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Abstract. We construct new invariants of equivariant birational
isomorphisms taking values in equivariant Burnside groups.

1. Introduction

In this note, we generalize the new Burnside invariant of birational
isomorphisms introduced and studied in [9], [10].

Let

φ : X 99K Y

be a birational isomorphism of smooth projective n-dimensional algebraic
varieties over an algebraically closed field k of characteristic zero. The
invariant takes values in the Burnside group

Burnn−1 = Z[Birn−1],

of [3], the free abelian group on birational equivalence classes of algebraic
varieties of dimension n− 1 over k, i.e., isomorphism classes of function
fields of transcendence degree n−1 over k (we drop the dependence on k
from the notation). We denote by [K] the class of the function field K.

To define the invariant, let Ex(φ) and Ex(φ−1) be the sets of divisorial
components of the exceptional locus of φ, respectively φ−1. The main
observation of [9] was that

c(φ) :=
∑

E∈Ex(φ−1)

[k(E)]−
∑

D∈Ex(φ)

[k(D)] ∈ Burnn−1 (1.1)

respects composition [9, Lemma 2.2]:

c(ψ ◦ φ) = c(φ) + c(ψ);

here the sums are over divisors in the exceptional loci. Thus there is an
induced homomorphism

c : Bir Aut(X)→ Burnn−1 . (1.2)
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from the group of birational automorphisms of X over k to the Burnside
group. There is also a motivic refinement c̃ of c, taking values in the
truncated Grothendieck group of algebraic varieties,

c̃(φ) ∈ K0(Var≤n−1),

so that the homomorphism c in (1.2) factors as

Bir Aut(X)
c̃→ K0(Var≤n−1)→ Burnn−1,

where the rightmost map, the projection to classes of (n−1)-dimensional
varieties, is surjective.

Using these invariants Lin and Shinder obtained new structural results
about Cremona groups

Crn = Bir Aut(Pn),

see, e.g., [9, Theorem 1.2]. The nontriviality of these invariants in appli-
cations is based on the existence of nontrivial L-equivalences of algebraic
varieties.

One can ask about equivariant birational isomorphisms of G-varieties,
i.e., varieties which are equipped with an action of a finite group G, or
about birational isomorphisms between orbifolds. Building on work in
[7] and [4], we propose a generalization of (1.1) to the equivariant and
orbifold contexts, by incorporating information about the induced group
action, respectively, orbifold structure, on components of exceptional loci.
In the equivariant context, the invariants take values in

Z[BirG,n−1],

the free abelian group on G-equivariant birational equivalence classes of
varieties of dimension n− 1 over k with generically free G-action. There
is an associated equivariant Burnside group

Burnn−1(G)

defined in [7], with a homomorphism

Z[BirG,n−1]→ Burnn−1(G);

computations in the latter group allow to distinguish classes in Z[BirG,n−1],
see [2] and [6] for examples.

In the orbifold context, the invariants take values in

Z[Birn−1],

the free abelian group on birational equivalence classes of projective orb-
ifolds of dimension n−1 over k, which, in turn, admits a homomorphism

Z[Birn−1]→ Burnn−1

to the orbifold Burnside group, defined in [4].
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Concretely, let G be a finite group, acting generically freely on smooth
projective n-dimensional varieties X, Y over k. Let

φ : X 99K Y

be a G-equivariant birational isomorphism. Let ExG(φ) be the set of
G-orbits of divisorial components of the exceptional locus of φ. As an
analogue of [9, Theorem 2.8], we obtain:

Theorem 1. The assignment

CG(φ) :=
∑

E∈ExG(φ−1)
gen.stab(E)={1}

[E ý G]−
∑

D∈ExG(φ)
gen.stab(D)={1}

[D ý G] ∈ Z[BirG,n−1],

where the sums are over divisorial orbits of components of exceptional
loci with trivial generic stabilizer, respects compositions

CG(ψ ◦ φ) = CG(φ) + CG(ψ),

for sequences of equivariant birational isomorphisms

X
φ
99K Y

ψ
99K Z.

Passing to the orbifold context, let

φ : X 99K Y

be a birational isomorphism of projective orbifolds over k. Let Ex(φ) be
the set of divisorial components of the exceptional locus. In parallel, we
have

Theorem 2. The assignment

C(φ) :=
∑

E∈Ex(φ−1)
gen.stab(E)={1}

[E ]−
∑
D∈Ex(φ)

gen.stab(D)={1}

[D] ∈ Z[Birn−1],

where the sums are over divisorial components of exceptional loci with
trivial generic stabilizer, respects compositions

C(ψ ◦ φ) = C(φ) + C(ψ),

for sequences of birational isomorphisms of orbifolds

X
φ
99K Y

ψ
99K Z.
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2. Grothendieck ring and (stable) birational geometry

Let k be an algebraically closed field of characteristic zero. Let

Varn = Varn,k

be the set of isomorphism classes of algebraic varieties over k of dimension
n, and put

Var =
⊔
n≥0

Varn .

The Grothendieck ring

K0(Var)

is the quotient of the Z-module

Z[Var],

the free abelian group spanned by isomorphism classes of algebraic vari-
eties over k, by the Excision and Product relations; it carries a natural
filtration, by dimension. We will write [X] for the class of a variety in
K0(Var).

The paper [8] revealed a connection with birational geometry: smooth
projective varieties X and Y are stably birational if and only if [X] = [Y ]
modulo (L), where L is the class of the affine line, so that

K0(Var)/(L) ∼= Z[SBir],

the free abelian group spanned by stable birationality classes of algebraic
varieties over k.

The paper [3] introduced

Burnn = Z[Birn],

the free abelian group spanned by birationality classes of n-dimensional
algebraic varieties over k. One has natural isomorphisms

K0(Var≤n)/K0(Var≤n−1)
∼−→ Burnn,

from truncated, by dimension, K0-groups. The group

Burn :=
⊕
n≥0

Burnn

has a natural ring structure, induced by the product operation on alge-
braic varieties. There is also a surjection

Burn→ gr(K0(Var)),

with nontrivial kernel [1, Theorem 2.13].
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3. Generalites: equivariant geometry

We continue to work over an algebraically closed field k of characteristic
zero. Varieties over k are irreducible and reduced. For varieties with an
action of a finite group G we follow the conventions of [5, §2]: there might
be several irreducible components, but the G-action is assumed to be
transitive on irreducible components. Usually the G-action is generically
free, meaning that the locus with trivial stabilizer is nonempty, and hence
dense. We write

X ∼G Y
to mean that two varieties X and Y with generically free G-actions are
equivariantly birationally equivalent, i.e., there exists a G-equivariant
birational isomorphism

φ : X 99K Y.

The set of such φ will be denoted by

BirG(X, Y ).

We put
Bir AutG(X) := BirG(X,X),

and note that when X is a rational variety of dimension n,

Bir AutG(X) ⊆ Crn (3.1)

is the centralizer of G in the Cremona group.
A generically free G-action on a smooth projective variety X is called

linearizable, respectively stably linearizable, if there exists a faithful G-
representation V such that

X ∼G P(V ), resp. X × Pm ∼G P(V ) for some m.

(The G-action on X × Pm is the product of the given action on G and
the trivial action on Pm.) The determination of equivariant birationality
classes, and in particular, of linearizable actions, is a current research
direction.

The equivariant Burnside group Burnn(G) from [7] was defined so that
a smooth projective variety X of dimension n with generically free G-
action determines a class

[X ý G] ∈ Burnn(G),

in such a manner that

X ∼G X ′ ⇒ [X ý G] = [X ′ ý G] in Burnn(G).

The abelian group Burnn(G) is defined by generators and relations. Gen-
erators are symbols

(H,Y ýK, β)
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consisting of an abelian subgroup H ⊆ G, a function field with faithful
action of a subgroup Y ⊆ ZG(H)/H, where ZG(H) denotes the cen-
tralizer of H in G, and a finite sequence of nontrivial characters of H,
generating H∨; the transcendence degree of K/k and the length of β
must sum to n. Two symbols are declared equivalent, if they differ by
conjugation by an element of G, or reordering of the characters in β.
Two further relations are imposed:

• vanishing of symbols with β = (a, b, . . . ), a+ b = 0;
• blow-up, equating a symbol (H, Y ýK, β), β = (a, b, . . . ), with

Θ1 + Θ2, where

Θ1 = (H, Y ýK, β1) + (H,Y ýK, β2),

β1 = (a, b− a, . . . ), β2 = (b, a− b, . . . ),

when a and b are distinct characters, Θ1 = 0 when a = b, and

Θ2 = (H, Y ýK, β)

when b−a has nontrivial kernel H and the characters in β remain

nontrivial in H
∨
, otherwise Θ2 = 0. Here, K is K(t) with a par-

ticular action lifting the action on K of the group Y ⊆ ZG(H)/H,

containing H/H, with Y /(H/H) = Y . The images in H
∨

of the
characters b, . . . of β form β̄.

We have omitted several details, including a nontrivial condition on
Y ýK, for (H, Y ýK, β) to be admitted as a symbol. This condition,
called Assumption 1 in [7], ensures that characters of H can be lifted to
certain 1-cocycles, used in the action construction of [7], which gives the
action on K in the term Θ2 of the blow-up relation.

Given a smooth projective variety X with generically free G-action,
we first perform a particular sequence of blow-ups in G-invariant centers
to obtain an action in standard form: there is open invariant U ⊂ X,
on which G-acts freely, such that X \ U is a simple normal crossing
divisor such that the G-orbit of every component is nonsingular. An
action in standard form has abelian stabilizers. Making a choice of orbit
representatives F of the finite G-set

{components of XH |H ⊆ G abelian},

we define

[X ý G] :=
∑

orbit rep. F

(H,Y ýk(F ), β),

where H is the generic stabilizer of F , the quotient by H of the subgroup
of G, mapping F to itself, is taken as Y with induced action on the
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function field k(F ), and β records the representation type of H on the
normal bundle to F in X at a general point of F .

Theorem 3 ([7]). The class

[X ý G] ∈ Burnn(G)

is an invariant of the G-equivariant birational type of an n-dimensional
smooth projective variety X with generically free G-action.

Since the vanishing and blow-up relations involve only symbols with
nontrivial abelian subgroups of G, we obtain a direct sum decomposition

Burnn(G) = Z[BirG,n]⊕ Burnnontriv
n (G).

The first factor consists of symbols (1, Y ýK, ()) up to conjugation;
these encode the G-equivariant birational type of a smooth projective
variety of dimension n with generically free G-action. The second factor
is generated by symbols with nontrivial H. In applications we consider
the projection of [X ý G] to the second factor and exploit features which
potentially distinguish G-equivariant birational types.

4. Equivariant classes of divisors

Here we prove Theorem 1. As recalled in Section 3, a smooth projective
variety X with generically free G-action determines a class

[X ý G] ∈ Burnn(G).

This definition may be extended to possibly singular projective varieties
with generically free G-action, by first applying equivariant resolution of
singularities. Theorem 3 extends to possibly singular projective varieties
with generically free G-action.

A G-equivariant birational map

φ : X 99K Y

of smooth projective varieties with generically free G-action fits into a
diagram of G-equivariant birational morphisms of smooth projective va-
rieties

Z
σ

��
τ

��
X

φ
// Y

(4.1)

(We may apply equivariant resolution of singularities to the closure in
X × Y of the graph of φ to obtain such a diagram.)
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Lemma 4. In the situation of diagram (4.1) and under the convention
that we identify an orbit of divisors on X or on Y with the orbit of proper
transforms in Z we have:

Ex(σ−1) = ∅,
Ex(τ−1) = ∅,

Ex(φ) = Ex(τ) \ Ex(σ),

Ex(φ−1) = Ex(σ) \ Ex(τ).

Proof. Since the exceptional locus of the inverse of a birational morphism
has no divisorial components, the first two equalities are clear. For any
divisor in the exceptional locus of φ, the proper transform in Z is in the
exceptional locus of τ but not of σ. A divisor in the exceptional locus
of τ , not in the exceptional locus of σ has image a divisor in X, in the
exceptional locus of σ. This establishes the third equality, and the fourth
equality is established similarly. �

Proof of Theorem 1. Using Lemma 4 and the G-equivariant birational
invariance of the class of a G-invariant divisor in Burnn−1(G), we obtain

CG(φ) = −CG(σ) + CG(τ). (4.2)

By repeating the construction leading to (4.1) (for φ, for ψ, and for
the equivariant birational map from the variety dominating X and Y to
the variety dominating Y and Z) we obtain an analogous diagram

W
σ

~~
τ
��

ω

  
X

φ
// Y

ψ
// Z

By applying (4.2) to φ, ψ, and ψ ◦ φ, we obtain the theorem. �

Remark 5. In the definition of CG(φ), we consider only divisorial compo-
nents of exceptional divisors with trivial generic stabilizer. One reason
for this is clear: the definition of [X ý G] in [7] requires a generically free
G-action. A formalism was developed in [6] to encode actions with non-
trivial generic stabilizer, and one could imagine a formulation of CG(φ)
that would include divisorial orbits of components of exceptional loci
with nontrivial generic stabilizer. However, these contributions would
give a quantity that does not depend on φ; in fact, the quantity would
be a difference of two quantities, one depending only on the G-equivariant
isomorphism class of X, the other only on the G-equivariant isomorphism
class of Y . Indeed, there are only finitely many divisors with nontrivial
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generic stabilizer on X, and on Y . In the situation of diagram (4.1) there
are only finitely many divisors with nontrivial generic stabilizers on Z,
containing (birationally modified copies of) the ones of X, and the ones
of Y ; application of (4.2) leads to the observation.

5. Generalities: Orbifolds

Another setting for the discussion of birational geometry is that of
orbifolds. The main example of interest will be the quotient stack [X/G]
associated to a smooth projective variety X with a generically free action
of a finite group G. Abstractly, an (algebraic) orbifold over k is a smooth
separated irreducible Deligne-Mumford stack of finite type over k, with
trivial generic stabilizer. For example, the orbifold [X/G] is the category
(a stack is a category with functor to a suitable base category, which
for us will be k-schemes) where an object over a k-scheme T consists of
a G-torsor E → T with a G-equivariant morphism E → X (where the
functor to the base category sends such an object to the k-scheme T ).
A morphism over g : T → T ′, from E → T , with E → X, to E ′ → T ′,
with E ′ → X, is a G-equivariant morphism E → E ′, that fits into a
commutative diagram with g and fits into a commutative diagram with
the morphisms to X.

To every orbifold (or, more generally, Deligne-Mumford stack of finite
type over k with finite inertia, the last a technical condition implied by
separatedness) there is an associated coarse moduli space; the coarse
moduli space of [X/G] is the quotient variety X/G. When the coarse
moduli space is a projective variety, we call the orbifold projective; the
notion of quasi-projective orbifold is defined analogously. For instance,
the orbifolds [X/G] mentioned above are projective.

In [4] we studied invariants of projective orbifolds up to birational
equivalence. However, the notion of birational equivalence is subtle and
encodes more information than the birational equivalence class of the
coarse moduli space.

Definition 6 ([4]). Let X and Y be projective orbifolds over k. We say
that X and Y are birationally equivalent and employ the notation

X ∼ Y ,

if there exists a commutative diagram of projective orbifolds

Z
σ

��
τ

��
X

φ
// Y

(5.1)
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where the morphisms from Z are projective and birational.

In the setting of a diagram (5.1) we call φ : X 99K Y a birational
isomorphism, write

Bir(X ,Y)

for the set of such, and put

Bir Aut(X ) := Bir(X ,X ).

Remark 7. Without insisting on a diagram (5.1), to give X 99K Y is
the same as giving a birational isomorphism of the coarse moduli spaces.
The requirement of a diagram (5.1) makes the notion of birational iso-
morphism of orbifolds more subtle. In contrast with the characteriza-
tion (3.1) of G-equivariant birational automorphisms of rational varieties,
there is no evident characterization of Bir Aut(X ) as a subgroup of the
k-automorphisms of the field of rational functions k(X ).

A composition of birational isomorphisms of projective orbifolds is a
birational isomorphism. Indeed, given birational isomorphisms

X
φ
99K Y and Y

ψ
99K Z

we consider accompanying diagrams, in the manner of (5.1), and with a
construction of closure of graph and resolution of singularities obtain a
commutative diagram of projective orbifolds

W
σ

~~
τ
��

ω

  
X

φ
// Y

ψ
// Z

(5.2)

where the morphisms from W are projective and birational.
A birational isomorphism between orbifolds of dimension one (orbifold

curves) is necessarily an isomorphism. Many orbifold curves have the
same coarse moduli space (e.g., quotients [P1/Cn] by cyclic groups of
varying order n) but represent different isomorphism classes and hence
different birational equivalence classes of orbifolds.

Here is an example of a nontrivial birational automorphism of an orb-
ifold surface:

Example 8. Consider P2, with a linear action of a cyclic group of prime
order G := Cp, given by

(x : y : z) 7→ (x : ζapy : ζbpz), a, b 6= 0 (mod p), a 6= b (mod p),

and X := [P2/G]. We record the weights at the three fixed points:

(a, b), (−a, b− a), (−b, a− b)
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We blow up the fixed points, to obtain Y , a del Pezzo surface of degree
6, and blow down the proper transforms of the coordinate lines; these
are G-equivariant morphisms. Computing the weights in the resulting
projective plane, we obtain

(−a,−b), (a, a− b), (b, b− a).

The automorphism of G given by c 7→ −c reproduces the original weights
and indeed the original quotient stack. We obtain a diagram

[Y/G]

�� ��
X

φ
// X ,

with φ ∈ Bir Aut(X ), not an automorphism of X .

The orbifold Burnside group Burnn was introduced in [4]. An n-
dimensional projective orbifold X determines a class

[X ] ∈ Burnn

with
X ∼ Y ⇒ [X ] = [Y ] in Burnn.

6. Classes of orbifold divisors

Here we prove Theorem 2. We start by noting that the definition of
the class of an n-dimensional projective orbifold

[X ] ∈ Z[Birn−1,k]

may be extended, using resolution of singularities of Deligne-Mumford
stacks (of finite type over k), to the class of possibly singular Deligne-
Mumford stacks X , which are irreducible, reduced, separated, with pro-
jective coarse moduli space (i.e., irreducible, reduced projective Deligne-
Mumford stacks over k).

Lemma 9. In the situation of diagram (5.1) and under the convention
that we identify divisors on X or on Y with their proper transforms in
Z we have:

Ex(σ−1) = ∅,
Ex(τ−1) = ∅,
Ex(φ) = Ex(τ) \ Ex(σ),

Ex(φ−1) = Ex(σ) \ Ex(τ).

Proof. The proof is analogous to that of Lemma 4. �



12 ANDREW KRESCH AND YURI TSCHINKEL

Proof of Theorem 2. By Lemma 9, we have

C(φ) = −C(σ) + C(τ).

This equality, applied to the maps in diagram (5.2) completes the proof.
�

7. Example

Here we rework an example from [9] and show that the invariant CG
can take a nonzero value.

Example 10. We adapt the construction of [9, Theorem 3.7] to obtain,
for a linear action of G := C5 on P3, a G-equivariant birational automor-
phism φ with

CG(φ) 6= 0.

Let V be the regular representation of G and

X := G(2, V ) ⊂ P(
∧2 V )

the Grassmannian of 2-dimensional subspaces of V . For a general linear
form ` ∈

∧2 V ∨ we have:

• The G-orbit of ` cuts out in X a nonsingular curve C, of genus 1
with j-invariant different from 0 and 1728.
• The (unique up to scale) nontrivial G-invariant quadratic form

on
∧2 V vanishing on G(2, V ) defines, together with the G-orbit

of `, a nonsingular quadric threefold Q.

As explained in [9, Proposition 3.6], the additional quadratic forms on∧2 V vanishing on G(2, V ) define a rational map

Q 99K P3,

given by blowing up C in Q and contracting a divisor to the Jacobian

J2(C) ⊂ P3

of degree 2 line bundles on C. Another such rational map is given by
projection from a fixed point on Q, i.e., blowing up the fixed point and
contracting a divisor to a conic. These are equivariant birational isomor-
phisms, which we combine to obtain φ, and we use that C and J2(C) are
not equivariantly isomorphic to obtain the nonvanishing of CG(φ).



INVARIANTS OF BIRATIONAL MAPS 13

References

[1] L. A. Borisov. The class of the affine line is a zero divisor in the Grothendieck
ring. J. Algebraic Geom., 27(2):203–209, 2018.

[2] B. Hassett, A. Kresch, and Yu. Tschinkel. Symbols and equivariant birational
geometry in small dimensions. In Rationality of varieties, volume 342 of Progr.
Math., pages 201–236. Birkhäuser, Cham, 2021.
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