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Abstract. We study involutions on K3 surfaces under conjuga-
tion by derived equivalence and more general relations, together
with applications to equivariant birational geometry.

1. Introduction

The structure of AutDb(X), the group of autoequivalences of the
bounded derived category Db(X) of a K3 surface X, is very rich but
well-understood only when the Picard group Pic(X) has rank one
[BB17]. The automorphism group Aut(X) of X lifts to AutDb(X),
and one may consider the problem of classification of finite subgroups
G ⊂ Aut(X) up to conjugation – either by automorphisms, derived
equivalence, or even larger groups. This problem is already interesting
for cyclic G, and even for involutions, e.g., Enriques or Nikulin invo-
lutions. There is an extensive literature classifying these involutions
on a given K3 surface X: topological types, moduli spaces of polarized
K3 surfaces with involution, and the involutions on a single X up to
automorphisms, see, e.g., [AN06], [vGS07], [Oha07], [SV20], [Zha98].

Here we investigate involutions up to derived equivalence, i.e., de-
rived equivalences respecting involutions. Our interest in “derived”
phenomena was sparked by a result in [Sos10]— there exist complex
conjugate, derived equivalent nonisomorphic K3 surfaces—as well as
our investigations of arithmetic problems on K3 surfaces [HT17], [HT22].

One large class of involutions σ : X → X are those whose quotient
Q = X/σ is rational. Examples include Q a del Pezzo surface and
X → Q a double cover branched along a smooth curve B ∈ | − 2KQ|.
We may allowQ to have ADE surface singularities away fromB, orB to
have ADE curve singularities; then we takeX as the minimal resolution
of the resulting double cover of Q. These were studied by Alexeev and
Nikulin in connection with classification questions concerning singular
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del Pezzo surfaces [AN06]. Our principal result here (see Section 5) is
that

• equivariant derived equivalences of such (X, σ) are in fact equi-
variant isomorphisms (see Corollary 11).

Our study of stable equivalence of lattices with involution leads us
to a notion of skew equivalence, presented in Section 6. Here, duality
interacts with the involution which is reflected in a functional equations
for the Fourier-Mukai kernel. Explicit examples, for anti-symplectic
actions with quotients equal to P2, are presented in Section 7.

Next, we focus on Nikulin involutions ι : X → X, i.e., involutions
preserving the symplectic form, so that the resolution of singularities Y
of the resulting quotient X/ι is a K3 surface. A detailed study of such
involutions can be found in [vGS07]. In addition to the polarization
class, the Picard group Pic(X) contains the lattice E8(−2); van Geemen
and Sarti describe the moduli and the geometry in the case of minimal
Picard rank rkPic(X) = 9. In Section 8, we extend their results to
higher ranks, and

• exhibit nontrivial derived equivalences between Nikulin involu-
tions (Proposition 21).

These, in turn, allow us to construct in Section 9 examples of equivari-
ant birational isomorphisms ϕ : P4 99K P4 with nonvanishing invariant
CG(ϕ), introduced in [LSZ20], [LS22] and extended to the equivariant
context in [KT22].

The case of Enriques involutions ϵ : X → X, i.e., fixed-point free
involutions, so that the resulting quotient X/ϵ is an Enriques surface,
has also received considerable attention. There is a parametrization of
such involutions in terms of the Mukai lattice H̃(X), and an explicit
description of conjugacy classes, up to automorphisms Aut(X), in in-
teresting special cases, e.g., for K3 surfaces of Picard rank 11, Kummer
surfaces of product type, general Kummer surfaces, or singular K3 sur-
faces [Kon92], [Oha07], [Ser05], [SV20]. In Section 10 we observe that

• the existence of an Enriques involution on a K3 surface X im-
plies that every derived equivalent surface is equivariantly iso-
morphic to X (Propositions 28 and 29);
• while there are no nontrivial equivariant derived autoequiva-
lences, we exhibit nontrivial orientation reversing (i.e., skew)
equivalences, e.g., on singular K3 surfaces.
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2. Lattice results

We recall basic terminology and results concerning lattices: torsion-
free finite-rank abelian groups L together with a nondegenerate integral
quadratic form (·, ·), which we assume to be even. Basic examples are

U =

(
0 1
1 0

)
and positive definite lattices associated with Dynkin diagrams (denoted
by the same letter).

We write L(2), when the form is multiplied by 2. We let

d(L) := L∗/L

be the discriminant group and

qL : d(L)→ Q/2Z

the induced discriminant quadratic form.

Nikulin’s form of Witt cancellation:

Proposition 1. [Nik79b, Cor. 1.13.4] Given an even lattice L, L⊕U is
the unique lattice with its signature and discriminant quadratic form.

If lattices L1 and L2 are stably isomorphic – become isomorphic after
adding unimodular lattices of the same signature – then

L1 ⊕ U ≃ L2 ⊕ U.

Nikulin stabilization result: Given a lattice L, write Lp = L ⊗Z
Zp for the induced p-adic bilinear form. The p-primary part of d(L)
depends only on Lp and is written d(Lp). We use qLp for the induced
discriminant quadratic form on d(Lp). For a finitely generated abelian
group A, let ℓ(A) denote the minimal number of generators.

Proposition 2. [Nik79b, Thm. 1.14.2] Let L be an even indefinite
lattice satisfying

• rank(L) ≥ ℓ(d(Lp)) + 2 for all p ̸= 2;
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• if rank(L) = ℓ(d(L2)) then qL2 contains u
(2)
+ (2) or v

(2)
+ (2) as a

summand, i.e., the discriminant quadratic forms of

U(2)(2) =

(
0 2
2 0

)
, V(2)(2) =

(
4 2
2 4

)
.

Then the genus of L admits a unique class and O(L) → O(qL) is sur-
jective.

Remark 3. [Nik79b, Rem. 1.14.5] The 2-adic condition can be achieved
whenever the discriminant group d(L) has (Z/2Z)3 as a summand.

Thus given a lattice L, any automorphism of (d(L), qL) may be
achieved via an automorphism of L ⊕ U. More precisely, given two
lattices L1 and L2 of the same rank and signature and an isomorphism

ϱ : (d(L1), qL1)
∼−→ (d(L2), qL2)

there exists an isomorphism

ρ : L1 ⊕ U
∼−→ L2 ⊕ U

inducing ϱ.

Nikulin imbedding result:

Proposition 4. [Nik79b, Cor. 1.12.3,Thm. 1.14.4] Let L be an even
lattice of signature (t+, t−) and discriminant group d(L). Then L ad-
mits a primitive embedding into a unimodular even lattice of signature
(ℓ+, ℓ−) if

• ℓ+ − ℓ− ≡ 0 mod 8;
• ℓ+ ≥ t+ and ℓ− ≥ t−;
• ℓ+ + ℓ− − t+ − t− > ℓ(d(L)), the rank of d(L).

This embedding is unique up to automorphisms if

• ℓ+ > t+ and ℓ− > t−;
• ℓ+ + ℓ− − t+ − t− ≥ 2 + ℓ(d(L)).

In particular, any even nondegenerate lattice of signature (1, 9) ad-
mits a unique embedding into the K3 lattice U⊕3 ⊕ E8(−1)⊕2.

3. Mukai lattices and derived automorphisms

Throughout, we work over the complex numbers C. Let X be a
complex K3 surface and

Pic(X) ⊂ H2(X,Z) ≃ E8(−1)⊕2 ⊕ U3
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its Picard lattice, a sublattice of a lattice of signature (3, 19), with
respect to the intersection pairing. The Picard lattice determines the
automorphisms of X: the natural map

Aut(X)→ O(Pic(X))/⟨reflections by (−2)-classes⟩,
to the quotient of the orthogonal group of the Picard lattice, has finite
kernel and cokernel. All possible finite G ⊂ Aut(X) have been classi-
fied, see [BH21]. Classification of Aut(X)-conjugacy classes of elements
or subgroups boils down to lattice theory of Pic(X); we will revisit it
in special cases below.

The transcendental lattice of X is the orthogonal complement

T (X) := Pic(X)⊥ ⊂ H2(X,Z).

This lattice plays a special role: two K3 surfacs X1, X2 are derived
equivalent if and only if there exists an isomorphism of lattices

T (X1)
∼−→ T (X2),

compatible with Hodge structures [Orl97]. Derived equivalence also
means that the lattices Pic(X1) and Pic(X2) belong to the same genus.
Over nonclosed fields, or in equivariant contexts, derived equivalence
is a subtle property, see, e.g., [HT17], [HT22].

We recall standard examples of Picard lattices of derived equivalent
but not isomorphic K3 surfaces

Remark 5. In Picard rank one: the number of nonisomorphic derived
equivalent surfaces is governed by the number of prime divisors of the
polarization degree 2d; see [HLOY04, Cor. 2.7] and Remark 5. The
isomorphisms classes correspond to solutions of the congruence

(3.1) x2 ≡ 1 (mod 4d)

modulo ±1. When d > 1 the number of derived equivalent K3 surfaces
is 2τ(d)−1, where τ is the number of distinct prime factors of d.

In Picard rank two: derived equivalences among lattice-polarized K3
surfaces of square-free discriminant are governed by the genera in the
class group of the corresponding real quadratic field [HLOY04, Sect. 3].

Here are instances where derived equivalence is trivial

Proposition 6. [HLOY04, Cor. 2.6, 2.7] Derived equivalence implies
isomorphism in each of the following cases:

• if the Picard rank is ≥ 12;
• if the surfaces admits an elliptic fibration with a section;
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• if the Picard rank is ≥ 3 and the discriminant group of the
Picard group is cyclic.

We give a further example in Proposition 21.
Let

H̃(X) := H0(X,Z)(−1)⊕ H2(X,Z)⊕ H4(X,Z)(1)
be its Mukai lattice, a lattice of signature (4, 20), with respect to the
Mukai pairing. There is a surjective homomorphism [HMS09, Cor. 3]

AutDb(X)→ O+(H̃(X)) ⊂ O(H̃(X))

onto the group of signed Hodge isometries, a subgroup of the orthogonal
group of the Mukai lattice preserving orientations on the positive 4-
planes.
We retain the notation from [HT22, Sect. 2], where we discussed the

notion and basic properties of equivariant derived equivalences between
K3 surfaces. We recall:

Let X1 and X2 be K3 surfaces equipped with a generi-
cally free action of a finite cyclic group G. Then X1 and
X2 are G-equivariantly derived equivalent if and only if
there exists a G-equivariant isomorphism of their Mukai
lattices

H̃(X1)
∼−→ H̃(X2)

respecting the Hodge structures.

Note that the G-action is necessarily trivial on

H0(X,Z)(−1)⊕ H4(X,Z)(1).
Even in the event of an isomorphism X1 ≃ X2, equivariant derived

equivalences are interesting: indeed, there are actions of finite groups
G that are not conjugate in Aut(X) but are conjugate via AutDb(X)
as the action of the latter group is visibly larger.

Let G be a finite group and X1 and X2 K3 surfaces with G-actions.
For simplicity, assume that G acts on T (Xi) via ±I. (This is the case
if the transcendental cohomology is simple.)

Given a G-equivariant isomorphism T (X1) ≃ T (X2), can we lift to
a G-equivariant isomorphism of Mukai lattices

H̃(X1,Z) ≃ H̃(X2,Z),
where G acts trivially on the hyperbolic summand

U = H0 ⊕ H4?
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Clearly the answer is NO. Suppose that G = C2 = ⟨ϵ⟩ and the ϵ = −1
eigenspaces are stably isomorphic but not isomorphic. Adding U does
nothing to achieve the desired stabilization.

In other words, U is “too small”. We need to add summands where G
acts nontrivially to achieve stabilization across all the various isotypic
components.

4. Cohomological Fourier-Mukai transforms

Let X1 and X2 be smooth projective complex K3 surfaces. A funda-
mental result of Orlov [Orl97] shows that any equivalence

Φ : Db(X1)→ Db(X2)

arises from a kernel K ∈ Db(X1 ×X2) through a Fourier-Mukai trans-
form

ΦK : Db(X1) → Db(X2)
E 7→ π2∗(π

∗
1E ⊗ K).

All the indicated functors are taken in their derived senses. Given
such a kernel, there is also a Fourier-Mukai transform in the opposite
direction

ΨK : Db(X2) → Db(X1)
E 7→ π1∗(π

∗
2E ⊗ K).

Mukai has computed the kernel of the inverse

Φ−1
K = ΨK∨[2]

i.e., a twist of the dual to our original kernel. See [Muk87, 4.10],
[BBHR97, § 4.3], and [Huy06, p. 133] for details. The computation
relies on Grothendieck-Serre Duality, so the appearance of the dualizing
complex is natural. This machinery [Huy06, § 3.4] also allows us to
analyze how Fourier-Mukai transforms interact with taking duals:

ΦK(E∨) = π2∗(K ⊗ π∗
1(E∨))

= ((π2∗(K∨ ⊗ π∗
1E))∨)[−2]

= ((ΦK∨E)[2])∨

= (ΦK∨[2]E)∨

Suppose that X1 and X2 are equivalent through an isomorphism

X2 =Mv(X1),

i.e., the moduli space of simple sheaves Ep, p ∈ X2, on X1 with Mukai
vector

v(Ep) = (r,D, s) ∈ H̃(X,Z).
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Here r is the rank of Ep, D = c1(Ep), and s = χ(Ep) − r. We assume

there exists another Hodge class v′ ∈ H̃(X1,Z) such that ⟨v, v′⟩ = 1; in
particular, v is primitive. Let E → X1×X2 denote a universal sheaf; by
simplicity of the sheaves, E is unique up to tensoring by a line bundle
from X2. We may use E as a kernel inducing a derived equivalence
between X1 and X2 [Huy06, 10.25]. Our formulas for inverses are
compatible with tensoring the kernel by line bundles from one of the
factors.

In searching for Fourier-Mukai kernels, cohomological Fourier-Mukai
transforms play a crucial role. Let ωi ∈ H4(Xi,Z) denote the point
class and set [Muk87, §1], [Huy06, p. 128]

ZK := π∗
1(1 + ω1) ch(K)π∗

2(1 + ω2) ∈ H∗(X1 ×X2,Z),

where the middle term is the Chern character. Then ZK induces an
integral isomorphism of Hodge structures

ϕK : H̃(X1,Z)
∼−→ H̃(X2,Z)

compatible with Mukai pairings; this is called the cohomological Fourier-
Mukai transform. For E ∈ Db(X1), we have the identity

ϕK(v(E)) = v(ΦK(E)).

We use ψK to denote the cohomological transform of ΨK.
Most cohomological Fourier-Mukai transforms are induced by kernels

Proposition 7. [Orl97, HMS09] Given an orientation-preserving in-
tegral Hodge isometry

ϕ : H̃(X1,Z)→ H̃(X2,Z)

there exists a derived equivalence

ΦK : Db(X1)→ Db(X2)

such that ϕ is the cohomological Fourier-Mukai transform of ΦK.

Suppose that (X1, f1) is a polarized K3 surfaces of degree 2r0s where
r0 and s are relatively prime positive integers. Let d0 be an integer
prime to r0 and fix the isotropic Mukai vector

v0 = (r0, d0f1, d
2
0s) ∈ H̃(X1,Z).

Since r0 and d20s are relatively prime, there exists a Mukai vector v′ =
(m, 0, n) such that ⟨v0, v′⟩ = 1. Let X2 = Mv(X1), also a K3 surface,
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and choose a universal sheaf E → X1×X2. Our goal is to describe the
induced isomorphism

ϕE : H̃(X1,Z)
∼→ H̃(X2,Z).

Following [HL10, Ch. 8] and [Yos99, §2], the polarization on X2 is given
by

det(π2∗(E ⊗ OH(s(r0 − 2d0))))
∨, H ∈ |f1|,

a primitive ample divisor f2 on X2. More generally, we have an iso-
morphism of Hodge structures

H2(X2,Z) = (v∨0 )
⊥/Zv∨0 ,

where the perpendicular subspace is taken with respect to the Mukai
pairing.

Proposition 8. [Yos99] Choose integers d1 and ℓ such that sd0d1 −
r0ℓ = 1 and take K = E ⊗ π∗

2L for some line bundle L on X2. With
respect to the bases

(1, 0, 0), (0, fi, 0), (0, 0, 1) ∈ H̃(Xi,Z)

the matrix of the cohomological Fourier-Mukai transform takes the form

ϕK :=

d20s 2d0sr0 r0
d0ℓ 2d0d1s− 1 d1
ℓ2r0 2d1sℓr0 d21s

 .

The inverse is obtained reversing the sign of the middle basis vector
and interchanging the role of d0 and d1:d20s 2d0sr0 r0

d0ℓ 2d0d1s− 1 d1
ℓ2r0 2d1sℓr0 d21s

 d21s −2d1sr0 r0
−d1ℓ 2d0d1s− 1 −d0
ℓ2r0 −2d0sℓr0 d20s

 = I.

The formula

ϕKψK∨ = I

is the cohomological realization of the identity

ΦKΨK∨[2] = I.

The third column of ϕ−1
K is the Mukai vector v∨0 , as

Φ−1
K (Op) = E∨p , p = [Ep] ∈ X2 =Mv0(X1).
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Example 9. Suppose that (X1, f1) is a degree 12 K3 surface. Consider
the isotropic Mukai vector v = (2, f1, 3) so that

X2 :=Mv(X1)

is also a K3 surface derived equivalent to X1. Taking

r0 = 2, s = 3, d0 = 1, d1 = ℓ = 1

we obtain

(1, 0, 0) 7→ (3, f2, 2)

(0, f1, 0) 7→ (12, 5f2, 12)

(0, 0, 1) 7→ (2, f2, 3)

with matrix

(4.1) φ :=

3 12 2
1 5 1
2 12 3

 .

The determinant is 1 with one eigenvector (1, 0,−1) with eigenvalue 1;
thus this is orientation preserving. Note that

(2,−f1, 3) 7→ (0, 0, 1)

whence

X1 =M(2,f2,3)(X2), X2 =M(2,−f1,3)(X1).

The fact that (1, 0,−1) has eigenvalue 1 gives

X
[2]
1

∼
99K X [2]

2 .

5. Generalities concerning involutions on K3 surfaces

Let i : X → X be an involution on a complex projective K3 sur-
face, which acts faithfully on H2(X,Z) by the Torelli Theorem. It is
symplectic (resp. anti-symplectic) if

i∗ω = ω (resp. − ω),

where ω is a holomorphic two-form. Nikulin [Nik79a] showed that any
symplectic involution fixes eight isolated points and that all such in-
volutions are topologically conjugate; these are the Nikulin involutions
studied in Section 8. An involution without fixed points was classically
known to be an Enriques involution arising from a double cover X → S
of an Enriques surface.
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The case of anti-symplectic involutions with fixed points is more
complicated. Nikulin enumerated 74 cases beyond the Enriques case;
see [AN06, BH21, AE22, Ale22] for details of the various cases.

Given an anti-symplectic involution i : X → X on a K3 surface, we
recall the Nikulin invariants (r, a, δ) [AE22, §2]: Let r denote the rank
of the lattice

S = H2(X,Z)i=1,

which is indefinite if r > 1. We are using the fact that transcendental
classes of X are anti-invariant under i, as the quotient X/i admits no
holomorphic two-form. We write

T = H2(X,Z)i=−1 = S⊥

for the complementary lattice with signature (2, 20−r), which is indef-
inite if r < 20. The discriminant group d(S) ≃ d(T ) is a 2-elementary
group; its rank is denoted by a. This group comes with a quadratic
form

qS : d(S)→ Q/2Z.
The coparity δ equals 0 if qS(x) ∈ Z for each x ∈ d(S) and equals 1
otherwise.

We relate this to geometric invariants. For an anti-symplectic invo-
lution, there are no isolated fixed points so the fixed locus R = X i is
of pure dimension one or empty. Suppose there are k + 1 irreducible
components, with genera summing to g. Then we have cf. [AE22, p.5]

g = 11− (r + a)/2 k = (r − a)/2,
excluding the Enriques case (r, k, δ) = (10, 10, 0).
Nikulin classifies even indefinite 2-elementary lattices L. They are

determined uniquely by (r, a, δ) and O(L) → Aut(d(L)) is surjective.
In the definite case, a priori there are multiple classes in each genus
but this is not relevant for our applications. Indeed, the possibilities
include

• r = a = 1: X is a double cover of P2 branched along a sextic
plane curve.
• The case where T is definite (r = 20, a = 2, g = 0, k = 9), we
have d(T ) = Z/2Z⊕ Z/2Z thus is equal to(

2 0
0 2

)
.

Even in this case, automorphisms of the discriminant group are
realized by automorphisms of the lattice.
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Theorem 10 (Alexeev-Nikulin). For each admissible set of invariants
(r, a, δ), there is a unique orthogonal pair of lattices (S,T) embedded in
the K3 lattice Λ, up to automorphisms of Λ. There are 75 such cases.

Corollary 11. Any equivariant derived equivalence of K3 surfaces
with anti-symplectic involutions induces an equivariant isomorphism
between the underlying K3 surfaces.

Proof. Suppose that (X1, i1) and (X2, i2) are derived equivalent, com-
patibly with their anti-symplectic involutions.

Indeed, derived equivalence shows that the invariant (resp. anti-
invariant) sublattices of the Picard group are stably equivalent (resp.
equivalent):

Pic(X1)
i1=1 ⊕ U ≃ Pic(X2)

i2=1 ⊕ U, Pic(X1)
i1=−1 ≃ Pic(X2)

i2=−1.

Since the possibilities for the invariant sublattices are characterized by
their 2-adic invariants, we have

Pic(X1)
i1=1 ≃ Pic(X2)

i2=1.

We have already observed that all the possible isomorphisms between
their discriminants(

d(Pic(X1)
i1=1), q1

)
≃

(
d(Pic(X2)

i2=1), q2
)

are realized by isomorphisms of the lattices. In particular, there exists
a choice compatible with the isomorphism

H2(X1,Z)i1=−1 ∼→ H2(X2,Z)i2=−1

induced by the derived equivalence. Thus we obtain isomorphisms
on middle cohomology, compatible with the involutions. The Torelli
Theorem gives an isomorphism X1

∼→ X2 respecting the involutions.
□

Corollary 12. Let (X1, σ1) and (X2, σ2) denote K3 surfaces with invo-
lutions that are C2-equivariantly derived equivalent. If X1/σ1 is rational
then X2/σ2 is rational as well.

Indeed, the rationality of the quotient forces the involution to be
anti-symplectic.

Example 13. Having an anti-symmetric involution is not generally a
derived property. For example, consider Picard lattices

A1 =

(
2 13
13 12

)
A2 =

(
8 15
15 10

)
.
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These forms are stably equivalent but not isomorphic. As in Remark 5
– see [HT17, Sec. 2.3] for details – choose derived equivalent K3 surfaces
X1 and X2 with Pic(X1) = A1 and Pic(X2) = A2. Note that A2 does
not represent two and admits no involution acting via ±1 on d(A2);
thus X2 does not admit an involution.

This should be compared with Proposition 28: Having an Enriques
involution is a derived invariant.

6. Orientation reversing conjugation

We continue to assume that i is an anti-symplectic involution on a
K3 surfaces X. As we have seen,

T (X) ⊂ H2(X,Z)i=−1

with complement Pic(X)i=−1, which is negative definite by the Hodge
index theorem.

Recall that Orlov’s Theorem [Orl97, §3] asserts that for K3 surfaces
(without group action) isomorphisms of transcendental cohomology lift
to derived equivalences. Given K3 surfaces (X1, i1) and (X2, i2) with
anti-symplectic involutions of the same type in the sense of Alexeev-
Nikulin, the existence of an isomorphism

T (X1)
∼→ T (X2)

seldom induces an equivariant derived equivalence; a notable exception
is the case where the anti-invariant Picard group has rank zero or one.
We only have that

Pic(X1)
i1=−1, Pic(X2)

ϵ2=−1

are stably equivalent – compatibly with the isomorphism on the dis-
criminant groups of the transcendental lattices – but not necessarily
isomorphic.

In light of this, we propose an orientation reversing conjugation of
actions, with a view toward realizing isomorphisms of transcendental
cohomology.

Assume that Pic(X1)
i1=−1 and Pic(X2)

i2=−1 are not isomorphic, so
there is no C2-equivariant derived equivalence

Db(X1)
∼→ Db(X2)

taking i1 to i2, by Corollary 11. However, let

dualk : D
b(Xk)

∼→ Db(Xk), k = 1, 2,
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denote the involution

E∗ 7→ E∨∗ .
Note that shift and duality commute with each other and with any
automorphism of the K3 surface. The action of dualk on the Mukai
lattice H̃(Xk,Z) is trivial in degrees 0 and 4 and multiplication by −1 in
degree two. Recall that shift acts via −1 in all degrees, so composition
with dualk is trivial in degree 2 and multiplication by −1 in degrees 0
and 4.

We propose a general definition and then explain how it is related
to our analysis of quadratic forms with involution:

Definition 14. Let (X1, i1) and (X2, i2) be smooth projective varieties
with involution, of dimension n with trivial canonical class. They are
skew equivalent if there is a kernel K on X1 ×X2, inducing an equiva-
lence between X1 and X2, such that

(6.1) (i∗1, i
∗
2)K = K∨[n].

Note that this dualization coincides with the relative dualizing com-
plex for both projections π1 and π2.

Suppose again that X1 and X2 are K3 surfaces and K = E [1] for a
universal sheaf

E → X1 ×X2

associated with an isomorphism X2 = Mv(X1). Then relation (6.1)
(with n = 2) translates into

(6.2) i∗1Ei2(x2) ≃ (Ex2)
∨.

Proposition 15. Let (X1, i1) and (X2, i2) be K3 surfaces with involu-
tions. Then the following are equivalent

• (X1, i1) and (X2, i2) are skew derived equivalent;
• there exists an orientation-preserving equivalence of Mukai lat-
tices

ϕ : H̃(X1,Z) −→ H̃(X2,Z),
satisfying

(6.3) ϕ(i∗1(v
∨)) = (i∗2ϕ(v))

∨.

As duality and pull back commute with each other, the order of
these operations in (6.3) is immaterial. Furthermore, if ϕ satisfies this
relation then so does −ϕ.
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Proof. The forward implication is clear. Indeed, the cohomological
Fourier-Mukai transform ϕK of a skew equivalence satisfies

(i1, i2)
∗ϕK = ϕK∨

but ϕK∨ differs from ϕK by the involution acting via +1 on H0 and H4

and −1 on H2. Thus

ϕK : H̃(X1,Z) −→ H̃(X2,Z)
is an isomorphism equivariant under the prescribed “skew” involutions.

For the reverse implication, we consider the cohomological Fourier-
Mukai transform

ϕ : H̃(X1,Z) −→ H̃(X2,Z).
Proposition 7 yields a kernel K such that ϕ = ϕK. We make this more
explicit.

Set
v = (ϕ−1(0, 0, 1))∨

with view toward relating K to a universal bundle

E → X1 ×X2,

where X2 is a moduli space of bundles on X1. Write v = (r, f1, s); if
r < 0, replace ϕ by −ϕ. This leaves (6.3) unchanged and corresponds
to replacing ΦK by ΦK pre-composed (or post-composed) by a shift on
X1 (or X2).

Thus we may assume v0 = (r0, f1, s) with r0 > 0 and consider a
universal bundle

E → X1 ×Mv0(X1) ≃ X1 ×X2.

We therefore have (see Proposition 8 for the formula and our basis
conventions)

ϕE =

d20s 2d0sr0 r0
d0ℓ 2d0d1s− 1 d1
ℓ2r0 2d1sℓr0 d21s


and

ϕK =

d20s 2d0sr0 r0
d0ℓ̂ 2d0d̂1s− 1 d̂1
ℓ̂2r0 2d̂1sℓ̂r0 d̂21s

 .

Here we have
sd0d1 − r0ℓ = sd0d̂1 − r0ℓ̂ = 1,

whence
ℓ̂ = ℓ+Nsd0 d̂1 = d1 +Nr0.
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Consider the autoequivalence on X2 obtained by tensoring with the
invertible sheafOX2(Nf2). This has cohomological Fourier-Mukai trans-
form with matrix

tN :=

 1 0 0
N 1 0

N2r0s 2Nr0s 1

 .

Note however that

tNϕE = ϕK

and we can renormalize E so that it has cohomological Fourier-Mukai
transform ϕ. Specifically, there exists an isomorphism

X2
∼−→Mv0(X1)

such that the pullback of the universal sheaf E to X1 ×X2 induces ϕ.
We analyze how i1 and i2 act on E , keeping in mind the functional
relation. We have that

E , (i1, i2)
∗E∨

are both universal bundles on X1×X2 with the same numerical invari-
ants. The uniqueness of such bundles gives an isomorphism

ξ : E ∼−→ (i1, i2)
∗E∨

over X1 ×X2, unique up to a scalar. Note there are two distinguished
normalizations of this scalar, for which the composition

(i1, i2)
∗ξ∨ ◦ ξ : E → E

is the identity. For purposes of establishing derived equivalences, the
choice of normalization is immaterial. □

Corollary 16. Under the assumptions above, the functors dual1 ◦i1
and dual2 ◦i2 are C2-equivariantly derived equivalent.

Remark 17. As we recalled in Section 3, derived equivalences respect
orientations on the Mukai lattice [HMS09]. The orientation revers-
ing conjugation violates the orientation condition, in a prescribed way.
Duality is the archetypal orientation-reversing Hodge isogeny.

In Sections 7 and 10 we give examples of such equivalences.
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7. Rational quotients and skew equivalence

Our first task is to give examples of skew equivalences. Proposi-
tion 15 and the discussion preceding it reduce this to exhibiting lattice-
polarized K3 surfaces with involution (X1, i1) and (X2, i2), such that
the anti-invariant Picard groups are stably equivalent but inequivalent.

Specifically, we assume X1 and X2 are degree two K3 surfaces with

Pic(Xj) = Zhj ⊕ Aj(−1), h2j = 2,

where the involutions fix the hj and reverse signs on Aj’s. If A1 and
A2 are stably-equivalent, inequivalent positive definite lattices then
(X1, i1) and (X2, i2) are skew equivalent.

In contrast to ordinary equivalences (see 11) we do have antisymplec-
tic actions with nontrivial skew equivalences. The resulting quotients
are rational surfaces, indeed, P2.

Example 18 (Explicit matrices). The matrices, in the basis pj, qj, for
j = 1, 2, are given by

A1 :=

(
4 1
1 12

)
, A2 :=

(
6 1
1 8

)
.

We extract a stable isomorphism

A1 ⊕ U ≃ A2 ⊕ U, U = ⟨u1, v1⟩ , with matrix

(
0 1
1 0

)
.

First, we give an isomorphism

A1 ⊕ ⟨e1⟩ ≃ A2 ⊕ ⟨e2⟩ , e21 = −2.

We put

p1 7→ p2 + e2,

and claim that the orthogonal complements to these are equivalent
indefinite lattices. Indeed,

p⊥1 = ⟨p1 − 4q1, e1⟩ =
(
188 0
0 −2

)
,

(p2 + e2)
⊥ = ⟨p2 − 6q2, 2q2 + e2⟩ =

(
282 −94
−94 30

)
= ⟨p2 + 3e2, 2q2 + e2⟩ =

(
−12 −4
−4 30

)
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These are equivalent via Gaussian cycles of reduced forms

0 18 8 4
188 −2 26 −12 30

where the indicated basis elements are

p1 − 4q1, e1, p1 − 4q1 − 9e1, p1 − 4q1 − 10e1, 2(p1 − 4q1)− 19e1.

The composed isomorphism is

p1 − 4q1 − 10e1 7→ p2 + 3e2,

2(p1 − 4q1)− 19e1 7→ 2q2 + e2

p1 7→ p2 + e2

e1 7→ (2q2 + e2)− 2(p2 + 3e2) = 2(q2 − p2)− 5e2

q1 7→ 5(p2 − q2) + 12e2.

We extend the isomorphism above where ei = ui − vi
u1 + v1 7→ u2 + v2

u1 − v1 7→ 2(q2 − p2)− 5(u2 − v2)
p1 7→ p2 + (u2 − v2)
q1 7→ 5(p2 − q2) + 12(u2 − v2)

whence we have

u1 7→ (q2 − p2)− 2u2 + 3v2

v1 7→ (p2 − q2) + 3u2 − 2v2.

8. Nikulin involutions

General properties. An involution ι on a K3 surface X over C pre-
serving the symplectic form is called a Nikulin involution. We recall
basic facts concerning such involutions, following [vGS07]:

• ι has 8 isolated fixed points;
• the (resolution of singularities) Y → X/ι is a K3 surface fitting
into a diagram

X
β← X̃

↓ ↓ π
X/ι ← Y

where β blows up the fixed points and the vertical arrows have
degree two;
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• the action of ι on H2(X,Z) is uniquely determined, and there
is a decomposition

H2(X,Z) = (U⊕3)1 ⊕ (E8(−1)⊕ E8(−1))P ,

where the first term is invariant and the second is a permutation
module for ι;
• the invariant and the anti-invariant parts of H2 take the form:

H2(X,Z)ι=1 ≃ U3 ⊕ E8(−2), H2(X,Z)ι=−1 = E8(−2)

Let E1, . . . , E8 denote the exceptional divisors of β and N1, . . . , N8 the
corresponding (−2)-curves on Y . The union ∪Ni is the branch locus
of π so there is a divisor

N̂ = (N1 + · · ·+N8)/2

saturating ⟨N1, . . . , N8⟩ ⊂ Pic(Y ); the minimal primitive sublattice
containing these divisors is called the Nikulin lattice, and is denoted
by N. We have [vGS07, Prop. 1.8]

π∗ : H
2(X̃,Z) → H2(Y,Z)

U3 ⊕ E8(−1)⊕ E8(−1)⊕ ⟨−1⟩8 → U(2)3 ⊕ N⊕ E8(−1)
(u, x, y, z) 7→ (u, z, x+ y)

and

π∗ : H2(Y,Z) → H2(X̃,Z)
U(2)3 ⊕ N⊕ E8(−1) → U3 ⊕ E8(−1)⊕ E8(−1)⊕ ⟨−1⟩8

(u, n, x) 7→ (2u, x, x, 2ñ)

where if n =
∑
niNi then ñ =

∑
niEi. Thus we obtain a distinguished

saturated sublattice

E8(−2) ⊂ Pic(X)

that coincides with the ι = −1 piece.

Proposition 19. Fix a lattice L containing E8(−2) as a primitive sub-
lattice; assume L arises as the Picard lattice of a projective K3 surface.
Then there exists a K3 surface X with Nikulin involution ι such that

L = Pic(X) ⊃ Pic(X)ι=−1 = E8(−2).

Proof. Let A denote the orthogonal complement of E8(−2) is L. There
is a unique involution ι on L with

Lι=1 = A, Lι=−1 = E8(−2).
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Now ι acts trivially on d(L) – keep in mind d(E8(−2)) is a two-elementary
group – so we may naturally extend ι to the full K3 lattice. (It acts
trivially on L⊥.) These lattice-polarized K3 surfaces form our family

Nikulin [Nik79a, §4] explains how to get involutions for generic K3
surfaces with lattice polarization L. Choose such a surface X such
that Pic(X) = L – a very general member of the family has this prop-
erty. Clearly X is projective – it admits divisors with positive self-
intersection. We claim there is an ample divisor H ∈ A. Indeed, the
ample cone of X is characterized as the chamber of the cone of positive
divisors by the group generated by reflections associated with indecom-
posable (−2)-classes E of positive degree [LP81]. Each (−2)-class E is
perpendicular to a unique ray in

A⊗ R ∩ { cone of positive divisors }
generated by an element aE ∈ A. Note that A cannot be contained
in E⊥ as E8(−2) has no (−2)-classes. We conclude that A meets each
chamber in the decomposition of the positive cone – it cannot be sep-
arated from the ample cone by any of the E⊥.

Once we have the ample cone, we can extract the automorphism
group of X via the Torelli Theorem: It consists of the Hodge isometries
taking the ample cone to itself. In particular, any Hodge isometry fixing
H is an automorphism. Thus ι is an automorphism of X. □

Proposition 20. Let L be an even hyperbolic lattice containing E8(−2)
as a saturated sublattice. Assume that d(L) has rank at most 11. Then
L is unique in its genus and the homomorphism

O(L)→ O(qL)

is surjective.

The condition on the rank of d(L) is satisfied for Picard lattices of
K3 surfaces X. We have

Pic(X) ⊂ U⊕3 ⊕ E8(−1)⊕2

which has rank 22; d(Pic(X)) ≃ d(T (X)) so both groups are generated
by ≤ 11 elements.

Proof. We apply Proposition 2. For odd primes p, the conditions are
easily checked as the rank r of L exceeds the rank of the p-primary
part d(L). If r ≥ 12 then the discriminant group is generated by ≤ 10
elements and we are done. Thus we focus on the p = 2 case with
r = 9, 10, or 11.
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Let A denote the orthogonal complement to E8(−2) in L. The over-
lattice

L ⊃ A⊕ E8(−2)
corresponds to an isotropic subgroup

H ⊂ d(A)⊕ d(L)
with respect to qA ⊕ qL. Projection maps H injectively into each sum-
mand – we may interpret these projections as kernels of the natural
maps

d(A)→ d(L), d(E8(−2))→ d(L).

Thus H is a 2-elementary group, of rank at most three. It follows
that d(L) contains at least five copies of Z/2Z. Remark 3 shows this
validates the hypothesis of Proposition 2. □

The assumption on the rank of the discriminant groups can be re-
placed by bounds on its order [CS99, Cor. 22, p. 395] – at least for
purposes of showing there is one class in each genus.

Rank nine examples. We focus on examples with Picard rank nine,
following [vGS07, Prop. 2.2] which lists the possible lattices. Suppose
that Pic(X)ι=1 = Zf with f 2 = 2d, which is necessarily ample as there
are no (−2)-classes in

Pic(X)ι=−1 = E8(−2).
We have the lattice

Λ := (2d)⊕ E8(−2),
for all d. For even d we have the index-two overlattice Λ̃ ⊃ Λ, generated
by

f + e

2
,

where f is a generator of (2d) and e ∈ E8(−2) is a primitive element
with

(e, e) =

{
−4 if d = 4m+ 2

−8 if d = 4m.

We are using the fact that the lattice E8 has primitive vectors of lengths
2 and 4. Using the shorthand

q(v) = qE8(−2)(v) (mod 2Z)
elements 0 ̸= v ∈ e8(−2) := d(E8(−2)) are of two types

• 120 elements v with q(v) = 1 (A1 + E7 type);
• 135 elements v with q(v) = 0 (D8 type).
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Note that Λ̃ is the unique such overlattice such that E8(−2) remains
saturated.

Proposition 21. Let (X1, f1) and (X2, f2) be polarized K3 surfaces of
degree 2d, derived equivalent via specialization of the construction in
Remark 5. If X1 admits a Nikulin involution fixing f1 then

• X2 admits a Nikulin involution fixing f2;
• there is an isomorphism

φ : X1
∼→ X2.

Proof. The derived equivalence induces an isomorphism of lattices with
Hodge structure

H2(X1,Z) ⊃ f⊥
1 ≃ f⊥

2 ⊂ H2(X2,Z),

which means that f⊥
2 ∩ Pic(X2) contains a sublattice isomorphic to

E8(−2). Thus there exists a Hodge involution

ι∗2 : H
2(X2,Z)→ H2(X2,Z)

with anti-invariant summand equal to this copy of E8(−2). The Torelli
Theorem – see [vGS07, Prop. 2.3] – shows that X2 admits an involution
ι2 : X2 → X2.

Isomorphisms of K3 surfaces specialize in families [MM64, ch. I].
This reduces us to proving the result when the Xk have Picard rank
nine, putting us in the case of Proposition 20. The Counting Formula
of [HLOY04, §2] – using the conclusions of Proposition 20 – implies
that all Fourier-Mukai partners of X1 are isomorphic to X1. □

Remark 22. We are not asserting that φ∗f2 = f1! Suppose that X1

and X2 have Picard rank nine, the minimal possible rank. Then

φ∗f2 ≡ αf1 (mod E8(−2))

where α (mod 4d) is the corresponding solution to congruence (3.1).

Thus we obtain nontrivial derived equivalence among Nikulin sur-
faces even in rank nine!

Rank ten examples. Turning to rank ten, we offer a generalization
of [vGS07, Prop. 2.3]:

Proposition 23. Fix a rank two indefinite even lattice A and an even
extension

L ⊃ A⊕ E8(−2)
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invariant under ι; here ι fixes A and acts by multiplication by −1 on
E8(−2). Then there exists a K3 surface X with Nikulin involution ι
such that

A = Pic(X)ι=1 ⊂ Pic(X) = L ⊃ Pic(X)ι=−1 = E8(−2).

Proof. The lattice L embeds uniquely into the K3 lattice by Proposi-
tion 4. Proposition 19 gives the desired K3 surface with involution. □

We observed in Proposition 20 that the lattice L are unique in their
genus and admit automorphisms realizing the full group O(d(L)). Re-
peating the reasoning for Proposition 21 we find:

Proposition 24. A K3 surface X with involution ι1, produced fol-
lowing Proposition 23 applied to A1, will have a second involution ι2
associated with A2. Moreover (X, ι1) and (X, ι2) are not equivariantly
derived equivalent.

We elaborate on the overlattices L arising in the assumptions of
Proposition 23. What lattices may arise from a given A? Each L arises
from a 2-elementary

H ⊂ d(A)⊕ e8(−2)
isotropic with respect to qA ⊕ qE8(−2).
We consider the orbits of

H ≃ (Z/2Z)2 ⊂ e8(−2)
under automorphisms of the lattice. These reflect possible quadratic
forms on (Z/2Z)2. We enumerate the possibilities, relying on descrip-
tion of maximal subgroups of the simple group of O+

8 (2) (automor-
phisms of e8(−2)) [CCN+85, p. 85] and subgroups of W (E8) (a closely
related group) associated with reflections [DPR13, Table 5]. For the
reader’s reference, we list the root systems associated with the sub-
groups in parentheses:

(1) isotropic subspaces, where q|H is trivial – 1575 elements (D4 +
D4 type);

(2) rank one subspaces, where q|H has a kernel, e.g., q(x, y) = x2

– 3780 = 28× 135 elements (A1 +A1 +D6 type);
(3) “minus lines” full rank non-split subspaces, e.g., q(x, y) = x2 +

xy + y2 – 1120 = 28 · 120/3 elements (A2 + E6 type);
(4) full rank split subspaces, e.g., q(x, y) = xy – 4320 elements.

As a check, the Grassmannian Gr(2, 8) has Betti numbers

1 1 2 2 3 3 4 3 3 2 2 1 1
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and thus, by the Weil conjectures, 10795 points of F2. Note that

10795 = 1575 + 3780 + 1120 + 4320.

What about arbitrary rank? Let A1 and A2 be indefinite lattices
of rank r ≥ 2 in the same genus. Consider overlattices

L1 ⊃ A1 ⊕ E8(−2), L2 ⊃ A1 ⊕ E8(−2)
associated with subspaces H ⊂ e8(−2) in the same orbit, so we have
d(L1) ≃ d(L2). It follows that L1 ≃ L2 provided the d(Li) have rank
at most 11 (see Proposition 20); this holds for Picard lattices of K3
surfaces. Assuming L1 and L2 arise as Picard lattices of K3 surfaces,
we obtain results as in Propositions 21 and 24.

We conclude with one last observation:

Proposition 25. The existence of a Nikulin structure for one mem-
ber of a derived equivalence class induces Nikulin structures on all K3
surfaces in the equivalence class.

Suppose X1 and X2 are derived equivalent and X1 admits a Nikulin
involution. Proposition 20 implies

Pic(X1) ≃ Pic(X2)

and we obtain a copy of E8(−2) ⊂ Pic(X2). Proposition 19 guarantees
X2 admits a Nikulin involution as well.

9. Geometric application

In this section, we present a geometric application of the study of
Nikulin involutions, up to derived equivalence.

Let (X1, f1) and (X2, f2) denote derived equivalent K3 surfaces of
degree 12, admitting Nikulin involutions ιj : Xj → Xj with ι∗jfj = fj
for j = 1, 2. We assume Picard groups

Pic(Xj) = Zfj ⊕ E8(−2).
Note that the derived equivalence induces natural identifications be-
tween the E8(−2) summands of Pic(X1) and Pic(X2). In particular,
we obtain bijections between the fixed-point loci

X ι1
1 = X ι2

2 .

Let Zj ⊂ Xj denote triples of fixed points compatible with these bijec-
tions. Assuming the Xj are generic, i.e. defined by quadratic equations
in P7, the fixed points are not collinear.
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Projection from the Zj gives surfaces

BlZj
(Xj)→ Yj ⊂ P4

where the blowup normalizes the image of the projection. These con-
structions are compatible with the involutions on each side.

We claim that the construction of [HL18] gives a Cremona transform

ϕ : P4 ∼
99K P4

such that

• the indeterminacy of ϕ is Y1;
• the indeterminacy of ϕ−1 is Y2;
• ϕ is compatible with the involutions ι1 and ι2 induced in the
P4’s.

Indeed, the construction induces an isogeny of H2(X1,Z) and H2(X2,Z)
induced by ϕ, restricting to an isomorphism of the primitive cohomol-
ogy

f⊥
1

∼→ f⊥
2 .

The construction entails designating projection loci Z ′
j ∈ X

[3]
j compat-

ible with the associated
X

[3]
1

∼
99K X [3]

2 ,

our stipulation that the Zj consist of suitable fixed points gives com-
patible projection loci.

Suppose that ϕ : Pn ∼
99K Pn is birational and equivariant for the

action of a finite group G. In this case, [KT22, Thm. 1] introduces a
well-defined invariant
(9.1)

CG(ϕ) :=
∑

E∈ExG(ϕ−1)
gen.stab(E)={1}

[E ý G]−
∑

D∈ExG(ϕ)
gen.stab(D)={1}

[D ý G] ∈ Z[BirG,n−1],

taking values in the free abelian group on G-birational isomorphism
classes of algebraic varieties of dimension n − 1. In this case, the
terms are the projectivized normal bundles of Y1 and Y2, taken with
opposite signs. It is worth mentioning that the underlying K3 surfaces
X1 and X2 are isomorphic by Proposition 21, and the group actions are
conjugate under derived equivalences but not under automorphisms.
The difference of classes of exceptional loci in (9.1) is nonzero due to
Proposition 26 below. This gives an instance where the refinement of
the invariant c(ϕ) in [LSZ20], [LS22] using group actions yields new
information.
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Proposition 26 (cf. Thm. 2, [LS10]). Let X1 and X2 be smooth
projective G-varieties that are not uniruled. Then any G-equivariant
stable birational equivalence

X1 × Pr ∼
99K X2 × Ps,

with trivial G-action on the second factors, arises from a G-equivariant
birational equivalence

X1
∼
99K X2.

Proof. Our assumption – that X1 and X2 are not uniruled – means
that

X1 × Pr → X1, X2 × Ps → X2

are maximal rationally-connected (MRC) fibrations. Since X1×Pr ∼
99K

X2 × Ps, the functoriality of MRC fibrations [Kol96, IV.5.5] gives a
natural birational map

X1
∼
99K X2.

When the varieties admit G-actions, the induced birational map is
compatible with these actions. □

10. Enriques involutions

Let S be an Enriques surface over C. Its universal cover is a K3
surface X with covering involution ϵ : X → X, a fixed-point-free auto-
morphism of order two, called an Enriques involution.

The classification of Enriques surfaces S up to derived equivalence
boils down to the classification of pairs (X, ϵ) up to C2-equivariant
derived equivalence [BM01, §6] (and [BM17] more generally). Derived
equivalent Enriques surfaces are isomorphic [BM01, Prop. 6.1].

A number of authors have classified Enriques involutions on a given
K3 surface X, modulo its automorphisms Aut(X):

• Kondo gave the first examples with finite Aut(S) [Kon92].
• Ohashi showed that there finitely many Aut(X)-orbits of such
involutions. In the Kummer case, the possible quotients are
classified by nontrivial elements of the discriminant group of
the Néron-Severi group NS(X). There are 15 on general Kum-
mer surfaces of product type, 31 in a general Jacobian Kum-
mer surface, but the number is generally unbounded [Oha07],
[Oha09].
• Shimada and Veniani consider singular (i.e. rank 20) K3 sur-
faces; one of their results is a parametrization of Aut(X)-orbits
on the set of Enriques involutions; the number of such orbits
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depends only on the genus of the transcendental lattice T (X)
[SV20, Thm. 3.19].

These results are based on lattice theory: two Enriques involutions
on a K3 surface X are conjugate via Aut(X) if an only if the corre-
sponding Enriques quotients are isomorphic [Oha07, Prop. 2.1].

Let
M := U⊕ E8(−1)

be the unique even unimodular hyperbolic lattice of rank 10; we have

Pic(S)/torsion ≃ M

and
Pic(X) ⊇ M(2)

as a primitive sublattice. This coincides with the invariant sublattice

Pic(X)ϵ=1 ⊂ Pic(X)

under the involution ϵ. Let N denote the orthogonal complement to M
in H2(X,Z), which coincides with H2(X,Z)ϵ=−1; note that T (X) ⊂ N.
We have

N ≃ U⊕ U(2)⊕ E8(−2)
which has signature (2, 10). Thus

Pic(X)ϵ=−1 = T (X)⊥ ⊂ N

has negative definite intersection form. The following result gives a
criterion for the existence of Enriques involutions [Keu16, Thm. 1],
[Oha07, Thm. 2.2], [SV20, Thm. 3.1.1]:

Proposition 27. Let X be a K3 surface. Enriques involutions on X
correspond to the following data: Primitive embeddings

T (X) ⊂ N ⊂ H2(X,Z)
such that the orthogonal complement to T (X) in N does not contain
(−2)-classes.

In particular, let X be a K3 surface with an Enriques involution.
Then:

• rkPic(X) ≥ 10,
• if rk Pic(X) = 10 then there is a unique such involution,
• if rk Pic(X) = 11 then Pic(X) is isomorphic to [Oha07, Prop.
3.5]

– U(2)⊕ E8 ⊕ ⟨−2n⟩, n ≥ 2, or
– U⊕ E8(2)⊕ ⟨−4n⟩, n ≥ 1.
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Proposition 28. Let X and Y be derived equivalent K3 surfaces. As-
sume that X admits an Enriques involution. Then X is isomorphic to
Y . In particular, the existence of an Enriques involution is a derived
invariant.

Proof. In Picard rank ≥ 12, derived equivalence implies isomorphism.
IfX and Y and derived equivalent of rank 10 andX admits an Enriques
involution, then T (X) ≃ T (Y ) and Pic(X) and Pic(Y ) are stably iso-
morphic. In Picard ranks 10 and 11, it suffices to show that the lattice
M(2) is unique in its genus and all automorphisms of the discriminant
group (d(M(2)), qM(2))) lift to automorphisms of M(2). This is im-
plied by [Nik79b, Thm. 1.14.2]. Indeed, [SV20, Lem. 3.1.7] shows that
Pic(X) satisfies these two conditions whenever X admits an Enriques
involution. □

Corollary 11 implies (cf. [BM01, §6]):

Proposition 29. Any C2-equivariant derived autoequivalence

(X, ϵ1) ∼ (X, ϵ2)

arises from an automorphism of X.

We observe a corollary of Proposition 2: Let (X1, ϵ1) and (X2, ϵ2)
denote K3 surfaces with Enriques involutions. They are orientation
reversing (i.e. skew) conjugate if

• τ : T (X1)
∼→ T (X2) as lattices, with compatible Hodge struc-

tures;
• Pic(X1)

ϵ1=−1 and Pic(X2)
ϵ2=−1 have the same discriminant qua-

dratic form.

We explore this in more detail in the case of singular (rank 20) K3
surfaces. The existence of involutions on singular K3 surfaces is gov-
erned by:

Proposition 30. [Ser05] Let X be a singular K3 surface with transcen-
dental lattice T (X) of discriminant d. There is no Enriques involution
on X if and only if d ≡ 3 (mod 8) or

T (X) =

(
2 0
0 2

)
,

(
2 0
0 4

)
, or

(
2 0
0 8

)
.
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The “most algebraic example”, i.e. the smallest discriminant admit-
ting an Enriques involution, has

T (X) ≃
(
2 1
1 4

)
.

In this situation there are two possibilities. We write the maximal
sublattices

N ⊂ Pic(X)

such that the involution ϵ acts via −1.
We follow the notation [SV20, Table 3.1]. We consider lattices

N144
10,7(2), N242

10,7(2)

where

N242
10,7(−1) ≃

(
2 1
1 4

)
⊕ E8

with E8 positive definite and

N144
10,7(2)(−1) ≃



2 1 1 0 1 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0
1 0 2 1 0 0 0 0 0 0
0 0 1 4 0 0 0 0 0 0
1 0 0 0 2 1 0 0 0 0
0 0 0 0 1 2 1 0 0 0
0 0 0 0 0 1 2 1 0 0
0 0 0 0 0 0 1 2 1 0
0 0 0 0 0 0 0 1 2 1
0 0 0 0 0 0 0 0 1 2


.

According to magma, these two lattices are inequivalent but are in the
same spinor genus thus are stably equivalent.

These involutions are not derived equivalent. Indeed, passing to
Mukai lattices adds a hyperbolic summand U on which the involution
acts trivially. However, in the case at hand we are stabilizing the (−1)-
eigenspace. Thus these involutions are “skew equivalent” in the sense
of Section 6.

11. Postscript on involutions in higher dimensions

There are many papers addressing the structure of involutions of
higher-dimensional irreducible holomorphic symplectic varieties.

• Symplectic involutions of varieties of K3[n]-type and their fixed
loci are classified in [KMO22].
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• For varieties of Kummer type – arising from an abelian surface
A – involutions associated with ±1 on A are analyzed in [HT13,
Th. 4.4] and [KMO22, Th. 1.3].
• Anti-symplectic involutions on varieties of K3[n]-type of degree
two are studied in [FMOS22].
• Higher-dimensional analogs of Enriques involutions are studied
in [OS11].
• Involutions on cubic fourfolds – both symplectic (see [LZ22]
and [HT10]) and anti-symplectic – are studied in [Mar22]. The
corresponding actions on lattices are described explicitly.
• Involutions on O’Grady type examples are considered in [MM22].

It is natural to consider whether derived equivalences of involutions
on K3 surfaces X1 and X2 may be understood via equivalences of
the induced involutions on punctual Hilbert schemes and other moduli
spaces.
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