INVOLUTIONS ON K3 SURFACES AND DERIVED
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BRENDAN HASSETT AND YURI TSCHINKEL

ABSTRACT. We study involutions on K3 surfaces under conjuga-
tion by derived equivalence and more general relations, together
with applications to equivariant birational geometry.

1. INTRODUCTION

The structure of Aut D°(X), the group of autoequivalences of the
bounded derived category D°(X) of a K3 surface X, is very rich but
well-understood only when the Picard group Pic(X) has rank one
[BBI7]. The automorphism group Aut(X) of X lifts to Aut D°(X),
and one may consider the problem of classification of finite subgroups
G C Aut(X) up to conjugation — either by automorphisms, derived
equivalence, or even larger groups. This problem is already interesting
for cyclic GG, and even for involutions, e.g., Enriques or Nikulin invo-
lutions. There is an extensive literature classifying these involutions
on a given K3 surface X: topological types, moduli spaces of polarized
K3 surfaces with involution, and the involutions on a single X up to
automorphisms, see, e.g., [ANO06], [vGS07], [Oha07], [SV20], [Zha9§].

Here we investigate involutions up to derived equivalence, i.e., de-
rived equivalences respecting involutions. Our interest in “derived”
phenomena was sparked by a result in [Sos10]—there exist complex con-
jugate, derived equivalent nonisomorphic K3 surfaces—as well as our
investigations of arithmetic problems on K3 surfaces [HT17], [HT23].

One large class of involutions o : X — X are those whose quotient
Q) = X/o is rational. Examples include @ a del Pezzo surface and
X — @ a double cover branched along a smooth curve B € | — 2Kg|.
We may allow @) to have ADE surface singularities away from B, or B to
have ADE curve singularities; then we take X as the minimal resolution
of the resulting double cover of (). These were studied by Alexeev and
Nikulin in connection with classification questions concerning singular
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del Pezzo surfaces [ANQG]. Our principal result here (see Section 4)) is
that

e equivariant derived equivalences of such (X, o) are in fact equi-
variant isomorphisms (see Corollary |4.2)).

Our study of stable equivalence of lattices with involution leads us
to a notion of skew equivalence, presented in Section [/} Here, duality
interacts with the involution which is reflected in a functional equations
for the Fourier-Mukai kernel. Explicit examples, for anti-symplectic
actions with quotients equal to P2, are presented in Section

Next, we focus on Nikulin involutions ¢ : X — X, i.e., involutions
preserving the symplectic form, so that the resolution of singularities Y
of the resulting quotient X /¢ is a K3 surface. A detailed study of such
involutions can be found in [vGS07]. In addition to the polarization
class, the Picard group Pic(X) contains the lattice Eg(—2); van Geemen
and Sarti describe the moduli and the geometry in the case of minimal
Picard rank rk Pic(X) = 9. In Section [9] we extend their results to
higher ranks, and

e exhibit nontrivial derived equivalences between Nikulin involu-
tions (Proposition [9.3)).

These, in turn, allow us to construct in Section [10]examples of equivari-
ant birational isomorphisms ¢ : P4 --» P* with nonvanishing invariant
Cq(9), introduced in [LSZ23], [LS24] and extended to the equivariant
context in [KT22].

The case of Enriques involutions € : X — X, i.e., fixed-point free
involutions, so that the resulting quotient X /e is an Enriques surface,
has also received considerable attention. There is a parametrization of
such involutions in terms of the Mukai lattice H(X), and an explicit
description of conjugacy classes, up to automorphisms Aut(X), in in-
teresting special cases, e.g., for K3 surfaces of Picard rank 11, Kummer

surfaces of product type, general Kummer surfaces, or singular K3 sur-
faces [Kon92], [Oha07], [Ser05], [SV20]. In Section [L1| we observe that

e the existence of an Enriques involution on a K3 surface X im-
plies that every derived equivalent surface is equivariantly iso-
morphic to X (Propositions and ;

e while there are no nontrivial equivariant derived autoequiva-
lences, we exhibit nontrivial orientation reversing (i.e., skew)
equivalences, e.g., on singular K3 surfaces.
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2. LATTICE RESULTS

We recall basic terminology and results concerning lattices: torsion-
free finite-rank abelian groups L together with a nondegenerate integral
quadratic form (-, ), which we assume to be even. Basic examples are

(1)

and positive definite lattices associated with Dynkin diagrams (denoted
by the same letter).
We write L(2), when the form is multiplied by 2. We let

d(L) := L*/L
be the discriminant group and
qr : d(L) — Q/2Z

the induced discriminant quadratic form.

Nikulin’s form of Witt cancellation:

Proposition 2.1. [Nik79b, Cor. 1.13.4] Given an even lattice L, L& U
is the unique lattice with its signature and discriminant quadratic form.

If lattices L; and Ly are stably isomorphic — become isomorphic after
adding unimodular lattices of the same signature — then

Ll@UZLQ@U

Nikulin stabilization result: Given a lattice L, write L ® Z,, for the
induced p-adic quadratic form. The genus of L is the collection of all
lattices equivalent to L over Z, for each prime p and over R. Stably
equivalent lattices are in the same genus. The p-primary part of d(L)
depends only on L ® Z, and is written d(L ® Z,). We use ¢,gz, for the
induced discriminant quadratic form on d(L ® Z,), with values in the
p-primary part of Q/Z for odd p; when L is even and p = 2 it takes
values in the 2-primary part of Q/2Z. For a finitely generated abelian
group A, let ¢/(A) denote the minimal number of generators.
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Proposition 2.2. [Nik79b, Thm. 1.14.2] Let L be an even indefinite
lattice satisfying

o rank(L) > ¢(d(L® Z,)) + 2 for all p # 2;
e if rank(L) = ((d(L ® Z3)) then quez, contains u(f)(Q) or vf)(Q)
as a summand, i.e., the discriminant quadratic forms of

U<2><2):(g g) V(2) (‘21 i)

Then the genus of L admits a unique class and O(L) — O(qy,) is sur-
jective.

Remark 2.3. [Nik79b, Rem. 1.14.5] The 2-adic condition can be achieved
whenever the discriminant group d(L) has (Z/27)? as a summand.

Thus given a lattice L, any automorphism of (d(L),qr) may be
achieved via an automorphism of L. & U. More precisely, given two
lattices L,; and Ly of the same rank and signature and an isomorphism

o: (d<L1)>QL1) — (d(L2)7qL2)

there exists an isomorphism
p: L1 D U ;> LQ D U

inducing p.

Nikulin imbedding result:

Proposition 2.4. [Nik79b, Cor. 1.12.3,Thm. 1.14.4] Let L be an even
lattice of signature (ty,t_) and discriminant group d(L). Then L ad-
mits a primitive embedding into a unimodular even lattice of signature
(64—7 6—) Zf

e/, —/_ =0 mod 8§,

o/, >ty andl_>1_;

o (  +(_—ty—t_>L(dL)), the rank of d(L).
This embedding is unique up to automorphisms if

o/, >ty andl_>1t_;
ol + 0 —t,—t_>2+L(d(L)).

In particular, any even nondegenerate lattice of signature (1,9) ad-
mits a unique embedding into the K3 lattice U3 ¢ Eg(—1)%2.
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3. MUKAI LATTICES AND DERIVED AUTOMORPHISMS

Throughout, we work over the complex numbers C. Let X be a
projective K3 surface and

Pic(X) c H*(X,Z) ~ Eg(—-1)*? @ U?

its Picard lattice, a sublattice of a lattice of signature (3,19), with
respect to the intersection pairing. The Picard lattice governs the au-
tomorphisms of X. The composition

@ Aut(X) — O(H*(X,Z)) — O(Pic(X))

has finite cyclic kernel [Nik79al [Kon92]. The image can be computed
explicitly, at least up to finite subgroups, in terms of Pic(X) [LP8I]
§2]. Consider the subgroup generated by reflections in (—2)-classes,
i.e., indecomposable effective divisors of self-intersection —2; it acts
naturally on the positive cone in Pic(X)g. Then the image of w is a
finite-index subgroup of those elements leaving invariant a fundamental
domain for this action, i.e. the ample cone. All possible finite G C
Aut(X) have been classified, see [BH23]. Classification of Aut(X)-
conjugacy classes of elements or subgroups boils down to lattice theory
of Pic(X); we will revisit it in special cases below.
The transcendental lattice of X is the orthogonal complement

T(X) := Pic(X)* c H*(X,Z).

This lattice plays a special role: two K3 surfaces X, Xy are derived
equivalent if and only if there exists an isomorphism of lattices

T(X1) — T(Xa),

compatible with Hodge structures [Orl97]. Derived equivalence also
means that the lattices Pic(X;) and Pic(X3) belong to the same genus.
Over nonclosed fields, or in equivariant contexts, derived equivalence
is a subtle property, see, e.g., [HT17], [HT23].

We recall standard examples of Picard lattices of derived equivalent
but not isomorphic K3 surfaces

Remark 3.1. In Picard rank one: the number of nonisomorphic de-
rived equivalent surfaces is governed by the number of prime divisors of
the polarization degree 2d; see [HLOY04), Cor. 2.7] and Proposition [2.2}
The isomorphisms classes correspond to solutions of the congruence

(3.1) 72 =1 (mod 4d)

modulo +£1. When d > 1 the number of derived equivalent K3 surfaces
is 27(D=1 where 7 is the number of distinct prime factors of d.
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In Picard rank two: derived equivalences among lattice-polarized K3
surfaces of square-free discriminant are governed by the genera in the
class group of the corresponding real quadratic field [HLOY04) Sect. 3].

Here are instances where derived equivalence is trivial

Proposition 3.2. [HLOY04, Cor. 2.6, 2.7] Derived equivalence implies
isomorphism in each of the following cases:

e if the Picard rank is > 12;

e if the surface admits an elliptic fibration with a section;

o if the Picard rank is > 3 and the discriminant group of the
Picard group is cyclic.

We give a further example in Proposition
Let

H(X) := H'(X,Z)(-1) @ H2(X, Z) @ HY(X, Z)(1)

be its Mukai lattice, a lattice of signature (4,20), with respect to the
Mukai pairing. There is a surjective homomorphism [HMS09, Cor. 3]

Aut D*(X) — O (H(X)) c O(H(X))

onto the group of signed Hodge isometries, a subgroup of the orthogonal
group of the Mukai lattice preserving orientations on the positive 4-
planes.

We retain the notation from [HT23|, Cor. 3], where we discussed the
notion and basic properties of equivariant derived equivalences between
K3 surfaces. We recall:

Let X; and X5 be K3 surfaces equipped with a generi-
cally free action of a finite cyclic group G. Then X; and
Xy are G-equivariantly derived equivalent if and only if
there exists a G-equivariant isomorphism of their Mukai
lattices

H(X1) — H(X>)
respecting the Hodge structures.

Note that the G-action is necessarily trivial on
HY(X,Z)(—1) @ HY(X, Z)(1).

Even in the event of an isomorphism X; ~ X,, equivariant derived
equivalences are interesting: indeed, there are actions of finite groups
G that are not conjugate in Aut(X) but are conjugate via Aut D°(X)
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as the action of the latter group is visibly larger. See Proposition
for examples.

Let G be a finite group and X; and X, K3 surfaces with G-actions.
For simplicity, assume that G' acts on 7'(X;) via £1. (This is the case if
the transcendental cohomology is simple.) Given a G-equivariant iso-
morphism T'(X;) ~ T(X3), can we lift to a G-equivariant isomorphism
of Mukai lattices

H(X1,Z) ~ H(X,Z),

where GG acts trivially on the hyperbolic summand

U=H"aH"
Clearly the answer is NO. Suppose that G = Cy = (€) and the
e = —1 eigenspaces are stably isomorphic but not isomorphic. Adding

U does nothing to achieve the desired stabilization. In other words, U
is “too small”. We need to add summands where G acts nontrivially
to achieve stabilization across all the various isotypic components. See
Proposition for more on this question.

4. GENERALITIES CONCERNING INVOLUTIONS ON K3 SURFACES

Let ¢ : X — X be an involution on a complex projective K3 sur-
face, which acts faithfully on H?(X,Z) by the Torelli Theorem. It is
symplectic (resp. anti-symplectic) if

i"w=w (resp. —w),

where w is a holomorphic two-form. Nikulin [Nik79a] showed that any
symplectic involution fixes eight isolated points and that all such in-
volutions are topologically conjugate; these are the Nikulin involutions
studied in Section [} An involution without fixed points was classically
known to be an Enriques involution arising from a double cover X — §
of an Enriques surface.

The case of anti-symplectic involutions with fixed points is more
complicated. Nikulin enumerated 74 cases beyond the Enriques case;
see [ANO6, BH23| [AE22, [Ale22] for details of the various cases.

Given an anti-symplectic involution 7 : X — X on a K3 surface, we
recall the Nikulin invariants (r, a,d) [AE22, §2]: Let r denote the rank
of the lattice

S =H*X,Z)=",
which is indefinite if » > 1. We are using the fact that transcendental
classes of X are anti-invariant under ¢, as the quotient X /i admits no
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holomorphic two-form. We write
T =H*X,Z)="' =8+

for the complementary lattice with signature (2,20 — ), which is indef-
inite if 7 < 20. The discriminant group d(S) ~ d(T) is a 2-elementary
group; its rank is denoted by a. This group comes with a quadratic
form

gs : d(S) — Q/QZ
The coparity 0 equals 0 if gs(x) € Z for each z € d(S) and equals 1
otherwise.

We relate this to geometric invariants. For an anti-symplectic invo-
lution, there are no isolated fixed points so the fixed locus R = X' is
of pure dimension one or empty. Suppose there are k + 1 irreducible
components, with genera summing to g. Then we have cf. [AE22] p.5]

g=11—(r+a)/2 k=(r—a)/2,

excluding the Enriques case (r, k, ) = (10, 10, 0).

Nikulin classifies even indefinite 2-elementary lattices L. They are
determined uniquely by (r,a,d) and O(L) — Aut(d(L)) is surjective.
In the definite case, a priori there are multiple classes in each genus
but this is not relevant for our applications. Indeed, the possibilities
include

e r =a = 1: X is a double cover of P? branched along a sextic
plane curve.

e The case where T is definite (r = 20,a = 2,9 = 0,k = 9), we
have d(T') = Z/27 @ 7Z./27 thus is equal to

(b2)

Even in this case, automorphisms of the discriminant group are
realized by automorphisms of the lattice.

Theorem 4.1 (Alexeev-Nikulin). For each admissible set of invariants
(r,a,d), there is a unique orthogonal pair of lattices (S,T) embedded in
the K3 lattice A, up to automorphisms of A. There are 75 such cases.

Corollary 4.2. Any equivariant derived equivalence of K3 surfaces
with anti-symplectic involutions induces an equivariant isomorphism
between the underlying K3 surfaces.

Proof. Suppose that (Xi,41) and (X, 1iy) are derived equivalent, com-
patibly with their anti-symplectic involutions.
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Indeed, derived equivalence shows that the invariant (resp. anti-
invariant) sublattices of the Picard group are stably equivalent (resp.
equivalent):

Pic(X;)"=' @ U ~ Pic(X,)?=' @ U, Pic(X;)"= ! ~ Pic(Xy)2= .
Since the possibilities for the invariant sublattices are characterized by
their 2-adic invariants, we have

Pic(X;)"=! ~ Pic(X,)=2=".

We have already observed that all the possible isomorphisms between
their discriminants

(d(Pic(X1)"="), ¢1) = (d(Pic(X2)?7"), ¢2)

are realized by isomorphisms of the lattices. In particular, there exists
a choice compatible with the isomorphism

H?(X,,Z)" =" 5 H*(X,, Z)2=1
induced by the derived equivalence. Thus we obtain isomorphisms

on middle cohomology, compatible with the involutions. The Torelli

Theorem gives an isomorphism X; — X, respecting the involutions.
O

Corollary 4.3. Let (X1, 01) and (Xs, 09) denote K3 surfaces with invo-
lutions that are Cy-equivariantly derived equivalent. If Xy /o1 is rational
then Xs/09 is rational as well.

Indeed, the rationality of the quotient forces the involution to be
anti-symplectic.

Example 4.4. Having an anti-symmetric involution is not generally a
derived property. For example, consider Picard lattices

2 13 8 15
A= (13 12) A= (15 10) '
These forms are stably equivalent but not isomorphic. As in Re-
mark —see [HT1T, Sec. 2.3] for details — choose derived equivalent
K3 surfaces X; and X, with Pic(X;) = A; and Pic(X3) = As. Note

that Ay does not represent two and admits no involution acting via +1
on d(Asz); thus X, does not admit an involution.

This should be compared with Proposition [11.2} Having an Enriques
involution is a derived invariant.
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We collect some lattice-theoretic observations that will serve as a
foundation for Section [7k

Proposition 4.5. Let (X1,i1) and (Xa,i2) be K3 surfaces with invo-
lutions, both symplectic or anti-symplectic. Extend the involutions to
actions on the Mukasi lattices

i - H(X;,Z), j=1,2,

- o ifk=2
ij|HY = {ZJ i ’

where

1 ifk=0,4.

An equivalence of such actions, on Hodge structures of weight two,
corresponds to a triple

(1) an isomorphism of Hodge structures
t:T(Xy) = T(Xy),
(2) an isomorphism of lattices
7t Pic(X,)?=! — Pic(X,)2=!,
(3) a stable equivalence of lattices
71 Pie(X,)"= '@ U — Pic(X,)*" ' U,

satisfying the following conditions

e the isomorphisms induced by m**

on the images
Pic(X;) = d(Pic(X;)"™") @ d(Pic(X;)" =),

which are 2-elementary groups,
e the resulting isomorphism

PlC(Xl) — PlC(XQ)

18 compatible with t on discriminant groups.

on discriminant groups agree

This is proven through two applications of Nikulin’s lattice extension
theory, first to the Picard group and then to the full cohomology lattice.

Fixing T'(X;) and Pic(X;)%=!, the possible equivalences are indexed
by isomorphisms 7! restricting to the identity on the distinguished
2-elementary subgroups. Applying Nikulin stabilization, the equiva-
lent Mukai lattices, with these data, are indexed by the stable iso-
morphism classes of the anti-invariant Picard groups, where the stable
isomorphism restricts to the identity on the distinguished 2-elementary
subgroup of the their discriminant groups.
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Corollary 4.6. Suppose the anti-invariant Picard lattice P is unique
in its genus. Then the possible Mukai lattices (H,Z) with P are in-
dexed by automorphisms of d(P) restricting to the identity on the two-
elementary subgroup.

This is an equivariant version of the counting results of [HLOY04].

5. COHOMOLOGICAL FOURIER-MUKAI TRANSFORMS

Let X; and X5 be smooth projective complex K3 surfaces. A funda-
mental result of Orlov [Or]97] shows that any equivalence

®: DP(X,) — D(Xy)

arises from a kernel K € D’(X; x X5) through a Fourier-Mukai trans-
form
(I)IC : Db(Xl) — Db(XQ)
E = M (mERK).
All the indicated functors are taken in their derived senses. Given
such a kernel, there is also a Fourier-Mukai transform in the opposite
direction

\I/]CZDb<X2) — Db<X1)
E = m(mERK).

Mukai has computed the kernel of the inverse
P = Vi

i.e., a shift of the dual to our original kernel. See [Muk&87, 4.10],
[BBHRI7, § 4.3], and [Huy06| p. 133] for details. The computation
relies on Grothendieck-Serre Duality, so the appearance of the dualiz-
ing complex is natural. This machinery [Huy06, § 3.4] also allows us
to analyze how Fourier-Mukai transforms interact with taking duals:

P (EY) = m (K @ 7w (EY))
= ((m2.(KY @ m1€))")[-2]
= ((Pxv&)[2])”
= (CI);CV[Q}(C:)V
Suppose that X; and X5 are equivalent through an isomorphism
Xy = My (Xy,v1),
i.e., the moduli space of sheaves &,,p € X5, on X; with Mukai vector

vy =v(&,) = (r,D,s) € H(X,Z),
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Gieseker-stable with respect to some polarization H on X;. Here r
is the rank of &,, D = ¢1(&,), and s = x(&,) — r. We assume there
exists another Hodge class v € H(X;,Z) such that (v,v/) = 1; in
particular, v is primitive. (For information on how to realize derived
equivalences via such moduli spaces, see [Muk87, §4,5] and [HuyO08|
p. 385], the discussion following Proposition 4.1.) Let & — X; x X5
denote a universal sheaf; by simplicity of the sheaves, £ is unique up to
tensoring by a line bundle from X,. We may use £ as a kernel inducing
a derived equivalence between X; and X5 [Huy06, 10.25]. Our formulas
for inverses are compatible with tensoring the kernel by line bundles
from one of the factors.

In searching for Fourier-Mukai kernels, cohomological Fourier-Mukai
transforms play a crucial role. Let w; € H*(X;,Z) denote the point
class and set [Muk87, §1], [Huy06| p. 128]

ZIC = Wf(l + (JJl) Ch(lC)W;(l + (JJQ) € H*(Xl X X27Z)7

where the middle term is the Chern character. Then Zx induces an
integral isomorphism of Hodge structures

ox  H(X1,Z) = H(X,,7Z)

compatible with Mukai pairings; this is called the cohomological Fourier-
Mukai transform. For £ € D°(X1), we have the identity

¢rc(v(€)) = v(Px(£)).
We use 1 to denote the cohomological transform of Wy.
Most cohomological Fourier-Mukai transforms are induced by kernels

Proposition 5.1. [OrI97, [HMS09] Given an orientation-preserving in-
tegral Hodge isometry

¢ H(Xy,Z) — H(X,, Z)
there exists a derived equivalence
di : DP(X)) — D°(Xy)
such that ¢ is the cohomological Fourier-Mukai transform of ®x.

Suppose that (Xi, f1) is a polarized K3 surface of degree 2rys, where
ro and s are relatively prime positive integers. Let dy be an integer
prime to ry and fix the isotropic Mukai vector

Vo = (Tg,dgfl,ng) S ﬁ(Xl,Z)

Since 7 and d2s are relatively prime, there exists a Mukai vector v' =
(m,0,n) such that (vy,v") = 1. Let Xy = My, (Xy,v9) be the moduli
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space of torsion-free sheaves with Mukai vector vy, Gieseker-stable with
respect to fi —also a K3 surface. Choose a universal sheaf & — X; x Xs.
Our goal is to describe the induced isomorphism

¢t H(X1,2) = H(Xa, Z).
Following [HL10, Ch. 8] and [Yos99, §2], the polarization on X is given
by
det(7r2*(5 & OH(S(T‘() — 2d0))))v, H e |f1|,
a primitive ample divisor fy on Xs. More generally, we have an iso-
morphism of Hodge structures
H*(Xs, Z) = (vg)* /Loy,

where the perpendicular subspace is taken with respect to the Mukai
pairing.

Proposition 5.2. [Yos99] Let (X1, fi) and (Xa, f2) be K3 surfaces of
Picard rank one with Xy ~ My (X1,v9) as above. Choose integers d;
and € such that sdody — 1ol = 1 and take K = £ @ 75 L for some line
bundle L on Xs5. With respect to the bases

(1,0,0), (0, £;,0), (0,0, 1) € H(X;,Z) N H“(X;)
the matriz of the cohomological Fourier-Mukai transform takes the form

d?s 2dysrg 7o
(51) QbIC = dof 2d0d18 -1 d1
Cro  2dyslrg  d2s

The inverse is obtained reversing the sign of the middle basis vector
and interchanging the role of dy and dy:

d2s 2dysro 0 dis  —2disrg T
dog 2d0d1$ —1 dl —dlg Qdodls —1 —do =L
Crg  2dyslry  dis Pro  —2dyslry  dis

The formula

Prcthry =1
is the cohomological realization of the identity
PrWivig = L.

The third column of ¢! is the Mukai vector vy, as

1 (0,) = 81\)/7 p=1&] € Xo = Mp (Xy,0).
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Remark 5.3. The assumption in Proposition [5.2] on the rank of the
Picard groups is not too restrictive, as Proposition |5.1| allows us to
specialize from the rank-one case. Derived equivalences satisfying
exist provided the primitive cohomology groups are isomorphic

H(X1,Z) O fi = f3 C HY(X»,Z)

as integral Hodge structures. However, these are not given as kernels
associated with explicit moduli spaces of sheaves Gieseker-stable with
respect to some polarization.

Example 5.4. Suppose that (X, f1) is a degree 12 K3 surface. Con-
sider the isotropic Mukai vector v = (2, f1, 3) so that

Xy = My, (Xq,0)
is also a K3 surface derived equivalent to X;. Taking
ro=2, s=3, do=1 dy=0=1,
we obtain

(17 07 0) = (37 f27 2)
(0, f1,0) = (12,5f5,12)
(0,0,1) = (2, f2,3)

with matrix

312 2
(5.2) =11 5 1
2 12 3

The determinant is 1 with one eigenvector (1,0, —1) with eigenvalue 1;
thus this is orientation preserving. Note that

(2,—f1,3) — (0,0,1)
whence
X1 = My, (Xs,(2, f2,3), Xo= M, (X1,(2,—f1,3)).
The fact that (1,0, —1) has eigenvalue 1 gives

x5 xP
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6. LOCALLY-FREE KERNELS AND WALL-CROSSING

For applications to skew equivalence, discussed in Section [7], we re-
quire derived equivalences between K3 surfaces X; and X, induced by
locally-free kernels

E— X1 X Xo.

Many equivalences do not arise in this way.

Example 6.1. Suppose that X; = X, = X and consider the equiv-
alence arising by interpreting X as the moduli space of ideal sheaves
I,z € X. These sheaves are not locally-free.

We refer the reader to [HL10, §1.2] for the definitions and background
on p-stable sheaves and relations to Gieseker stability. We use the
implications [HLI8, Lemma 1.2.13]

wi-stable = stable wrt H = semistable wrt H = py-semistable.

Now pu-stable sheaves on K3 surfaces are typically locally-free: Let
E be a simple sheaf on a K3 surface X, with v(FE) isotropic, such
that ppg-stable for some polarization H. Then E is locally-free, with
the exception of ideal sheaves I, [Muk87, 3.10], [HLI8 6.1.9]. The
problem is that moduli spaces M’ (X, v) of such sheaves are not always
compact, when there are strictly ppy-semistable sheaves.

We recall criteria guaranteeing that p stability and semistability co-
incide. Let v = (r, D, s) be a primitive isotropic Mukai vector of rank
r > 0 for a K3 surface X. Assume that D is primitive and H is a
polarization avoiding “walls”, i.e., hyperplanes expressible in the form
&L for suitable 0 # ¢ € DL, Then we have, by [HL10, 4.C.3],

M (X, v) = M7 (X, v).
The ¢ that arise may be characterized in terms of r [HL10, 4.C.2]:

Example 6.2. Suppose that r = 2 and F is strictly py-semistable.
One possibility is extensions

0— Ox(L) = FE— Ox(D—1L)—0,
where L is a divisor with
H-L=H-(D-L), dimExt'(Ox(D - L),0x(L)) = 2.
Here £ = 2L — D € H* satisfies €2 = —8. Writing § = v(L) we have:

5
0
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Thus § gives rise to a (—2)-class in the Picard group of My (X, v)
for H' a polarization outside the walls; typically this is the class of a
rational curve isomorphic to P(Ext'(Ox(D — L), Ox(L))), contracted
in M}(X,v) with complement My’ (X,v).

The other possibility is extensions

(6.1) 0—Ox(L)—-FE—I,(D—-L)—0,
where z € X and L is a divisor
H-L=H-(D-1L), dimHom(L,FE)=1.
Here ¢ = 2L — D € H* satisfies €2 = —4, writing § = v(L) we have:

Here M} (X, v) = 0 reflecting the fact that the extension (6.1)) may be
trivial or nontrivial. The resulting coarse moduli space is isomorphic
to X; this is called a “totally semistable” wall.

This dichotomy in the wall types is typical and explained in [Bri08|
§12] (for two-dimensional moduli spaces) and [BM14, Th. 5.7 (in gen-
eral); we are grateful to Bayer for pointing out this framework. The
possible walls are all associated with spherical classes § with v(8)? = —2
of two types:

e contracting walls:

where M}(X,v) has a contractible (—2)-class in its Picard

group;
e totally semistable walls:

where M(X,v) is empty but the coarse moduli space is left
unchanged.
Bridgeland [Bri08] elucidates the typical behavior; we refer the reader
to [BM14], §6] for details of the derived equivalences associated with
wall crossing arising as compositions of spherical twists associated the
(—2)-classes.
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Example 6.3. Mukai [Muk87, 3.8] offers examples of the second type.
Let F be a rigid vector bundle with v(F') = §, r its rank, and E the
kernel of evaluation at a skyscraper sheaf at x € X:

0— E— F% — C(x) = 0.
Note that E has local cohomology at x and thus cannot be locally-free.

Suppose that the polarization varies over the ample cone. As we
cross walls of either type, the moduli spaces associated with adjacent
chambers are naturally isomorphic. Even for a contracting wall, the
minimal resolution of the nodal moduli space is naturally isomorphic
to moduli spaces associated with each side. Since the ample cone is
simply-connected, for all ample H; and H, we obtain natural isomor-
phisms

(6.2) By ., - Mﬁ,‘js(X, v) = MI‘}ZS(X,U);

see the discussion following [BM14, Th. 1.1]. This is an instance of the
general phenomenon that wall-crossing induces birational maps among
moduli spaces of vector bundles on surfaces [HL10, 4.C.7]. However,
the universal sheaves over these moduli spaces — and the derived equiv-
alences they induce — do vary from chamber to chamber (see[BM14,
Th. 1.1(b)]). In particular, explicit formulas as in Proposition [5.2] are
not available for higher rank K3 surfaces.

An application of wall-crossing, and a template for our results in
Section [7] is the following result of Huybrechts [Huy08| Prop. 4.1]: Let
X, and X5 be derived equivalent K3 surfaces. Then there exists a
moduli space of ug-stable locally-free sheaves with universal family

E— MZS(XQ,U) X XQ

and an isomorphism X; ~ M}’ (X, v).

7. ORIENTATION REVERSING CONJUGATION

We continue to assume that ¢ is an anti-symplectic involution on a
K3 surface X. As we have seen,

T(X)c H*(X,Z2)=1,

==1"which is negative definite by the Hodge

with complement Pic(X)
index theorem.
Recall that Orlov’s Theorem [Or]97, §3] asserts that for K3 surfaces

(without group action) isomorphisms of transcendental cohomology lift
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to derived equivalences. Given K3 surfaces (Xi,41) and (Xa,i2) with
anti-symplectic involutions of the same type in the sense of Alexeev-
Nikulin, the existence of an isomorphism

T(X1) = T(X,)

seldom induces an equivariant derived equivalence; a notable exception
is the case where the anti-invariant Picard group has rank zero or one.
We only have that

PiC(lelzil, PiC(XQ)iZ:il

are stably equivalent — compatibly with the isomorphism on the dis-
criminant groups of the transcendental lattices — but not necessarily
isomorphic.

In light of this, we propose an orientation reversing conjugation of
actions, with a view toward realizing isomorphisms of transcendental
cohomology.

Assume that Pic(X;)"=! and Pic(X3)?=~! are not isomorphic, so
there is no Cs-equivariant derived equivalence

D'(X;) = D'(Xs)
taking i1 to iz, by Corollary However, let
dual; : D*(X;) = D(X;), j=1,2,

denote the involution
E, = E).

Note that shift and duality commute with each other and with any
automorphism of the K3 surface. The action of dual; on the Mukai
lattice H(X j,Z) is trivial in degrees 0 and 4 and multiplication by —1 in
degree two. Recall that shift acts via —1 in all degrees, so composition
with dual; is trivial in degree 2 and multiplication by —1 in degrees 0
and 4.

We propose a general definition and then explain how it is related
to our analysis of quadratic forms with involution:

Definition 7.1. Let (Xi,4;) and (Xs,42) be smooth projective vari-
eties with involution, of dimension n with trivial canonical class. They
are skew equivalent if there is a kernel K on X; x X5, inducing an
equivalence between X; and Xs, and a quasi-isomorphism

(7.1) (@, 5K S KV [n).
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Note that dualization coincides with the relative dualizing complex
for both projections m; and my. The quasi-isomorphism is involu-
tive

K — KY[n] — (KY[n])"[n] ~ K,
i.e., (i1,12) takes IC to the kernel inducing the inverse of ®x. Since K is
simple and the base field is algebraically closed, the quasi-isomorphism
may be normalized so this composition is the identity.

Our first property follows straight from the definition:

Proposition 7.2. Suppose that (X1,i1) and (Xa,1i2) are as specified in
Definition [71] and K induces a skew equivalence between them. Con-
sider line bundles Li and Lo on X; and Xso that are anti-invariant
under 11 and iy
3 ~ TV
Then K ® (L1 X Ly) also induces a skew equivalence.
Our next property makes explicit the behavior under duality:

Proposition 7.3. Let (Xi,i41) and (Xa,i) be K3 surfaces equipped
with involutions. Suppose that K is a kernel inducing an equivalence
between X1 and Xo, with induced Fourier-Mukai transforms

i : DP(X)) = D(Xy), W :D(X)) — D°(Xs).
Then the following are equivalent:

o Oy dual; ] = dualy 5Py,

L4 ’LT = \IIK’L;(I)]C;

e K induces a skew equivalence between (X1,i1) and (Xo,is).
Proof. Recall the interpretations of duality and inverses of Fourier-
Mukai equivalences in Section [5| Let T denote the shift on X;. Ap-
plying duality gives to the first expression gives

T, % dualy ®xvit = dualy i5®x
whence
(7.2) T3 ®vis = i5Pr.
This is equivalent to
Uy Ppvif = Ui, 2i5 0k
and
Ty %0 = Ui Ty 2is®y
which is the same as
17 = UrisDi.
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Now formula is equivalent to
T20xv = i5®xci}
i.e., applying i} x ¢ transforms K to KV[2]. O
The second item in Proposition immediately yields:

Corollary 7.4. Skew equivalence is an equivalence relation on K3 sur-
faces with involution.

Suppose again that X; and X, are K3 surfaces and K = £[1] for a
universal vector bundle
E— X1 X X2
associated with an isomorphism X; = M,(X3). Then relation (7.1))
(with n = 2) translates into

(7.3) i5Ei 1) = (Exy)".

Theorem 7.5. Let (X1,11) and (Xs,i3) be K3 surfaces with involu-
tions. Then the following are equivalent
o (Xy,i1) and (Xa,i2) are skew derived equivalent;
e there exists an orientation-preserving equivalence of Mukai lat-
tices B B
¢:H(X1,Z) — H(Xs,Z),
satisfying

(7.4) o(i1(v")) = (136(v))".

As duality and pullback commute with each other, the order of these
operations in ([7.4]) is immaterial. Furthermore, if ¢ satisfies this rela-
tion then so does —¢.

Remark 7.6. We are not asserting that each cohomological equiv-
alence satisfying arises from a skew equivalence. Suppose that
X1 = X5 = X with the same involution 7. Consider the spherical twist
associated with Ox with kernel Zx[1] and cohomology matrix

0 0 -1
(75) TOox = 0 I 0
-1 0 0

Neither 7o, nor —7p, is obviously realized by a kernel with the requi-
site self-duality property. Of course, the identity induces a skew equiv-
alence of (X, i) with itself! Suppose now that (X;,7;) and (X5, i) are
arbitrary K3 surfaces with involution. Given ¢ satisfying , we may
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pre-compose or post-compose with 7o, or 7o, ~to get another matrix
with the same property.

Proof of Theorem[7.5. The forward implication is clear. Indeed, the
cohomological Fourier-Mukai transform ¢x of a skew equivalence sat-
isfies

(i1,12)" Pk = Pxv

but ¢xv differs from ¢x by the involution acting via +1 on H° and H*
and —1 on H?. Thus

ox  H(X1,Z) — H(X,,7Z)

satisfies relation ([7.4)).
For the reverse implication, we consider the cohomological Fourier-
Mukai transform

¢ H(X,,Z) — H(X,,Z).
Set

vo == ¢(0,0,1) = (r,al, s),
where ¢ € Pic(X3) is primitive and a € N.

e The relation implies that ¢3¢ = —/¢, which means that
> < 0if £ #0. (The Hodge index theorem implies that the
intersection form on the anti-invariant divisors is negative defi-
nite. )

e Writing ¢(1,0,0) = (', D', s') we have

a(l-D")—rs —sr'=—1

whence ged(r, s,al - D') = 1 for some anti-invariant divisor D’
on Xs. Hence ged(r, s,a) =1 as well.

e If / # 0 then both r and s are nonzero as vy is isotropic. If £ =0
then r = 0 or s = 0 but both cannot vanish. After applying a
twist To,, we may assume that r 7 0.

e If r < 0, we may replace ¢ by —¢. From now on, we therefore
assume 7 > 0.

We follow §4 of [HuyO§] to reduce to circumstances where the wall-
crossing analysis of Section [6] may be carried out.

Case I: Pic(X,)2="1 =0
This case — with ¢ = 0 — was addressed above.
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Case II: Pic(X,)2>=1 =1
Taking ¢ to be the generator, all the possible equivalences are realized
with Mukai vectors

vo = (r,4,s), ged(r,s)=1.

Indeed, this follows from Corollary : Writing /> = —2d and factoring
d= H;n:l pjj into distinct primes, we see that the automorphism group
of d(Z0) is CI".

Thus it suffices to consider Mukai vectors with primitive first Chern
class, where wall crossing applies.

Case III: Pic(X,)2="1 > 2

(1) Suppose that vy = (r,al,s), with ged(r,a) = 1. Then there
exists a anti-invariant divisor £ on X, such that D = rE + af
is primitive. In particular, after tensoring by Ox(E) the first
Chern class is primitive. However, tensoring by line bundles
has no impact on p-stability.

(2) If only ged(s, a) = 1, then after applying the twist Toy, We have
ged(r,a) = 1.

(3) Suppose that ged(r,a) = a > 1 and write

vo = (r,al, s) = (ar’, ad'l, s).

As before, choose an anti-invariant divisor E such that a’{+1r'E
is primitive. Tensoring by E gives

exp(E)vg = (r,al +rE,§:=s+aE - L+
= (r,a(dl+1"E),3).

)

Now
1 = ged(r, a, s) = ged(r, a, §) = ged(a, §)

so we are reduced to the previous case.

To summarize, up to twists by Oy, that have no impact on our final
result, for each Mukai vector v inducing a derived equivalence we may
always achieve

MZIS(X% U) = MZISS(X% ’U)

for polarizations H avoiding walls. This completes Case III.



INVOLUTIONS ON K3 SURFACES AND DERIVED EQUIVALENCE 23

We return to the situation where vy = (7, af, s) with ¢ anti-invariant,
applying the wall-crossing technique of Section@ Consider M4 (X, vo),
a K3 surface derived-equivalent to Xs, where H is a polarization on X,
avoiding the walls. We produce an involution j on this moduli space
by composing isomorphisms

MZS(XQ,UO> — MES(XQ, —Uo) — Mg%(Xg,Uo) — MZS(XQ, UO),
where the first isomorphism is induced by duality, the second is induced
by iz, and the third is i g g introduced in (6.2). To see that this is an
involution, observe that ﬁHﬂ‘; = @;}{ g and use the fact that i and

duality are involutive and commute with each other.
We analyze how j acts on the cohomology

(7.6) H2(ME (Xa,00), Z) = (v))*" ) 2wy .

The isomorphism [ allows us fix these identifications as H varies, even
as we cross walls. The action of i3 on the Mukai lattice and the asso-
ciated cohomology groups is given by functoriality; recall that i, takes
Vo to its dual. For dualization

M (Xa,v0) = My (Xa, —v9)
the action is
(v5)"/Zvg — (vo) ™/ Zug
v =
Indeed, the construction of in [HL18, 8.1.1] and Serre duality
for K3 surfaces — modulo shift by two, the cohomology of the dual of a

sheaf is the dual of its cohomology — shows this is the induced mapping.
To conclude j* acts as follows:

e multiplication by +1 on
(X5, Z)~" € B (M (X2, v0)), Z);
e multiplication by —1 on
(vg)- NH(X,, Z) & HY(X2, Z);
e multiplication by —1 on
(o)) NH(X,, Z)2=1

We follow [Huy06| p. 235]. Looking at the composed cohomological
Fourier-Mukai transforms

H(X,Z) 5 H(X,, Z) 5 H(MY (X, v), Z),
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which takes (0,0,1) to (0,0,1), the Torelli theorem guarantees that

Xy ~ M (Xs,v9). The function relation ([7.4)for ¢ guarantees that i,
coincides with 7 under this isomorphism.
Our moduli space admits a universal sheaf [Huy06, Prop. 10.20]

E— XQ X M;}S(XQ,U()),

unique up to tensor product by line bundles on the moduli space. On
the other hand,

(i, [)*EY — Xy x Mg‘}[(XQ,vO),
is also a universal sheaf, as is
(i9,7) EY — Xo x MY (Xo,vp).
Applying the isomorphism with X7, we obtain
(i2,11)"EY ~E @ Ly,
for some line bundle L; on X;. This is equivalent to
(i,11)"E ~EY @ LY
and
E =~ (iy,11)*EY @i;L]
whence L, is necessarily symmetric under ;.
Rescaling £ — £ ® Ny, for N; a line bundle on X7, takes

Ly — L; ® Ny ®i]Ny.
A priori, the obstruction to obtaining the relation
(ig,11)*EY ~ &
is a cocycle in H2((4;) , Pic(X;)). However, any such obstruction would

be visible on cohomology and thus is precluded by the relation ([7.4)).
O

Corollary 7.7. Under the assumptions above, the functors dual; oiq
and duals oiy are Cs-equivariantly derived equivalent.

This motivates the formulation of Proposition [4.5]

Remark 7.8. As we recalled in Section 3, derived equivalences respect
orientations on the Mukai lattice [HMS09]. The orientation reversing
conjugation violates the orientation condition, in a prescribed way. Du-
ality is the archetypal orientation-reversing Hodge isogeny.

In Sections |8 and [11] we give examples of such equivalences.
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8. RATIONAL QUOTIENTS AND SKEW EQUIVALENCE

Our first task is to give examples of skew equivalences using The-
orem [7.5] 'We remind the reader to consult Proposition for the
relevant lattice machinery.

The simplest examples are in rank two. Take (X, hq) and (Xs, hs)
to be degree-two K3 surfaces, with associated involutions i; and s,
such that T'(X;) ~ T(X5). Suppose that

Pic(X;)¥ = Z{;, 3 = —d;

¥ J

note that Pic(X}) is either (h;,¢;) or <hj, hJ+ZJ>, i.e., the distinguished
2-elementary subgroup is trivial or cyclic. By Corollary [4.6] possible

examples correspond to isomorphisms
d(Zty) ~ d(Zt5)

preserving the distinguished subgroup — a vacuous condition as the
discriminant group is cyclic. Thus (X7,4;) and (X3, i3) are skew equiv-
alent.

Remark 8.1. In many examples, M,‘l‘] °(Xj,v0) is automatically com-
pact for vg = (r,{,s), with r < |s| and ged(r,s) = 1, because h;
happens not to lie on a wall.

The next group of examples arise from nontrivial stable isomor-
phisms. We exhibit lattice-polarized K3 surfaces with involution (X7, ;)
and (Xy,i9), such that the anti-invariant Picard groups are stably
equivalent but inequivalent.

Specifically, we assume X; and X, are degree two K3 surfaces with

Pic(X;) = Zh; & A;(—1), h} =2,

where the involutions fix the h; and reverse signs on A;’s. If A; and
Ay are stably-equivalent, inequivalent positive definite lattices then
(X1,11) and (Xa, i) are skew equivalent.

In contrast to ordinary equivalences (see there are anti-symplectic
actions with nontrivial skew equivalences. The resulting quotients are
rational surfaces, indeed, P2.

Example 8.2 (Explicit matrices). The matrices, in the basis p;, g;, for
7 = 1,2, are given by

4 1 6 1
() e (01,
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We extract a stable isomorphism

AieoU~Aa U, U= (uy,v), with matrix ((1) (1)) )

First, we give an isomorphism
AL @ le)) ~ Ay @ (eg), €2 = -2
We put
p1 > P2t e,

and claim that the orthogonal complements to these are equivalent
indefinite lattices. Indeed,

188 0
p% = <p1 —4(]1761> = ( 0 _2) )

282 —94
(p2 + eQ)J_ == <p2 - 6(]27 2(]2 + €2> - <_94 30 )

—12 —4
= (p2 +3e2,2q2 +€2) = <_4 30)

These are equivalent via Gaussian cycles of reduced forms

0 18 8 4
188 -2 26 —12 30

where the indicated basis elements are
p1—4q, e, pi—4q —9e, pi—4q —10e;, 2(p1 —4q) — 19e;.
The composed isomorphism is
p1 — 4q1 — 10e; — py + 3eq,
2(p1 — 4q1) — 19e1 — 2¢2 + €5
D1 P2+ €2
e1 — (2q2 + e2) — 2(p2 + 3e2) = 2(q2 — p2) — Hea
1 — 5(p2 — q2) + 12e5.
We extend the isomorphism above where e; = u; — v;
Uy + U1 = U + V2
uy —v1 = 2(q2 — pa) — H(ug — v2)
p1 = 2+ (U2 — v2)
@1 = 5(pa — @) + 12(ug — vo)
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whence we have

g = (g2 — p2) — 2ug + 3vg
vy = (P2 — q2) + 3ug — 20,.

9. NIKULIN INVOLUTIONS

General properties. An involution ¢ on a K3 surface X over C pre-
serving the symplectic form is called a Nikulin involution. We recall
basic facts concerning such involutions, following [vGS07]:

e | has 8 isolated fixed points;
e the (resolution of singularities) Y — X/¢ is a K3 surface fitting
into a diagram

x & X

1 I
X/t « Y

where 8 blows up the fixed points and the vertical arrows have
degree two;

e the action of + on H?(X,Z) is uniquely determined, and there
is a decomposition

H*(X,Z) = (U*); @ (Es(—1) ® Es(—1))p,

where the first term is invariant and the second is a permutation
module for ¢;
e the invariant and the anti-invariant parts of H? take the form:

HA(X,Z)~ > U @ By(—2), HA(X,Z)~' = By(-2)

Let F1, ..., Eg denote the exceptional divisors of 8 and Ny,..., Ng the
corresponding (—2)-curves on Y. The union UN; is the branch locus
of 7 so there is a divisor

~

N=(Ny+---+ Ng)/2

saturating (Ny,..., Ng) C Pic(Y); the minimal primitive sublattice
containing these divisors is called the Nikulin lattice, and is denoted

by N. We have [vGS07, Prop. 1.8]

T H2(X,Z) — H2(Y,Z)
U@ Bs(—1) @ Bsg(—1) @ (—=1)° — U2 ® N @ Eg(—1)
(u,,y,2) — (u,z,2+y)
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and
™ H2(Y,Z) — HX(X,Z)
UR2P e N@Es(—1) — UP@Es(—1)@Es(—1) @ (—1)°
(u,n,x) — (2u,z,z,2n)

where if n = > n;N; then n = Y n;E;. Thus we obtain a distinguished
saturated sublattice

Es(—2) C Pic(X)
that coincides with the + = —1 piece.

Proposition 9.1. Fiz a lattice L containing Eg(—2) as a primitive
sublattice; assume L arises as the Picard lattice of a projective K3 sur-
face. Then there exists a K3 surface X with Nikulin involution ¢ such
that

L = Pic(X) D Pic(X)="! = Eg(—2).

Proof. Let A denote the orthogonal complement of Eg(—2) in L. There
is a unique involution ¢ on L with

L=t =A, L= =Eg(-2).

Now ¢ acts trivially on d(L) — keep in mind that d(Eg(—2)) is a two-
elementary group — so we may naturally extend ¢ to the full K3 lattice.
(It acts trivially on L*.) These lattice-polarized K3 surfaces form our
family.

Nikulin [Nik79al, §4] explains how to get involutions for generic K3
surfaces with lattice polarization L. Choose a surface X such that
Pic(X) = L — a very general member of the family has this prop-
erty. Clearly X is projective — it admits divisors with positive self-
intersection. We claim there is an ample divisor H € A. Indeed, the
ample cone of X is characterized as the chamber of the cone of positive
divisors by the group generated by reflections associated with indecom-
posable (—2)-classes E of positive degree [LP81]. Each (—2)-class E is
perpendicular to a unique ray in

A ®@ RN { cone of positive divisors }

generated by an element ap € A. Note that A cannot be contained
in B+ as Eg(—2) has no (—2)-classes. We conclude that A meets each
chamber in the decomposition of the positive cone — it cannot be sep-
arated from the ample cone by any of the E*.

Once we have the ample cone, we can extract the automorphism
group of X via the Torelli Theorem: It consists of the Hodge isometries



INVOLUTIONS ON K3 SURFACES AND DERIVED EQUIVALENCE 29

taking the ample cone to itself. In particular, any Hodge isometry fixing
H is an automorphism. Thus ¢ is an automorphism of X. O

Proposition 9.2. Let L be an even hyperbolic lattice containing Eg(—2)
as a saturated sublattice. Assume that d(L) has rank at most 11. Then
L is unique in its genus and the homomorphism

O(L) = O(qv)
1S surjective.

The condition on the rank of d(L) is satisfied for Picard lattices of
K3 surfaces X. We have

Pic(X) c U™ @ Eg(—1)*?

which has rank 22; d(Pic(X)) ~ d(T(X)) so both groups are generated
by < 11 elements.

Proof. We apply Proposition [2.2] For odd primes p, the conditions are
easily checked as the rank r of L exceeds the rank of the p-primary
part d(L). If » > 12 then the discriminant group is generated by < 10
elements and we are done. Thus we focus on the p = 2 case with
r=9,10, or 11.

Let A denote the orthogonal complement to Eg(—2) in L. The over-
lattice

LOA&® Eg(—2)
corresponds to an isotropic subgroup
HcCd(A) & dL)

with respect to ga @ qr. Projection maps H injectively into each sum-
mand — we may interpret these projections as kernels of the natural
maps

d(A) — d(L), d(Es(—2)) — d(L).
Thus H is a 2-elementary group, of rank at most three. It follows

that d(L) contains at least five copies of Z/2Z. Remark [2.3| shows this
validates the hypothesis of Proposition 2.2 O

The assumption on the rank of the discriminant groups can be re-
placed by bounds on its order [CS99, Cor. 22, p. 395] — at least for
purposes of showing there is one class in each genus.
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Rank nine examples. We focus on examples with Picard rank nine,
following [vGGSO7, Prop. 2.2] which lists the possible lattices. Suppose
that Pic(X)=! = Zf with f? = 2d, which is necessarily ample as there
are no (—2)-classes in
Pic(X)=! = Eg(—2).
We have the lattice
A = (2d) ® Eg(—2),
for all d. For even d we have the index-two overlattice A D A, generated
by
f+e
2 Y
where f is a generator of (2d) and e € Eg(—2) is a primitive element

with
—4 ifd=4m+2
(e,e) = .
-8 if d=4m.
We are using the fact that the lattice Eg has primitive vectors of lengths
2 and 4. Using the shorthand
q(v) = gey(-2)(v)  (mod 2Z),
elements 0 # v € eg(—2) := d(Eg(—2)) are of two types
e 120 elements v with ¢(v) =1 (A; + E7 type),
e 135 elements v with ¢(v) = 0 (Ds type).

Note that A is the unique overlattice such that Eg(—2) remains satu-
rated.

Proposition 9.3. Let (X1, f1) and (Xa, fa) be polarized K3 surfaces
of degree 2d, derived equivalent via specialization of the construction in

Remark[3.1. If X1 admits a Nikulin involution fizing fi then

o Xy admits a Nikulin involution fixing fo;
e there is an isomorphism

@:Xl;XQ.

Proof. The derived equivalence induces an isomorphism of lattices with
Hodge structure

H*(X,,Z) D fim =~ fy C H*(Xs,7Z),

which means that f;- N Pic(X;) contains a sublattice isomorphic to
Es(—2). Thus there exists a Hodge involution

i H? (X, Z) — H*(Xy, Z)
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with anti-invariant summand equal to this copy of Eg(—2). The Torelli
Theorem — see [vGSOT, Prop. 2.3] — shows that X5 admits an involution
Ly : Xo — Xo.

Isomorphisms of K3 surfaces specialize in families [MM64, ch. I].
This reduces us to proving the result when the X; have Picard rank
nine, putting us in the case of Proposition [9.2l The Counting Formula
of [HLOY04, §2] — using the conclusions of Proposition — implies
that all Fourier-Mukai partners of X; are isomorphic to Xj. [l

Remark 9.4. We are not asserting that ¢*fy = fi! Suppose that X;
and Xy have Picard rank nine, the minimal possible rank. Then

e fo=afi (mod Eg(—2))
where v (mod 4d) is the corresponding solution to congruence (3.1J).

Thus we obtain nontrivial derived equivalence among Nikulin sur-
faces even in rank nine!

Rank ten examples. Turning to rank ten, we offer a generalization
of [vGS07, Prop. 2.3]:

Proposition 9.5. Fiz a rank two indefinite even lattice A and an even
extension

LD A®Es(—-2)

invariant under v; here ¢ fites A and acts by multiplication by —1 on
Es(—2). Then there exists a K3 surface X with Nikulin involution ¢
such that

A = Pic(X)*"! C Pic(X) = L D Pic(X)= = Eg(-2).

Proof. The lattice L embeds uniquely into the K3 lattice by Propo-
sition [2.4] Proposition [9.1] gives the desired K3 surface with involu-
tion. U

We observed in Proposition that the lattices L. are unique in
their genus and admit automorphisms realizing the full group O(d(L)).
Repeating the reasoning for Proposition we find:

Proposition 9.6. A K3 surface X with involution vy, produced fol-
lowing Proposition applied to Ay, will have a second involution iy
associated with Ay. Moreover (X, 1) and (X, 12) are not equivariantly
derived equivalent.
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We elaborate on the overlattices L arising in the assumptions of
Proposition [9.5] What lattices may arise from a given A? Each L
arises from a 2-elementary

H C d(A) & es(—2)

isotropic with respect to ga @© gry(—2)-
We consider the orbits of

H ~ (Z/27)* C eg(—2)

under automorphisms of the lattice. These reflect possible quadratic
forms on (Z/27Z)?. We enumerate the possibilities, relying on descrip-
tion of maximal subgroups of the simple group of Of (2) (automor-
phisms of eg(—2)) [CCNT85, p. 85] and subgroups of W (Es) (a closely
related group) associated with reflections [DPRI3| Table 5]. For the
reader’s reference, we list the root systems associated with the sub-
groups in parentheses:

(1) isotropic subspaces, where ¢|H is trivial — 1575 elements (D4+Dy
type);

(2) rank one subspaces, where ¢q|H has a kernel, e.g., ¢(z,y) = 22 —
3780 = 28 x 135 elements (A; + A; + Dg type);

(3) “minus lines” full rank non-split subspaces, e.g., q(z,y) = 2 +
ry +y? — 1120 = 28 - 120/3 elements (A, + Eg type);

(4) full rank split subspaces, e.g., q(z,y) = xy — 4320 elements.

As a check, the Grassmannian Gr(2,8) has Betti numbers
112 2 3 3 4332 211
and thus, by the Weil conjectures, 10795 points of Fy. Note that
10795 = 1575 + 3780 + 1120 + 4320.

What about arbitrary rank? Let A; and A, be indefinite lattices
of rank r > 2 in the same genus. Consider overlattices

L1 D) A1 ©® Eg(—2), L2 D) A1 ©® Eg(—2)

associated with subspaces H C eg(—2) in the same orbit, so we have
d(Ly) ~ d(Ly). It follows that L; ~ Ly provided the d(L;) have rank
at most 11 (see Proposition ; this holds for Picard lattices of K3
surfaces. Assuming L; and L, arise as Picard lattices of K3 surfaces,
we obtain results as in Propositions and [9.6]

We conclude with one last observation:
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Proposition 9.7. The existence of a Nikulin structure for one mem-
ber of a derived equivalence class induces Nikulin structures on all K3
surfaces in the equivalence class.

Suppose X; and X, are derived equivalent and X; admits a Nikulin
involution. Proposition 9.2 implies

Pic(X;) ~ Pic(Xs)

and we obtain a copy of Eg(—2) C Pic(X3). Proposition|9.1|guarantees
X5 admits a Nikulin involution as well.

10. GEOMETRIC APPLICATION

In this section, we present a geometric application of the study of
Nikulin involutions, up to derived equivalence.

Let (Xy, f1) and (Xa, f2) denote derived equivalent K3 surfaces of
degree 12, admitting Nikulin involutions ¢; : X; — X; with ¢/} f; = f;
for j = 1,2. We assume Picard groups

PIC(X]) = ij @ Eg(—2)

Note that the derived equivalence induces natural identifications be-
tween the Eg(—2) summands of Pic(X;) and Pic(X3). In particular,
we obtain bijections between the fixed-point loci

[ — L2
Xl — X2 .

Let Z; C X, denote triples of fixed points compatible with these bijec-
tions. Assuming the X are generic, i.e. defined by quadratic equations
in P7, the fixed points are not collinear.

Projection from the Z; gives surfaces

Bly, (X;) = Y; C P*

where the blowup normalizes the image of the projection. These con-
structions are compatible with the involutions on each side.
We claim that the construction of [HL18] gives a Cremona transform

~

¢ Pt -Zs Pt
such that
e the indeterminacy of ¢ is Y7;
e the indeterminacy of ¢! is Ys;

e ¢ is compatible with the involutions ¢; and ¢5 induced in the
PYs.
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Indeed, the construction induces an isogeny of H*( X, Z) and H*( X5, Z)
induced by ¢, restricting to an isomorphism of the primitive cohomol-
ogy
fi = fr
The construction entails designating projection loci Z J’ e X j[g] compat-
ible with the associated
x5 xg,

our stipulation that the Z; consist of suitable fixed points gives com-
patible projection loci.

Suppose that ¢ : P -Z5 P" is birational and equivariant for the

action of a finite group G. In this case, [KT22, Thm. 1] introduces a
well-defined invariant

(10.1)
Co¢):= ), [EDG- )  [DOGeLBirgal,
E€Exg(¢~1) DeExg(4)
gen.stab(E)={1} gen.stab(D)={1}

taking values in the free abelian group on G-birational isomorphism
classes of algebraic varieties of dimension n — 1. In this case, the
terms are the projectivized normal bundles of Y; and Y5, taken with
opposite signs. It is worth mentioning that the underlying K3 surfaces
X and X5 are isomorphic by Proposition (9.3 and the group actions are
conjugate under derived equivalences but not under automorphisms.
The difference of classes of exceptional loci in is nonzero due to
Proposition below. This gives an instance where the refinement
of the invariant ¢(¢) in [LSZ23], [LS24] using group actions yields new
information.

Proposition 10.1 (cf. Thm. 2, [LS10]). Let X; and X5 be smooth
projective G-varieties that are not uniruled. Then any G-equivariant
stable birational equivalence

X, x P s Xy x P,

with trivial G-action on the second factors, arises from a G-equivariant
birational equivalence

X1 —r:/-) XQ.
Proof. Our assumption — that X; and X5 are not uniruled — means

that
X1 xP' = X, XoxP— X,



INVOLUTIONS ON K3 SURFACES AND DERIVED EQUIVALENCE 35

are maximal rationally-connected (MRC) fibrations. Since X; x P" -=»
Xy x P?, the functoriality of MRC fibrations [Kol96, IV.5.5] gives a
natural birational map

Xl —:J-) XQ.

When the varieties admit G-actions, the induced birational map is
compatible with these actions. U

11. ENRIQUES INVOLUTIONS

Let S be an Enriques surface over C. Its universal cover is a K3
surface X with covering involution € : X — X, a fixed-point-free auto-
morphism of order two, called an Enriques involution.

The classification of Enriques surfaces S up to derived equivalence
boils down to the classification of pairs (X, €) up to Cs-equivariant
derived equivalence [BMO1), §6] (and [BM17] more generally). Derived
equivalent Enriques surfaces are isomorphic [BMO01, Prop. 6.1].

A number of authors have classified Enriques involutions on a given
K3 surface X, modulo its automorphisms Aut(X):

e Dolgachev [Dol84] gave the first examples with finite Aut(S);
Kondo [Kon92| offered examples of other types. See the Bib-
liographic Notes of [DKo023, Ch. 8] for more history, including
early contributions by Fano.

e Ohashi showed that there finitely many Aut(X)-orbits of such
involutions. In the Kummer case, the possible quotients are
classified by nontrivial elements of the discriminant group of
the Néron-Severi group NS(X'). There are 15 on general Kum-
mer surfaces of product type, 31 in a general Jacobian Kum-
mer surface, but the number is generally unbounded [Oha07],
[Oha09].

e Shimada and Veniani consider singular (i.e. rank 20) K3 sur-
faces; one of their results is a parametrization of Aut(X)-orbits
on the set of Enriques involutions; the number of such orbits
depends only on the genus of the transcendental lattice T'(X)
[SV20, Thm. 3.19].

These results are based on lattice theory: two Enriques involutions
on a K3 surface X are conjugate via Aut(X) if an only if the corre-
sponding Enriques quotients are isomorphic [OhaQ7, Prop. 2.1].

Let

M = U @ Eg(—l)
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be the unique even unimodular hyperbolic lattice of rank 10; we have
Pic(S)/torsion ~ M
and
Pic(X) D M(2)
as a primitive sublattice. This coincides with the invariant sublattice
Pic(X)=" C Pic(X)

under the involution €. Let N denote the orthogonal complement to M
in H?(X,Z), which coincides with H?(X, Z)*=~!; note that T'(X) C N.
We have
N~U®U(2) @ Eg(—2)
which has signature (2,10). Thus
Pic(X)='=T(X)* c N

has negative definite intersection form. The following result gives a
criterion for the existence of Enriques involutions [Keul6, Thm. 1],
[Oha07, Thm. 2.2], [SV20, Thm. 3.1.1]:

Proposition 11.1. Let X be a K3 surface. Enriques involutions on
X correspond to the following data: Primitive embeddings

T(X)CNCH*X,Z)

such that the orthogonal complement to T'(X) in N does not contain
(—2)-classes.

In particular, let X be a K3 surface with an Enriques involution.
Then:

o 1k Pic(X) > 10,
o if rk Pic(X) = 10 then there is a unique such involution,
e if rk Pic(X) = 11 then Pic(X) is isomorphic to [OhaQ7, Prop.
3.5]
- U@2) @ Es® (—2n),n > 2, or
— U Es(2) ® (—4n), n > 1.

Proposition 11.2. Let X and Y be derived equivalent K3 surfaces.
Assume that X admits an Enriques involution. Then X is isomorphic
toY. In particular, the existence of an Enriques involution is a derived
mvartant.
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Proof. In Picard rank > 12, derived equivalence implies isomorphism.
If X and Y and derived equivalent of rank 10 and X admits an Enriques
involution, then T'(X) ~ T'(Y) and Pic(X) and Pic(Y') are stably iso-
morphic. In Picard ranks 10 and 11, it suffices to show that the lattice
M(2) is unique in its genus and all automorphisms of the discriminant
group (d(M(2)), qum(z))) lift to automorphisms of M(2). This is im-
plied by [Nik79bl Thm. 1.14.2]. Indeed, [SV20l Lem. 3.1.7] shows that
Pic(X) satisfies these two conditions whenever X admits an Enriques
involution. U

Corollary [4.2) implies (cf. [BMOI §6]):
Proposition 11.3. Any Cy-equivariant derived autoequivalence
(X, €e1) ~ (X, €)
arises from an automorphism of X.

We observe a corollary of Proposition 2.2} Let (X1, €1) and (X, €2)
denote K3 surfaces with Enriques involutions. They are orientation
reversing (i.e. skew) conjugate if

o 7:T(X;) = T(Xy) as lattices, with compatible Hodge struc-
tures;

e Pic(X;)= ! and Pic(X5)®="! have the same discriminant qua-
dratic form.

We explore this in more detail in the case of singular (rank 20) K3
surfaces. The existence of involutions on singular K3 surfaces is gov-
erned by:

Proposition 11.4. [Ser05] Let X be a singular K3 surface with tran-
scendental lattice T(X) of discriminant d. There is no Enriques invo-
lution on X if and only if d =3 (mod 8) or

- (29). (29 (32)

The “most algebraic example”, i.e. the smallest discriminant admit-
ting an Enriques involution, has

T(X) ~ (? }l) |

In this situation there are two possibilities. We write the maximal
sublattices
N C Pic(X)
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such that the involution € acts via —1.
We follow the notation [SV20, Table 3.1]. We consider lattices

Ni33(2),  Nj3(2)
where
242 2 1
Nig7(=1) =~ 1 4 @ kg

with Eg positive definite and

12

Nio7(2)(=1)

SO DODO O I
SO DD DODDOD OO N
SO DD DO DNO -
OO O OO KOO
S OO DNODO O
OO NHEHOOOO
SR N R OOOOO
N RO OO oo 0o
N RO OO oo oo
— O O OO oo oo

o
@]
]
]
[aw]
(aw]
(]
(]
[\

According to magma, these two lattices are inequivalent but are in the
same spinor genus thus are stably equivalent.

These involutions are not derived equivalent. Indeed, passing to
Mukai lattices adds a hyperbolic summand U on which the involution
acts trivially. However, in the case at hand we are stabilizing the (—1)-
eigenspace. Thus these involutions are “skew equivalent” in the sense
of Section [7l

12. POSTSCRIPT ON INVOLUTIONS IN HIGHER DIMENSIONS

There are many papers addressing the structure of involutions of
higher-dimensional irreducible holomorphic symplectic varieties.

e Symplectic involutions of varieties of K3M-type and their fixed
loci are classified in [KMO22].

e For varieties of Kummer type — arising from an abelian surface
A — involutions associated with +1 on A are analyzed in [HT13],
Th. 4.4] and [KMO22| Th. 1.3].

e Anti-symplectic involutions on varieties of K3M™-type of degree
two are studied in [FMOS22].

e Higher-dimensional analogs of Enriques involutions are studied
in [OS11].
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e Involutions on cubic fourfolds — both symplectic (see [LZ22]
and [HT10]) and anti-symplectic — are studied in [Mar23]. The
corresponding actions on lattices are described explicitly.

e Involutions on O’Grady type examples are considered in [MM?22].

It is natural to consider whether derived equivalences of involutions
on K3 surfaces X; and X5 may be understood via equivalences of
the induced involutions on punctual Hilbert schemes and other moduli

spaces.

[AE22]

[Ale22]

[ANOG6]

[BB17]

[BBHR97]
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