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Abstract. Fix a finite group G. We seek to classify varieties with G-action

equivariantly birational to a representation of G on affine or projective space.

Our focus is odd-dimensional smooth complete intersections of two quadrics,
relating the equivariant rationality problem with analogous Diophantine ques-

tions over nonclosed fields. We explore how invariants – both classical coho-

mological invariants and recent symbol constructions – control rationality in
some cases.

1. Introduction

Let X ⊂ P2g+1 be a smooth complete intersection of two quadrics over an alge-
braically closed field k of characteristic zero. We are particularly interested in these
varieties because they have a rich birational structure, which can be completely un-
derstood in small dimensions. They also have beautiful connections to hyperelliptic
curves and are key examples in the theory of of intermediate Jacobians.

In this paper, we study these varieties from the perspective of their equivariant
geometry, for regular generically free actions of finite groups. The main problem
is to distinguish such actions up to equivariant birational equivalence, and in par-
ticular, to determine which of these are linearizable, i.e., equivariantly birational
to a linear action on P2g−1. This shares many similarities with the study of these
varieties over nonclosed fields, but has important special features.

To address this problem, we examine various canonical constructions:

• automorphism groups and their induced actions on geometric invariants;
• the structure of varieties of linear subspaces on X and associated pencils

of quadric hypersurfaces;
• intermediate Jacobians and their principal homogeneous spaces.

We elaborate on constructions of Reid [Rei72], Desale-Ramanan [DR77], Donagi
[Don80], and Bhargava-Gross-Wang [BGW17, Wan18] from a functorial/moduli
perspective applicable to equivariant geometry. We also present a new connection
with hyperkähler geometry (see Section 5), extending Kummer-type constructions
to higher dimensions; connections between Fano and hyperkähler geometry are in
the focus of many recent studies, including [FMOS21].

Date: January 31, 2022.

1



2 BRENDAN HASSETT AND YURI TSCHINKEL

Recent work [BW20, HT21b, HT21a, BW19, KP21] addresses rationality ques-
tions for geometrically-rational threefolds over nonclosed fields. Our principal the-
orem (Theorem 24) demonstrates how these results translate into equivariant con-
texts: for smooth complete intersections of two quadrics in P5, rationality is gov-
erned by the existence of lines.

In Section 2, we present fundamental notions of G-equivariant rationality and
related cohomological invariants. We summarize key geometric structures arising
from odd-dimensional complete intersections of two quadrics in Section 3. Equi-
variant constructions and results over nonclosed fields are developed in parallel.
The resulting principal homogeneous spaces and their embeddings are explored in
Section 4. Section 5 breaks from the main narrative to make a connection with
hyperkähler manifolds in small dimensions. The rest of the paper focuses on ra-
tionality problems. Two key constructions are presented in Section 6. Section 7
relates existence of fixed points to the analogous questions on rational points over
function fields. We close with detailed analysis of the three-dimensional case in
Section 8, highlighting both generic behavior and the special properties of exam-
ples with large automorphism groups. This brings into sharp relief the similarities
and differences between equivariant geometry and geometry over nonclosed fields.

Acknowledgments: The first author was partially supported by Simons Foun-
dation Award 546235 and NSF grant 1701659, the second author by NSF grant
2000099. We thank Aaron Landesman and Daniel Litt for pointing out a gap in a
previous version of this paper, as well as the referees for their extraordinary care
reviewing our manuscript.

2. Actions and invariants

In this section, the base field k is algebraically closed of characteristic zero.
Let G be a finite group and X a smooth projective (connected) variety with a

regular G-action; we call such varieties G-varieties. We say that G-varieties X,Y
are G-birational if there exists a G-equivariant birational map X 99K Y ; stable
G-birationality means G-birationality of X×Pn and Y ×Pm, with trivial G-actions
on the second factors. Of particular interest are cases when Y = Pn is projective
space, with linear G-action, which we describe below.

2.1. Linear actions. An action of a finite group G on Pn is given by a represen-
tation G → PGL(V ) where V = An+1. A linear action on Pn may have at least
two different meanings:

• strictly linear action: the projectivization of a linear representation G →
GL(W ⊕ 1) where W = An and 1 is the trivial representation;

• linear action: the projectivization of a linear representation G → GL(V )
where V = An+1;

We record a few obvious facts:

• strictly linear actions admit fixed points;
• if L is a one-dimensional representation of G then the representations V

and V ⊗ L give rise to the same projective actions;
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• using the exact sequence

1→ µn+1 → SLn+1 → PGLn+1 → 1

any projective action lifts to a linear action for a central extension

1→ µn+1 → G̃→ G→ 1

and the exact sequence

1→ Gm → GLn+1 → PGLn+1 → 1

lifts any projectively linear action to a representation on a central extension

1→ Gm → Ĝ→ G→ 1;

• given a projective representation ρ : G→ PGLn+1, the resulting cohomol-
ogy class

(2.1) α(ρ) ∈ H2(G, k×), (n+ 1)α(ρ) = 0,

measures the obstruction to lifting ρ to a linear representation of G.

One last observation: Suppose we are given a projective action of G with a fixed
point p ∈ Pn. We obtain a lift

G̃→ SL(V )

and the preimage of p gives a one-dimensional subspace L ⊂ V . The tensor product

V ⊗ L−1 is also a representation of G̃ on which µn+1 acts trivially, thus descends
to a representation of G. Thus we find:

Proposition 1. A projective representation with fixed point is strictly linear and
the class α vanishes.

If there is an equivariant embedding

X ↪→ PN

such that PN admits no fixed points then the same holds true for X.

2.2. Notions of rationality. We say that the G-action on X is projectively linear
if X admits a G-equivariant birational map to Pn, n = dim(X); it is strictly linear
or linear if the G-action on Pn has the same properties. (We think of these as
equivariant analogs of rationality over nonclosed fields.) When G is abelian, the
existence of a fixed point is a birational invariant of smooth projective G-varieties
[RY00, Appendix]. Thus for abelian actions, the existence of a fixed point is a
necessary condition for strict linearity.

The classification of rational G-varieties has been essentially settled in dimension
two [DI09], but is largely open in higher dimensions. The birational classification
of finite group actions on projective space remains a challenging and interesting
problem [KT21].

Two strictly linear and generically-free actions of G on projective space need not
be G-birational but we shall see that they are necessarily stably G-birational. The
key ingredient is:
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Proposition 2. Suppose X and Y are smooth varieties with generically-free G-
actions. If there exist G-equivariant vector bundles E → X and F → Y such
that E and F are equivariantly birational then X and Y are equivariantly stably
birational.

This is a corollary of the ‘No-name Lemma’ [CGR06, §4.3]: E is G-equivariantly
birational to Arank(E)×X over X, where the affine factor has trivial G-action. One
can find examples of X and Y that are not G-birational using the invariants of
[RY02].

As a corollary, the following notions of G-equivariant stable birational equiva-
lence coincide:

• X×Am and Y ×An are G-equivariantly birational, where the affine spaces
have trivial G-actions;
• X×V and Y ×W are G-equivariantly birational, where V and W are linear

representations of G;
• X × Pm and Y × Pn are G-equivariantly birational, where the actions on

the projective spaces are strictly linear or admit a fixed point.

The last statement follows from Proposition 1.

2.3. Picard and Brauer groups. We continue to assume that G is a finite group
acting regularly on a smooth projective variety X. We refer the reader to [Bri18],
[KKV89] and [KKLV89] for background on line bundles and group actions.

A G-linearized line bundle L → X consists of a line bundle L over X and
an action of G on L, compatible with the action on X, such that the induced
action on the fibers is linear. It follows that Γ(X,L⊗N ), N ∈ Z, is naturally a
representation of G. Conversely, if X ↪→ Pn is G-equivariant with G acting linearly
on Pn then L = OPn(−1)|X – the restriction of the universal line on Pn to X –
has a natural linearization. The equivariant Picard group PicG(X) parametrizes
G-linearized line bundles on X, up to equivariant isomorphism. We have an exact
sequence cf. [FW71, Th. 1]

(2.2) 0→ G∨ → PicG(X)→ Pic(X)G → H2(G, k×)

where G∨ = Hom(G, k×). Given a G-equivariant X ↪→ Pn with G acting pro-
jectively on Pn, the final coboundary morphism applied to OPn(−1)|X vanishes
precisely when the class α = 0 (see (2.1). In particular, for L ∈ Pic(X)G some
power L⊗N , N 6= 0, admits a linearization because H2(G, k×) is a torsion group.

Let BrG(X) denote the equivariant Brauer group of X, following Fröhlich and
Wall [FW71, FW00]. It parametrizes Azumaya algebras A → X with G-action,
compatible with the action on X and linear over the fibers. (Azumaya algebras
over commutative rings are direct generalizations of central simple algebras over
fields.) We mod out by those of the form End(E), where E is a G-equivariant
locally-free sheaf on X. It may be computed with a Hochschild-Serre type spectral
sequence cf. [FW00, §4], with graded pieces

coker
(
Pic(X)G → H2(G, k×)

)
ker
(
H1(G,Pic(X))→ H3(G, k×)

)
ker
(

ker
(
Br(X)G → H2(G,Pic(X))

)
→ coker

(
H1(G,Pic(X))→ H3(G, k×)

))
.
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Part of this is summarized in the extension to (2.2) [FW71, Th. 1]:

0→G∨ → PicG(X)→ Pic(X)G → H2(G, k×)→
ker(BrG(X)→ Br(X))→ H1(G,Pic(X))→ H3(G, k×).

Proposition 3. Let V be a finite-dimensional linear representation of G over k.
Then the homomorphism

(2.3) H2(G, k×) = BrG(point)→ BrG(P(V )),

induced by the structure morphism, is an isomorphism.
Suppose that ρ : G→ PGL(V ) is a projective representation. Then the kernel of

(2.3) contains α(ρ).

Corollary 4. Let X be a smooth projective G-variety and E → X a G-equivariant
vector bundle. Then the induced homomorphism

BrG(X)→ BrG(P(E))

is an isomorphism.

Proof of Proposition 3 and Corollary 4. The first statement of the proposition fol-
lows from applying the Hochschild-Serre formalism to P(V ). We are applying
Pic(P(V )) = Z (with trivial G action), Br(P(V )) = 0, and exact sequence (2.2).
For the second, note that projection

P(V )× P(V )→ P(V )

admits the diagonal section so Proposition 1 gives the vanishing of α(ρ) on pullback
to P(V ). The corollary follows by computing the étale Leray spectral sequence for
P(E)→ X, using the vanishing underlying Proposition 3. �

Proposition 5. BrG is an equivariant stable birational invariant of smooth pro-
jective G-varieties.

The stable birational invariance of the Brauer group is well-known [CTS21, §5.2].

Proof. We first prove birational invariance. By weak factorization, it suffices to
prove the assertion for a blow up

BlZ(X)→ X,

where Z ⊂ X is smooth and irreducible as a G-variety, i.e., G permutes the con-
nected components transitively. In this situation, we observe that

• The exceptional divisor E is G-invariant and irreducible, thus the bottom
graded piece of BrG is unchanged.

• The connected components of E generate a permutation module for G, with
trivial H1, thus the middle graded piece is unchanged.

• We have Br(BlZ(X)) = Br(X) thus the top graded piece is unchanged.

For the stable case, we need to verify that

BrG(X × Pn) = BrG(X)

provided the G-action on Pn is linear. We compute this using the Leray spectral
sequence associated with the projection X × Pn → X. The vanishing used in the
proof of Proposition 3 gives the desired equality. �
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Corollary 6. Let X be a smooth projective G-variety. Assume there is a G-
equivariant embedding

X ↪→ Pn

where the action of G on Pn is not linear. Then X is not equivariantly birational
to projective space with a linear G-action.

Indeed, we can factor

BrG(point)→ BrG(Pn)→ BrG(X)

and it suffices to exhibit nonzero elements in the kernel of the first homomorphism.
However, the class [OPn(1)] ∈ PicG(Pn) maps to a nontrivial α ∈ H2(G, k×). The
spectral sequence above shows that α is in the kernel of BrG(point)→ BrG(Pn).

Remark 7. The paper [BCDP18, §6] introduces similar ideas via the Amitsur
subgroup, defined as the image of Pic(X)G → H2(G, k×).

Much of this extends to a nonclosed field k, except for the interpretation of
BrG(Spec(k)) as the group cohomology for G. Moreover, we would have to keep

track of the Galois actions on µn and G̃.

3. Algebraic geometry of pencils of quadrics

Here we assume that the ground field is algebraically closed of characteristic zero
and all objects are equivariant for the action of a finite group G. The discussion
below is valid, with minor changes, when the objects are defined over a field of
characteristic zero.

We start with a projective representation ρ : G → PGL2g+2 corresponding to

a G-action on P2g+1. Let ρ∗ be the dual representation, Sym2(ρ∗) the symmetric
square, and ∧2(Sym2(ρ∗)) its second exterior power; note that tensor powers of
projective representations are well-defined as projective representations.

Consider a smooth complete intersection of two quadrics X ⊂ P2g+1. We may
write

X = {Q1 = Q2 = 0},
where Q1 and Q2 are basis elements for the distinguished two-dimensional subrep-
resentation of Sym2(ρ∗) generating the ideal of X. (The elements Q1 and Q2 need
not be invariant under the action of G.) Now ∧2(Sym2(ρ)) has a fixed point – the
pencil – so Proposition 1 gives

α(∧2(Sym2(ρ))) = 4α(ρ) = 0.

We write

Q = BlX(P2g+1) = {t1Q1 + t2Q2 = 0} ⊂ P2g+1 × P1

for the corresponding pencil and

q : Q → P1

for the projection onto the second factor, a fibration in quadric hypersurfaces.
We recall fundamental results from [Rei72] and [Don80]. The singular members

of the pencil Q are given by the degeneracy locus

B = {det(t1Q1 + t2Q2) = 0} ⊂ P1,
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which consists of 2g+ 2 distinct points b1, . . . , b2g+2, each corresponding to a nodal
fiber Qbi . The action of G induces a permutation of the bi.

Let Fg(q) → P1 denote the relative variety of maximal isotropic subspaces of
q : Q → P1, with Stein factorization

Fg(q)→ C → P1,

where the first arrow is smooth. The double cover C → P1 encodes the two con-
nected components of the variety of maximal isotropic subspaces. The pullback of
the point class on P1 to C is written g12 , an element of (Pic2(C))G. We have natural
bijections between

• the branch points b1, . . . , b2g+2 of C → P1;
• the nodes of members of the pencil Qt.

The points bi – regarded as ramification points on C – generate a subgroup of
Pic(C) presented as follows:

• 2bi = 2bj = g12 for all i, j;
• b1 + · · ·+ b2g+2 = (g + 1)g12 .

The elements bi − bj generate J(C)[2], the two-torsion of the Jacobian of C.
The relative variety of maximal isotropic subspaces Fg(q) is isomorphic to the

variety parametrizing (g − 1)-dimensional quadric hypersurfaces contained in X,
which is stratified by rank

K0(X) ⊂ K1(X) · · · ⊂ Kg(X) = Fg(q).

Consider the variety Fg−1(X) ⊂ Gr(g, 2g+ 2) parametrizing (g− 1)-dimensional
linear subspaces contained in X. We have:

• Fg−1(X) is a principal homogeneous space over the Jacobian J(C).
• There is a correspondence

K̃1(X) → K1(X)
↓

Fg−1(X)× Fg−1(X)

where the horizontal arrow is the double cover reflecting the support of
elements of K1(X).
• The correspondence induces a morphism

(3.1) Sym2(Fg−1(X))→ Pic1(C)

taking K1(X) to C ⊂ Pic1(C), with fibers Kummer varieties singular along
the 22g points of K0(X) over each point of C. Work of X. Wang [Wan18]
establishes the formula

(3.2) 2[Fg−1(X)] = [Pic1(C)],

as principal homogenous spaces over the Jacobian J(C) of C, i.e., as ele-
ments of the Weil-Châtelet group of J(C).

• K0(X) may be interpreted as a J(C)[2]-principal homogeneous space over
C. We have 22g(2g + 2) distinguished points of K0(X) corresponding to
the elements lying over the Weierstrass points of C.
• The automorphisms ofX act faithfully onK0(X) but automorphisms lifting

the hyperelliptic involution of C fix the 22g(2g + 2) distinguished points.



8 BRENDAN HASSETT AND YURI TSCHINKEL

We summarize the implications of the discussion above for the automorphisms:

Proposition 8. We have an extension

1→ J(C)[2]→ Aut(X)→ Aut(X,C)→ 1,

where Aut(X,C) is the image of Aut(X)→ Aut(C). Moreover,

• Aut(X,C) contains the hyperelliptic involution ι in its center,
• Aut(X,C)/ 〈ι〉 ⊂ Aut(P1) acts via permutation on the 2g+ 2 branch points

of the cover C → P1, and
• the induced action of Aut(X,C) on J(C)[2] is induced by this permutation

action.

Remark 9. Suppose we diagonalize the forms

Q1 =

2g+2∑
i=1

x2i , Q2 =

2g+2∑
i=1

λix
2
i .

The combinations Q2 − λiQ1 correspond to the bi. The 2-elementary extension

(3.3) 1→ J(C)[2]→ H → 〈ι〉 → 1

acts on P2g+1 via diagonal (2g + 2) × (2g + 2) matrices with ±1 as entries. The
image in the quotient 〈ι〉 encodes the determinant of the matrix.

4. Principal homogeneous spaces for the Jacobian

We maintain the assumptions of Section 3.

4.1. Abstracting the principal homogeneous space. Let C → P1 be a hyper-
elliptic curve of genus g; in the equivariant context, we assume that the G-action
on C descends to a linear action on P1. The hyperelliptic involution ι induces an
involution

(4.1)
ι : Pic1(C) → Pic1(C)

D 7→ g12 −D.

Now suppose that F is a square root of Pic1(C), meaning a J(C) principal homo-
geneous space satisfying Wang’s relation (3.2). The automorphisms of F include
translations by J(C)[2] and transformations

x 7→ ι(x) + τ, τ ∈ Pic1(C), 2τ = g12 ,

encoded by the extension (3.3).
Given C, does there exist a smooth complete intersection of two quadrics X ⊂

P2g+1 whose associated pencil yields C? A necessary condition is the existence of
a J(C)-principal homogeneous space F satisfying Wang’s relation (3.2). However,
this is not the only way such a variety may arise. Consider a Brauer-Severi variety

P ⊂ P(2g+3
2 )−1, realized geometrically as a 2-Veronese reimbedding of P2g+1, and a

pencil of hyperplane sections of P . The base locus X is geometrically a complete
intersection of two quadrics in P2g+1 and gives rise to auxiliary varieties Fg−1(X)
and C as above. However X is generally not embeddable in P2g+1; in equivariant
terms, a G-action

G×X → X

may not linearize to P2g+1. This is often the only obstruction:
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Proposition 10. Let C → P1 be a hyperelliptic curve of genus g. In the equivariant
context, we assume the group acts with a fixed point outside the branch locus.

A square root F → Pic1(C), as J(C) principal homogeneous spaces, exists if and
only if there exists a codimension-two linear section

X ⊂ P ⊂ P(2g+3
2 )−1,

where P is a form of P2g+1 realized as a Veronese variety. Thus there exists

X ⊂ P2g+1,

with the group acting linearly in P2g+1 in the equivariant context, if and only if we
may choose P such that [P ] = 0 ∈ H2(Gm).

The cohomology group is H2(G, k×) in the G-equivariant context and Br(k) over
a nonclosed field k.

Proof. We follow [BGW17]; the case of nonclosed fields is a corollary of their results.
Given p ∈ P1 (k-rational or G-fixed) that is not a branch point of C → P1, write
p′, p′′ ∈ C for the points over p. We have an exact sequence for the generalized
Jacobian of C with respect to {p′, p′′}
(4.2) 0→ T → Jm(C)→ J(C)→ 0

where the first term

T = (R{p′,p′′}/{p}Gm)/Gm.
Taking two-torsion gives

(4.3) 0→ µ2 → Jm(C)[2]→ J(C)[2]→ 0.

Suppose that L is an étale algebra of degree 2g+2 over k associated with the branch
points of C → P1. We have [BGW17, Prop. 22] identifications

Jm(C)[2]⇔ (RL/kµ2)N=1(4.4)

J(C)[2]⇔ (RL/kµ2)N=1/µ2(4.5)

where N : RL/k → µ2 is the norm map from the restriction of scalars. These

act linearly and projectively linearly on P2g+1 respectively. The existence of F is
controlled by

0→ J(C)[2]→ J(C)[4]
×2→ J(C)[2]→ 0;

given [Pic1(C)] ∈ H1(J(C)[2]), the obstruction to a square root [F ] ∈ H1(J(C)[4])
sits in

H2(J(C)[2]) = H2((RL/kµ2)N=1/µ2),

i.e., the Steenrod square of [Pic1(C)]. The vanishing of this class means P2g+1

descends to a Brauer-Severi variety P . Moreover, the obstruction to producing
X ⊂ P2g+1 is controlled by [BGW17, Th. 24]

0→ Jm(C)[2]→ Jm(C)[4]
×2→ Jm(C)[2]→ 0;

once F exists, this is controlled via (4.3) by a class

α ∈ coker(H1(J(C)[2])→ H2(µ2)),

where α ≡ [P ] by the identifications. �



10 BRENDAN HASSETT AND YURI TSCHINKEL

Remark 11. What does this argument yield – in the equivariant context – when
there is no fixed point? Assume first that the cocycle in H2(G, J(C)[2]) vanishes.
Write U ⊂ P1 for the complement of the branch points, with the induced G-action.
The generalized Jacobian Jm(C) may still be defined over U using (4.2) with

T = (RC×P1U/U
Gm)/Gm.

We obtain

X �
�

//

  

P

��

U

where the vertical arrow is a Brauer-Severi fibration of relative dimension 2g + 1.
If the cocycle in H2(G, Jm(C)[2]) vanishes then the vertical arrow is a linear P2g+1

fibration.

4.2. Projective geometry. For the moment, we ignore the group action or as-
sume the base field is algebraically closed. Recalling the imbedding Fg−1(X) ⊂
Gr(g, 2g + 2), we have

OGr(g,2g+2)(1)|Fg−1(X) = OJ(C)(4Θ),

where Θ is the class of a theta divisor. Note however that the corresponding
embedding is not linearly normal as

4g = dim Γ(OJ(C)(4Θ)) > dim Γ(OGr(g,2g+2)(1)) =

(
2g + 2

g

)
, g > 1.

For small g, we have

g 4g
(
2g+2
g

)
1 4 4
2 16 15
3 64 56
4 256 210

We explain the reason for this discrepancy. Suppose that (J,Θ) is a principally
polarized abelian variety and L is a line bundle on J representing Θ. For each
n ∈ N, the Heisenberg extension associated with nΘ

1→ Gm → G(Ln)→ J [n]→ 1

acts on the space of global sections Γ(Ln). Recall that the extension data is given
by the commutator

J [n]× J [n]→ µn ⊂ Gm
associated with the polarization form. Suppose that n = 4 and realize J [2] ⊂ J [4]
in the standard way; the commutator pairing for 4Θ is isotropic on J [2], i.e., we
may regard

µ2 × J [2] ⊂ G(L4)

as an abelian subgroup. Thus it is reasonable to diagonalize the theta functions for
this group. Indeed, we have
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Proposition 12. [BL04, Ex. 6.10.1] Let ϑ ∈ Γ(J, L) denote a generator and τ∗xϑ
its translate under x ∈ J . Then the elements

{2∗ϑx : x ∈ J [2]}

form a basis for Γ(J, L4), naturally indexed by the 2-torsion elements of J . (Here
2 : J → J is multiplication by two.)

Assume that either k is nonclosed or that all the varieties and constructions are
G-equivariant. For our application, we use the squaring map

Fg−1(X)→ Pic1(C)

introduced in (3.1); thus Proposition 12 applies.
Consider the canonical theta divisor ϑ = Symg−1(C) ⊂ Picg−1(C). We analyze

the translates of ϑ by elements in

〈b1, . . . , b2g+2〉 ⊂ Pic(C)

contained in Pic1(C). These have the structure of a principal homogeneous space
for J(C)[2]. The Galois action on 〈b1, . . . , b2g+2〉 factors through the permutation
representation on the branch points.

Suppose first that g is even; here the principal homogeneous space is trivial with
distinguished divisor

ϑ− g − 2

2
g12 ,

i.e., the canonical theta divisor translated by the g12 . Recall that J(C)[2] corre-
sponds to even partitions

S t Sc = {b1, . . . , b2g+2}, |S| = 2j.

These are counted via the combinatorial identity for even g

4g =

(
2g + 2

g

)
+

g/2−1∑
j=0

(
2g + 2

2j

)
.

The sections of

Γ(Fg−1(X),OFg−1(X)(1))

correspond to translates associated with sums of g branch points b1, . . . , b2g+2.

Remark 13. For even g, any square root F of Pic1(C) admits a distinguished po-
larization of type 4Θ. However, given a projective representation ρ : G→ PGL(V )
note that

α(∧gρ) = gα(ρ).

Thus two-torsion α(V ) ∈ H2(Gm) vanishes on passage fromX ⊂ P(V ) to Fg−1(X) ⊂
P(∧gV ).

Now take g odd. The odd-degree divisors in 〈b1, . . . , b2g+2〉 – a principal homo-
geneous space of J(C)[2] – correspond to odd partitions

S t Sc = {b1, . . . , b2g+2}, |S| = 2j − 1.
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These index translates of ϑ pulling back to our desired polarization on F1(X). We
have the combinatorial identity for odd g

4g =

(
2g + 2

g

)
+

(g−1)/2∑
j=1

(
2g + 2

2j − 1

)
.

Again, the sections correspond to translates associated with sums of g branch
points.

Remark 14. For odd g, any square root F of Pic1(C) has a (Galois or G) invariant
divisor class: the pull back of the divisors

ϑ−
∑
j∈J

bj −
g − 2j − 1

2
g12 ∈ Pic1(C), |J | = 2j − 1,

to F . However, there may be an obstruction to the existence of a line bundle
(defined over k or linearized for G) on X realizing this class. Nonzero two-torsion
α(V ) ∈ H2(Gm) remains nonzero on passage fromX ⊂ P(V ) to Fg−1(X) ⊂ P(∧gV ).

5. Lagrangian interpretation in dimension three

In Section 4.1 we discussed how to recover a smooth complete intersection of
two quadrics X ⊂ P2g+1 from the associated hyperelliptic curve C, principal ho-
mogeneous space J(C) × F → F , and additional cohomological data. We present
a geometric framework for these reconstruction results when g = 2.

The relationship between hyperkähler manifolds Y and Fano varieties arising as
Lagrangian submanifolds is rich and intricate. Lagrangian Pn ⊂ Y can be charac-
terized via intersection properties of the Hodge lattice of Y [BHT15, HT13]. Further
subtle constructions have been studied in [FMOS21, §1.1]. For example, cubic four-
folds arise as Lagrangian submanifolds of hyperkähler varieties of dimension eight
[LLSvS17].

We saw in Section 3 that Kummer varieties arise naturally in the study of X ⊂
P2g+1. For g = 2, Kummer surfaces take center stage but generalized Kummer
sixfolds are most relevant for recovering X. We realize X naturally as a Lagrangian
submanifold of a Kummer sixfold naturally arising from the variety of lines F1(X).
Recovering X from F = F1(X) boils down to understanding certain Lagrangian
subvarieties in this Kummer sixfold.

5.1. The basic construction. Assume that the ground field is algebraically closed.
Let X ⊂ P5 denote a smooth complete intersection of two quadrics, F1(X) its

variety of lines, and Alb(F1(X)) the associated principally polarized abelian surface.
The variety of conics on X equals the variety F2(q) in Section 3. Thus it fibers
over a genus two curve C, parametrizing connected components of the varieties of
maximal isotropic subspaces in the quadric hypersurfaces cutting out X. We may
interpret Alb(F1(X)) ' J(C).

Consider the Hilbert scheme F1(X)[4] and the natural map

F1(X)[4] → J(C)
(`1, `2, `3, `4) 7→ `1 + `2 + `3 + `4 − h2,
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where h is the hyperplane class. Here 0 is identified with cycles of lines obtained
as codimension-two linear sections of X. The preimage of 0 is a subvariety

Kum(X) ⊂ F1(X)[4],

a twist of the generalized Kummer sixfold KJ(C)(3) associated with J(C). Regard-
ing F1(X) as a twist of J(C) by a cocycle for J(C)[4], applying this cocycle to
KJ(C)(3) yields Kum(X).

Consider the incidence variety

Z = {[x, `] : x ∈ `} ⊂ X × F1(X)

and the projection π : Z → X. This is generically finite of degree four.

Proposition 15. The projection π is flat over X.

Proof. Indeed, since Z and X are both smooth and projective it suffices to show
that π is equidimensional. But if a point x ∈ X were contained in a positive
dimensional family of lines then either

• X admits a ruled hyperplane section through x – a cone over an elliptic
quartic curve – which would force X to be singular at x;
• X admits a ruled surface of degree < 4 through x, violating the Lefschetz

hyperplane theorem.

Since X is assumed to be smooth, we conclude the flatness of π. �

As a corollary, we obtain

Proposition 16. There is an injective morphism

j : X ↪→ Kum(X)
x 7→ π−1(x)

realizing X as a Lagrangian subvariety of Kum(X).

5.2. Numerical invariants. Assume that X is general in the sense that NS(J(C))
is of rank one, generated by [Θ]. Then the Néron-Severi group of KJ(C)(3) has rank
two and is generated by [Bea83, p. 769]

• θ – subschemes with support along a theta divisor;
• e – where the nonreduced subschemes have class 2e.

Proposition 17. The restriction homomorphism

j∗ : NS(Kum(X))→ NS(X) ' Zh
is given by

j∗(θ) = 5h, j∗(e) = 4h.

Proof. For the purpose of this computation, we may ignore G-actions or work over
an algebraically closed field. The class θ on J(C) = F1(X) may be realized as the
locus W` ⊂ F1(X) of lines incident to a fixed line ` ⊂ X, which sweeps out a divisor
on X. This divisor is the exceptional divisor of the projection

π` : X
∼
99K P3;

the center of the inverse map is a quintic space curve C of genus two so the excep-
tional locus has degree 20. This yields the first equation.
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The locus of nonreduced subschemes on Kum(X) restricts to the branch locus
of π : Z → X. Restricting to a line ` ⊂ X, we see that

π−1(`) = ` tW`,

where the latter component has genus two and is realized as a degree-three cover
of `. Such a cover has eight branch points, so the branch locus has class 8h and we
get the second equation. �

5.3. Reversing the construction. For the moment, let A be an abelian surface
over k, not necessarily principally polarized.

• The group A[4] acts on A via translation.
• The semi-direct product A[4] o µ2, where µ2 acts on A[4] via ±1, acts on
A as well.
• Consider the addition map

α : A[4] → A

and the induced action of G on A[4]. Note that A[4] acts on the fibers and
the action of µ2 commutes with addition. Thus G acts on KA(3) as well.

Note that G admits a distinguished normal 2-elementary subgroup

H = A[2]× µ2.

Now assume A = J(C) and consider the various Lagrangian threefolds in KJ(C)(3).

The subgroup H ' (Z/2Z)5 stabilizes each, acting via automorphisms. The full
group G gives an orbit of 16 components, with transitive action of

G/H ' A[4]/A[2] ' A[2].

Remark 18. Assume that the base field k is arbitrary, of characteristic zero. Let
C be a smooth projective curve of genus two over k and F a principal homogeneous
space for J(C) such that 2[F ] = [Pic1(C)]. Let KF (3) ⊂ F [4] denote the generalized
Kummer variety lying over the divisor g12 ∈ Pic2(C). We may realize F as the image
of a cocycle for J(C)[4]; the 16 conjugate Lagrangian threefolds naturally form a
principal homogeneous space for J(C)[4]/J(C)[2] ' J(C)[2]. However, even when
this is trivial there is no guarantee that the corresponding X can be defined over k
– the obstruction to descent is discussed in Proposition 10.

6. Rationality constructions

We continue to assume that X ⊂ P2g+1 is a smooth complete intersection of two
quadrics.

6.1. Simple rational parametrizations. Fix a line ` ⊂ X and consider the
projection

π` : X
∼
99K P2g−1,

a birational map, resolved by blowing up `. The inverse map

P2g−1 → P2g+1
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is obtained as follows: Consider a matrixl00 l01
l10 l11
q0 q1

 ,

where the lij are linear and and qi are quadratic. The 2 × 2 minors generate an

ideal IZ , where Z is the base locus of π−1` . Cubic forms in IZ yield the linear series
inducing this map. The kernel of the matrix gives a rational map

φ : Z 99K P1,

which is regular for g = 2, 3. The generic fiber of φ is a quadric hypersurface in
P2g−3; we may interpret this as `⊥/`, understood as a subquotient of the generic
fiber of the pencil q : Q → P1 (from Section 3), i.e., the generic fibers of φ and q
are equivalent in the Witt ring of k(P1).

Much more can be said when g = 2; we refer the reader to the corresponding
case in Section 6.2.

For the g = 3 case, the fibration

φ : Z → P1

is a quadric surface fibration. We will denote by C the discriminant curve of this
fibration. Specifically, the relative variety of lines factors

F1(φ)
$→ C → P1,

where $ is a smooth conic fibration. The following conditions are equivalent:

• φ admits a section;
• $ admits a section;
• q : Q → P1 admits an isotropic plane containing `× P1.

These are elementary properties of quadratic forms. The Amer-Brumer Theorem
[Lee, §2] gives a fourth equivalent condition:

• there exists a plane P2 ⊂ X.

The fibration $ admits a section if and only if we can express

F1(φ) = P(E)

for some rank-two vector bundle E → C. Desale-Ramanan [DR77] use such con-
structions to analyze rank-two vector bundles of odd degree on hyperelliptic curves,
relating automorphisms of X to natural tensor and duality operations on the vector
bundles.

Remark 19. Over nonclosed fields, e.g. k = C(s), and for g ≥ 2 (resp. g ≥ 3), it
is possible for X ⊂ P2g+1 (resp. F1(X) ⊂ Gr(2, 2g + 2)) to admit a rational point
even when C admits no divisors of odd degree.

Consider a hyperelliptic curve C0 → P1 represented as a double cover branched
over g + 1 orbits for an involution on P1. For example, if the involution is

[1, t] 7→ [1,−t]
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we could take the branch points as the roots ±λ1, . . . ,±λg+1 of
∏g+1
i=1 (t2−ai) with

the ai distinct and nonzero. Write

X0 = {
2g+2∑
i=1

x2i =

g+1∑
i=1

λi(x
2
2i−1 − x22i) = 0},

with involution given by

(x1, x2, x3, x4, . . . , x2g+1, x2g+2) 7→ (x2, x1, x4, x3, . . . x2g+2, x2g+1);

the associated hyperelliptic curve C0 has the desired branch locus.
Choose a quadratic extension L/k and let X and C denote the associated qua-

dratic twists of X0 and C0. By construction, C admits no cycles of odd degree.
However, X is geometrically rationally connected. The same holds for F1(X) pro-
vided g ≥ 3 – indeed, it has ample anticanonical class and thus is geometrically
rationally connected. Thus both varieties have k-rational points by the Graber-
Harris-Starr Theorem.

Note that [BGW17, Th. 29] implies that Fg−1(X) admits no k-rational points.

6.2. Stable rationality constructions. Fix a (g − 1)-dimensional subspace L ⊂
X and look at the projection from L:

π : X 99K Pg+1

with generic fiber a projective space Pg−2. We analyze the structure of this bundle.
Suppose that L = {x0 = . . . = xg+1} so that the induced map on linear spaces

factors through

P(OPg+1(−1)⊕OgPg+1)

so that y0, . . . , yg−1 are trivializing sections of the OPg+1 factors and the linear series
to P2g+1 is given by

y0, . . . , yg−1, zx0, . . . , zxg+1.

The proper transform of X has equations

A(xi; yj) + zQ(xj) = B(xi; yj) + zR(xj) = 0,

where A and B are bilinear and Q and R are quadratic. Eliminate z to get the
relation

z = −A/Q = −B/R,
which gives

AR−BQ = F0y0 + · · ·+ Fg−1yg−1 = 0,

which is cubic in xi and linear in yj ; the Fj are cubic forms in x0, . . . , xg+1. This
is the formula for the Pg−2 bundle in the product

Pg+1
xi
× Pg−1yj .

Look at the locus C where the morphism

BlL(X)→ Pg+1

fails to be flat. The Fj are linear combinations of Q and R with linear coefficients.
The locus C is the residual intersection to the locus

Z = {Q = R = 0}
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in the intersection of cubics

{F0 = · · · = Fg−1 = 0}.
Proposition 20. The excess intersection contribution of Z to the intersection of
cubics is 3g − (2g + 1) whence C has degree 2g + 1. The curve C is hyperelliptic,
embedded via a generic (2g + 1)-degree polarization D.

Proof. This is a computation with Fulton’s excess intersection formula, encoded by
the exact sequence

0→ NZ/Pg+1 ' OZ(2)2 → OZ(3)g → Q→ 0,

where the equivalence of Z equals cg−2(Q). Note that

(1 + 3ht)g/(1 + 2ht)2 = 1 + (3g − 4)ht+ · · ·+ 3g − 2g − 1

4
hg−2tg−2

using the identity

g−2∑
j+k=0

(
g

k

)
3k(j + 1)(−2)j =

3g − 2g − 1

4
.

�

Fixing (C,D), what are the constructions that arise? We analyze the induced
morphism

γ : F(g−1)(X) → Pic2g−1(C)
L 7→ D.

following [Don80] and [BGW17]. First, translation by two-torsion in J(C)[2] cor-
responds to an automorphism of X acting trivially on cohomology. Thus we have

γ([L] + τ) = γ([L]), τ ∈ J(C)[2].

Automorphisms with determinant −1 may be presented in the form

p 7→ −p+ β, β ∈ Pic1(C), 2β = g12 .

These act by −1 on middle cohomology whence

γ(−[L] + β) = (2g + 1)g12 −D.
Moreover, Wang’s formula 2[F1(X)] = [Pic1(C)] [Wan18] implies these are the only
possible relations intertwining γ for a generic curve C.

To summarize our discussion:

Proposition 21. For each hyperelliptic curve C of genus g and unordered pair of
divisors

D,D′ ∈ Pic2g+1(C), D +D′ = (2g + 1)g12 ,

we obtain a group of stable birational equivalences of Pg+1 parametrized by the group

(Z/2Z)2g+1 ' 〈b1, . . . , b2g+2〉 /
〈
g12
〉
⊂ Pic(C)/

〈
g12
〉
.

Remark 22. When g = 2, we obtain birational equivalences of P3. This is the
subgroup of the Cremona group on P3 associated with an orbit of F1(X) under
the diagonalizable automorphisms of X. If ` ⊂ X is a line and h ∈ Aut(X) is a
diagonalizable automorphism then the associated birational map is

P3 π`
L99 X

h→ X
π`
99K P3.
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7. Reduction to nonclosed fields

We are interested in translating rationality criteria for geometrically rational
threefolds over nonclosed fields to the equivariant context. For example, the exis-
tence of points and subvarieties of prescribed type sometimes suffices to characterize
rationality over nonclosed fields. We hope that the corresponding criteria for G-
equivariant rationality are valid for varieties with G-action, where G is a finite
group. We focus on situations where principal homogeneous spaces over abelian
varieties control rationality.

7.1. Representations and monodromy groups. We recall results of [GLLM15]
on representations of monodromy groups for curves with group action.

Let Σ denote a smooth projective complex curve of genus g ≥ 2 and fundamental
group T . Consider a finite group G and a surjective homomorphism p : T � G
with kernel R. This is associated with a connected covering Σ̃→ Σ with homology
[GLLM15, Prop. 1.1]:

(7.1) H1(Σ̃,Q) ' Q⊗Z R/[R,R] ' Q2 ⊕Q[G]2g−2.

This is an equivariant refinement of the Hurwitz formula due to Chevalley-Weil.
We decompose Q[G] using the theory of semisimple algebras [GLLM15, §3.2]:

Q[G] ' Q×
∏̀
i=1

Ai,

where each Ai ' Matmi
(Di), matrices over a division algebra. Moreover, let Li

denote the center of Di, a number field. The index i for the product encodes types
of nontrivial representations of G that are irreducible over Q. The formula (7.1)
therefore yields

(7.2) H1(Σ̃,Q) ' Q2g ⊕
⊕̀
i=1

A2g−2
i .

Each of the summands A2g−2
i comes with a natural skew-Hermitian structure

with respect to an explicit subfield Ki ⊂ Li of index ≤ 2 [GLLM15, §3]. For each
index i, there is a distinguished algebraic group GG,i, defined over Ki, parametrizing

the automorphisms of A2g−2
i preserving this skew-Hermitian structure. (We abuse

notation, using the same notation for this group and its restriction of scalars to Q.)
The complex groups that may arise are listed in [GLLM15, Thm. 1.7]:

(7.3) Sp(2g−2)n(C),O(2g−2)n(C),GL(2g−2)n(C)

for some n ∈ N.
Let Di ⊂ Ai denote the order arising as the image of Z[G], GG,i(Di) the resulting

arithmetic group. Note that this arithmetic group depends only on the structure
of G and its action on the symplectic form. Write ΓG,p for the mapping class

group of G-coverings Σ̃→ Σ [GLLM15, p. 1494]. For each i = 1, . . . , `, it admits a
representation

ρG,p,i : ΓG,p → GG,i ⊂ AutAi
(A2g+2

i ).
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We use G1G,i to denote the elements of GG,i of reduced norm one over Li; G1G,i(Di)

has finite index in GG,i(Di) [GLLM15, Prop. 3.9] as the reduced norm takes values
in roots of unity.

To summarize, we obtain natural representations of a finite-index subgroup of the
mapping class group ΓG,p into the arithmetic groups GG,i(Di) [GLLM15, p. 1528].
Fortunately, there are sufficient conditions guaranteeing that the image of ρG,p,i
contains a finite-index subgroup of our arithmetic group. Assume further that
g ≥ 3 and p factors

p : T
ϕ→ Fg

p′→ G,

where

• Fg is a free group on g generators;
• ϕ is surjective;
• the kernel of p′ contains one of the free generators of Fg.

Whenever G can be generated by g − 1 elements we can find p satisfying these
conditions. Under these assumptions, the image of ρG,p,i contains a finite-index
subgroup of G1G,i(Di) [GLLM15, Thm. 1.6].

Observe that G1G,i(Di) ⊂ G1G,i is Zariski dense by the Borel density theorem

[Mor15, 4.5.6, 5.1.11]. Borel’s Theorem requires that associated real Lie group has
no compact factors; indeed, the assumption g ≥ 3 guarantees the factors have Q-
rank at least two [GLLM15, p. 1529]. (Information about the real forms arising
from these groups may be found in [GLLM15, § 4].)

The fact that the monodromy is large has implications for the structure of
H1(Σ̃,Q). The decomposition (7.2) cannot be refined; any summand of H1(Σ̃,Q)
stable under the action of ΓG,p is a direct sum of the Q2g (coming from H1(Σ,Q))

and the A2g−2
i . Using the classification (7.3), we find that a very general covering

Σ̃→ Σ associated with p : T → G, the Jacobian J(Σ̃) admits no factor of dimension
less than g − 1.

We summarize this, following [GLLM15, Thm. 1.8]:

Fix a finite group G and an integer g ≥ 3 such that G can be
generated by g − 1 elements. There exists a family of pairs

(Σ, Σ̃→ Σ),

where Σ is a smooth complex projective curves of genus g and
Σ̃→ Σ is a connected G-covering, with the following property: For
a very general Σ̃, the Jacobian J(Σ̃) admits no factors over Q of
dimension less that g − 1.

7.2. Statement and proof of results. Let G be a finite group acting generically
freely from the right on P , an abelian variety. We do not assume that G has
a fixed point on P . We write Alb(P ) for the Albanese of P , the G-equivariant
abelian variety parametrizing the group of translations on P . In other words, P is
a G-equivariant principal homogeneous space for Alb(P ).

Fix a base curve B, smooth and projective of genus g ≥ 3 over k. Let f : B̃ →
B be a connected G covering space, with G acting from the left. Consider the
projection

P × B̃ → B̃,
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where the left-hand-side has induced left G-action

γ · (p, b̃) = (pγ−1, γb̃),

with quotient P ×G B̃. Consider the induced morphism

πf : P ×G B̃ → B

whose fibers, away from the branch locus of f , are geometrically isomorphic to P .

Proposition 23. Assume that g > dim(P ) + 1, g ≥ 3, and B is of general moduli.
Suppose that for every f as above, πf has a section. Then the action of G on P

has a fixed point.

Proof. The existence of a section for πf is equivalent to a G-equivariant morphism

φf : B̃ → P

which factors

B̃ ↪→ Pic1(B̃)→ P.

Our assumption – that dim(P ) < g − 1 – allows us to apply the results of

Section 7.1 to deduce J(B̃) has no factors of dimension dim(P ). It follows that
there is no nontrivial G-equivariant homomorphism

J(B̃)→ Alb(P ).

This forces φf to be constant, which forces the triviality of Pic1(B̃). �

8. Applications in dimension three

In this section, we present parametrizations arising from the existence of G-
invariant linear subspaces

L ⊂ X ⊂ P2g+1.

The geometry here is both simpler and richer than the geometry over nonclosed
fields. There are more possible Galois actions than actions via automorphisms; not
every subgroup of S2g+2 arises as the automorphisms of a configuration of 2g + 2
points. On the other hand, if one can find a linear subspace

L ' Pr ⊂ X
defined over k, one automatically has subspaces Ps ⊂ X for all s ≤ r. This is
not the case in the equivariant context, as the underlying representation may be
irreducible.

Throughout this section, k is algebraically closed of characteristic zero.

8.1. Review of surface case. We review the classification of G-actions on smooth
intersections of two quadrics in dimension 2. The general strategy for attacking
this question uses the G-equivariant minimal model program; the most systematic
description may be found in [DI09].

Let X ⊂ P4 be a smooth quartic del Pezzo surface with a generically free action
of a finite group G. There are 16 lines on X, which are permuted by G. If there
exists a G-equivariant collection of disjoint lines, it may be blown down to obtain
a del Pezzo surface of larger degree. Del Pezzo surfaces of degree 7, 8, or 9 are
equivariantly birational to P2 or P1 × P1. In degrees 5 and 6 there are actions not
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birational to actions on homogeneous spaces as above; see Section 8 of [DI09] for
more details.

For our purposes – to illustrate the aspects common to all dimensions – we focus
on examples with generic automorphism group. Any quartic del Pezzo surface may
be written in diagonal form

x20 + x21 + x22 + x23 + x24 = a0x
2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 = 0

which admits a diagonal action of H = µ5
2/µ2. Generically, these are the only

automorphisms. Hence we focus on subgroups of

H ' (Z/2Z)4

acting via sign changes on coordinates of diagonal quadrics defining X. Consider
involutions ι ∈ H; we present one representative for each conjugacy class:

(1,1,1,1,-1): Here X is a double cover of the quadric surface in P3

(a4 − a0)x20 + (a4 − a1)x21 + (a4 − a2)x22 + (a4 − a3)x23

branched over the elliptic curve E cut out by

x20 + x21 + x22 + x23 = 0.

This surface has no fixed lines and has nontrivial cohomology H1(G,Pic(X)) (from
the curve E, cf. [BP13]) and thus is not G-rational or even stably rational. It is
clearly minimal as the orbits of lines consist of eight pairs meeting at points. (These
are rulings of the quadric surface tangent to E.) Any G-action on a quartic del
Pezzo surface containing this involution is G-irrational.

(1,1,1,-1,-1): Here we have four fixed points given by {x3 = x4 = 0} and eight
orbits of disjoint lines. Thus X is birational to a sextic del Pezzo surface, admitting
three conic bundle structures. One of these must be fixed under the involution, thus
X is equivariantly birational to P1 × P1 with linear action.

8.2. Reduction to the case of nonclosed fields. We turn to the case of dimen-
sion three. As a corollary of results in Section 7, we have:

Theorem 24. Let X ⊂ P5 be a smooth complete intersection of two quadrics with
generically free action of a finite group G. Then X is G-equivariantly birational to
P3, with G acting projectively linearly, if and only if there is a G-invariant line on
X.

Proof. The action of G on X admits a canonical linearization on ω−1X = OX(2). It
follows that G acts projectively on Γ(OX(1)) and thus on P5. A central extension

1→ µ2 → G̃→ G→ 1

acts linearly on P5.

An invariant line corresponds to a two-dimensional G̃-invariant subspace. The
complementary G-stable subspace induces a projection

π` : X
∼
99K P3,

where P3 admits a linear action of G̃ and a projective action of G.
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We turn to the converse statement: Suppose there is a G-equivariant birational
map

X
∼
99K P3

with G acting projectively linearly.
Let B be a curve of large genus satisfying the conditions of Proposition 23.

Construct an isotrivial family X → B, with generic fiber isomorphic to X, split over
a G-covering B̃ → B. (The G-action on X induces one on X×B̃; we take quotients
to obtain our isotrivial family.) It is birational over B to a fibration P → B that
is generically a P3-bundle. The Tsen-Lang Theorem implies it is birational over B
to P3 × B. The variety of lines F1(X/B) is a principal homogeneous space over
an abelian surface, over a dense open subset of B. The main result of [HT21a]
implies that F1(X/B)→ B admits a rational section. Proposition 23 implies that
the associated action of G on F1(X) necessarily admits a fixed point, which yields
a line ` ⊂ X invariant under the G-action. �

Remark 25. Let X have a G-action as above; we do not assume the existence of a
fixed point or invariant line. Nevertheless, we can construct the isotrivial fibration

X → B

which always admits a section by the Tsen-Lang (or Graber-Harris-Starr) Theorem.
Thus Proposition 23, stated for abelian varieties, is not valid for other classes of
varieties such as rationally-connected varieties.

8.3. Relations with the Burnside formalism. The Burnside group formalism
is presented in [KT20]. Let G be a finite group acting generically freely on a smooth
projective variety Y . For each nontrivial subgroup H ⊂ G, we record data

• the locus Z ⊂ Y fixed under H;
• the action of H on the normal bundle of each component of Z.

The character for the action on the normal bundle is called a symbol. Consider how
this data changes as we blow up Y along a G-stable smooth subvariety. To obtain
a G-birational invariant, we impose equivalences on the possible symbols that may
arise, the blowup relations.

The simplest approach is to discard information about the components of the
fixed locus Z, recording only the representation on the normal bundle. (Here we
only retain the dimensions of the components.). See [HKT21, Section 5] for re-
finements via Grothendieck classes of varieties, and Section 6 of that paper for
applications to cubic fourfolds.

Proposition 26. Let G be a finite group acting generically freely on X ⊂ P5, a
smooth complete intersection of two quadrics. Suppose there exist

• an element g 6= 1 fixing a hyperplane section S ⊂ X;
• a subgroup 〈g〉 ⊂ H ⊂ G acting on S.

Assume that S is not H-birational to either

(1) P(V ), a projectively linear representation of H; or
(2) P(E) where E is an H-equivariant rank-two vector bundle over a curve.

Then X is not G-birational to P3 with a G-action.

The surface case is addressed in [KT21, Prop. 3.9].
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Proof. Suppose we have a G-birational map

ρ : P3 ∼
99K X

with G acting projectively linearly on the source. By weak factorization, we may
assume it is a composition of blowups and blowdowns along smooth G-stable cen-
ters.

Consider the center Z → P3 blown up to obtain S; it is irreducible, fixed by g, and
has an action of H. Since S 99K Z is birational, we conclude that S is birational to
a divisor in P3 with nontrivial stabilizer. The locus in P3 with nontrivial stabilizers
is a union of linear subspaces, and we are in the first case. If Z is a point then
S is birational to the projectivization of the tangent space at that point; again,
we are in the first case. Finally, suppose Z is a curve; then S is birational to the
projectivization of the normal bundle to Z, putting us in the second case. �

We turn to other representative examples. We follow Avilov [Avi16], who enu-
merated actions of finite groups on three-dimensional complete intersections of two
quadrics known to be equivariantly birational to projective space, a quadric hyper-
surface, or a Mori fiber space.

Example 27. Suppose that G admits a subgroup H ' C2 × C2 acting on X via
the diagonal matrices

diag(1, 1, 1, 1,±1,±1).

Take
g = diag(1, 1, 1, 1, 1,−1)

which fixes a del Pezzo surface S. The residual C2 action on S was considered
in Section 8.1. Since there is nontrivial cohomology, i.e. H1(C2,Pic(S)) 6= 0,
the two possibilities from Proposition 26 are precluded. It follows that X is not
equivariantly rational for any group containing H.

We emphasize that Theorem 24 gives a stronger conclusion: If X is G-birational
to P3 then G acts on F1(X) with fixed points. In particular, every element of G
fixes a point of F1(X) so G has no elements conjugate to ±diag(1, 1, 1, 1,−1,−1).
Indeed, these correspond to translates by two-torsion, which act freely. For instance,
if G = 〈(1, 1, 1, 1,−1,−1)〉 the fixed locus on X is an elliptic curve. There are no
Burnside invariants available as the relevant symbol groups for G = C2 are zero
[HKT21, Section 3.1], [KPT21, Section 12].

Remark 28. It would be interesting to have a general theory – in the context of G-
equivariant birational geometry – encompassing both Burnside/symbol-type invari-
ants and obstructions arising from Chow-theoretic principal homogeneous spaces
for intermediate Jacobians.

8.4. Rational complete intersections need not have points. Theorem 24
shows that equivariant rationality of X ⊂ P5 is governed by the existence of invari-
ant lines on X. When G is cyclic, the existence of a G-invariant line guarantees a
point on that line fixed by G. For noncyclic groups, an invariant line need not have
a fixed point. There are examples of G-rational X ⊂ P5 with no fixed points.

Let C denote the complex curve

y2 = x6 + 1.
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Its automorphism group contains G, a central extension

1→ µ2 = 〈ι〉 → G→ D12 → 1

of the dihedral group D12 of order twelve. We write

G =
〈
σ, τ, ι : σ6 = τ2 = ι2 = 1, τστ−1σ = ι

〉
with action

σ · (x, y) = (ζx, y), τ · (x, y) = (y/x3, 1/x), ζ = e2πi/6,

where ι is the hyperelliptic involution. The induced action on the global sections
Γ(ωC) is

σ 7→
(
ζ 0
0 ζ2

)
, τ 7→

(
0 −1
−1 0

)
, ι 7→

(
−1 0
0 −1

)
.

Actually, Aut(C) = G; see [LMF21, Genus two curve 2916.b.11664.1] for more
information.

Consider the quotient of C under the unique cyclic subgroup of order three
〈
σ2
〉
,

with invariants and equation

y, z = x3 y2 = z2 + 1.

Let ρ : C → R denote the corresponding degree-three morphism. The induced
action on R is generically free via the dihedral group of order eight.

The double cover and ρ give a morphism

C ↪→ P1 ×R.

While R is isomorphic to P1 as a variety, the action of G on R is not linear. (The
subgroup 〈τ, σ〉 acts on R as a Klein four-group, with no fixed points; such actions
are not linearizable.) However, we do have a central extension

1→ µ2 → G̃→ G→ 1

and G̃-representations V = Γ(ωC) and W such that

C ↪→ P(V )× P(W ) ↪→ P(V ⊗W ) ' P3,

realizing our curve as a (2, 3) divisor. The linear series of cubic forms vanishing on
C gives a birational map

P3 ∼
99K X ⊂ P5,

where X is a smooth complete intersection of two quadrics. This blows up C and

blows down P(V ) × P(W ) via projection to the first factor. The map X
∼
99K P3 is

projection from a G-stable line ` ' P(V ).
We claim that X has no G-fixed points. We know that P(V ) has no fixed points

so it suffices to check that P3 = P(V ⊗W ) has no fixed points. Looking at σ acting
on V , any fixed points would necessarily lie on

[1, 0]×W or [0, 1]×W.

However, we have already seen that the dihedral group of order eight acts on R
without fixed points.

This analysis also shows that the G-action on X does not linearize to the ambient
P5. The map BrG(point)→ BrG(X) is not an isomorphism; its kernel contains 0 6=

https://www.lmfdb.org/Genus2Curve/Q/2916/b/11664/1
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α(G,W ) ∈ H2(G,µ2) (see Proposition 3). This illustrates the general obstruction
analysis in Section 4.1.

This answers a question of Avilov [Avi16, Rem. 2], who asked where X – Case
2(ii) of his Theorem 1– fits in the equivariant birational classification.

8.5. Another special example. We return to another example highlighted by
Avilov – Case 2(iv) of [Avi16, Th. 1] – where G fits into an exact sequence

1→ C5
2 → G→ S4 → 1.

The associated binary sextic form is

T0T1(T 4
0 − T 4

1 ).

The hyperelliptic curve

C = {U2 = T0T1(T 4
0 − T 4

1 )}

has automorphism group

Aut(C) = 〈σ, τ〉 ,
where

σ(T0, T1, U) = (e3πi/4T0, e
πi/4T1, U) τ(T0, T1, U) = (

1√
2

(T1−T0),
1√
2

(T0+T1), U).

The resulting group has relations

σ4 = ι, τ2 = ι2 = 1, ιτ = τι, (στ)3 = ι,

where ι is the hyperelliptic involution. It sits in a central extension

1→ µ2 = 〈ι〉 → Aut(C)→ S4 → 1.

This curve appears as [LMF21, Genus two curve 4096.b.65536.1].
We analyze the induced action on the branch points, using coordinate T0/T1:

b1 = {0}, b2 = {∞}, b3 = {1}, b4 = {i}, b5 = {−1}, b6 = {−i}.

The generators act via permutations

σ 7→ (3456), τ 7→ (13)(25)(46)

and the hyperelliptic involution acts trivially. Consider the induced action on

Pic1(C) ⊃ C

as in (4.1). Note that ι fixes only the solutions to L2 = g12 , the 16 points (cf. Sec-
tion 3)

b1, . . . , b6, b1 +b2 +b3−g12 = b4 +b5 +b6−g12 , . . . , b1 +b5 +b6−g12 = b2 +b3 +b4−g12 .

None of these is simultaneously fixed by σ and τ , so Pic1(C) admits no fixed point
for Aut(C).

As for the complete intersection, we may take equations

X = {Q1 = Q2 = 0} ⊂ P5,

where

Q1 = x20 + x21 + ix22 − x23 − ix24, Q2 = x21 + x22 + x23 + x24 + x25.

https://www.lmfdb.org/Genus2Curve/Q/4096/b/65536/1


26 BRENDAN HASSETT AND YURI TSCHINKEL

Proposition 29. Suppose that G acts on X so that the induced homomorphism

G→ Aut(C)

is surjective. Then X is not G-equivariantly birational to P3.

This partly answers a question in [Avi16, Rem. 2]; Avilov asked whether these
are equivariantly birational to P3.

Proof. By Theorem 24, if X is birational to P3 then F1(X) admits a fixed point.
But then Pic1(C) would admit one as well via the squaring map F1(X)→ Pic1(C).
This would contradict the computation above.

The argument works under the weaker hypothesis that the image contains the
2-Sylow subgroup 〈

σ, τσ2τ
〉
⊂ Aut(C)

as τσ2τ 7→ (12)(46). �

We may have rationality when smaller groups act. We restrict attention to the
automorphism of order eight acting on coordinates by

γ =


α 0 0 0 0 0
0 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 , α = e3πi/4.

This is chosen so that γ ·Q2 = Q2 and

γ ·Q1 = α2x20 + x22 + ix23 − x24 − ix21 = −iQ1.

Thus we may interpret γ as a lift of σ−1.
What are the fixed points? The action on the underlying space via the contra-

gredient representation is: 
α7 0 0 0 0 0
0 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 ,

with eigenvectors

1 : [0, 0, 0, 0, 0, 1] 6∈ X
α : p1 := [0, 1, α7, α6, α5, 0] ∈ X
α3 : [0, 1, α5, α2, α7, 0] 6∈ X
α5 : p2 := [0, 1, α3, α6, α, 0] ∈ X
α7 : [1, 0, 0, 0, 0, 0], [0, 1, α, α2, α3, 0] 6∈ X.

The last eigenspace is isotropic for {Q2 = 0} and thus meets X in two points
p3, p4 := [±2i, 1, α, α2, α3, 0]. The span of p1 and p2 is also isotropic for {Q2 = 0}.
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Proposition 30. The lines `(p2, p3) and `(p2, p4) are invariant under the action.

Note however that

γ4 =


−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1


acts on the variety of lines on X with 16 fixed points, i.e., the lines on the quartic
del Pezzo surface X ∩ {x5 = 0}.

This example is instructive in that the group actions are not associated with
Weyl groups:

• W (D6) is realized as the signed permutation matrices with an even number
of (−1) signs, a semidirect product

W (D6) ' S6 n C5
2 ,

where C5
2 is the diagonal matrices;

• the semidirect product

S6 n C6
2/Diagonal,

interpreted as a Weyl group for the projective orthogonal group.

These are not the same; the Weyl group has a nontrivial central element

(−1, . . . ,−1)

whereas the latter group has no nontrivial central elements.
However, neither of these actions coincide with our situation! Both lack an

element γ of order eight, sitting over a four-cycle of S6, with γ4 ∈ H ′ (the 2-
elementary group of diagonal automorphisms) having nontrivial determinant. The
automorphism group Aut(X) is NOT a semidirect product of Aut(D ⊂ P 1) and
H ′, which admits NO element γ mapping to(

1 0
0 −i

)
and whose fourth power is diagonal with entries (−1,−1,−1,−1,−1, 1). Indeed,
the candidate in the Weyl group

γ̃ =


−1 0 0 0 0 0
0 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


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induces

γ̃4 =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1


which has the wrong diagonal entries.

The rationality of these specific examples may be deduced in terms of the group
actions:

Proposition 31. Let γ be an automorphism of order eight on X such that γ4 fixes
a smooth hyperplane section S ⊂ X and the induced action on S is by an element
acting on the degeneracy locus (of both X and S) as a four-cycle. Then S admits
a line invariant under γ.

Proof. The fixed locus of H ′ corresponds to a del Pezzo S of degree 4 with action
associated with the upper 5 × 5 matrix. Its lines correspond to weights in the D5

root system:

−ei − ej − ek − el − em, ei + ej − ek − el − em, ei + ej + ek + el − em.

With respect to the standard basis of the Picard group {L,E1, E2, E3, E4, E5} pro-
jected into Pic(S)/ZKS we have

L− Ei 7→ ei, 2L− Ej − Ek − El − Em 7→ −ei.

The induced automorphism has order four. The only possible elements of W (D5)
of order four fix a line. For example, the signed permutations

1 0 0 0 0
0 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0

 ,


1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0. 0 0 1 0

 ,


1 0 0 0 0
0 0 0 0 −1
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0


are all conjugate in W (D5) so it suffices to consider the first. This acts on Pic(S)
by

L 7→ 2L− E1 − E3 − E4

E1 7→ L− E3 − E4

E2 7→ L− E1 − E4

E3 7→ L− E1 − E3

E4 7→ E2

E5 7→ E5

which leaves the lines E5 and 2L− E1 − E2 − E3 − E4 − E5 invariant. �
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The assumption that the induced permutation of the degeneracy locus is a four-
cycle is essential. The element

γ1 =


1 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1
0 1 0 0 0
0 0 1 0 0


acts via

L 7→ 2L− E1 − E4 − E5

E1 7→ L− E4 − E5

E2 7→ L− E1 − E5

E3 7→ L− E1 − E4

E4 7→ E3

E5 7→ E2

with orbits

E1 7→ L− E4 − E5 7→2L− E1 − E2 − E3 − E4 − E5 7→ L− E2 − E3

E2 7→ L− E1 − E5 7→L− E1 − E2 7→ E5

E3 7→ L− E1 − E4 7→L− E1 − E3 7→ E4

L− E2 − E4 7→ L− E3 − E4 7→L− E3 − E5 7→ L− E2 − E5

However, γ1 maps to a product of two transposition in S6.
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[Don80] Ron Donagi. Group law on the intersection of two quadrics. Ann. Scuola Norm. Sup.
Pisa Cl. Sci. (4), 7(2):217–239, 1980.

[DR77] U. V. Desale and S. Ramanan. Classification of vector bundles of rank 2 on hyperelliptic
curves. Invent. Math., 38(2):161–185, 1976/77.

[FMOS21] Laure Flapan, Emanuele Macr̀ı, Kieran G. O’Grady, and Giulia Saccà. The geometry
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