EQUIVARIANT BURNSIDE GROUPS: STRUCTURE
AND OPERATIONS

ANDREW KRESCH AND YURI TSCHINKEL

ABSTRACT. We introduce and study functorial and combinatorial
constructions concerning equivariant Burnside groups.

1. INTRODUCTION

Let GG be a finite group, and £ a field of characteristic zero containing
all roots of unity of order dividing the order of G. In this paper, we
continue the study of an invariant in G-equivariant birational geometry
over k, the equivariant Burnside group

Burn, (G),

introduced in [8], building on [6], [5], [7], and [2].

The class of a projective n-dimensional G-variety in this group is com-
puted from an appropriate smooth G-equivariant birational model X.
For instance, X may be taken to be in standard form [16], meaning:

e there is an invariant open U C X, on which the G-action is free,
e the complement X \ U is a simple normal crossing divisor, and
e for every g € GG and every irreducible component D of X \ U,
either g(D) = D or g(D)N D = .
Standard form implies abelian stabilizers [16, Thm. 4.1]. On such a
model, the class of X ©O G is defined by:

X ©G] = Z Zsp € Burn,(G), (1.1)

with summation over conjugacy classes of abelian subgroups H C G and
strata /' C X with generic stabilizer H; the symbol

sp = (H,No(H)/H C k(F), fr(X))

records the action of the normalizer Ng(H) of H on k(F'), the product
of the function fields of the components of F', as well as the generic
normal bundle representation Sr(X) of H. The class in [X ©O G] takes
its value in the quotient of the free abelian group on symbols by certain
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blow-up relations, spelled out in [8, Definition 4.2]; these ensure that this
expression is a well-defined G-birational invariant [8, Theorem 5.1].

In [2], we presented first geometric applications of this invariant. Here,
after generalities in Section 2 we explore functorial and combinatorial
properties of Burn, (G), specifically:

e filtrations on Burn,(G) (Section 3),

e an indexed variant (Section 4), applied to get a formula for the
class of a projectivization of a sum of line bundles (Section 5),

e products (Section 6),

e the restriction homomorphism

Burn,, (G) — Burn,(G'),

where G’ C G is any subgroup (Section 7),
e a combinatorial analog BC,(G) of Burn,(G) (Section 8), which
keeps only discrete invariants encoded in a symbol.

One of the motivating problems is to distinguish equivariant birational
types of (projectivizations of) linear actions (see, e.g., [15], [3]). A sample
question, raised in [1, Section 8], is: Are there isomorphic finite subgroups
of PGL3 which are not conjugate in the plane Cremona group?

Examples of equivariantly nonbirational representations in [17] require
G to contain an abelian subgroup of rank equal to the dimension of
the representation. Our formalism yields new examples without this
condition; see Example 5.4.

Acknowledgments: We are very grateful to Brendan Hassett for his
interest and help on this and related projects. The first author was par-
tially supported by the Swiss National Science Foundation. The second
author was partially supported by NSF grants 2000099 and 2301983.

2. GENERALITIES

We adopt notational conventions from [§]:

e (5 is a finite group,

e [k is a field of characteristic 0, containing a primitive eth root of
unity, where e is the least common multiple of the exponents of
the abelian subgroups of G,

e we write H C G for an abelian subgroup, with character group

HY := Hom(H, k*),

e Bir,y(k) is the set of birational equivalence classes of d-dimensional
algebraic varieties over k , i.e., the isomorphism classes of finitely
generated fields of transcendence degree d over k; we identify a
field with its isomorphism class in Birg(k),
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o Algy(Ky) is the set of isomorphism classes of Galois algebras K
over Ky € Biry(k) for the group
N := Ng(H)/H,
satisfying
Assumption 1: the composite homomorphism
H'(Ng(H), K*) — HY(H, K*)Y — HY (2.1)

is surjective (see [8, Section 2] for more details).

e More generally, for a subgroup M C N we denote by Alg,,(Ky)
the set of isomorphism classes of M-Galois algebras K/Kj (i.e.,
Calois algebras K over K for the group M), such that Ind}; (K)
satisfies Assumption 1. Of particular interest is

Z = Ze(H)/H C N.
Lemma 2.1. Let K’ € Algy(Ky). Then
K' = Ind) (K)
for some K € Alg,(K)).

Proof. The Ng(H)-action on K™ restricts to a trivial action of H, so
H'(H, K') = Hom(H, K').

We write K’ =2 K'' x --- x K" and choose the projection to the first
factor K' to define the rightmost map in (2.1) (as we may do, by |8,
Rmk. 2.1]):

Hom(H, K') — Hom(H, (K")*) = H.
This is Y-equivariant, where Y C N denotes the subgroup, defined by the
condition of mapping K to itself. Here the Y-action on H" is induced
by the conjugation action on H. Of course, Y-invariant elements map

to Y-invariant elements. So Assumption 1 implies that the conjugation
action of Y on H is trivial, i.e., Y C Z. With

K = IndZ(K"™) (2.2)
we have the result. ]

Remark 2.2. Assumption 1, for an N-Galois algebra K’/ K, of the form
K' = Ind}) (K), where K/K, is a Z-Galois algebra, may be expressed as
the surjectivity of
H' (Zo(H),K*) — H". (2.3)
This is equivalent to the existence of an equivalence of categories between
e Z:(H)-Galois algebras L/Ly with equivariant K — L and
e [-Galois algebras EO /Lo
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over étale Kyp-algebras Ly, as we see by the proof of [8, Prop. 2.2]. A
further equivalent condition is the existence of an object of the first cate-
gory for Ly = K. (The existence of Zg(H)-Galois algebra over K, with
equivariant homomorphism from K leads to an equivalence of the two
categories by the construction of [12, Lem. 3.21].) Consequently we may
view Assumption 1 as a lifting problem of Galois cohomology

H'(Galg,, Zg(H)) — H'(Galg,, 7).
We remark that the machinery of nonabelian cohomology (cf. [14, §1.3.2])
supplies an obstruction to lifting in H*(Galg,, H).

We now recall the definition of the equivariant Burnside group
Burn, (G) = Burn,, x(G)
following [8, Section 4]: it is a Z-module, generated by symbols
s:=(H,N CK,p),
where

e H C (G is an abelian subgroup,

o K € Algy(Ky), with Ky € Birg(k), and d < n,

e 3= (by,...,b,_q), asequence of nonzero elements of the character
group HV, that generate H".

The sequence of characters 5 determines a faithful (n — d)-dimensional
representation of H over k, with trivial space of invariants. As every
(n — d)-dimensional representation of H over k splits as a sum of one-
dimensional representations, any faithful (n — d)-dimensional represen-
tation of H over k determines a sequence of characters, generating H",
up to order. The ambiguity of order gives us the first of several relations
that we impose on symbols:

(0): (H,N C K,p)=(H,N c K,p) if f is a reordering of (.
The further relations are conjugation and blowup relations:

(C): (H,N ¢ K,B) = (H',N' & K,f), when H = gHg™! and N’ =
Ng(H')/H', with g € G, and 8 and " are related by conjugation by g.

(B1): (H,N & K,) =0 when b; + by = 0.
(B2): (H,N C K, ) = ©1 + Oy, where
o _ {o, if by = by,
(HN ¢ K, 1)+ (H,N & K, f3), otherwise,
with
B1:= (b1, by — by, b3, ..., by_q), Po:=(ba,by —ba, bz, ....by_4q), (2.4)
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and
o, if b; € (by — by) for some i,
2T (H,N ¢ K,B), otherwise,
with
FV = HV/<b1 —b2>, B = (62,53,...7[_?”_(1), Bz GFV, (25)

and K carries the action described in Construction (A) in [8, Section 2],
applied to the character by — bs.

We remark that, following [10, §10], the presentation of Burn, (G) may
be simplified by allowing an arbitrary sequence of elements (b1, ..., b,_4)
generating HY as (8 in a symbol and imposing the additional relation,
that a symbol (H, N C K, ) vanishes whenever b; = 0 for some i. Then
relations (B1) and (B2) may be combined into the single relation

(B):
(HaNGKaﬁ):(H7NGK?Bl)+(H7N©K752)+(ﬁ7w<>?76)

We permit ourselves to write a symbol in the form
(H,M C K, ) (2.6)
with a subgroup M C N and K € Alg,,(Kj), with
(H,M & K,B) = (H,N & Ind},(K), 3).

We further allow Ky to be a product of fields; then (2.6) will denote the
corresponding sum of symbols, one for each factor.
By Lemma 2.1, any symbol in Burn,(G) is of the form

(H,Z ¢ K, B),

with K € Alg,(K)).
In this notation, Construction (A) has a compact formulation. Ap-
plied to a single character b € H", this yields the subgroup

H:=ker(b) C H
and the symbol
(H,Za(H)/H & K(t), B),
where a Zg(H)-action on K(t) arises by lifting b via (2.3) and is trivial

on H, and 3 is obtained from 3 as above.

Remark 2.3. Construction (A) may be applied to a collection of charac-
ters, yielding the same outcome as when applied iteratively, one character
at a time.
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We recall the convention on G-varieties from [8, §3], which allows X
to have several components but demands that the generic point of any
component has dense orbit in X.

A G-variety in standard form always satisfies

Assumption 2: The stabilizers for the G-action on X are abelian,
and for every H and F' in (1.1) the composite homomorphism

Pic(X) — HY(Ng(H), k(F)*) — HY

is surjective, where the first map is given by restriction and the second
is the map from Assumption 1, with K = k(F).

Note that Assumption 2 implies Assumption 1, for every H and every
Ng(H)/H C k(F) (see [8, Rmk. 3.2(1)]). Thus, (1.1) defines an element
of Burn,(G). Alternative expressions may be given, with normalizers
replaced by centralizers as in Lemma 2.1 or further by the subgroup
from which the Galois algebra is induced as in (2.2):

Xod= > = Y (HZCKF),FX) (27
(H,Pic%(X)—=HV) F
= (Ha, G/ Hy C k(2), By(X)) (2.8)

The first sum is over conjugacy class representatives of pairs, consisting of
an abelian subgroup of G and a surjective homomorphism to the group
of characters, while the second is over orbit representatives for the G-
action on the points (in the scheme-theoretic sense, i.e.., generic points
of subvarieties) of X, where # € X has stabilizer G, and {z} has generic
stabilizer H,; cf. [9, Defn. 2.3] for (2.7) and [11, p. 3027] for (2.8).

If X is not assumed to be projective, but only quasi-projective, then
there are two ways to attach a class in Burn, (G), as described in [8, §5].
The naive class [X © G]**¥° is defined by the same formula as in the
projective case, i.e., equivalently (1.1), (2.7), or (2.8). With a suitable
equivariant compactification, the (non-naive) class [X © G] is the sum
of the class of the compactification and an adjustment which takes the
form of an alternating sum of naive classes of normal bundles of strata.

3. FILTRATIONS

In this section, we explore additional combinatorial constructions on
equivariant Burnside groups Burn,(G), reflecting the geometry of the
G-action on strata with given generic stabilizers.
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Definition 3.1. A G-prefilter is a collection H of pairs (H,Y") consisting
of an abelian subgroup H C G and a subgroup

Y C Z = Z(H)/H,
such that H is closed under conjugation, i.e., for (H,Y’) € H we have
(gHg ', gYg ') e H, forall g€d.

A G-filter is a G-prefilter H, such that (H,Y’) € H with H nontrivial and
g€ Zg(H) with g e Y and Y C Zg(g)/H implies ((H, g),Y/(g)) € H.

Definition 3.2. Given a G-prefilter H, we let
Burn}' (G)

n

be the quotient of Burn, (G) by the subgroup generated by classes of the
form

(H,Y ¢ K, p),
where K € Algy (K)) is a field, and
(H,Y) ¢ H.
Proposition 3.3. Let H be a G-filter Then Burnl'(G) is generated by
triples
(H,Y CK,pB),

where K € Algy (Ky) is a field and (H,Y') € H, subject to relations (O),
(C), and (B) applied to these triples.

Proof. We consider
(H,Y C K, f)
with K € Algy (Kj) a field, Y = Yy/H for some Yy C Zg(H). In the

term (H,Y ¢ K,pj) from (B) (Where_?_: Yo/H and K = K(t)), if
H = ker(by — by) is nontrivial, then (H,Y) € H implies (H,Y) € H.

This observation establishes the proposition. O

Example 3.4.
e For GG abelian, the G-filter {(G, triv)} leads to

Burn®(G) = Burn{(G’triV)}(G),

introduced in [8, §8].
e For the G-prefilter H consisting of all (H,Y’) with H nontrivial
cyclic and Y noncyclic, Burni (G) appeared in [2, §7.4].
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Remark 3.5. Let (H,Y < K',5) € Burn,(G), where, as in Lemma
2.1, the symbol has been written with Y C Z acting on a field K' and
Y = Y'/H for some subgroup Y'! C Z;(H) containing H. Let F be a
smooth projective model, k(F) = K'. According to [4, Thm. IV.5.5],
formation of the MRC quotient F” of I is functorial, so we get a rational
action of Y'! on I’ with some generic stabilizer U' and Galois algebra over
k(F")Y" for the group Y''/U". The association, to the given symbol, of U*
and Y1 /U' & k(F’), up to conjugation, survives the defining relations of
Burn, (G), thus giving a direct sum decomposition of Burn,, (G) according
to the conjugacy class of the pair (U, Y'/U' & L'), where L' = k(F").

Remark 3.6. One can additionally suppress the field information, which
will lead to combinatorial analogues of Burnside groups. We will explore
this in Section 8.

4. NONTRIVIAL GENERIC STABILIZERS

In this section, we introduce a version of the equivariant Burnside
group, relevant for considerations of actions with nontrivial generic sta-
bilizer.

Let G be a finite group. A variant of the equivariant Burnside group
takes the additional data of a finite index set

I CN.
The equivariant indexed Burnside group
Burn, ;(G),
is defined as a quotient of the Z-module generated by symbols
(HC H'\,N' G K, B,7),
where

e H C H’ are abelian subgroups of G,

N' = Nogy()(H') [ '

K € Algn/ (K)p), with Ky € Birg(k), and d < n — |1,

f = (b1,...,bp_a—y1)), a sequence of nonzero characters of H’,

trivial upon restriction to H, that generate (H'/H)Y,

e v = (¢;)ier is a sequence of elements of H'Y, such that the images
of ¢; in HY generate H".

As in Section 2, we permit ourselves to write a symbol in the form
(HC H' M C K,B,7),
where M’ C N’ is a subgroup. Every symbol may be expressed as
(HCH,Z' ¢ K,B,7), Z'.=Zg(H")/H'
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(Notice that Zq(H') = Zng ) (H').)

These symbols are subject to relations:
(0): (H C H,N & K,B,y) = (HC H,N & K, f,y) if g/ is a
reordering of (.
(C): (HC H',N'C K,B,7) = (gHg™ C gH'g"',gN'g~ C K, 5,7
for g € G, with g and [’, respectively «v and ', related by conjugation
by g.
(B1): (HC H',N' K, p,v) =0 when by + by = 0.
(B2): (H C H N C K,B,7) = O1 + Oy, where ©; and ©, are as

in Section 2, with H prepended and ~, respectively 7, appended to the
corresponding symbols.

As in Section 2, we may allow symbols where [ contains the zero char-
acter, impose a relation of the vanishing of such symbols, and combine
(B1) and (B2) into a single relation (B).

Remark 4.1. By analogy with Remark 2.2, we may express Assumption
1, for the Galois algebra K, as the surjectivity of the middle vertical map

0=HY(Zg(H)/H,K*)~HY(Zg(H"), K*) = H'(H, K*)%cH)/H

| | |

0—— (H'/H)" HY HY 0

Here, the top row comes from the Hochschild-Serre spectral sequence.
In a symbol, we have § generating the left-hand group in the bottom
row, while v is a sequence of characters of H’, whose images generate
HY. Consequently, 8 and 7 together generate H'V. Thus we have a
homomorphism

Yr: Burn, ;(G) — Burn,(G),
sending (H C H', Z' & K, 3,7) to
(H',Z' ¢ K,BU~).

(More generally there is 7 ; for J C I, mapping to Burn, ;(G), cf. [9,
Defn. 4.2].)

In order to explain the relevance of this definition, we introduce a map
which converts some of the characters in 7 to a transcendental extension
of the Galois algebra. Let

JCI
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be a subset. Given asymbol (H C H', Z' & K, (,7), we define subgroups
= ﬂ ker(c;) C H',
ien\J
H:=HnNH CH.
Then we define
wr y: Burn, ;(G) — Burn, ;(G),
by applying Construction (A) to the characters of v indexed by I\ J:

(H - H/,Z/ C K,ﬁ,’)/) — (ﬁ - F,,ZG(H/)/F, C K((ti)iGI\J>767:Y>7

where 7 = (¢;);jes. This is compatible with relations, as we see using
Remark 2.3.

We recall the setting of [8, Defn. 5.4]: Let X be a smooth projective
variety of dimension n, with a generically free action of G, satisfying

Assumption 2. Let Dy, ..., D, be G-stable divisors, with
Dy:=(\Di, for ICI:={l,....0}, Dy=X.
iel

We suppose, for notational simplicity, that for every I the generic sta-
bilizers of the components of D; belong to a single conjugacy class of
subgroups, and take H; to be a representative. Then to I C M C 7 we
attach the following class in Burn,, ;(G):

XM[(XOG zzGI Z Z (H[QH/,N/Ck(W),ﬁ,/}/);
H'DHjp WcDy
{ieT| WCDi}:M
where

e the first sum is over conjugacy class representatives H' of abelian
subgroups of Ng(H), containing Hj,

e the second sum is over Ny, (x,)(H')-orbits of components W with
generic stabilizer H', contained in components of D; with generic
stabilizer H; and satisfying {i € Z|W C D;} = M,

e 5= By (Dy) encodes the normal bundle to W in D;, and

e v = (¢;)ier, the characters coming from D; with i € I.

Then
Wp,/x © G"™¥ = Z Z Yrns(wrins(Xar(X O G, (Ds)iez)))-

ICMCTI M\ICJCM

The summand may be rewritten as ¥ (wars(xam (X O G, (D;)iez)))
using [9, Exa. 4.3]. Now we obtain some insight into [8, Lemma 5.7] by
recognizing the summand with J =0 as [N} © G]raive,
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5. FIBRATIONS

In this section, we define a projectivized version of the equivariant
indexed Burnside group and use it to give a formula for the class in
Burn, (G) of the projectivization of a sum of line bundles.

Let G be a finite group and I C N a nonempty finite index set. The
equivariant projectively indexed Burnside group

Burn, ¢ (G)
is defined with generators and relations as in Section 4, where

e [3 consists of n —d — |I| + 1 characters (so d <n — |I]| + 1),
e the differences of pairs of characters of v should generate HY,
e and there is an additional relation:

(P): If v/ — v is a constant sequence then
(HCH N CK,3,v)=(HCH N CK,B3,7).

We define
wp(r),s: Burn, pry(G) — Burn, ;(G),
for a proper subset
JC I,
by
e choosing ip € I\ J,
e applying (P) to get a representative symbol

(HC H' ,N'CK,B,7)

with ~;, = 0, and
e applying wp (), to the class of (H C H', N' C K, B3, (¢i)ien\fio})

in Burn, 1\ (i} (G).
Let X be a smooth projective variety over k. Assume that X carries
a G-action, and let Lg, ..., L, be G-linearized line bundles on X. The
next statement examines the condition, for G to act generically freely on
P(Ly® -+ @ L,), so that Assumption 2 satisfied. The statement uses
the variant of Assumption 2, where PicG(X ) is replaced by the subgroup
of Pic®(X) generated by a given collection of G-linearized line bundles.
Given this, we will say that Assumption 2 holds for the given collection

of G-linearized line bundles.

Lemma 5.1. Let X be a smooth projective variety over k with a G-action
and G-linearized line bundles Ly, ..., L.. Let H be the stabilizer at the
generic point of a component of X, and let us denote the Ng(H)-orbit of
the component by X'. The following are equivalent.
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(i) The N-action on X' satisfies Assumption 2, and H is abelian
with HY spanned by the differences of characters determined by
Lo, ..., L,.

(ii) The G-action on P(Lo@ ---@® L,) is generically free and satisfies
Assumption 2.

(i) The G-action on P(Ly® --- @ L,) is generically free and satisfies
Assumption 2 for Ly, ..., L,, together with the G-linearized line
bundles on X associated with N -linearized line bundles on X'.

The statement is inspired by [8, Lemma 7.3]. The association of line
bundles in (iii) refers to the equivalence of categories (by restriction) be-
tween G-linearized line bundles on X and N¢g(H )-linearized line bundles
on X’. Since N = Ng(H)/H and H acts trivially on X', an Ng(H)-
linearization is determined by inflation from an N-linearization of a line
bundle on X’. An Ng(H)-linearization arises in this manner if and only
if it induces the trivial H-representation at points of X”.

Proof. The action of G on P(Lo @ ---@® L,) is generically free if and only
if the action of Ng(H) on P(Lo|x' @ --- @ L,|x/) is generically free. The
latter has generic stabilizer (1),_, ker(b; — by). Thus the condition on H
in (i) is equivalent to the condition of generically free action in (ii) and
in (iii). We assume this from now on.

We start by showing (i) implies (iii), using the interpretation of As-
sumption 2 in terms of the representability of a morphism from the quo-
tient stack to a product of copies of BG,, as in [8, Rmk. 3.2]. Given (i),
we have such a representable morphism

[X'/N] — BG,, x -+ x BG,,.

Correspondingly, the fibers of the composite morphism
[X/G] = [X'/Ng(H)] — [X'/N] = BG,, x --- X BG,,
all have constant stabilizer group H. The condition in (i) implies that
the H-representation given by by, ..., b, is faithful. With »+1 additional
factors BG,, we get a representable morphism from [X/G], hence also
from P(Lo @ --- @ L,).
Since trivially (iii) implies (ii), it remains only to show (ii) implies (i).
Since
PLo®---®L,) > X

admits equivariant sections, (ii) implies the existence of a representable
morphism

[X/G] = BG,, x -+ x BG,,, (5.1)
determined by some finite collection of G-linearized line bundles on X.
If we tensor each of these by a suitable tensor combination of Ly, ..., L,,
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then we may suppose that each of these comes from an N-linearized line
bundle on X’; now the morphism (5.1) has fibers with constant stabilizer
group H. These N-linearized line bundles determine a representable
morphism

[X'/N] — BG,, x -+ X BG,,.
Thus we have (i). O

Example 5.2. We elaborate on the spanning of Burn,,(G) by the classes
of quasiprojective G-varieties, claimed in [8, Rmk. 5.16]. Any symbol
(H,N C K, ) can be made to arise in formula (1.1), we just have to use
Assumption 1 to convert the characters in § to G-linearized line bundles
on a suitable model Y’ of K, which we may take to be smooth projective
(the ability to extend a G-linearized line bundle from an invariant dense
open is guaranteed by [13, Lem. 4.1]) and satisfy Assumption 2 (for the
action of N). Then, taking Y to be a disjoint union of [G : Ng(H)]
copies of Y/ and X = P(Oy & L1 & --- & L,_4), Lemma 5.1 guarantees
Assumption 2 for a naturally induced G-action on X, with

X OG- [(X\s(Y) DG =(HNCK,B)+..., (5.2)

where s is the zero-section of L1 ®---® L,_4 C X. Any additional terms
on the right-hand side of (5.2) involve fields of smaller transcendence
degree, so the classes (5.2) span Burn, (G). But X \ s(Y) is equivariantly
isomorphic to the normal bundle Op(r, .01, ,)(1) of the divisor of X,
complement of L& - -@® L,,_g, thus (5.2) is the class [L1®- - - DL, 4 O G].
So Burn,(G) is spanned by classes [L; & --- & L, © G] of sums of
G-linearized line bundles on smooth projective varieties, 0 < r < n,
satisfying the conditions of Lemma 5.1 (with a trivial bundle Ly).

Proposition 5.3. Let X be a smooth projective variety of dimension
n —r over k with a G-action and G-linearized line bundles Lg, ..., L,.
We assume the conditions and adopt the notation of Lemma 5.1. We
define I :={0,...,r} and the following class in Burn, p()(G):

X DG (Liier) = Y Y (HCH. N CkKW),B879),

H'DH wcx'
generic stabilizer H’

where

the first sum is over abelian subgroups H' of G that contain H,
up to conjugacy in Ng(H),

the second sum is over Ny (H')-orbits of components W C X'
where the generic stabilizer is H',

B = Pw(X') encodes the normal bundle to W in X', and

v = (¢i)ier, the characters coming from L; with i € I.
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Then
P(Lo & -- Z@/}J we(r),1 (§(X © G, (Li)ier)))

JCI
in Burn, (G).
Proof. We identify each contribution to [P(Ly & - -- & L,) © G] as
V= (W),

for some W in the definition of £(X © G, (L;)icr), where ¢ denotes the
projection to X from the projectivization of €, nJ L;. Now

(H C H',N' & k(W),8,7) € Burn, p)(G)

maps under v ; o wp(z), s to

(H', Nuony(H) & k(V), By (X)),
and we have the result. O
Example 5.4. Let G := C5 x &3, acting on X := P! via an irreducible
2-dimensional representation of G3. We take Lg to be trivial and L; to be
the twist of Op1(1) by a nontrivial character x of Cs. Then we have the

situation of Lemma 5.1 with H = C5 and N = &3, and the conditions of
the lemma are satisfied. We have

E(X O G, (Lo, L)) = (C5 € C5, 65 C k(P), 0, (0,x))
+ (05 € G5 x ((1,2)), triv C &, (0,1), (0, (x,0)))
+ (C5 C C5 x ((1,2)), triv C K, (0,1), (0, (x, 1)))
+(C5 € Cs x A3, 63/A3 C k x k,(0,1),(0,(x,1))).

The outcome of Proposition 5.3 is

[P(Ly @ Ly) © G] = (triv, G & k(PY)(t),0) + ({(1,2)), Cs CX‘/‘ k(t),1)
+ (C5, 65 & k(PY), x) + (C5 x {(1,2)), triv C k, ((0,1), (x,0)))
+ (G5 x ((1,2)), triv C k, ((0, 1), (x, 1)))
+ (C X ﬂg,eg/ﬂg ckx k‘ ((0, 1), (X, 1)))
+ (05,65 C R(PY), —x) + (Cs x ((1,2)), triv & £, ((0, 1), (= x, 0)))
+ (G5 x ((1,2)), triv C k, ((0,1), (=x, 1)))

(05 X Ql:}; 63/9[3 Ckx ka ((07 1)’ (_Xa 2)))
For the G-filter (cf. Section 3)

H = {(057 63)}7
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the projection Burny(G) — Burny'(G) yields the class
(Cs5,65 C k(P'), x) + (C5, 65 C k(P'), —x) € Burnj (G).

This class is nonzero and is different for y € {£1}, as compared with
X € {£2}.

Geometrically, the situation above arises as follows: Consider the 3-
dimensional representation W, = 1@ (V ® x) of G, sum of a trivial 1-
dimensional representation and twist by x of the standard 2-dimensional
representation V' of &3. This gives a generically free action of G on
P? = P(W,), with a G-fixed point p. When we blow up p, we obtain
P(Ly @ Ly). So,

P(Wy) © G] = [P(Ly & L) © G] € Burny(G).

6. PRODUCTS
Let G’ and G” be finite groups. Define a product map
Burn,, (G') x Burn,»(G") — Burn,/.»(G" x G").
On symbols, it is given by
(H',Z' ¢ K'.,B),(H", 2" ¢ K",p")— (H,Z ¢ K,B), (6.1)

where
o« H=H' x H"
o /=7 x7",
e K = K'®;, K", with the natural action of Z,
«B=FUp"

Proposition 6.1. The product map (6.1) is well-defined, and satisfies
((X"oG@,[X"2G@)—» [X'xX"DG xG".

Proof. The map clearly respects relations. The only point to remark is
that in (B2), the condition for nontriviality of ©, holds for ' if and only
if it holds for g = g’ U p”". O

Example 6.2. If we take G” to be trivial, then the product with the
class of a rational function field of transcendence degree e is the homo-
morphism Burn, (G) — Burn,;.(G) given by

(H,Z G K,B)— (H,Z < K(t,...,t.),5).

The kernel contains all (H,Z & K,(), 5 = (b1,...,bs_aq), such that
some b; has order < e+ 1, by [11, Prop. 4.1].
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7. RESTRICTIONS

Let G be a finite group and G’ C G a subgroup. A G-action on a
quasiprojective variety X induces an action of G’, and thus it is natural
to propose the existence of a restriction homomorphism from Burn, (G)
to Burn, (G’), acting by

X O G] = [X O] (7.1)

In this section we establish the existence and uniqueness of this homo-
morphism.

Example 7.1. Suppose H is an abelian subgroup of G, contained in
G'. Symbols, identified in Burn,,(G) by relation (C), might no longer be
identified in Burn,(G’). E.g., with G = ©, and G’ = C} the restriction
of (G',G/G" & k x k,1) € Burn;(G) to Burn;(G’) has to be a sum of
two symbols with distinct characters:

(G',G/G' Ckxk 1) (G trivC k1) + (G triv C k, 3).

Theorem 7.2. For all n > 0, there exists a unique homomorphism of
abelian groups
resS, : Burn, (G) — Burn,(G’),

compatible with (7.1).

Proof. By Lemma 2.1, it suffices to consider symbols of the form
s=(H,ZCK,p).

When we act by conjugation by some element of G, we obtain an equiv-
alent symbol, where H is replaced by a conjugate, the corresponding
centralizer quotient replaces Z, and conjugation is used to form from [
a sequence of characters of the conjugate of H. By conjugation we have
a transitive action of G on a set & of symbols, where s € G has stabi-
lizer Z(H). The restriction of the action to G’ consists of finitely many
orbits; in the formula below the sum is over orbit representatives

§ = (Hla ZG<H,)/HI C K7 5/)7
where one of the orbit representatives may be taken to be s itself. We
define the restriction to G’ by
s Y (HNG (Zo(H)NG)/(H'NG) C K, Bwne).  (7.2)
5/
It is clear that the map respects relations (O) and (C). To see that it
respects (B), we first give a formula, valid for a symbol of the form

(H,Y C K, ),
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with Y C Z. Let us write Y =Y /H with H CY C Zg(H). We restrict
the transitive action of G on G/Y to G'. Then (H,Y C K, ) is mapped
to the sum over orbit representatives ¢'Y for the G’-action

Y (H'NG (¢Yd ' nG)/(H' NG C K, Bwne), (7.3)

gy

where H’ denotes g’ Hqg'~ 1, with corresponding characters g (Choose
Za(H) = le U - Ung d=[Z¢(H) : Y] g1 = 1, write IndYK =
Kd in the standard way, then a (Zg(H) N G)-orbit {g;,Y,..., ¢, Y} in

Z(H) /Y determines (Zg(H) N G')- invariant Kel @ @ Ke;,, which

mG’)/(HmG’)
_1OG’)/(HOG’)K to see that

the summand s’ = s of (7.2) is the Contrlbutlon to (7.3) from the ¢'Y with
g € Zg(H). A similar consideration with H replaced by H' identifies an
arbitrary summand of (7.2) with a corresponding contribution to (7.3).)

The formula (7.3), applied to the term (H, N & K, 3) from relation
(B), may be expressed as a sum

with ¢ = 7; we explicitly identify with Ind

Y (H NG (Ze(H)NG)/(H NG) & K(t), 8 lg0)

as in (7.2), where H = ker(b, — ), B/ = (V... .00 _4). This is the
contribution from the final term of relation (B) for the sum (7.2).

Since Burn, (G) is spanned by the classes of quasiprojective G-varieties
(as discussed in Example 5.2), we have the uniqueness. O

Remark 7.3. Clearly, we also have
res, ([X © G]"V°) = [X © G/]raive,
As an application of the restriction construction, we obtain a map
Burn,/(G) x Burn, (G) — Burn,,»(G),

using the product construction in Section 6 with G' = G” = G, followed
by restriction to the diagonal

GCGExd.
This map on Burnside groups satisfies

(X' © G [X"© G]) — [X' x X" © al.
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8. COMBINATORIAL ANALOGS

Here we define and study a combinatorial version BC, (G) of the equi-
variant Burnside group Burn,(G), and a homomorphism

Burn, (G) — BC,(G)

which forgets the information about the Galois algebra.

Definition 8.1. The combinatorial symbols group
BC,.(G)

is the Z-module, generated by symbols
(H.Y,5)

with H abelian, Y C Zs(H)/H, and  a sequence of nonzero elements
generating H", of length at most n, modulo relations:

(0): (H,Y,5) = (H,Y,[) if ' is a reordering of (3.

(C): (H,Y,B8) = (gHg ', gY g4, ) for g € G, with 8 and 3 related by
conjugation by g.

(B]_) (H, Y, 5) = 0 when bl + b2 =0.
(B2): (H,Y,B) = ©; + O,, where ©; and O, are as in Section 2, i.e.,
@ _ O, lf bl = bg,
' <H7 K 61) + (Ha Y7 /32)7 otherwise,
with 5 and f; as in (2.4), and

0. — 0, if b; € (by — by) for some 1,
2 (H,Y,[), otherwise,

where H and j are as in (2.5).

We remark that, as in Section 2, we may obtain a simplified presenta-
tion of BC,(G) by allowing symbols where 5 contains the trivial charac-
ter, imposing the vanishing of all such symbols, and combining relations

(B1) and (B2) into a single relation (B).
Proposition 8.2. The map sending the class of a triple
(H,Y C K, ) € Burn,(G),
for fields K € Algy (Ky), Ko € Biry(k), with d <n, to
[ K](H,Y, B) € BC,(G),
where k' is the algebraic closure of k in Ky, gives a homomorphism
Burn, (G) — BC,(G).
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Proof. This is clear from the description of the relations in Burn,(G)
from Section 2. O

Remark 8.3. Although the map of Proposition 8.2 kills geometric infor-
mation, an advantage of working in BC,(G) is a direct sum structure,
established in [18]:

BC,(G) = @ Bu(H)/(Cay))-
(H.Y)

Here, the direct sum is over conjugacy class representatives of pairs
(H,Y) as in Definition 8.1, B,,(H) is the birational symbols group defined
in [5], and the quotient by (C(g,y)) signifies the imposition of conjugacy
relations, under the stabilizer of (H,Y") for the conjugation action of G.

Example 8.4. As mentioned in [18], there is in general no direct sum
decomposition of Burn, (G) that is compatible with that Remark 8.3 un-
der the map in Proposition 8.2. For simplicity, let us suppose that k is
algebraically closed. Then a relation such as (H,Y, (b)) = (H,Y, (b,b)) in
BCy(G), for H nontrivial cyclic with primitive character b and Y nontriv-
ial, has no geometric counterpart. We analyze in detail the case G = Ry,
the Klein 4-group. Then Burny(G) is the direct sum of

e trivial symbols (triv,G C K, ()),

e incompressible symbols [9, Defn. 3.3] (H,G/H C K, (1)), with
|H| = 2 and K of transcendence degree 1 over k, K 2 k(t), and

e a free abelian group of rank 3, generated by (H,G/H C k(t), (1))
for |H| = 2 and (G, triv C k, (b,0')) for distinct nontrivial char-
acters b and b’ up to order, modulo relation (B2).

The third summand receives a contribution, isomorphic to Z, from ev-
ery subgroup of GG of order 2. These span an index 4 subgroup of the
free abelian group of rank 3, with quotient (Z/2Z)* = By(G). Whereas
BCy(G) = BCy(G)™Y @ BCo( G)™mV | with BCo( GV = By (G).

Definition 8.5. Given a G-prefilter H, we let

BCH(G)
be the quotient of BC,,(G) by the subgroup generated by classes (H,Y, ()
with (H,Y) ¢ H.

Exactly as in Section 3 we have

Proposition 8.6. Let H be a G-filter. Then BCH(G) is generated by
symbols (H,Y, ) for (H,Y) € H, subject to relations (O), (C), (B1),
and (B2) applied to these symbols.
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Additionally, upon passage to the combinatorial analogue we also have
the other structures developed in this paper:

e equivariant (projectively) indexed combinatorial Burnside group;
e product map;
e restriction homomorphisms.

Example 8.7. Suppose that G is abelian.
e We have (cf. [8, §8])

B.(G) = BCE™(G),

where B,,(G) is the symbols group from [5].
e There is a commutative diagram

Burn, (G) — BC,(G)

| |

Burn®(G) —— B,(G)

(The factor factor [k’ : k] in Proposition 8.2 matches the similar
factor in [8, Prop. 8.1].)
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