗) ⊗ U∗, i.e., a skew-symmetric
7×7-matrix with entries in U∗. The 6×6 Pfaffians of this matrix define
an Artinian Gorenstein module of codimension 3 over k[U∗], with dual
socle generator a quartic F , see [Sch01, Theorem 2.6 and its proof].
Conversely, the datum of this quartic or Artinian Gorenstein module
allows to reconstruct the skew-symmetric 7×7-matrix with entries in U∗

by considering the middle map in the Buchsbaum-Eisenbud resolution
of the module.

By [Sch01, Theorem 6.1], the Scorza quartic SF covariantly associ-
ated to F is isomorphic to the Hilbert scheme of lines F1(X) in X,
and by [DM22, Appendix, Claim A.1.1., (by Prokhorov)], the auto-
morphisms of X embed injectively into those of F1(X).
Now assume that G = C2 is acting faithfully on X, through the

G-representations U and V and an equivariant map η, as described
above. Then G embeds into the automorphisms of the quartic C, and
acts faithfully on U with weights (1, 1, 0) or (0, 0, 1). Then [Sch01,
Theorem 2.6] implies that V can be recovered as the kernel of the
linear map

Sym3(U) → U
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given by contracting with the equation of the C2-invariant quartic F .
This map is equivariant (possibly after tensoring the target U with a
sign). After that, we recover K as the kernel of the G-equivariant map

∧3(V ) → V ⊗ U∗,

above. Working through all sign combinations, one verifies that G
cannot act on K with all weights but one equal to each other.

Example 2. Let X ⊂ P5 be a smooth cubic fourfold, with an action
of G = Cm, with weights (0, 0, 0, 0, 0, b); note that only m = 2, 3 are
possible, under this assumption. Assume that the divisorD ⊂ X, given
by the vanishing of the last coordinate, is smooth. Then X /∈ PLin.

Indeed, the corresponding symbol (Cm, 1 ýk(D), (b)) is incompress-
ible, since D is not birational to S × P1, for any surface S, and does
not appear in classes of linear actions, (see [TYZ23, Corollary 6.1]).

For m = 2, [Mar22, Theorem 1.2(2)] shows that a very general X
carrying such an involution does not have an associated K3 surface and
is expected to be nonrational; and, in particular, the action would not
be linearizable. The same argument applies for m = 3.

Pfaffians and Grassmannians. In [BvBT23, Section 7], we have
used a construction from multilinear algebra, the Pfaffian construction,
to exhibit nonlinearizable but stably linearizable actions of finite groups
on rational varieties, e.g., rational cubic fourfolds. The starting point
is a Pfaffian variety

X := Pf(W ) ∩ P(L),

where V is a vector space of dimension n = 2m and L ⊂ ∧2(W ) a
linear subspace of dimension n. Then there is a diagram

P(KX)
p

||

q

$$
X P(W ∗)

where KX is a vector bundle of rank 2 and q is birational. In presence of
group actions, choosing a G-representation W and a subrepresentation
L, one obtains, under suitable genericity assumptions, an equivariant
birationality:

X × P1 ∼G P(W ∗),

with trivial action on the second factor.
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Example 3. Let G = C5⋊D15⋊C3, GapID(450,24). It acts generically
freely on the singular (toric) cubic fourfold X ⊂ P5 with equation

x1x3x5 + x2x4x6 = 0,

a degeneration of the Pfaffian cubic considered in [BvBT23, Example
14]. The G-action on X is not linearizable, as G does not have faithful
representations of dimension < 6. The Pfaffian construction applies:
by [BvBT23, Corollary 13], the G-action on X×P1, with trivial action
on the second factor, is linearizable.

Here, we present another such construction, applicable to subvari-
eties of Grassmannians. Linear sections of Grassmannians admit tau-
tological stable rationality constructions, that we now describe: Let
W be an n-dimensional vector space over k and Gr(2,W ) the Grass-
mannian of planes in W . Let V ⊂ ∧2(W ) be a linear subspace of
codimension r. Put

X := Gr(2,W ) ∩ P(V )

and consider the diagram

P(UX)
p

||

q

$$
X P(W ),

where UX is the restriction of the universal vector bundle over Gr(2,W )
to X. This yields a stable rationality construction, as both p and q are
vector bundles, in the indicated range of dimensions.

Proposition 4. Let k be an algebraically closed field of characteristic
zero and G a finite group. Let W be an n-dimensional representation
of G over k and V ⊂ ∧2(W ) a subrepresentation of codimension r ≤
n− 2 such that the G-actions on P(W ) and P(V ) are generically free.
Assume that

(∗) X is irreducible of dimension dim(Gr(2, n))− r = 2(n− 2)− r.

Then

X × P1 ∼G P(W )× Pn−2−r,

with trivial actions on the second factors.

Proof. By the No-name Lemma,X×P1 ∼G P(UX). Note that each fiber
of q is nonempty: indeed, the fiber over [w] ∈ P(W ) is P(w∧W )∩P(V ),
which has dimension ≥ n − 2 − r ≥ 0, the last inequality by the
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assumption r ≤ n − 2. By assumption (∗), it follows that for generic
w ∈ W , one has

dim(P(w ∧W ) ∩ P(V )) = n− 2− r.

Thus P(UX), which is irreducible since X is, is generically the projec-
tivization of a G-vector bundle over P(W ) via q. Another application
of the No-name Lemma yields the result. □

Remark 5. If we drop assumption (∗), but keep assuming r ≤ n− 2,
then the construction of Proposition 4 still yields stable linearizability
for the unique component of X such that the restriction of P(UX) to it
dominates P(W ). But proving nonlinearizability of such a component
of X is usually difficult, unless we assume a condition similar to (∗), a
priori.

This construction works also over nonclosed fields. However, there
one does not gain new insights: by [Xu12, Theorem 2.2.1], if r ≤ n− 2
and X is smooth then X is already rational over k. The proof uses
the same diagram, restricted to a codimension one linear subspace Π
in P(W ), exhibiting X as birational to a vector bundle over Π, thus
rational over k. In presence of group actions, this can fail, e.g., if W
does not admit a subrepresentation of codimension one! This yields
many examples of nonlinearizable but stably linearizable actions.

Example 6. Let G = S5, and W := W5 its 5-dimensional representa-
tion. We have a decomposition

∧2(W ) = W6 ⊕W4,

as representations. When V = W6 is the 6-dimensional subrepresenta-
tion,

S := Gr(2,W ) ∩ P(V )

is the del Pezzo surface of degree 5. It is easy to see that the induced
G-action on S is not linearizable, indeed, S5 does not admit a linear
action on P2. Even the restriction to A5 ⊂ S5 is not linearizable, see,
e.g., [CS16, Theorem 6.6.1].

Note that the assumptions of Proposition 4 are not fulfilled, we have
n = 5 and r = 4, rather than r ≤ 3. Nevertheless, by [Pro10, Propo-
sition 4.7], S × P1 is S5-equivariantly birational to the Segre cubic
threefold, with the action of the nonstandard S5 ⊂ S6, which is lin-
earizable. An alternative proof of stable linearizability of S, using the
equivariant torsor formalism, is in [HT23, Proposition 20].
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Example 7. We modify the previous example, considering G = A5.
Then

∧2(W ) = W3 ⊕W ′
3 ⊕W4,

and we put V := W3 ⊕W4. Then

X := Gr(2,W ) ∩ P(V )

is a smooth threefold [CS16, Lemma 7.1.1], the quintic Del Pezzo three-
fold. One of the main results of [CS16] is that X is G-birationally rigid.

Here, the construction of Proposition 4 applies, and we obtain

X × P1 ∼G P(W ).

Thus, X /∈ Lin but X ∈ SLin.
To check the condition (∗) in Proposition 4 and the smoothness of X

(independently of [CS16]), one can proceed as follows: we view A5 as a
subgroup of PSL2 and proceed in terms of PSL2-representations, as in
[CS16, Section 7]. Put W = Sym4(k2) and consider the decomposition

(2.2) ∧2(W ) = Sym2(k2)⊕ Sym6(k2).

Let

H =

(
1 0
0 −1

)
,X =

(
0 1
0 0

)
,Y =

(
0 0
1 0

)
be the standard basis of the Lie algebra of SL2 satisfying

[H,X] = 2X, [H,Y] = −2Y, [X,Y] = H.

Let w4 be a highest weight vector inW (subscripts in the sequel indicate
the weight). Thus X(w4) = 0, and

w4, w2 = Y(w4), w0 = Y2(w4), w−2 = Y3(w4), w−4 = Y4(w4)

form a basis for W ; using the commutation relations inductively gives

X(w4) = 0,X(w2) = 4w4,X(w0) = 6w2,X(w−2) = 6w0,X(w−4) = 4w−2.

To find a highest weight vector in the subrepresentation Sym2(k2) of
∧2(W ) one is looking for a linear combination of w4 ∧w−2 and w2 ∧w0

annihilated by X. These are thus multiples of

x2 := 3w2 ∧ w0 − 2w4 ∧ w−2,
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and applying Y and Y2 to x2 we obtain a basis for Sym2(k2) as a
submodule of ∧2(W ) as

x0 := Y(x2) = Y (3w2 ∧ w0 − 2w4 ∧ w−2)

= 3(Y(w2) ∧ w0 + w2 ∧Y(w0))− 2(Y(w4) ∧ w−2 + w4 ∧Y(w−2))

= 3(w0 ∧ w0 + w2 ∧ w−2)− 2(w2 ∧ w−2 + w4 ∧ w−4)

= w2 ∧ w−2 − 2w4 ∧ w−4

and

x−2 := Y (w2 ∧ w−2 − 2w4 ∧ w−4)

= w0 ∧ w−2 − w2 ∧ w−4.

Similarly, one can find a basis of Sym6(k2) ⊂ ∧2(W ) by applying
Y successively to the highest weight vector w4 ∧ w2 in that copy of
Sym6(k2).
We have thus explicitly identified both Sym2(k2) and Sym6(k2) with

PGL2-subrepresentations of ∧2(W ), and can check that

X = Gr(2,W ) ∩ P(Sym6(k2))

is irreducible, smooth of the expected dimension 3 by computer algebra.
The necessary checks were performed using Macaulay21.

Example 8. Let G = C9 ⋊ C6, G:=SmallGroup(54,6). Its smallest
faithful representation has dimension 6, in particular, G does not admit
a linear action on P4. Let W be its unique irreducible representation
of dimension 6, it has character

(6, 0,−3, 0, 0, 0, 0, 0, 0, 0).

We have a decomposition:

(2.3) ∧2(W ) = V1 ⊕ V ′
1 ⊕ V ′′

1 ⊕ V2 ⊕ V ′
2 ⊕ V ′′

2 ⊕ V6

into irreducible representations. Choose a suitable subrepresentation

V := V1 ⊕ V2 ⊕ V ′
2 ⊕ V6,

more precisely, that with respective characters, for ζ = ζ3,

1
warwick.ac.uk/fac/sci/maths/people/staff/boehning/m2filesequivariantderived
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X.6 =(1,−1, 1, ζ2, ζ,−ζ,−ζ2, ζ, 1, ζ2),
X.7 =(2, 0, 2, 2, 2, 0, 0,−1,−1,−1),

X.8 =(2, 0, 2, 2ζ, 2ζ2, 0, 0,−ζ2,−1,−ζ),
X.10 =(6, 0,−3, 0, 0, 0, 0, 0, 0, 0).

The complement decomposes as

X.2 =(1,−1, 1, 1, 1,−1,−1, 1, 1, 1),

X.3 =(1,−1, 1, ζ, ζ2,−ζ2,−ζ, ζ2, 1, ζ),
X.9 =(2, 0, 2, 2ζ2, 2ζ, 0, 0,−ζ,−1,−ζ2).

Then, according to magma,

X := Gr(2,W ) ∩ P(V )

is a smooth and irreducible variety of dimension 4 and degree 14. Note
that choosing a different 11-dimensional subrepresentation V also yields
irreducible fourfolds of degree 14, but some of these are singular. Thus
the construction of Proposition 4 applies, and we have X /∈ Lin and
X ∈ SLin.

Let G = C3
3 ⋊ S3, SmallGroup(162,19). Its smallest faithful rep-

resentation has dimension 6, in particular, G does not admit a linear
action on P4. Let W be an irreducible G-representation with character

(6, 0,−3, 0, 0, 3,−3, 0, 0, 0, 0, 0, 0).

We have a decomposition

∧2(W ) = V1 ⊕ V2 ⊕ V3 ⊕ V ′
3 ⊕ V6

into irreducible representations. We choose

V := V2 ⊕ V3 ⊕ V6.

Then

X := Gr(2,W ) ∩ P(V )

is irreducible (singular) of dimension 4 as can be checked by computer
algebra2. Therefore this construction satisfies the hypotheses of Propo-
sition 4, thus X /∈ Lin but X ∈ SLin.

2
warwick.ac.uk/fac/sci/maths/people/staff/boehning/m2filesequivariantderived
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3. Derived categories

Terminology. Let X be a smooth projective variety (over an alge-
braically closed field k of characteristic zero) and Db(X) its derived
category of coherent sheaves. We use freely the following terms; see,
e.g., [BvBT23, Section 2], or [Kuz16, Section 1 and 2] for definitions
and references:

• admissible subcategories of Db(X),
• exceptional objects,
• (full) exceptional sequences,
• (maximal) semiorthogonal decompositions.

G-actions on categories. Let G be an algebraic group, not necessar-
ily finite. LetX be a smooth projective G-variety, i.e., a smooth projec-
tive variety with a generically free, regular, action of G. In [BvBT23,
Proposition 3] it was remarked that the fundamental reconstruction
theorem by Bondal and Orlov [BO01] admits the following equivariant
version:

Proposition 9. Suppose X and Y are smooth projective G-varieties
over k, X is Fano, and

Φ: Db(X) ≃ Db(Y )

is an equivalence as k-linear triangulated categories together with the
induced G-actions. Then X and Y are isomorphic as G-varieties, i.e.,
there exists a G-equivariant isomorphism

X
∼−→ Y.

In practice, this general theorem is not very useful since the derived
category contains too much information; in the context of rationality
problems, the focus is on trying to extract information about the vari-
ety from more accessible data, such as a piece, or several pieces, in a
semiorthogonal decomposition of Db(X).

We will explore the extent to which these considerations apply in the
equivariant context. We investigate, in several representative geometric
examples, the effects of G-equivariant birationalities on

• the existence of full exceptional sequences in Db(X) that are
compatible with G-actions, and

• derived Hom-spaces between objects in Db(X).
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G-actions and exceptional sequences.

Definition 10. An object E ∈ Db(X) is called G-invariant if g∗E is
isomorphic to E, for all g ∈ G. It is called G-linearized if it is equipped
with a G-linearization, i.e. a system of isomorphisms

λg : E → g∗E, ∀g ∈ G,

satisfying the compatibility condition

λ1 = idE, λgh = h∗(λg) ◦ λh.

Several notions of compatibility of exceptional sequences with G-
actions have been studied; we follow [CT20, Definition 2.1].

Definition 11. Let X be a smooth projective G-variety and

E := (E1, . . . , En)

a full exceptional sequence in Db(X).

(1) E is G-invariant if for every r ∈ {1, . . . , n} and every g ∈ G,
there is an s such that g∗Er ≃ Es.

(2) E is G-equivariant if it is G-invariant and, for all r, Er is iso-
morphic to a Gr-linearized object in Db(X), where Gr ⊆ G is
the stabilizer of the isomorphism class of Er.

(3) E is G-linearized if it is G-equivariant and, for all r, Gr = G,
i.e., each Er is a G-linearized object.

Example 12. Consider X = P1×P1, and the full exceptional sequence
in Db(X) from [Kap88]

E = (O(−1,−1),O,O(1, 0),O(0, 1)).

Then

• E is H-linearized, if we view X as P(V )×P(V ) with its natural
diagonal H-action, where H is a finite group admitting a two-
dimensional faithful linear representation V such that H acts
generically freely on P(V ).

• E is G-equivariant, but not G-linearized, if we let G = Z/2×H
act onX = P(V )×P(V ), with the first factor Z/2 inG switching
the rulings,

• E is G-invariant, but not G-equivariant, if we letH ≃ Z/2×Z/2
act on P1 via the two-dimensional faithful irreducible represen-
tation of its Schur cover D8 instead, and then let G = Z/2×H
act on P1 × P1, again with Z/2 switching the factors and H
acting diagonally.
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Example 13. The moduli space M0,n of stable rational curves with
n marked points has a full Sn-equivariant exceptional sequence, where
Sn is the symmetric group permuting the marked points, by the main
result of [CT20].

The following observation will be useful in applications.

Lemma 14. Let X be a smooth projective G-variety, and

E := (E1, . . . , En)

a G-invariant exceptional sequence consisting of line bundles. If X is
G-linearizable, then E is a G-equivariant exceptional sequence.

Proof. If X is G-linearizable, Am(X,G) is trivial. The same holds for
Am(X,H), for any H ⊆ G, since X is also H-linearizable. Therefore,
under the assumptions of the Lemma, any line bundle on X is H-
linearized for every subgroup H that leaves this line bundle invariant.

□

Connections with classical invariants.

Proposition 15. Let G be a finite group and X a smooth projective
G-variety admitting a G-linearized full exceptional sequence. Then

Pic(X,G) ↠ Pic(X)G,

in particular,

Am(X,G) = 0.

Proof. Taking the first Chern class gives a well-defined homomorphism

c1 : D
b(X) → Pic(X).

If Db(X) is generated by an exceptional sequence E = (E1, . . . , En) of
G-linearized objects, then every class in Pic(X) is a Z-linear combina-
tion of the c1(Er), which are G-linearized. Indeed, the first Chern class
of a G-linearized complex is G-linearized; it is the alternating sum of
the Chern classes of the cohomology sheaves which are G-linearized, so
we just need to show invariance of the Chern class for a G-linearized
sheaf. Such a sheaf always has a finite locally free resolution by G-
linearized vector bundles since there exists a G-linearized ample sheaf
on X and the statement is true on projective space. □

Remark 16. Let G be a finite group and X a smooth projective G-
variety with ample anticanonical class. By Proposition 9, the derived
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category Db(X) determines X, as a G-variety. In particular, we can ex-
tract the G-action on Pic(X), and determine whether or not it satisfies
(H1) or (SP). Concretely, we have

Aut(Db(X)) = (Pic(X)× Z)⋊ Aut(X),

and the derived automorphisms acting trivially on point objects can
be identified with Pic(X).

In the following sections we investigate connections between exis-
tence of full exceptional sequences with various compatibility properties
with the G-action, and (stable) linearizability of X. It turns out that
G-linearizability often implies the existence of a full equivariant excep-
tional sequence, provided such sequences exist in the non-equivariant
setting, as for Del Pezzo surfaces.

4. Del Pezzo surfaces

Terminology. By the Minimal Model Program, every rational surface
is birational to a conic bundle over P1 or a Del Pezzo surface, i.e., a
smooth projective surface X with ample anticanonical class −KX ; we
let

d = d(X) = (−KX)
2

be its degree. The same holds over nonclosed field, and in presence of
group actions.

Here and below conic bundle means that X is smooth and all fibers
of f : X → P1 are isomorphic to reduced conics in P2. We recall the
terminology of [DI09, Pro15]: a conic bundle f : X → P1 is called
exceptional if for some positive integer g the number of degenerate
fibers equals 2g+2 and there are two disjoint sections C1 and C2 with
C2

1 = C2
2 = −(g + 1). Exceptional conic bundles can be constructed

explicitly, see [DI09, §5.2].

Nonlinearizable actions. In this section, G is a finite group. The
following nonlinearizability results for G-conic bundles are probably
known to experts in birational rigidity; here, we rely on the Burnside
formalism.

Lemma 17. Let X → P1 be a relatively minimal G-conic bundle with
K2

X = 1. Then X is not linearizable.

Proof. If X fails (H1), then then X /∈ Lin. If X satisfies (H1), then
the classification in [Pro15, §8], Theorem 8.3, shows that G must be

the binary dihedral group D̃5, a nontrivial central C2-extension of D5.
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SuchX, with theG-action, are given by an explicit construction [Pro15,
Construction 8.4]. In particular, there is a distinguished involution τ ∈
G, generating the center ofG and fixing a smooth rational curve C. The
residual action of D5 = G/⟨τ⟩ is generically free on C. Applying the
Burnside formalism to this situation, we find a unique, incompressible,
symbol

(4.1) (C2,D5 ýk(P1), (1)),

contributing to the class

[X ý G] ∈ Burn2(G).

A generically free linear action of D̃5 on P2 necessarily arises from a
representation V = V1 ⊕ V2, where V1 is 1-dimensional representation
which is nontrivial on τ and V2 is a 2-dimensional representation which
is trivial on τ . Then G fixes the point p0 := [1 : 0 : 0] ∈ P2 and
stabilizes the line given by x0 = 0. Passing to a standard model, we
observe, as in a similar situation in [HKT21, Section 7.6], that the
linear action contributes two symbols (4.1), one from the exceptional
divisor of the blowup of p0 and the other from P1 = P(V2). It follows
that

[X ý G] ̸= [P2 ý G]

in Burn2(G), and the G-action on X is not linearizable. □

Lemma 18. Let X be a minimal rational G-surface that is an excep-
tional conic bundle with K2

X = 2 and g = 2. Then X is not linearizable.

Proof. If X fails (H1) then X is not linearizable. The other cases have
been classified in [Pro15, §8]: consider the representation

ϱ : G→ Aut(Pic(X)),

its kernel ker(ϱ), and the exact sequence

(4.2) 1 → GF → G→ GB → 1,

where GF ⊂ G is the largest subgroup acting trivially on the base
B = P1. By [Pro15, Theorem 8.3], we have ker(ϱ) ̸= {1}; by [Pro15,
Theorem 8.6(2)] it is cyclic, whereas GB ≃ Dn, with n ≥ 3, or GB ≃
S4. The table in [Pro15, Section 8.7] shows that GB = S4, and [Pro15,
Thm. 8.6] shows that GF = ker(ϱ) = Cm, a nontrivial cyclic group of
order m.
Write Cm = C2r × Cm′ with gcd(m′, 2) = 1, and consider a 2-Sylow

subgroup G2 of G that contains C2r . Then G2 has order 2
r×8 and sits



EQUIVARIANT BIRATIONAL TYPES 17

in an extension

1 → C2r → G2 → Ḡ2 → 1

where Ḡ2 is a subgroup of S4 of order 8, hence equal to D4. Since
the order of a group is divisible by the degree of any of its irreducible
representations, every 3-dimensional representations V of G2 has to
decompose into irreducible summands of degrees 1, 1, 1 or 1, 2. Only
the latter can be generically free. Thus, we may assume that V is of
the form

V = V1 ⊕ V2

with Vi irreducible of dimension i. Here V1 = kχ is a representation
of G2 by some character χ, and we can assume that V1 is trivial, and
V2 is a faithful G2-representation. A standard model for G2-action

is the blowup P̃(V ) → P(V ) of the G2-fixed point p0 = [1 : 0 : 0],
see [HKT21, Section 7.2]. The only incompressible divisorial symbols
might arise from the exceptional divisor, respectively, the preimage of
the projectivization P1 = P(V2) ⊂ P(V ). The corresponding symbols
are

(C,G2/C ýk(P1), (χ)), (C,G2/C ýk(P1), (χ̄)),

where C ⊂ G2 is a cyclic group and χ is a primitive character of C.
Their sum in Burn2(G2) cannot equal to

(C2r ,K4 ýk(P1), (ψ))

with ψ some primitive character of C2r , for any choices of C, χ. Thus

[X ý G2] ̸= [P2 ý G2]

in Burn2(G2), for any generically free linear action of G2 on P2. □

Linearization and derived categories. We consider rational G-
surfaces and investigate which pieces and properties of the G-category
Db(X) are sensitive to geometric, and in particular, G-birational, char-
acteristics of the G-action on X.

Lemma 19. Let X be a rational G-surface X admitting a full G-
invariant exceptional sequence. Then the G-action on Pic(X) satisfies
(H1) and (SP).

Proof. The classes of the terms of the sequence in the Grothendieck
K-group K0(X) form a Z-basis that is permuted by G. Thus K0(X) is
a permutation module, and since

K0(X) ≃ Z⊕ Pic(X)⊕ Z
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as G-modules, with trivial G-action on the two summands Z, we obtain
the claim. □

Incidentally, assuming X is a minimal G-Del Pezzo surface, Theorem
1.2 of [Pro15] shows that (H1) is equivalent to the fact that G does
not fix a curve of positive genus, and also equivalent to the condition
K2

X ≥ 5 or X being a special quartic Del Pezzo surface with a very
special action, described in [Pro15, Thm. 1.2, (iii), (b)].

Lemma 20. Let X = P2 with a projectively linear but nonlinear action
of a finite group G. Then X does admit a full G-invariant exceptional
sequence, but no full G-equivariant exceptional sequence.

Proof. The exceptional sequence (O,O(1),O(2)) is G-invariant. From
[KO94] it is known that every exceptional object in Db(X) is, up to
shift, a vector bundle. Thus assume that (E1, E2, E3) is a G-equivariant
full exceptional sequence consisting of vector bundles. Since the map

Db(X) → K0(X)

is G-equivariant and the action on K0(X) is trivial in this case, we see
that every element in G fixes the isomorphism class of each Ei (be-
cause the images of E1, E2, E3 form a Z-basis of K0(X)). If we compose
Db(X) → K0(X) with the first Chern class map, we get a surjective
map to Pic(X). In other words, the top exterior powers of the Ei gener-
ate the Picard group, hence at least one of them has to be isomorphic
to OP2(r) for some odd integer r. Thus OP2(1) is also G-linearized,
contradicting our assumption that the action is nonlinearizable. □

Examples with Aut(X)-equivariant exceptional sequences. We
present examples of rational surfaces X such that Db(X) admits a full
Aut(X)-equivariant exceptional sequence but X is not lineariable, for
some G ⊆ Aut(X).

DP6: Let X be a Del Pezzo surface of degree 6. Then X has full
Aut(X)-invariant exceptional sequence. Indeed, recall that there is an
exact sequence

0 → T → Aut(X) → WX → 0,

where
WX ≃ Z/2×S3, Aut(X) ≃ N(T )⋊ Z/2,

and T is the maximal torus of PGL3, the quotient of (k×)3 by the
diagonal subgroup k×, N(T ) its normalizer. A generator of Z/2 in
WX = Z/2×S3 can be identified with the lift of the standard Cremona
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involution on P2 and S3 is realized as the group of permutations of the
points

p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1)

that are blown up to obtain X. There is always a full invariant excep-
tional collection for the entire automorphism group of X. Indeed, X
has the following (three block) exceptional sequence:

OX , OX(H), OX(2H − E1 − E2 − E3),

OX(2H − E1 − E2), OX(2H − E2 − E3), OX(2H − E1 − E3),

where H is the pullback of a hyperplane class and Ei the exceptional
divisors. The Cremona involution σ acts as

H 7→ 2H − E1 − E2 − E3, Ei 7→ H − Ej − Ek, {i, j, k} = {1, 2, 3},

whereas S3 permutes the Ei and fixes H, and T fixes H,Ei. However,
this sequence is not always an equivariant exceptional sequence (for
example, the normalizer of a maximal torus in PGL3 is in the stabilizer
of OX(H), but the line bundle is not linearized since the action does
not lift to a linear action on k3).

DP5: Let X be a Del Pezzo surface of degree 5. We have

Aut(X) ≃ S5.

By [CT20, Theorem 1.2 and Example 1.3], X has a full S5-equivariant
exceptional collection. However, X is G-superrigid for G = A5 [DI09].

A special DP4. By [Pro15, Theorem 1.2], there is a unique minimal
G-Del Pezzo surface X of degree ≤ 4 that satisfies (H1). It is a Del
Pezzo surface of degree 4, an interection of two quadrics in P4

(4.3) x21 + ζx22 + ζ2x23 + x24 = x21 + ζ2x22 + ζx23 + x25 = 0,

with ζ = ζ3 a primitive cube root of unity, and G = Z/3 ⋊ Z/4, with
generators

γ : (x1, x2, x3, x4, x5) 7→ (x2, x3, x1, ζx4, ζ
2x5),

β′ : (x1, x2, x3, x4, x5) 7→ (x1, x3, x2,−x5, x4).

Theorem 21. The derived category Db(X) of the minimal G-Del Pezzo
surface X given by (4.3) does not admit a full G-invariant exceptional
sequence.
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Proof. Arguing by contradiction, we assume that such a sequence

(E1, . . . , E8)

exists. The group G acts on the terms of the sequence by permutations,
decomposing the set of terms into G-orbits, each of which is again an
exceptional sequence. Let

(F1, . . . ,Fr)

be one of the orbits. Consider the classes vi of the Fi in the Grothendieck
group

K0(X) ≃ Z⊕ Pic(X)⊕ Z ≃ Z8.

Let χ(−,−) be the Euler bilinear pairing on K0(X) and v := vr = [Fr].
Since (v1, . . . , vr) is a numerically exceptional sequence with respect to
the Euler pairing, we have

(∗) χ
(
v, g(v)

)
=

{
0 if g(v) ̸= v,
1 if g(v) = v,

for all g ∈ G. These are quadratic equations for the coefficients of v.
Let H ⊆ G be the subgroup fixing v. If H = G, then r = 1 and vr = v1
is G-invariant. If H = 1, then r = 12, a contradiction. Let us now
assume that H is a nontrivial proper subgroup of G. There are six such
subgroups and they are all cyclic. Let K0(X)H ≃ Zr be the space of
H-invariants and consider the ideal IH generated by the conditions (∗)
in Z[s1, . . . , sr]. One can show that IH = (1) mod 3 for all such H, e.g.,
with Macaulay23. Hence only H = G is possible. Since this is the case
for all G-orbits, we obtain that all classes [Ei] ∈ K0(X) are G-invariant.
However, they also form a Z-basis of K0(X). But K0(X)G ̸= K0(X).

More precisely, we proceed as follows. Since X is a DP4, there are
16 lines on X. To determine these lines explicitly consider the rank 2
skew matrix

L =

 0 1 −1 1 1
−1 0 1 ζ2 ζ

1 −1 0 ζ ζ2

−1 −ζ2 −ζ 0 ζ − ζ2

−1 −ζ −ζ2 −ζ + ζ2 0

 ∈ Gr(2,W ) ⊂ P(∧2(W )),

with dim(W ) = 5, and a diagonal matrix D with entries ±1 on the
diagonal. Then we check that DLDt represents a line on X. This gives
the 16 lines on X which are permuted by β and γ. Observe that the
line represented by L is γ-invariant.

3
warwick.ac.uk/fac/sci/maths/people/staff/boehning/m2filesequivariantderived
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We now choose 6 lines whose classes are a basis of Pic(X) as follows.
There are precisely 5 lines L1, . . . , L5 that intersect the line represented
by L. Two of these lines are γ-invariant. Without loss of generality,
we can assume these are L1 and L2. Finally there is a unique fourth
γ-invariant line L6.

Then L1, . . . , L6 form a basis of Pic(X): indeed their intersection
matrix can be computed as −1 0 0 0 0 1

0 −1 0 0 0 1
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
1 1 0 0 0 −1


We can now compute the representation of the other lines in this basis
by considering their intersections with the lines in the given basis. We
find representations

B =



1 1 −1 −1 −1 2
0 0 0 0 0 1

1 0 0 −1 0 1

1 0 −1 0 0 1
1 0 0 0 −1 1

1 0 0 0 0 0

 and C =



1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 0 1


of β and γ, respectively. Moreover, the canonical class KX is deter-
mined by the fact that the intersection number of −KX with all lines
is equal to 1. One finds:

−KX = 2L1 + 2L2 − L3 − L4 − L5 + 3L6,

which is also equal to the sum of the four γ-invariant lines L,L1, L2, L6.

Following [BGvBS14, Section 3], we work out the Euler pairing ex-
plicitly. The Chern character

ch: K0(X) → CH∗(X)Q

[E ] 7→ rk(E) + c1(E) +
c1(E)2 − 2c2(E)

2
is an injective ring homomorphism with values in the sublattice

Λ :=

{
x+ y1l1 + y2l2 + · · ·+ y6l6 +

1

2
zp

}
≃ Z8 ⊂ CH∗(X)Q,

where (x, y1, y2, . . . , y6, z) ∈ Z8, p is the class of a point, and li :=
c1(O(Li)). We set v = (x, y, z), where

y = y1l1 + y2l2 + · · ·+ y6l6.

Thus Λ is generated by CH0(X) ≃ Z, CH1(X) ≃ Pic(X) ≃ Z6 and
1
2
CH2(X), where CH2(X) ≃ Z is generated by the Chern character of
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the skyscraper sheaf of a point p, which is just the class of p in the
Chow ring. Its image is an index 2 sublattice ch(K0(X)) ⊂ Λ: indeed,
1
2
p is not in ch(K0(X)) since for the Euler pairing χ

χ(OX ,Op) = 1

and χ takes integral values on ch(K0(X)). The class of 1
2
p generates

the quotient Λ/ch(K0(X)). By Riemann-Roch,

χ(X, E) = deg (ch(E).td(TX))2 ,

where

td(TX) = 1− 1

2
KX +

1

12
(K2

X + c2) = 1− 1

2
KX + p.

The subscript 2 in the second to last formula means that one only con-
siders the top-dimensional component. Hence in terms of v = (x, y, z),

χ(X, E) = x− 1

2
y.KX +

1

2
z .

If E1 and E2 are bundles, then

χ(E1, E2) = χ(X, E∨
1 ⊗ E2)

and

ch(E∨
1 ⊗ E2) = ch(E∨

1 ).ch(E2) = (x1 − y1 +
1

2
z1)(x2 + y2 +

1

2
z2)

= x1x2 + (x1y2 − x2y1) +
1

2
(x1z2 + x2z1 − 2y1y2),

whence

χ(E1, E2) = x1x2 −
1

2
(x1y2 − x2y1).KX +

1

2
(x1z2 + x2z1 − 2y1y2) .

We work out the Euler pairing χ on the lattice Λ in the above Z-basis:

1 1
2

1
2

1
2

1
2

1
2

1
2

1
2

− 1
2

1 0 0 0 0 −1 0

− 1
2

0 1 0 0 0 −1 0

− 1
2

0 0 1 0 0 0 0

− 1
2

0 0 0 1 0 0 0

− 1
2

0 0 0 0 1 0 0

− 1
2

−1 −1 0 0 0 1 0
1
2

0 0 0 0 0 0 0


We now show that equations (∗) cannot be solved even in the larger

lattice Λ. Namely, consider the subgroup H ⊂ G generated by β. The
invariants of β in Λ are

v = (z1,−2 z3,−2 z3,−z2 − z3, z2 + 3 z3, z3,−3 z3, z4)
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for zi ∈ Z. Now
1 = χ

(
v, v

)
= z21 + 2 z22 + 8 z2z3 + 4 z23 + z1z4,

0 = χ
(
v, vC

)
= z21 − z22 − 4 z2z3 − 8 z23 + z1z4.

Subtracting the second equation from the first we obtain

1 = 3 z22 + 12 z2z3 + 12 z23

which has no solution modulo 3.
The same computation can be done for all nontrivial proper sub-

groups of G. □

Implications. Figure 1 shows relations between the different notions
for a minimal G-Del Pezzo surface X with rkPic(X)G = 1.

X has a full
exceptional sequence
of G-linearized objects

4
��

ks
5

+3 X = P2 ∈ Lin

X ∈ Lin

1
��

X has a full equivariant exceptional sequence

2
��

X has a full invariant exceptional sequence

3
��

X satisfies (H1)

Figure 1

• The implications 1 - 4 are strict, see below for references to
proofs.

• 3 is proven in Lemma 19, whereas 2 , 4 are immediate from

the definitions once 5 is proven.

• 1 is not reversible, e.g., for X a DP6.

• 5 follows from Proposition 15 since X then has Picard rank

1, and this also shows that 4 is not reversible.

• 2 is not reversible, by Lemma 20.
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• 3 is not reversible, by Theorem 21.

The main result, which requires a longer argument, is the implication

1 . We will prove this more generally whenever X is a smooth rational
G-surface.

Theorem 22. A smooth projective rational G-surface that is lineariz-
able has a full G-equivariant exceptional sequence.

The proof will occupy the remainder of this section. It is based on a
detailed analysis of actions, following [DI09] and [Pro15].

Proof. We assume that X is linearizable.

Step 1. We reduce to G-minimal surfaces: Indeed, consider a blowup
X̃ → X in a G-invariant set of points. By Orlov’s blowup formula
[Orl92], if X admits a full G-equivariant exceptional sequence, then so
does X̃. The stabilizer Gx ⊆ G of a point x ∈ X acts linearly on the
tangent bundle of X at x; hence the Gx-action on the sheaves OE(r)
(where E is the exceptional divisor over x) is linearized.

Step 2. By [DI09, Thm. 3.8], a minimal rational G-surface X either
admits a structure of a G-conic bundle over P1 with Pic(X)G ≃ Z2 or
X is isomorphic to a Del Pezzo surface with Pic(X)G ≃ Z. We proceed
via classification in [DI09, Section 8], depending on the possible values
of d = K2

X .

Step 3.
Case d ≤ 0: X is a rigid G-conic bundle with 8 − d singular fibres,
and in particular, X /∈ Lin.

Case d = 1: X is a rigid G-Del Pezzo surface, thus X /∈ Lin, or a
G-conic bundle, treated in Lemma 17.

Case d = 2: X is a rigid G-Del Pezzo surface, thus X /∈ Lin, or
a G-conic bundle. If the conic bundle is not exceptional, it is rigid;
exceptional conic bundles with g = 2 are treated in Lemma 18.

Case d = 3: X is either a minimal G-Del Pezzo surface that is rigid,
thus X /∈ Lin; or a minimal G-conic bundle, in which case G contains
three commuting involutions two of which have fixed point curves of
genus 2, yielding the (H1)-obstruction to linearizability, contradicting
the assumption.
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Case d = 4: X can be a minimal G-Del Pezzo surface. If XG = ∅,
X is either rigid or superrigid, hence X /∈ Lin. If XG ̸= ∅, then X is
G-birational to a minimal conic bundle with d = 3 and we conclude as
in the previous case.

If X is a minimal G-conic bundle, then either X is an exceptional
conic bundle with g = 1: assuming that X is linearizable, [Pro15,
Theorem 8.3] implies that the kernel of

ϱ : G→ Aut(Pic(X))

is non-trivial, since otherwise K2
X has to be odd. Then [DI09, Classi-

fication in §8.1] implies that no elementary transformation is possible
and X is not G-birational to any Del Pezzo surface, hence X /∈ Lin.

Secondly, X can also be a G-Del Pezzo surface with two sections
with self-intersection −1 intersecting at one point. In this case, X
is obtained by regularizing a de Jonquières involution; since such a
de Jonquières involution is not conjugate to a projective involution,
X /∈ Lin.

Case d = 5: has been considered above.

Case d = 6: X always has a full G-invariant exceptional sequence. If
X ∈ Lin, Lemma 14 applies.

Case d = 8: If X = F0 = P1 × P1, then it has the full exceptional
sequence, see [Kap88],

E = (O(−1,−1),O,O(1, 0),O(0, 1)),

which is invariant under the full automorphism group

Aut(X) = PGL2(C) ≀ C2.

If X is linearizable for a subgroup G ⊂ Aut(X), then Lemma 14 ap-
plies. In that case, every G-invariant full exceptional sequence is a
G-equivariant full exceptional sequence.
When X = Fn with n ≥ 2, we apply Proposition 23.

Case d = 9: X = P2, and there is nothing to show. □

Proposition 23. Let X be a G-Hirzebruch surface Fn, n ≥ 2, that
is G-linearizable. Then X admits a full G-equivariant exceptional se-
quence.

Proof. If X = Fn, n ≥ 2, [DI09, Theorem 4.10] shows that any finite
subgroup G ⊂ Aut(X) is contained in GL2(k)/µn, which is embedded
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into Aut(X) as follows: view Fn as the quotient (A2\{0})2/G2
m, acting

by

G2
m × (A2\{0})2 → (A2\{0})2(

(λ, µ), (x0, x1, y0, y1)
)
7→ (λµ−nx0, λx1, µy0, µy1),

and with projection

π : Fn → P1

(x0, x1, y0, y1) 7→ (y0 : y1),

identifying
Fn = P(OP1(n)⊕OP1),

as a P1-bundle. Letting A = (aij) ∈ GL2(k) act on the y-coordinates

A · (x0, x1, y0, y1) = (x0, x1, a11y0 + a12y1, a21y0 + a22y1),

we obtain an action of GL2(k) on Fn; clearly µn ⊂ GL2(k) acts trivially
on Fn, and we get an induced action of GL2(k)/µn. Actually the full
automorphism group of Fn is a semidirect product of GL2(k)/µn by
a normal subgroup kn+1, thought of as the space of binary forms of
degree n with its natural action of GL2(k)/µn, because Fn can also be
realized as the blowup of the weighted projective space P(1, 1, n) at its
singular point.

The group GL2(k)/µn is a central product of k×, embedded diago-
nally, and SL2(k), intersecting in the subgroup generated by −id, for n
odd. Then every term in the exceptional sequence (using the relative
version of Beilinson’s theorem as in [Orl92])

(∗) (OP1 ,OP1(1), π∗(OP1), π∗(OP1(1))⊗OP(E)(1)),

where E = OP1(n)⊕OP1 and OP(E)(1) is the relative hyperplane bundle
on P(OP1(n)⊕OP1) → P1, is invariant under GL2(k)/µn. We conclude
by Lemma 14. □

5. Threefolds

There is a wealth of results concerning linearizability of G-actions
on rational threefolds, in the context of birational rigidity. In absense
of this property, only few examples are known. Of particular interest
are threefolds without obvious obstructions, such as nontriviality of the
Amitsur invariant or failure of (H1).
In the arithmetic context, rationality over nonclosed fields of smooth

geometrically rational Fano threefolds, e.g., those of Picard number
one, has been investigated in [HT21a], [HT21b], [BW23], [KP23]:
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(1) V5,
(2) P3, Q3, X12, X22,
(3) V4, X16, X18

(we use standard notation for the threefolds from those papers). As is
well-known, V5, a Del Pezzo threefold of degree 5, is always rational.
The rationality of forms of varieties in group (2) is controlled by the
existence of rational points. In addition to this condition, rationality
of varieties in group (3), i.e., forms of complete intersections of two
quadrics, Fano threefolds of degree 16, 18, requires the existence, over
the ground field, of lines, twisted cubics, or conics, respectively. The
papers [KP23], [Kuz22] put this into the framework of derived cate-
gories, investigating the semiorthogonal decompositions in this context.
In particular, the only cases where the semiorthogonal decomposition
does not involve Brauer classes from the base, are V5 and X12, by
[Kuz22, Theorem 1.1 and Theorem 1.3].

We turn to the equivariant setting and linearizability questions. The
case of quadrics is already involved [TYZ23, Section 9]:

• existence of fixed points is not necessary for linearizability, when
G is nonabelian,

• there are cases, when linearizability is obstructed by the Burn-
side formalism, but stable linearizability is open,

• there are cases with no visible obstructions, but resistant to all
attempts to linearize the action.

As we are interested in situations where no obstructions are visible in
the derived category, we focus on V5 and X12.

Quintic Del Pezzo threefolds. As in Example 7, let W be a faith-
ful 5-dimensional representation of a finite group G, such that ∧2(W )
contains a faithful 7-dimensional subrepresentation V , so that

X = Gr(2,W ) ∩ P(V ),

is a smooth threefold, with generically free action of G, a quintic Del
Pezzo threefold. The restriction UX of the universal rank-2 subbundle
U over Gr(2,W ) to X is naturally G-linearized. Orlov [Orl91] showed
that there is a full exceptional sequence in Db(X) of the form

⟨(W ⊗O)/U ⊗O(−1),U ,O,O(1)⟩.

This is a sequence of G-linearized objects.
There is a distinguished such threefold, with G = A5-action, consid-

ered in Example 7. It is:
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• G-birationally rigid, and thus X /∈ PLin, and
• X ∈ SLin.

On the other hand, recall that there is a longstanding conjecture in
the context of derived categories relating the rationality of a smooth
projective variety (over an algebraically closed field of charactertistic
zero) to the existence of a full exceptional sequence in Db(X). The
above example contradicts the most suggestive analog of this conjec-
ture in the equivariant context. Note that in the arithmetic context,
every form of a quintic Del Pezzo threefold is rational, see, e.g., [KP23,
Theorem 1.1].

Fano threefolds of genus 7. We follow the discussion in [Muk92,
Muk95] and its summary in [Kuz05] and [PS99]. Consider a ten-
dimensional complex vector space V with a non-degenerate symmetric
bilinear form on it, and denote by Spin10 the associated spinor group
with 16-dimensional half-spinor representations S±V . Consider the La-
grangian Grassmannian of 5-dimensional isotropic subspaces of V : it
has two connected components LGr+(V ) and LGr−(V ) that can be
identified with the closed orbits of the group Spin10 in P(S+V ) and
P(S−V ). The representations S+ and S− are dual to each other. Choose
a pair of subspaces and their orthogonal subspaces (subscripts denote
dimensions)

A8 ⊂ A9 ⊂ S+V, B7 ⊂ B8 ⊂ S−V.

Let

X :=LGr+(V ) ∩ P(A9) ⊂ P(S+V ),

S :=LGr+(V ) ∩ P(A8) ⊂ P(S+V )

and

C∨ :=LGr−(V ) ∩ P(B7) ⊂ P(S−V ),

S∨ :=LGr−(V ) ∩ P(B8) ⊂ P(S−V ).

It is known that X is smooth if and only if C∨ is smooth, and S is
smooth if and only if S∨ is smooth, which we will now assume. Then
X = X12 is an index 1 degree 12 genus 7 Fano threefold with a smooth
K3 hyperplane section S (a polarized K3 surface of degree 12); all such
pairs (X,S) are obtained via the above linear algebra construction by
[Muk92, Muk95]. Moreover, S∨ is also a K3 surface of degree 12 and
C∨ is a canonically embedded curve of genus 7. Note that restricting
the universal bundle U from Gr(5, V ), we obtain rank 5 vector bundles
U+,U− on LGr+(V ) and LGr−(V ).
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It is known that the Sarkisov link with center a general point x ∈ X
gives a birational map to a quintic Del Pezzo threefold, hence X is
rational [KP23, Theorem 5.17 (i)], [PS99].

We now pivot to the equivariant setup, following [Pro12, Example
2.11]. Consider G = SL2(F8) and let U be a 9-dimensional irreducible
representation of G. There is a unique G-invariant quadric Q ⊂ P(U),
with generically free G-action. Note that, quite generally, the spinor
varieties for Spin2n−1 and Spin2n are isomorphic, indeed, projectively
equivalent as subvarieties of projective space PN , N = 2n−1 − 1, in
their spinor embeddings. So we can also think of LGr+(V ) as well
as LGr−(V ) as the spinor variety for Spin9, parametrizing projective
spaces of dimension 3 on a smooth quadric in P8. Hence G acts on
LGr+(V ) (and LGr−(V )). The embedding of these into P(S+V ) and
P(S−V ) is given by the positive generator of the Picard group, eight
times of which is the anticanonical bundle. According to [Pro12, Ex-
ample 2.11], the group G acts in P15 with invariant projective subspaces
of dimensions 8 and 6 such that we get an action of G on X and C∨.

The group G contains the Frobenius group F8, which does not act
on P3, so that the G-action on X is not linearizable.

The derived category of X is described in [Kuz05, Theorem 4.4] and
[Kuz22, Theorem 5.15]. It has a semiorthogonal decomposition

Db(X) = ⟨U+,OX ,D
b(C∨)⟩.

The proof uses the interpretation of C∨ as the moduli space of stable
rank 2 vector bundles on X with c1 = 1, c2 = 5 given in [IM04]. Indeed,
define

AX := ⊥⟨U+,OX⟩.
Kuznetsov constructs a fully faithful Fourier-Mukai functor

ΦE : D
b(C∨) → AX ⊂ Db(X)

from the universal bundle E on X × C∨, and this is an equivalence of
categories.

In our context, we need to check that ΦE is a morphism of G-
categories, in the sense of, e.g., [BO23, Section 2]. We do this by
showing that the G-category structure on Db(C∨), given by the geo-
metric action of G on C∨, and the G-category structure on AX as
the left orthogonal to the exceptional sequence of G-linearized objects
U+,OX , coincide. This follows directly from the fact that the Fourier-
Mukai kernel bundle E is a G-linearized vector bundle on X×C∨. The
easiest way to see this is to use the explicit description of E in [Kuz05,



30 BÖHNING, VON BOTHMER, AND TSCHINKEL

Constructions in §2 and Corollary 2.5]. Indeed, denoting by UX
+ and

UC∨
− the pullbacks of the tautological subbundles from LGr+(V ) and

LGr−(V ) to
X × C∨ ⊂ LGr+(V )× LGr−(V ),

the bundle E is cokernel of the morphism

ξ : UC∨

− ↪→ V ⊗OX×C∨ ≃ V ∗ ⊗OX×C∨ → (UX
+ )∨,

where the isomorphism in the middle is given by the quadratic form
and the other maps are the canonical inclusion and surjection.

In summary, the genus 7G-Fano threefoldX furnishes another exam-
ple with a nonlinearizable action, where all pieces in a semiorthogonal
decomposition of the derived category are “geometric”, i.e., equivalent
as G-categories to derived categories of G-varieties (of dimension ≤ 1).
Thus the pieces of these decompositions fail to detect the nonlineariz-
ability of X.
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over arbitrary fields. Ann. Sci. Éc. Norm. Supér. (4), 56(4):1029–1084,
2023.

[CS16] I. Cheltsov and C. Shramov. Cremona groups and the icosahedron.
Monographs and Research Notes in Mathematics. CRC Press, Boca
Raton, FL, 2016.

[CT20] A.-M. Castravet and J. Tevelev. Derived category of moduli of pointed
curves – II, 2020. arXiv:2002.02889.



EQUIVARIANT BIRATIONAL TYPES 31

[DI09] I. V. Dolgachev and V. A. Iskovskikh. Finite subgroups of the plane
Cremona group. In Algebra, arithmetic, and geometry: in honor of
Yu. I. Manin. Vol. I, volume 269 of Progr. Math., pages 443–548.
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