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Abstract. We introduce and study functorial and combinatorial
constructions concerning equivariant Burnside groups.

1. Introduction

Let G be a finite group, and k a field of characteristic zero containing
all roots of unity of order dividing the order of G. In this paper, we
continue the study of an invariant in G-equivariant birational geometry
over k, the equivariant Burnside group

Burnn(G),

introduced in [8], building on [6], [5], [7], and [2].
The class of a projective n-dimensional G-variety in this group is com-

puted from an appropriate smooth G-equivariant birational model X.
For instance, X may be taken to be in standard form [16], meaning:

• there is an invariant open U ⊂ X, on which the G-action is free,
• the complement X \ U is a simple normal crossing divisor, and
• for every g ∈ G and every irreducible component D of X \ U ,

either g(D) = D or g(D) ∩D = ∅.
Standard form implies abelian stabilizers [16, Thm. 4.1]. On such a
model, the class of X ý G is defined by:

[X ý G] :=
∑
H⊆G

∑
F

sF ∈ Burnn(G), (1.1)

with summation over conjugacy classes of abelian subgroups H ⊆ G and
strata F ⊆ X with generic stabilizer H; the symbol

sF := (H,NG(H)/H ýk(F ), βF (X))

records the action of the normalizer NG(H) of H on k(F ), the product
of the function fields of the components of F , as well as the generic
normal bundle representation βF (X) of H. The class in [X ý G] takes
its value in the quotient of the free abelian group on symbols by certain
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blow-up relations, spelled out in [8, Definition 4.2]; these ensure that this
expression is a well-defined G-birational invariant [8, Theorem 5.1].

In [2], we presented first geometric applications of this invariant. Here,
after generalities in Section 2 we explore functorial and combinatorial
properties of Burnn(G), specifically:

• filtrations on Burnn(G) (Section 3),
• an indexed variant (Section 4), applied to get a formula for the

class of a projectivization of a sum of line bundles (Section 5),
• products (Section 6),
• the restriction homomorphism

Burnn(G)→ Burnn(G′),

where G′ ⊂ G is any subgroup (Section 7),
• a combinatorial analog BCn(G) of Burnn(G) (Section 8), which

keeps only discrete invariants encoded in a symbol.

One of the motivating problems is to distinguish equivariant birational
types of (projectivizations of) linear actions (see, e.g., [15], [3]). A sample
question, raised in [1, Section 8], is: Are there isomorphic finite subgroups
of PGL3 which are not conjugate in the plane Cremona group?

Examples of equivariantly nonbirational representations in [17] require
G to contain an abelian subgroup of rank equal to the dimension of
the representation. Our formalism yields new examples without this
condition; see Example 5.4.

Acknowledgments: We are very grateful to Brendan Hassett for his
interest and help on this and related projects. The first author was par-
tially supported by the Swiss National Science Foundation. The second
author was partially supported by NSF grants 2000099 and 2301983.

2. Generalities

We adopt notational conventions from [8]:

• G is a finite group,
• k is a field of characteristic 0, containing a primitive eth root of

unity, where e is the least common multiple of the exponents of
the abelian subgroups of G,
• we write H ⊆ G for an abelian subgroup, with character group

H∨ := Hom(H, k×),

• Bird(k) is the set of birational equivalence classes of d-dimensional
algebraic varieties over k , i.e., the isomorphism classes of finitely
generated fields of transcendence degree d over k; we identify a
field with its isomorphism class in Bird(k),
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• AlgN(K0) is the set of isomorphism classes of Galois algebras K
over K0 ∈ Bird(k) for the group

N := NG(H)/H,

satisfying

Assumption 1: the composite homomorphism

H1(NG(H), K×)→ H1(H,K×)N → H∨ (2.1)

is surjective (see [8, Section 2] for more details).
• More generally, for a subgroup M ⊆ N we denote by AlgM(K0)

the set of isomorphism classes of M -Galois algebras K/K0 (i.e.,
Galois algebras K over K0 for the group M), such that IndNM(K)
satisfies Assumption 1. Of particular interest is

Z := ZG(H)/H ⊆ N.

Lemma 2.1. Let K ′ ∈ AlgN(K0). Then

K ′ ∼= IndNZ (K)

for some K ∈ AlgZ(K0).

Proof. The NG(H)-action on K ′× restricts to a trivial action of H, so

H1(H,K ′×) = Hom(H,K ′×).

We write K ′ ∼= K ′1 × · · · × K ′` and choose the projection to the first
factor K ′1 to define the rightmost map in (2.1) (as we may do, by [8,
Rmk. 2.1]):

Hom(H,K ′×)→ Hom(H, (K ′1)×) ∼= H∨.

This is Y -equivariant, where Y ⊆ N denotes the subgroup, defined by the
condition of mapping K ′1 to itself. Here the Y -action on H∨ is induced
by the conjugation action on H. Of course, Y -invariant elements map
to Y -invariant elements. So Assumption 1 implies that the conjugation
action of Y on H is trivial, i.e., Y ⊆ Z. With

K = IndZY (K ′1) (2.2)

we have the result. �

Remark 2.2. Assumption 1, for an N -Galois algebra K ′/K0, of the form
K ′ = IndNZ (K), where K/K0 is a Z-Galois algebra, may be expressed as
the surjectivity of

H1(ZG(H), K×)→ H∨. (2.3)

This is equivalent to the existence of an equivalence of categories between

• ZG(H)-Galois algebras L/L0 with equivariant K → L and

• H-Galois algebras L̃0/L0
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over étale K0-algebras L0, as we see by the proof of [8, Prop. 2.2]. A
further equivalent condition is the existence of an object of the first cate-
gory for L0 = K0. (The existence of ZG(H)-Galois algebra over K0 with
equivariant homomorphism from K leads to an equivalence of the two
categories by the construction of [12, Lem. 3.21].) Consequently we may
view Assumption 1 as a lifting problem of Galois cohomology

H1(GalK0 , ZG(H))→ H1(GalK0 , Z).

We remark that the machinery of nonabelian cohomology (cf. [14, §1.3.2])
supplies an obstruction to lifting in H2(GalK0 , H).

We now recall the definition of the equivariant Burnside group

Burnn(G) = Burnn,k(G)

following [8, Section 4]: it is a Z-module, generated by symbols

s := (H,N ýK, β),

where

• H ⊆ G is an abelian subgroup,
• K ∈ AlgN(K0), with K0 ∈ Bird(k), and d ≤ n,
• β = (b1, . . . , bn−d), a sequence of nonzero elements of the character

group H∨, that generate H∨.

The sequence of characters β determines a faithful (n − d)-dimensional
representation of H over k, with trivial space of invariants. As every
(n − d)-dimensional representation of H over k splits as a sum of one-
dimensional representations, any faithful (n − d)-dimensional represen-
tation of H over k determines a sequence of characters, generating H∨,
up to order. The ambiguity of order gives us the first of several relations
that we impose on symbols:

(O): (H,N ýK, β) = (H,N ýK, β′) if β′ is a reordering of β.

The further relations are conjugation and blowup relations:

(C): (H,N ýK, β) = (H ′, N ′ ýK, β′), when H ′ = gHg−1 and N ′ =
NG(H ′)/H ′, with g ∈ G, and β and β′ are related by conjugation by g.

(B1): (H,N ýK, β) = 0 when b1 + b2 = 0.

(B2): (H,N ýK, β) = Θ1 + Θ2, where

Θ1 =

{
0, if b1 = b2,

(H,N ýK, β1) + (H,N ýK, β2), otherwise,

with

β1 := (b1, b2 − b1, b3, . . . , bn−d), β2 := (b2, b1 − b2, b3, . . . , bn−d), (2.4)
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and

Θ2 =

{
0, if bi ∈ 〈b1 − b2〉 for some i,

(H,N ýK, β̄), otherwise,

with

H
∨

:= H∨/〈b1 − b2〉, β̄ := (b̄2, b̄3, . . . , b̄n−d), b̄i ∈ H
∨
, (2.5)

and K carries the action described in Construction (A) in [8, Section 2],
applied to the character b1 − b2.

We remark that, following [10, §10], the presentation of Burnn(G) may
be simplified by allowing an arbitrary sequence of elements (b1, . . . , bn−d)
generating H∨ as β in a symbol and imposing the additional relation,
that a symbol (H,N ýK, β) vanishes whenever bi = 0 for some i. Then
relations (B1) and (B2) may be combined into the single relation
(B):
(H,N ýK, β) = (H,N ýK, β1) + (H,N ýK, β2) + (H,N ýK, β̄).

We permit ourselves to write a symbol in the form

(H,M ýK, β) (2.6)

with a subgroup M ⊂ N and K ∈ AlgM(K0), with

(H,M ýK, β) := (H,N ýIndNM(K), β).

We further allow K0 to be a product of fields; then (2.6) will denote the
corresponding sum of symbols, one for each factor.

By Lemma 2.1, any symbol in Burnn(G) is of the form

(H,Z ýK, β),

with K ∈ AlgZ(K0).
In this notation, Construction (A) has a compact formulation. Ap-

plied to a single character b ∈ H∨, this yields the subgroup

H := ker(b) ⊂ H

and the symbol

(H,ZG(H)/H ýK(t), β̄),

where a ZG(H)-action on K(t) arises by lifting b via (2.3) and is trivial
on H, and β̄ is obtained from β as above.

Remark 2.3. Construction (A) may be applied to a collection of charac-
ters, yielding the same outcome as when applied iteratively, one character
at a time.
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We recall the convention on G-varieties from [8, §3], which allows X
to have several components but demands that the generic point of any
component has dense orbit in X.

A G-variety in standard form always satisfies

Assumption 2: The stabilizers for the G-action on X are abelian,
and for every H and F in (1.1) the composite homomorphism

PicG(X)→ H1(NG(H), k(F )×)→ H∨

is surjective, where the first map is given by restriction and the second
is the map from Assumption 1, with K = k(F ).

Note that Assumption 2 implies Assumption 1, for every H and every
NG(H)/H ýk(F ) (see [8, Rmk. 3.2(i)]). Thus, (1.1) defines an element
of Burnn(G). Alternative expressions may be given, with normalizers
replaced by centralizers as in Lemma 2.1 or further by the subgroup
from which the Galois algebra is induced as in (2.2):

[X ý G] =
∑

(H,PicG(X)→H∨)

∑
F

(H,Z ýk(F ), βF (X)) (2.7)

=
∑
x∈X

(Hx, Gx/Hx ýk(x), β{x}(X)) (2.8)

The first sum is over conjugacy class representatives of pairs, consisting of
an abelian subgroup of G and a surjective homomorphism to the group
of characters, while the second is over orbit representatives for the G-
action on the points (in the scheme-theoretic sense, i.e.., generic points

of subvarieties) of X, where x ∈ X has stabilizer Gx and {x} has generic
stabilizer Hx; cf. [9, Defn. 2.3] for (2.7) and [11, p. 3027] for (2.8).

If X is not assumed to be projective, but only quasi-projective, then
there are two ways to attach a class in Burnn(G), as described in [8, §5].
The naive class [X ý G]naive is defined by the same formula as in the
projective case, i.e., equivalently (1.1), (2.7), or (2.8). With a suitable
equivariant compactification, the (non-naive) class [X ý G] is the sum
of the class of the compactification and an adjustment which takes the
form of an alternating sum of naive classes of normal bundles of strata.

3. Filtrations

In this section, we explore additional combinatorial constructions on
equivariant Burnside groups Burnn(G), reflecting the geometry of the
G-action on strata with given generic stabilizers.
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Definition 3.1. A G-prefilter is a collection H of pairs (H,Y ) consisting
of an abelian subgroup H ⊆ G and a subgroup

Y ⊆ Z = ZG(H)/H,

such that H is closed under conjugation, i.e., for (H,Y ) ∈ H we have

(gHg−1, gY g−1) ∈ H, for all g ∈ G.

A G-filter is a G-prefilter H, such that (H,Y ) ∈ H with H nontrivial and
g ∈ ZG(H) with ḡ ∈ Y and Y ⊆ ZG(g)/H implies (〈H, g〉, Y/〈ḡ〉) ∈ H.

Definition 3.2. Given a G-prefilter H, we let

BurnH
n (G)

be the quotient of Burnn(G) by the subgroup generated by classes of the
form

(H,Y ýK, β),

where K ∈ AlgY (K0) is a field, and

(H,Y ) /∈ H.

Proposition 3.3. Let H be a G-filter Then BurnH
n (G) is generated by

triples

(H,Y ýK, β),

where K ∈ AlgY (K0) is a field and (H,Y ) ∈ H, subject to relations (O),
(C), and (B) applied to these triples.

Proof. We consider

(H, Y ýK, β)

with K ∈ AlgY (K0) a field, Y = Y0/H for some Y0 ⊆ ZG(H). In the
term (H, Y ýK, β̄) from (B) (where Y = Y0/H and K = K(t)), if
H = ker(b1 − b2) is nontrivial, then (H, Y ) ∈ H implies (H,Y ) ∈ H.
This observation establishes the proposition. �

Example 3.4.

• For G abelian, the G-filter {(G, triv)} leads to

BurnGn (G) = Burn{(G,triv)}n (G),

introduced in [8, §8].
• For the G-prefilter H consisting of all (H,Y ) with H nontrivial

cyclic and Y noncyclic, BurnH
2 (G) appeared in [2, §7.4].
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Remark 3.5. Let (H, Y ýK1, β) ∈ Burnn(G), where, as in Lemma
2.1, the symbol has been written with Y ⊆ Z acting on a field K1 and
Y = Y 1/H for some subgroup Y 1 ⊆ ZG(H) containing H. Let F be a
smooth projective model, k(F ) ∼= K1. According to [4, Thm. IV.5.5],
formation of the MRC quotient F ′ of F is functorial, so we get a rational
action of Y 1 on F ′ with some generic stabilizer U1 and Galois algebra over
k(F ′)Y

1
for the group Y 1/U1. The association, to the given symbol, of U1

and Y 1/U1 ýk(F ′), up to conjugation, survives the defining relations of
Burnn(G), thus giving a direct sum decomposition of Burnn(G) according
to the conjugacy class of the pair (U1, Y 1/U1 ýL1), where L1 = k(F ′).

Remark 3.6. One can additionally suppress the field information, which
will lead to combinatorial analogues of Burnside groups. We will explore
this in Section 8.

4. Nontrivial generic stabilizers

In this section, we introduce a version of the equivariant Burnside
group, relevant for considerations of actions with nontrivial generic sta-
bilizer.

Let G be a finite group. A variant of the equivariant Burnside group
takes the additional data of a finite index set

I ⊂ N.
The equivariant indexed Burnside group

Burnn,I(G),

is defined as a quotient of the Z-module generated by symbols

(H ⊆ H ′, N ′ ýK, β, γ),

where

• H ⊆ H ′ are abelian subgroups of G,
• N ′ := NNG(H)(H

′)/H ′,
• K ∈ AlgN ′(K0), with K0 ∈ Bird(k), and d ≤ n− |I|,
• β = (b1, . . . , bn−d−|I|), a sequence of nonzero characters of H ′,

trivial upon restriction to H, that generate (H ′/H)∨,
• γ = (ci)i∈I is a sequence of elements of H ′∨, such that the images

of ci in H∨ generate H∨.

As in Section 2, we permit ourselves to write a symbol in the form

(H ⊆ H ′,M ′ ýK, β, γ),

where M ′ ⊂ N ′ is a subgroup. Every symbol may be expressed as

(H ⊆ H ′, Z ′ ýK, β, γ), Z ′ := ZG(H ′)/H ′.



EQUIVARIANT BURNSIDE GROUPS 9

(Notice that ZG(H ′) = ZNG(H)(H
′).)

These symbols are subject to relations:

(O): (H ⊆ H ′, N ′ ýK, β, γ) = (H ⊆ H ′, N ′ ýK, β′, γ) if β′ is a
reordering of β.

(C): (H ⊆ H ′, N ′ ýK, β, γ) = (gHg−1 ⊆ gH ′g−1, gN ′g−1 ýK, β′, γ′)
for g ∈ G, with β and β′, respectively γ and γ′, related by conjugation
by g.

(B1): (H ⊆ H ′, N ′ ýK, β, γ) = 0 when b1 + b2 = 0.

(B2): (H ⊆ H ′, N ′ ýK, β, γ) = Θ1 + Θ2, where Θ1 and Θ2 are as
in Section 2, with H prepended and γ, respectively γ̄, appended to the
corresponding symbols.

As in Section 2, we may allow symbols where β contains the zero char-
acter, impose a relation of the vanishing of such symbols, and combine
(B1) and (B2) into a single relation (B).

Remark 4.1. By analogy with Remark 2.2, we may express Assumption
1, for the Galois algebra K, as the surjectivity of the middle vertical map

0 // H1(ZG(H ′)/H,K×) //

��

H1(ZG(H ′), K×) //

��

H1(H,K×)ZG(H′)/H

��
0 // (H ′/H)∨ // H ′∨ // H∨ // 0

Here, the top row comes from the Hochschild-Serre spectral sequence.
In a symbol, we have β generating the left-hand group in the bottom
row, while γ is a sequence of characters of H ′, whose images generate
H∨. Consequently, β and γ together generate H ′∨. Thus we have a
homomorphism

ψI : Burnn,I(G)→ Burnn(G),

sending (H ⊆ H ′, Z ′ ýK, β, γ) to

(H ′, Z ′ ýK, β ∪ γ).

(More generally there is ψI,J for J ⊆ I, mapping to Burnn,J(G), cf. [9,
Defn. 4.2].)

In order to explain the relevance of this definition, we introduce a map
which converts some of the characters in γ to a transcendental extension
of the Galois algebra. Let

J ⊆ I
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be a subset. Given a symbol (H ⊆ H ′, Z ′ ýK, β, γ), we define subgroups

H
′
:=

⋂
i∈I\J

ker(ci) ⊆ H ′,

H := H ∩H ′ ⊆ H.

Then we define

ωI,J : Burnn,I(G)→ Burnn,J(G),

by applying Construction (A) to the characters of γ indexed by I \ J :

(H ⊆ H ′, Z ′ ýK, β, γ) 7→ (H ⊆ H
′
, ZG(H ′)/H

′
ýK((ti)i∈I\J), β̄, γ̄),

where γ̄ = (c̄j)j∈J . This is compatible with relations, as we see using
Remark 2.3.

We recall the setting of [8, Defn. 5.4]: Let X be a smooth projective
variety of dimension n, with a generically free action of G, satisfying
Assumption 2. Let D1, . . . , D` be G-stable divisors, with

DI :=
⋂
i∈I

Di, for I ⊆ I := {1, . . . , `}, D∅ = X.

We suppose, for notational simplicity, that for every I the generic sta-
bilizers of the components of DI belong to a single conjugacy class of
subgroups, and take HI to be a representative. Then to I ⊆ M ⊆ I we
attach the following class in Burnn,I(G):

χM,I(X ý G, (Di)i∈I) :=
∑
H′⊇HI

∑
W⊂DI

{i∈I |W⊂Di}=M

(HI ⊆ H ′, N ′ ýk(W ), β, γ),

where

• the first sum is over conjugacy class representatives H ′ of abelian
subgroups of NG(HI), containing HI ,
• the second sum is over NNG(HI)(H

′)-orbits of components W with
generic stabilizer H ′, contained in components of DI with generic
stabilizer HI and satisfying {i ∈ I |W ⊂ Di} = M ,
• β = βW (DI) encodes the normal bundle to W in DI , and
• γ = (ci)i∈I , the characters coming from Di with i ∈ I.

Then

[NDI/X ý G]naive =
∑

I⊆M⊆I

∑
M\I⊆J⊆M

ψI∩J(ωI,I∩J(χM,I(X ý G, (Di)i∈I))).

The summand may be rewritten as ψJ(ωM,J(χM,M(X ý G, (Di)i∈I)))
using [9, Exa. 4.3]. Now we obtain some insight into [8, Lemma 5.7] by
recognizing the summand with J = ∅ as [N ◦DI/X

ý G]naive.



EQUIVARIANT BURNSIDE GROUPS 11

5. Fibrations

In this section, we define a projectivized version of the equivariant
indexed Burnside group and use it to give a formula for the class in
Burnn(G) of the projectivization of a sum of line bundles.

Let G be a finite group and I ⊂ N a nonempty finite index set. The
equivariant projectively indexed Burnside group

Burnn,P(I)(G)

is defined with generators and relations as in Section 4, where

• β consists of n− d− |I|+ 1 characters (so d ≤ n− |I|+ 1),
• the differences of pairs of characters of γ should generate H∨,
• and there is an additional relation:

(P): If γ′ − γ is a constant sequence then

(H ⊆ H ′, N ′ ýK, β, γ) = (H ⊆ H ′, N ′ ýK, β, γ′).

We define
ωP(I),J : Burnn,P(I)(G)→ Burnn,J(G),

for a proper subset
J ( I,

by

• choosing i0 ∈ I \ J ,
• applying (P) to get a representative symbol

(H ⊆ H ′, N ′ ýK, β, γ)

with γi0 = 0, and
• applying ωI\{i0},J to the class of (H ⊆ H ′, N ′ ýK, β, (ci)i∈I\{i0})

in Burnn,I\{i0}(G).

Let X be a smooth projective variety over k. Assume that X carries
a G-action, and let L0, . . . , Lr be G-linearized line bundles on X. The
next statement examines the condition, for G to act generically freely on
P(L0 ⊕ · · · ⊕ Lr), so that Assumption 2 satisfied. The statement uses
the variant of Assumption 2, where PicG(X) is replaced by the subgroup
of PicG(X) generated by a given collection of G-linearized line bundles.
Given this, we will say that Assumption 2 holds for the given collection
of G-linearized line bundles.

Lemma 5.1. Let X be a smooth projective variety over k with a G-action
and G-linearized line bundles L0, . . . , Lr. Let H be the stabilizer at the
generic point of a component of X, and let us denote the NG(H)-orbit of
the component by X ′. The following are equivalent.
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(i) The N-action on X ′ satisfies Assumption 2, and H is abelian
with H∨ spanned by the differences of characters determined by
L0, . . . , Lr.

(ii) The G-action on P(L0⊕ · · · ⊕Lr) is generically free and satisfies
Assumption 2.

(iii) The G-action on P(L0⊕ · · · ⊕Lr) is generically free and satisfies
Assumption 2 for L0, . . . , Lr, together with the G-linearized line
bundles on X associated with N-linearized line bundles on X ′.

The statement is inspired by [8, Lemma 7.3]. The association of line
bundles in (iii) refers to the equivalence of categories (by restriction) be-
tween G-linearized line bundles on X and NG(H)-linearized line bundles
on X ′. Since N = NG(H)/H and H acts trivially on X ′, an NG(H)-
linearization is determined by inflation from an N -linearization of a line
bundle on X ′. An NG(H)-linearization arises in this manner if and only
if it induces the trivial H-representation at points of X ′.

Proof. The action of G on P(L0⊕ · · · ⊕Lr) is generically free if and only
if the action of NG(H) on P(L0|X′ ⊕ · · · ⊕ Lr|X′) is generically free. The
latter has generic stabilizer

⋂r
i=1 ker(bi − b0). Thus the condition on H

in (i) is equivalent to the condition of generically free action in (ii) and
in (iii). We assume this from now on.

We start by showing (i) implies (iii), using the interpretation of As-
sumption 2 in terms of the representability of a morphism from the quo-
tient stack to a product of copies of BGm as in [8, Rmk. 3.2]. Given (i),
we have such a representable morphism

[X ′/N ]→ BGm × · · · ×BGm.

Correspondingly, the fibers of the composite morphism

[X/G] ∼= [X ′/NG(H)]→ [X ′/N ]→ BGm × · · · ×BGm

all have constant stabilizer group H. The condition in (i) implies that
the H-representation given by b0, . . . , br is faithful. With r+1 additional
factors BGm we get a representable morphism from [X/G], hence also
from P(L0 ⊕ · · · ⊕ Lr).

Since trivially (iii) implies (ii), it remains only to show (ii) implies (i).
Since

P(L0 ⊕ · · · ⊕ Lr)→ X

admits equivariant sections, (ii) implies the existence of a representable
morphism

[X/G]→ BGm × · · · ×BGm, (5.1)

determined by some finite collection of G-linearized line bundles on X.
If we tensor each of these by a suitable tensor combination of L0, . . . , Lr,
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then we may suppose that each of these comes from an N -linearized line
bundle on X ′; now the morphism (5.1) has fibers with constant stabilizer
group H. These N -linearized line bundles determine a representable
morphism

[X ′/N ]→ BGm × · · · ×BGm.

Thus we have (i). �

Example 5.2. We elaborate on the spanning of Burnn(G) by the classes
of quasiprojective G-varieties, claimed in [8, Rmk. 5.16]. Any symbol
(H,N ýK, β) can be made to arise in formula (1.1), we just have to use
Assumption 1 to convert the characters in β to G-linearized line bundles
on a suitable model Y ′ of K, which we may take to be smooth projective
(the ability to extend a G-linearized line bundle from an invariant dense
open is guaranteed by [13, Lem. 4.1]) and satisfy Assumption 2 (for the
action of N). Then, taking Y to be a disjoint union of [G : NG(H)]
copies of Y ′ and X = P(OY ⊕ L1 ⊕ · · · ⊕ Ln−d), Lemma 5.1 guarantees
Assumption 2 for a naturally induced G-action on X, with

[X ý G]− [(X \ s(Y )) ý G]naive = (H,N ýK, β) + . . . , (5.2)

where s is the zero-section of L1⊕· · ·⊕Ln−d ⊂ X. Any additional terms
on the right-hand side of (5.2) involve fields of smaller transcendence
degree, so the classes (5.2) span Burnn(G). But X \s(Y ) is equivariantly
isomorphic to the normal bundle OP(L1⊕···⊕Ln−d)(1) of the divisor of X,
complement of L1⊕· · ·⊕Ln−d, thus (5.2) is the class [L1⊕· · ·⊕Ln−d ý G].
So Burnn(G) is spanned by classes [L1 ⊕ · · · ⊕ Lr ý G] of sums of
G-linearized line bundles on smooth projective varieties, 0 ≤ r ≤ n,
satisfying the conditions of Lemma 5.1 (with a trivial bundle L0).

Proposition 5.3. Let X be a smooth projective variety of dimension
n − r over k with a G-action and G-linearized line bundles L0, . . . , Lr.
We assume the conditions and adopt the notation of Lemma 5.1. We
define I := {0, . . . , r} and the following class in Burnn,P(I)(G):

ξ(X ý G, (Li)i∈I) :=
∑
H′⊇H

∑
W⊂X′

generic stabilizer H′

(H ⊆ H ′, N ′ ýk(W ), β, γ),

where

• the first sum is over abelian subgroups H ′ of G that contain H,
up to conjugacy in NG(H),
• the second sum is over NNG(H)(H

′)-orbits of components W ⊂ X ′

where the generic stabilizer is H ′,
• β = βW (X ′) encodes the normal bundle to W in X ′, and
• γ = (ci)i∈I , the characters coming from Li with i ∈ I.
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Then

[P(L0 ⊕ · · · ⊕ Lr) ý G] =
∑
J(I

ψJ(ωP(I),J(ξ(X ý G, (Li)i∈I)))

in Burnn(G).

Proof. We identify each contribution to [P(L0 ⊕ · · · ⊕ Lr) ý G] as

V = ϕ−1J (W ),

for some W in the definition of ξ(X ý G, (Li)i∈I), where ϕJ denotes the
projection to X from the projectivization of

⊕
i∈I\J Li. Now

(H ⊆ H ′, N ′ ýk(W ), β, γ) ∈ Burnn,P(I)(G)

maps under ψJ ◦ ωP(I),J to

(H
′
, NNG(H)(H

′
) ýk(V ), βV (X)),

and we have the result. �

Example 5.4. Let G := C5 ×S3, acting on X := P1 via an irreducible
2-dimensional representation of S3. We take L0 to be trivial and L1 to be
the twist of OP1(1) by a nontrivial character χ of C5. Then we have the
situation of Lemma 5.1 with H = C5 and N = S3, and the conditions of
the lemma are satisfied. We have

ξ(X ý G, (L0, L1)) = (C5 ⊆ C5,S3 ýk(P1), ∅, (0, χ))

+ (C5 ⊆ C5 × 〈(1, 2)〉, triv ýk, (0, 1), (0, (χ, 0)))

+ (C5 ⊆ C5 × 〈(1, 2)〉, triv ýk, (0, 1), (0, (χ, 1)))

+ (C5 ⊆ C5 × A3,S3/A3 ýk × k, (0, 1), (0, (χ, 1))).

The outcome of Proposition 5.3 is

[P(L0 ⊕ L1) ý G] = (triv, G ýk(P1)(t), ∅) + (〈(1, 2)〉, C5

χ
ýk(t), 1)

+ (C5,S3 ýk(P1), χ) + (C5 × 〈(1, 2)〉, triv ýk, ((0, 1), (χ, 0)))

+ (C5 × 〈(1, 2)〉, triv ýk, ((0, 1), (χ, 1)))

+ (C5 × A3,S3/A3 ýk × k, ((0, 1), (χ, 1)))

+ (C5,S3 ýk(P1),−χ) + (C5 × 〈(1, 2)〉, triv ýk, ((0, 1), (−χ, 0)))

+ (C5 × 〈(1, 2)〉, triv ýk, ((0, 1), (−χ, 1)))

+ (C5 × A3,S3/A3 ýk × k, ((0, 1), (−χ, 2))).

For the G-filter (cf. Section 3)

H := {(C5,S3)},



EQUIVARIANT BURNSIDE GROUPS 15

the projection Burn2(G)→ BurnH
2 (G) yields the class

(C5,S3 ýk(P1), χ) + (C5,S3 ýk(P1),−χ) ∈ BurnH
2 (G).

This class is nonzero and is different for χ ∈ {±1}, as compared with
χ ∈ {±2}.

Geometrically, the situation above arises as follows: Consider the 3-
dimensional representation Wχ = 1 ⊕ (V ⊗ χ) of G, sum of a trivial 1-
dimensional representation and twist by χ of the standard 2-dimensional
representation V of S3. This gives a generically free action of G on
P2 = P(Wχ), with a G-fixed point p. When we blow up p, we obtain
P(L0 ⊕ L1). So,

[P(Wχ) ý G] = [P(L0 ⊕ L1) ý G] ∈ Burn2(G).

6. Products

Let G′ and G′′ be finite groups. Define a product map

Burnn′(G
′)× Burnn′′(G

′′)→ Burnn′+n′′(G
′ ×G′′).

On symbols, it is given by

((H ′, Z ′ ýK ′, β′), (H ′′, Z ′′ ýK ′′, β′′)) 7→ (H,Z ýK, β), (6.1)

where

• H = H ′ ×H ′′,
• Z = Z ′ × Z ′′,
• K = K ′ ⊗k K ′′, with the natural action of Z,
• β = β′ ∪ β′′.

Proposition 6.1. The product map (6.1) is well-defined, and satisfies

([X ′ ý G′], [X ′′ ý G′′]) 7→ [X ′ ×X ′′ ý G′ ×G′′].

Proof. The map clearly respects relations. The only point to remark is
that in (B2), the condition for nontriviality of Θ2 holds for β′ if and only
if it holds for β = β′ ∪ β′′. �

Example 6.2. If we take G′′ to be trivial, then the product with the
class of a rational function field of transcendence degree e is the homo-
morphism Burnn(G)→ Burnn+e(G) given by

(H,Z ýK, β) 7→ (H,Z ýK(t1, . . . , te), β).

The kernel contains all (H,Z ýK, β), β = (b1, . . . , bn−d), such that
some bi has order ≤ e+ 1, by [11, Prop. 4.1].
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7. Restrictions

Let G be a finite group and G′ ⊂ G a subgroup. A G-action on a
quasiprojective variety X induces an action of G′, and thus it is natural
to propose the existence of a restriction homomorphism from Burnn(G)
to Burnn(G′), acting by

[X ý G] 7→ [X ý G′]. (7.1)

In this section we establish the existence and uniqueness of this homo-
morphism.

Example 7.1. Suppose H is an abelian subgroup of G, contained in
G′. Symbols, identified in Burnn(G) by relation (C), might no longer be
identified in Burnn(G′). E.g., with G = D4 and G′ = C4 the restriction
of (G′, G/G′ ýk × k, 1) ∈ Burn1(G) to Burn1(G

′) has to be a sum of
two symbols with distinct characters:

(G′, G/G′ ýk × k, 1) 7→ (G′, triv ýk, 1) + (G′, triv ýk, 3).

Theorem 7.2. For all n ≥ 0, there exists a unique homomorphism of
abelian groups

resGG′ : Burnn(G)→ Burnn(G′),

compatible with (7.1).

Proof. By Lemma 2.1, it suffices to consider symbols of the form

s = (H,Z ýK, β).

When we act by conjugation by some element of G, we obtain an equiv-
alent symbol, where H is replaced by a conjugate, the corresponding
centralizer quotient replaces Z, and conjugation is used to form from β
a sequence of characters of the conjugate of H. By conjugation we have
a transitive action of G on a set S of symbols, where s ∈ S has stabi-
lizer ZG(H). The restriction of the action to G′ consists of finitely many
orbits; in the formula below the sum is over orbit representatives

s′ = (H ′, ZG(H ′)/H ′ ýK, β′),

where one of the orbit representatives may be taken to be s itself. We
define the restriction to G′ by

s 7→
∑
s′

(H ′ ∩G′, (ZG(H ′) ∩G′)/(H ′ ∩G′) ýK, β′|H′∩G′). (7.2)

It is clear that the map respects relations (O) and (C). To see that it
respects (B), we first give a formula, valid for a symbol of the form

(H,Y ýK, β),
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with Y ⊆ Z. Let us write Y = Ỹ /H with H ⊆ Ỹ ⊆ ZG(H). We restrict

the transitive action of G on G/Ỹ to G′. Then (H,Y ýK, β) is mapped

to the sum over orbit representatives g′Ỹ for the G′-action∑
g′Ỹ

(H ′ ∩G′, (g′Ỹ g′−1 ∩G′)/(H ′ ∩G′) ýK, β′|H′∩G′), (7.3)

where H ′ denotes g′Hg′−1, with corresponding characters β′. (Choose

ZG(H) = g1Ỹ ∪ · · · ∪ gdỸ , d = [ZG(H) : Ỹ ], g1 = 1, write IndZYK =

Kd in the standard way, then a (ZG(H) ∩ G′)-orbit {gi1Ỹ , . . . , gir Ỹ } in

ZG(H)/Ỹ determines (ZG(H) ∩ G′)-invariant Kei1 ⊕ · · · ⊕ Keir , which

with i = i1 we explicitly identify with Ind
(ZG(H)∩G′)/(H∩G′)
(giỸ g

−1
i ∩G′)/(H∩G′)

K to see that

the summand s′ = s of (7.2) is the contribution to (7.3) from the g′Ỹ with
g′ ∈ ZG(H). A similar consideration with H replaced by H ′ identifies an
arbitrary summand of (7.2) with a corresponding contribution to (7.3).)

The formula (7.3), applied to the term (H,N ýK, β̄) from relation
(B), may be expressed as a sum∑

s′

(H
′ ∩G′, (ZG(H ′) ∩G′)/(H ′ ∩G′) ýK(t), β̄′|H′∩G′)

as in (7.2), where H
′

= ker(b′1 − b′2), β
′ = (b′1, . . . , b

′
n−d). This is the

contribution from the final term of relation (B) for the sum (7.2).
Since Burnn(G) is spanned by the classes of quasiprojective G-varieties

(as discussed in Example 5.2), we have the uniqueness. �

Remark 7.3. Clearly, we also have

resGG′([X ý G]naive) = [X ý G′]naive.

As an application of the restriction construction, we obtain a map

Burnn′(G)× Burnn′′(G)→ Burnn′+n′′(G),

using the product construction in Section 6 with G′ = G′′ = G, followed
by restriction to the diagonal

G ⊆ G×G.

This map on Burnside groups satisfies

([X ′ ý G], [X ′′ ý G]) 7→ [X ′ ×X ′′ ý G].
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8. Combinatorial analogs

Here we define and study a combinatorial version BCn(G) of the equi-
variant Burnside group Burnn(G), and a homomorphism

Burnn(G)→ BCn(G)

which forgets the information about the Galois algebra.

Definition 8.1. The combinatorial symbols group

BCn(G)

is the Z-module, generated by symbols

(H,Y, β)

with H abelian, Y ⊆ ZG(H)/H, and β a sequence of nonzero elements
generating H∨, of length at most n, modulo relations:

(O): (H,Y, β) = (H,Y, β′) if β′ is a reordering of β.

(C): (H, Y, β) = (gHg−1, gY g−1, β′) for g ∈ G, with β and β′ related by
conjugation by g.

(B1): (H,Y, β) = 0 when b1 + b2 = 0.

(B2): (H,Y, β) = Θ1 + Θ2, where Θ1 and Θ2 are as in Section 2, i.e.,

Θ1 =

{
0, if b1 = b2,

(H,Y, β1) + (H,Y, β2), otherwise,

with β1 and β2 as in (2.4), and

Θ2 =

{
0, if bi ∈ 〈b1 − b2〉 for some i,

(H, Y , β̄), otherwise,

where H and β̄ are as in (2.5).

We remark that, as in Section 2, we may obtain a simplified presenta-
tion of BCn(G) by allowing symbols where β contains the trivial charac-
ter, imposing the vanishing of all such symbols, and combining relations
(B1) and (B2) into a single relation (B).

Proposition 8.2. The map sending the class of a triple

(H, Y ýK, β) ∈ Burnn(G),

for fields K ∈ AlgY (K0), K0 ∈ Bird(k), with d ≤ n, to

[k′ : k](H,Y, β) ∈ BCn(G),

where k′ is the algebraic closure of k in K0, gives a homomorphism

Burnn(G)→ BCn(G).
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Proof. This is clear from the description of the relations in Burnn(G)
from Section 2. �

Remark 8.3. Although the map of Proposition 8.2 kills geometric infor-
mation, an advantage of working in BCn(G) is a direct sum structure,
established in [18]:

BCn(G) ∼=
⊕
(H,Y )

Bn(H)/(C(H,Y )).

Here, the direct sum is over conjugacy class representatives of pairs
(H,Y ) as in Definition 8.1, Bn(H) is the birational symbols group defined
in [5], and the quotient by (C(H,Y )) signifies the imposition of conjugacy
relations, under the stabilizer of (H,Y ) for the conjugation action of G.

Example 8.4. As mentioned in [18], there is in general no direct sum
decomposition of Burnn(G) that is compatible with that Remark 8.3 un-
der the map in Proposition 8.2. For simplicity, let us suppose that k is
algebraically closed. Then a relation such as (H,Y, (b)) = (H,Y, (b, b)) in
BC2(G), for H nontrivial cyclic with primitive character b and Y nontriv-
ial, has no geometric counterpart. We analyze in detail the case G = K4,
the Klein 4-group. Then Burn2(G) is the direct sum of

• trivial symbols (triv, G ýK, ()),
• incompressible symbols [9, Defn. 3.3] (H,G/H ýK, (1)), with
|H| = 2 and K of transcendence degree 1 over k, K 6∼= k(t), and
• a free abelian group of rank 3, generated by (H,G/H ýk(t), (1))

for |H| = 2 and (G, triv ýk, (b, b′)) for distinct nontrivial char-
acters b and b′ up to order, modulo relation (B2).

The third summand receives a contribution, isomorphic to Z, from ev-
ery subgroup of G of order 2. These span an index 4 subgroup of the
free abelian group of rank 3, with quotient (Z/2Z)2 ∼= B2(G). Whereas
BC2(G) = BC2(G)triv ⊕ BC2(G)nontriv, with BC2(G)nontriv = B2(G).

Definition 8.5. Given a G-prefilter H, we let

BCHn (G)

be the quotient of BCn(G) by the subgroup generated by classes (H, Y, β)
with (H,Y ) /∈ H.

Exactly as in Section 3 we have

Proposition 8.6. Let H be a G-filter. Then BCHn (G) is generated by
symbols (H, Y, β) for (H,Y ) ∈ H, subject to relations (O), (C), (B1),
and (B2) applied to these symbols.
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Additionally, upon passage to the combinatorial analogue we also have
the other structures developed in this paper:

• equivariant (projectively) indexed combinatorial Burnside group;
• product map;
• restriction homomorphisms.

Example 8.7. Suppose that G is abelian.

• We have (cf. [8, §8])

Bn(G) = BC(G,triv)n (G),

where Bn(G) is the symbols group from [5].
• There is a commutative diagram

Burnn(G)

��

// BCn(G)

��
BurnGn (G) // Bn(G)

(The factor factor [k′ : k] in Proposition 8.2 matches the similar
factor in [8, Prop. 8.1].)
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2009.

[2] B. Hassett, A. Kresch, and Yu. Tschinkel. Symbols and equivariant birational
geometry in small dimensions. In Rationality of varieties, volume 342 of Progr.
Math., pages 201–236. Birkhäuser, Cham, 2021.
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