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Abstract. We introduce new invariants in equivariant birational
geometry and study their relation to modular symbols and coho-
mology of arithmetic groups.

1. Introduction

Let G be a finite abelian group and

A = G∨ = Hom(G,C×)

the group of characters of G. Fix an integer n ≥ 2. Consider the
Z-module

Bn(G)

generated by symbols

[a1, . . . , an], ai ∈ A,
such that a1, . . . , an generate A, i.e.,∑

i

Zai = A,

and subject to relations:

(S) for all permutations σ ∈ Sn and all a1, . . . , an ∈ A we have

[aσ(1), . . . , aσ(n)] = [a1, . . . , an],

(B) for all 2 ≤ k ≤ n, all a1, . . . , ak ∈ A, and all b1, . . . , bn−k ∈ A
such that ∑

i

Zai +
∑
j

Zbj = A

we have
[a1, . . . , ak, b1, . . . , bn−k] =

=
∑

1≤i≤k, ai 6=ai′ ,∀i′<i

[a1−ai, . . . , ai(on i-th place), . . . , ak−ai, b1, . . . , bn−k]
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We have,

B1(G) =

{
Zφ(N) if G = Z/NZ, N ≥ 1

0 otherwise.

For example, for n = 4 and k = 3 and a1 = a2 = a and a3 = a′ 6= a
and b1 = b, the relation translates to

(1.1) [a, a, a′, b] = [a, 0, a′ − a, b] + [a− a′, a− a′, a′, b].
When n = 2 there is only one possibility for k, namely, k = 2.

Example 1. The group B2(G) is generated by symbols [a1, a2] such
that

a1, a2 ∈ Z/NZ, gcd(a1, a2, N) = 1,

and subject to relations

• [a1, a2] = [a2, a1],
• [a1, a2] = [a1, a2 − a1] + [a1 − a2, a2], where a1 6= a2,
• [a, a] = [a, 0], for all a ∈ Z/NZ, gcd(a,N) = 1.

For p ≥ 5 a prime, the Q-rank of B2(Z/pZ) equals

(1.2)
p2 + 23

24
.

For us, this was the first sign that automorphic forms play a role in
this theory. We will discuss the connection to modular symbols in
Section 11.

Remark 2. The group B2(Z/pZ) can have torsion, e.g., for p = 37,
there is `-torsion for ` = 3 and 19.

For n ≥ 3, the system of relations in Bn(G) is highly overdetermined.
Nevertheless, computer experiments show that nontrivial solutions ex-
ist, e.g., for G = Z/27Z or Z/43Z, the Q-rank of B4(G) equals 1.

Let X be a smooth irreducible projective algebraic variety of dimen-
sion n ≥ 2, over a fixed algebraically closed field of characteristic zero
(e.g., C), equipped with a birational, generically free action of G. Af-
ter G-equivariant resolution of singularities, we may assume that the
action of G is regular. To such an X we associate an element of Bn(G)
as follows: Let

(1.3) XG =
∐
α∈A

Fα

be the G-fixed point locus; it is a disjoint union of closed smooth irre-
ducible subvarieties of X. Put

dim(Fα) = nα ≤ n− 1.
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On each irreducible component Fα we fix a point xα ∈ Fα and con-
sider the action of G in its tangent space TxαX in X; it decomposes
into eigenspaces of characters a1,α, . . . , an,α, defined up to permutation
of indices (here we identify algebraic characters of G with C×-valued
characters). By the assumption that the action of G is generically free,
we have ∑

i

Zai,α = A.

This does not depend on the choice of xα ∈ Fα. The dimension dim(Fα)
equals the number of zeros among the ai,α. Thus we have a symbol,
for each α,

[a1,α, . . . , an,α] ∈ Bn(G).

Put

(1.4) β(X) :=
∑
α

[a1,α, . . . , an,α]

One of our main results is that expression (1.4), considered as an ele-
ment in Bn(G), is invariant under G-equivariant blowups.

Theorem 3. The class β(X) ∈ Bn(G) is a G-equivariant birational
invariant.

Now we introduce another Z-module

Mn(G),

generated by symbols

〈a1, . . . , an〉,
such that a1, . . . , an generate A, and subject to relations which are
almost identical to those for Bn(G):

(S) for all σ ∈ Sn and all a1, . . . , an ∈ A we have

〈aσ(1), . . . , aσ(n)〉 = 〈a1, . . . , an〉,
(M) for all 2 ≤ k ≤ n, all a1, . . . , ak ∈ A and all b1, . . . , bn−k ∈ A,

such that ∑
i

Zai +
∑
j

Zbj = A,

we have

〈a1, . . . , ak, b1, . . . , bn−k〉 =

=
∑

1≤i≤k

〈a1 − ai, . . . , ai(on i-th place), . . . , ak − ai, b1, . . . , bn−k〉.
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Note that we eliminated the constraint ai 6= ai′ , for i′ < i, from the
sum. Clearly,

M1(G) =

{
Zφ(N) if G = Z/NZ, N ≥ 1

0 otherwise.

For n = 4 and k = 3 and a1 = a2 = a and a3 = a′ 6= a and b1 = b, the
relation (M) translates to

(1.5) 〈a, a, a′, b〉 = 〈a, 0, a′−a, b〉+〈0, a, a′−a, b〉+〈a−a′, a−a′, a′, b〉.
The right side equals to

2〈a, 0, a′ − a, b〉+ 〈a− a′, a− a′, a′, b〉,
by symmetry relations. Notice the difference between (1.5) and (1.1).

In Section 6, we show that relation (M) follows from the subcase
k = 2.

These groups carry naturally defined, commuting, linear operators

T`,r :Mn(G)→Mn(G),

for all primes ` coprime to the order of G and all 1 ≤ r ≤ n. We call
these Hecke operators. One can consider their spectrum for

Mn(G)⊗ Q̄ or Mn(G)⊗ F̄p,
where p is any prime not dividing #G, the order of the group G. We
expect that the joint spectrum of T`,r is related to automorphic forms
and present evidence for this in Sections 9 and 11.

Consider the map

µ : Bn(G)→Mn(G)

defined on symbols as follows:

(µ0) [a1, . . . , an] 7→ 〈a1, . . . , an〉, if all a1, . . . , an 6= 0,
(µ1) [0, a2, . . . , an] 7→ 2〈0, a2, . . . , an〉, if all a2, . . . , an 6= 0,
(µ2) [0, 0, a3, . . . , an] 7→ 0, for all a3, . . . , an,

and extended by Z-linearity.

Theorem 4. The map µ is a well-defined homomorphism, which is a
surjection modulo 2-torsion.

Note that

〈0, 0, a3, . . . , an〉 = 0 ∈Mn(G)

which follows from the relations by putting

k = 2, a1 = a2 = 0, bi = ai+2, for all i = 1, . . . , n− 2.
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We expect that µ is an isomorphism, modulo torsion (see Conjec-
tures 6 and 7).

Our notation Bn(G) and Mn(G) stands for

birational vs. motivic/modular.

This paper consists of two parts: in Part 1, we present proofs of The-
orems 3 and 4. We recast the definition of Mn(G) in terms of scissor
type relations on lattices with cones. We introduce a certain quotient
M−

n (G) of Mn(G) and define multiplication and co-multiplication on
this group. We formulate a series of conjectures reducing the structure
of Mn(G)⊗Q to certain primitive pieces. We define Hecke operators
onMn(G), which are compatible with the hypothetical decomposition.

In Part 2, we introduce various generalizations of Bn(G) andMn(G),
not necessarily related to each other, reflecting a certain divergence of
birational and automorphic sides. Our considerations led us to a new
question (see Question 18 in Section 9), and a potentially new view-
point on the Langlands program, based on higher-dimensional gener-
alizations of modular symbols. We identify M−

n (G) with cohomology
of an arithmetic group, with coefficients in a 1-dimensional represen-
tation. We also explore, in the case n = 2, the relation between our
groups of symbols and classical Manin symbols for modular forms of
weight 2.

During the preparation of this paper we discovered the work of
Borisov-Gunnels [BG01], who studied constructions related to the mod-
ular picture in the case n = 2 and raised the question of generalizations
to n ≥ 3 in [BG03, Remark 7.15].

In the last section, we present results of computer experiments with
equations for new invariants.

Acknowledgments: The second author was partially supported by
NSF grant 1601912. We are grateful to Alex Barnett and Nick Carriero
(Flatiron Institute, Simons Foundation) for their help with computer
experiments, and to Avner Ash and Alexander Goncharov for their
interest and helpful comments.
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Part 1

2. Invariance under blowups

We use notation and conventions from the Introduction. Let X be
a smooth irreducible projective n-dimensional variety equipped with
generically free regular action of a finite abelian group G, and W ⊂ X
a closed smooth irreducible G-stable subvariety,

0 ≤ dim(W ) ≤ n− 2.

Let
π : X̃ = BlW (X)→ X

be the blowup of X in W . By the G-equivariant Weak Factorization
theorem, smooth projective G-birational models of X are connected by
iterated blowups of such type.

In order to prove Theorem 3, it suffices to show that

β(X̃) = β(X) ∈ Bn(G).

Choose an irreducible component Z ⊂ WG. It suffices to consider the
structure of the fixed locus of exceptional divisors in the neighborhood
of Z. Let

F = F (Z) ⊆ XG

be the unique irreducible component containing Z, it equals one of the
Fα in (1.3). Let z ∈ Z be a point and

TzX = T1 ⊕ T2 ⊕R1 ⊕R2

the decomposition of the tangent bundle at z, where Ti stand for trivial
representations, and R1, R2 have only nontrivial characters, with

TzXG = TzF = T1 ⊕ T2, TzW = T2 ⊕R1.

Let

d1 := dim(T1), d2 = dim(T2), d3 = dim(R1), d4 = dim(R2).

The spectrum of the action of G in Tz takes the form

0, . . . , 0︸ ︷︷ ︸
d1

| 0, . . . , 0︸ ︷︷ ︸
d2

| b1, . . . , bd3 | a1, . . . , a1︸ ︷︷ ︸
κ1

, . . . , am, . . . , am︸ ︷︷ ︸
κm

,

where bj ∈ A \ 0, and a1, . . . , am ∈ A \ 0, pairwise distinct, with

κ1 + · · ·+ κm = d4, κi ≥ 1,m ≥ 0.

We have

• d2 = dim(Z),
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• d1 + d2 + d3 + d4 = n,
• 1 ≤ d3 + d4, since codim(XG) ≥ 1,
• 2 ≤ d1 + d4, since codim(W ) ≥ 2.

We consider cases, with corresponding geometric configurations:

(I) d1 = 0, d4 ≥ 2, geometrically, this means that W contains a
component of XG. Blowing up W we obtain new contributions
to formula (1.4). The new fixed locus, with m irreducible com-
ponents, consists of subvarieties of the exceptional divisor, a
projective bundle over W . These subvarieties, in turn, are total
spaces of projective bundles over Z, with fibers

Pκi−1, i = 1, . . . ,m.

The corresponding contribution to β(X̃) is given by

m∑
i=1

[0, . . .︸ ︷︷ ︸
d2

, b1, . . . , bd3 , a
1 − ai, . . .︸ ︷︷ ︸

κ1

, . . . , ai, 0, . . .︸ ︷︷ ︸
κi−1

, . . . , am − ai, . . .︸ ︷︷ ︸
κm

].

Putting

a1, . . . , ak = a1, . . .︸ ︷︷ ︸
κ1

, . . . , am, . . .︸ ︷︷ ︸
κm

and

b1, . . . , bn−k = b1, . . . , bd3 , 0, . . .︸ ︷︷ ︸
d2

we find that the formula matches relation (B), in the case when
the sequence ā = a1, . . . , ak does not contain zeros.

(II) d1, d4 ≥ 1, geometrically, this means that the tangent spaces of
the fixed locus and W do not span the whole tangent space and,
near Z, the component F is not contained in W . In the blowup,
we will have a component of the fixed locus which is birational
to F and new components which are projective bundles

Pκ1−1, . . . ,Pκm−1

over Z. We need to show that the contribution of these m terms
vanishes in Bn(G). The new components contribute

m∑
i=1

[−ai, . . .︸ ︷︷ ︸
d1

, a1 − ai, . . .︸ ︷︷ ︸
κ1

, . . . , ai, 0, . . .︸ ︷︷ ︸
κi−1

, . . . , am − ai, . . .︸ ︷︷ ︸
κm

, b̄].
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We claim that this sum vanishes in Bn(G). Indeed, consider
relation (B) for the sequences

ā = a1, . . . , ak = 0, . . .︸ ︷︷ ︸
d1

, . . . , a1, . . .︸ ︷︷ ︸
κ1

, . . . , am, . . .︸ ︷︷ ︸
κm

,

and, as before,

b̄ = b1, . . . , bn−k = b1, . . . , bd3 , 0, . . .︸ ︷︷ ︸
d2

.

The left side of (B) equals

[ā, b̄] = [a1, . . . , ak, b̄] = [0, . . .︸ ︷︷ ︸
d1

, a1, . . .︸ ︷︷ ︸
κ1

, . . . , am, . . .︸ ︷︷ ︸
κm

, b̄]

The right side is the sum of (m+ 1) terms. The first summand,
corresponding to ai = a1 = 0 coincides with the left side. The
remaining terms are the same as above.

(III) d1 ≥ 2, d3 ≥ 1, d4 = 0, in this case, F is not contained in W , no
new contributors to formula (1.4) arise.

This concludes the proof of Theorem 3.

3. Comparison

In this section we study the map

(3.1) µ : Bn(G)→Mn(G)

defined in Section 1. The proof that this is a well-defined homomor-
phism is a long chain of essentially trivial steps.

First we record several corollaries of defining relations for Mn(G):

(1) 〈0, 0, . . .〉 = 0,
(2) 〈a, a, . . .〉 = 2〈a, 0, . . .〉,
(3) 〈a, a, 0, . . .〉 = 0,
(4) 〈a, a, a′, a′, . . .〉 = 0,
(5) 〈a, a, a, . . .〉 = 0,
(6) 〈a,−a, . . .〉 = 0,

here . . . stands for arbitrary sequences of elements in A, such that the
set of all elements of the symbol spans the whole A.

In the proofs below we freely use the symmetry relation (S).

(1) We use (M) for k = 2 and a1 = a2 = 0:

〈0, 0, . . .〉 = 〈0, 0, . . .〉+ 〈0, 0, . . .〉.
(2) We use (M) for k = 2, a1 = a2 = a.
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(3) We use (2) and (1):

〈a, a, 0, . . .〉 (2)
= 2〈a, 0, 0, . . .〉+ 〈0, 0, . . .〉 (1)

= 0.

(4) We use again (2) and (1):

〈a, a, a′, a′, . . .〉 (2)
= 4〈a, 0, a′, 0, . . .〉 (1)

= 0.

(5) We use (M) for k = 3 and a1 = a2 = a3 = a, and then (1):

〈a, a, a, . . .〉 = 3〈a, 0, 0, . . .〉 (1)
= 0,

(6) We use (M) for k = 2, a1 = a, a2 = 0:

〈a, 0, . . .〉 = 〈a,−a, . . .〉+ 〈a, 0 . . .〉.

We proceed to the proof of Theorem 4. The main point is to check
the following compatibility equation

µ([a1, . . . , ak, b1, . . . , bn−k]) =

(3.2)
∑

i,ai 6=ai′ , for i<i′

µ([a1 − ai, . . . , ai, . . . , ak − ai, b1, . . . , bn−k]).

For convenience, we sometimes write

[a1, . . . , ak | b1, . . . , bn−k] = [a1, . . . , ak, b1, . . . , bn−k] ∈ Bn(G),

and similarly, for the symbol in Mn(G), indicating the position of the
separation of a and b variables in subsequent relations.

There are three cases, distinguished by the number of zeros in the
sequence

b̄ := b1, . . . , bn−k,

(C0) b̄ does not contain zeros.
(C1) b̄ contains exactly one zero.
(C2) b̄ contains at least two zeros.

The case (C2) is obvious, by relation (1), since all terms vanish, by
the definition (µ2) (in Section 1).

The case (C1) splits into subcases

(C10) The sequence

ā := a1, . . . , ak

contains no zeros,
(C11) ā contains at least one zero.
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In the case (C11), the left hand side maps to 0, by (µ2):

µ([0, . . . | 0, . . .]) = 0.

The terms of the right hand side in the relation (B) are of two types,
corresponding to ai = 0 or ai = a 6= 0. If ai = 0, then the term has the
form

[0, . . . | 0, . . .],
mapping to zero, by (µ2). The underlined 0 indicates that ai is left
in its place, in the relation (B). If ai = a 6= 0, then the corresponding
term in the right hand side of (B) has the form

[−a, · · · , a, . . . | 0, . . .],
mapping to

c · 〈−a, . . . , a, . . . 0, . . .〉,
where c = 0 or 2, and the symbol in Mn(G) equals 0, by (6).

The case (C10) splits into two cases:

(C106=) all terms in ā are pairwise distinct,
(C10=) there exists at least two equal terms in ā.

In case (C106=), in the left and in the right hand side of the relation
(B), all symbols contain exactly one zero. Thus, they are mapped to
similar symbols in Mn(G), but multiplied by 2, by (µ1). Since every
element in ā occurs only once, the expressions on the right side of (B)
and (M) consist of matching terms.

In case (C10=), the left hand side of (B) equals

[a, a, . . . | 0, . . .] ∈ Bn(G).

Its image under µ equals

2〈a, a, . . . , 0, . . .〉 ∈ Mn(G),

which vanishes, by (3). We claim that all terms on the right side of
(B) map to zero as well. Indeed, they are either of the form

[a, 0, . . . | 0, . . .] or [a− a′, a− a′, . . . , a′, . . . | 0, . . .], a′ 6= a.

The image of this symbol is proportional to

〈a, 0, . . . , 0, . . .〉 or 〈a− a′, a− a′, . . . , a′, . . . , 0, . . .〉,
vanishing by (1) or (3), respectively.

The case (C0) splits into three cases:

(C00) ā does not contain zeros,
(C01) ā contains exactly one zero,
(C02) ā contains at least two zeros.
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Recall that b̄ does not contain zeros, in case (C0). We start with (C02).
The left hand side in (B) has the form

[0, 0, . . . | . . .],
hence maps to 0, by (µ2). We check that all terms on the right hand
side of (B) map to 0 as well. These symbols have the form

[0, 0, . . . | . . .] or [−a,−a, . . . , a, . . . | . . .], a 6= 0,

mapping to elements in Mn(G) which are proportional to either

〈0, 0, . . .〉 or 〈−a,−a, . . . , a, . . . 〉,
vanishing by (1) or (6), respectively.

The case (C01) splits into two cases:

(C016=) all terms in ā are pairwise distinct,
(C01=) there exists at least two equal terms in ā.

In case (C01=), the left side in (B) has the form

[0, a, a, . . . | . . .], for a 6= 0,

mapping to 0, by relation (3). The right side contains terms of the
form

[0, a, a, . . . | . . .] or [−a, a, 0, . . . | . . .],
or

[−a′, a− a′, a− a′, . . . , a′, . . . | . . .], a′ 6= a, 0.

Their images under µ are proportional to

〈0, a, a, . . .〉, or 〈−a,−a, 0, . . .〉,
or

〈−a′, a− a′, a− a′, . . . , a′, . . .〉,
which vanish by (3), (6), and (6), respectively.

Consider the case (C016=). The left side of (B) has the form

[0, a2, . . . , ak | . . .], for ai 6= 0, i ≥ 2, pairwise distinct, bj 6= 0.

Its image under µ equals, by (µ1), to

2〈0, a2, . . . , ak, . . .〉.
The right side of (B) is the sum

[0, a2, . . . , ak | . . .]+[−a2, a2, . . . , ak−a2 | . . .]+[−a3, a2−a3, a3, . . . | . . .]+· · ·
where the first summand maps, by (µ1), to

2〈0, a2, . . . , ak, . . .〉
and all the other terms map to 0, by relation (6). This proves (C01 6=).
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We are left with the case (C00), i.e., all elements of the sequences ā
and b̄ are nonzero. We have two cases:

(C006=) all terms in ā are pairwise distinct,
(C00=) at least two terms in ā are equal.

In case (C00 6=), the left and the right side of (B) do not contain symbols
with zeroes, hence we use (µ0) and the relation (B) is mapped precisely
to the corresponding relation (M).

The case (C00=) splits into three subcases:

(C00= 2) ā has only one pair of equal terms, i.e.,

ā = a, a, a3, . . . , ak,

where a3, . . . , ak are pairwise distinct and different from a,
(C00= 2, 2) ā has the form

ā = a, a, a′, a′, a5, . . . , ak,

where a 6= a′ and a5, . . . , ak are pairwise distinct and different
from a, a′,

(C00= 3) ā has the form
ā = a, a, a, . . .

We start with (C00= 3). The left side is mapped to 0, by relation (5).
The right side has terms of the form

[a, 0, 0, . . . | . . .] or [a− a′, a− a′, a− a′, . . . , a′, . . . | . . .], a 6= a′.

They are mapped to terms proportional to

〈a, 0, 0, . . .〉 or 〈a− a′, a− a′, a− a′, . . .〉,
vanishing by (1) or (5), respectively.

We consider (C00= 2, 2). The left side is mapped to

〈a, a, a′, a′, . . .〉
which vanishes by relation (4). The right side has terms of three shapes

[a, 0, a′−a, a′−a, . . . | . . .] or [a−a′, a−a′, a′, 0, . . . | . . .], a 6= a′.

or

[a−a′′, a−a′′, a′−a′′, a′−a′′, . . . , a′′, . . . | . . .], a, a′, a′′ pairwise distinct.

Their images are proportional to

〈a, 0, a′ − a, a′ − a, . . .〉 or 〈a− a′, a− a′, a′, 0, . . .〉, a 6= a′.

or

〈a− a′′, a− a′′, a′ − a′′, a′ − a′′, . . . , a′′, . . .〉, a, a′, a′′ pairwise distinct,
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which vanish by (3), (3), and (4), respectively.
In the last case (C00= 2), relation (B) has the form

[a, a, a3, . . . , ak | . . .] = [a, 0, a3 − a, . . . , ak − a | . . .]+
+[a−a3, a−a3, a3, . . . , ak−a3 | . . .]+[a−a4, a−a4, a3−a4, a4, . . . | . . .]+· · ·
The left side maps to

〈a, a, a3, . . .〉
and the right side to

2〈a, 0, a3−a, . . . , ak−a | . . .〉+〈a−a3, a−a3, a3, . . . , ak−a3 | . . .〉+ · · · .
Here the first summand is obtained by (µ1) and the other summands
by (µ0). We see that, modulo relation (S), the image of the right hand
side of (B) coincides with the right hand side of the relation (M) in
Mn(G).

This concludes the proof of Theorem 4.

Proposition 5. The homomorphism

(3.3) µ : B2(G)→M2(G)

is injective, with cokernel isomorphic to (Z/2Z)φ(N), if G ' Z/NZ is
a cyclic group, and is an isomorphism otherwise.

Proof. One can write the generators and relations for B2(G) andM2(G)
as follows:

• Generators:
– (“non-degenerate”) symbols [a1, a2] (resp., 〈a1, a2〉), where
a1, a2 ∈ A \ 0 are such that Za1 + Za2 = A, and

– (“degenerate”) symbols [a, 0] (resp., 〈a, 0〉), where a ∈ A\0
is such that Za = A,

• Relations:
(1) [a1, a2] = [a2, a1] (resp. 〈a1, a2〉 = 〈a2, a1〉) for a1, a2 ∈ A\0,
(2) [a1, a2] = [a1, a2 − a1] + [a1 − a2, a2] (and correspondingly
〈a1, a2〉 = 〈a1, a2−a1〉+ 〈a1−a2, a2〉) for a1, a2 ∈ A\0 and
a1 6= a2,

(3) [a, a] = [a, 0] (resp. 〈a, a〉 = 2〈a, 0〉) for a 6= 0.

We see that the first two relations are identical and deal only with
non-degenerate symbols [a1, a2] (resp., 〈a1, a2〉), when both a1, a2 are
nonzero. In the case B2(G), relation (3) just identifies the degenerate
symbol [a, 0] via the nondegenerate symbol [a, a], whereas in the case of
M2(G) it adds one half of the nondegenerate symbol 〈a, a〉. Obviously,
if we add to any abelian group an extra generator which is one half
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of any given element of this group, then the new group contains the
initial one, and the quotient is Z/2Z. The statement of the Proposition
immediately follows from these considerations, as the Euler function
φ(N) is the number of degenerate elements [a, 0] in the case G ' A '
Z/NZ. �

Conjecture 6. For n ≥ 3 the homomorphism

(3.4) µ : Bn(G)→Mn(G)

is an isomorphism, modulo torsion.

This statement reduces to the following: For any integer N ≥ 2,

[0, 0, 1] ∈ B3(Z/NZ)

is a torsion element. Indeed, if this were the case, then any symbol
[0, 0, . . .] would vanish modulo torsion, and then one could repeat all
the steps in the proof of Theorem 4 and construct an inverse morphism
from Mn(G)⊗Q to Bn(G)⊗Q.

Computer experiments for N ≤ 23 support the following:

Conjecture 7. For N ≥ 2, the element

[0, 0, 1] ∈ B3(Z/NZ)

has order 1, i.e., [0, 0, 1] = 0 ∈ B3(Z/NZ), if N is composite or N =
2, 3, 5, and order exactly equal to

p2 − 1

24
, if N = p ≥ 7 is a prime.

4. On generators and relations in Mn(G)

In this section, G is a finite abelian group, with character group
A = Hom(G,C×), and n ≥ 2 is an integer. We give a geometric
reformulation of generators and relations of Mn(G).

We start with the following data:

• a (torsion-free) lattice L ' Zn of rank n,
• an element χ ∈ L⊗ A such that the induced homomorphism

L∨ → A

is a surjection,
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• a basic simplicial cone, i.e., a strictly convex cone

Λ ∈ LR

spanned by a basis of L. It is isomorphic to the standard octant
Rn
≥0, for L = Zn ⊂ Rn.

For every equivalence class of triples

(L, χ,Λ),

up to isomorphism, we define a symbol

ψ(L, χ,Λ) ∈Mn(G)

as follows: choose a basis e1, . . . , en of L, spanning Λ, and express

(4.1) χ =
n∑
i=1

ei ⊗ ai,

and put

ψ(L, χ,Λ) = 〈a1, . . . , an〉 ∈ Mn(G).

The ambiguity in the choices is reflected in the action of the symmetric
group Sn on the basis elements, hence accounted for by condition (S).
Relation (M) has the following geometric meaning: let e1, . . . , en be an
ordered basis of L spanning Λ:

(4.2) Λ := R≥0e1 + · · ·+ R≥0en.

Fix an integer 2 ≤ k ≤ n. Then

(4.3) Λ = Λ1 ∪ · · · ∪ Λk,

where

Λi := R≥0e1 + · · ·+ R≥0(e1 + · · · ek)︸ ︷︷ ︸
i-th place

+ · · ·+ R≥0en,

i.e., we are replacing the i-th generator ei by (e1 + · · · ek). The cones
Λi are also basic simplicial and their their interiors are disjoint. De-
compose

χ = e1 ⊗ a1 + · · ·+ ek ⊗ ak + ek+1 ⊗ b1 + · · ·+ en ⊗ bn−k
as in (4.1), i.e., ak+i = bi, for all i = 1, . . . , n− k. Then, in the basis of
Λi, χ decomposes as

e1⊗ (a1−ai) + · · ·+ (e1 + · · · ek)⊗ai + · · · ek⊗ (ak−ai) +
n−k∑
j=1

ek+j⊗ bj.
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We see that relation (M) can be expressed as the following identity

(4.4) ψ(L, χ,Λ) =
k∑
i=1

ψ(L, χ,Λi),

which we can view as an analog of scissor relations. Our next result
is that this relation follows from the special subcase k = 2. This is a
corollary of a general result concerning simplicial subdivisions of basic
simplicial cones. Namely, consider the Z-module

FL,Z

generated by symbols [Λ], where Λ is a basic simplicial cone, modulo
relations (Rk), k ≥ 2:

• [Λ] = [Λ1] + · · ·+ [Λk],

where Λ and Λi are as above, with e1, . . . , en an arbitrary basis of Λ.

Lemma 8. Relations (Rk) for k ≥ 3, follow from relations (R2).

Proof. We proceed by induction, assuming the claim for k − 1. We
want to prove the claim for k ≥ 3, i.e.,

[Λ]1 + · · ·+ [Λk] = [Λ].

By induction,
[Λk] = [Λ′1] + · · ·+ [Λ′k−1],

where

Λ′i := R≥0e1+· · ·+R≥0(e1 + · · ·+ ek−1)︸ ︷︷ ︸
i-th place

+ · · ·+R≥0(e1 + · · ·+ ek)︸ ︷︷ ︸
k-th place

+ · · ·+R≥0en,

indeed, this is the relation (Rk−1) in the basis

e1, . . . , ek−1, (e1 + · · ·+ ek), ek+1, . . . en.

Therefore,

[Λ1] + · · ·+ [Λk] = ([Λ1] + [Λ′1]) + · · ·+ ([Λk−1] + [Λ′k−1]).

For every i = 1, . . . , k − 1, we have the relation (R2)

[Λi] + [Λ′i] = [Λ′′i ],

in an appropriate basis, where

Λ′′i := R≥0e1 + · · ·+ R≥0(e1 + · · ·+ ek−1)︸ ︷︷ ︸
i-th place

+ · · ·+ R≥0en.

Finally, (Rk−1) in the basis e1, . . . , en says that

[Λ′′1] + · · ·+ [Λ′′k−1] = [Λ],
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which proves the claim. �

Now we can consider an a priori different group generated by symbols
[Λ], where Λ is any full-dimensional strictly convex rational polyhedral
cone, subject to relations

[Λ] = [Λ]1 + · · ·+ [Λk],

where Λ is the union of cones Λi with disjoint interiors (here k can be
any integer ≥ 2. The toric analog of Weak Factorization implies that
the natural homomorphism from FL,Z to this group is an isomorphism.
In these terms, Lemma 8 says that it suffices to consider blowups with
centers in codimension 2.

In consequence, Mn(G) admits an alternative description: as the
group generated by symbols

ψ(L, χ,Λ),

depending only on the isomorphism classes of triples, where L and χ
are as above, and Λ is a finitely generated convex rational polyhedral
cone, of full dimension, subject to the relations (4.4), whenever there
is a decomposition

Λ = Λ1 ∪ · · · ∪ Λk

as above. This clearly extends to nonconvex cones.
We introduce a variant of previous constructions: instead of

χ ∈ L⊗ A = Hom(L∨, A)

we can consider

χ∗ ∈ Hom(L, A),

again assuming that χ∗ is surjective. In a similar fashion, we can
introduce the group M∗

n(G), which we call the co-vector version of
(the vector version) Mn(G). This group is generated by symbols,

〈a1, . . . , an〉∗,

subject to relations

(S∗) for all σ ∈ Sn and all a1, . . . , an ∈ A we have

〈aσ(1), . . . , aσ(n)〉∗ = 〈a1, . . . , an〉∗,

(M∗) for all 2 ≤ k ≤ n, all a1, . . . , ak ∈ A and all b1, . . . , bn−k ∈ A
such that ∑

i

Zai +
∑
j

Zbj = A
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we have
〈a1, . . . , ak, b1, . . . bn−k〉∗ =

=
∑

1≤i≤k

〈a1, . . . ,

k∑
j=1

aj(on i-th place), . . . , ak, b1, . . . , bn−k〉∗

As above, the relations for k = 2 imply all others.
It is not hard to show that the Q-ranks of Mn(G) and M∗

n(G) are
the same. Indeed, by Möbius-type inversion formula, one can reduce
the question to the extended versions of groups Mn(G) and M∗

n(G)
omitting the condition that the map

χ : L∨ → A, resp. χ∗ : L→ A,

is surjective. Then the finite Fourier transform (after a choice of an
identification G ' A) identifies two complex vector spaces consisting
of homomorphisms from two extended groups to C.

5. Multiplication and comultiplication

In this section, we work with the vector version, the co-vector version
is analogous. We consider

Mn(G)

in both variables n ≥ 1 and G. We define multiplication and co-
multiplication maps and study their properties. An important role
will be played by

M−
n (G),

which is defined only for nontrivial groups G, as the quotient ofMn(G)
by the relation

(5.1) 〈−a1, . . . , an〉 = −〈a1, . . . , an〉.
We denote by

〈a1, . . . , an〉− ∈M−
n (G)

the image of 〈a1, . . . , an〉 under the natural projection

(5.2) µ− :Mn(G)→M−
n (G).

We consider short exact sequences of finite abelian groups

0→ G′ → G→ G′′ → 0

and the corresponding short exact sequences of character groups

0→ A′′ → A→ A′ → 0.

Let
n = n′ + n′′, n′, n′′ ≥ 1.
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We define a Z-bilinear ‘multiplication’ map

∇ :Mn′(G
′)⊗Mn′′(G

′′)→Mn′+n′′(G),

which on generators is given by the formula

(5.3) 〈a′1, . . . , a′n′〉 ⊗ 〈a′′1, . . . , a′′n′′〉 7→
∑
〈a1, . . . , an′ , a

′′
1, . . . , a

′′
n′′〉,

where the sum runs over all lifts ai ∈ A of a′i ∈ A′, and the elements
a′′i are understood as elements of A, via the embedding A′′ ↪→ A.

The compatibility with defining relations (S) and (M) is obvious.
The condition that the elements in each summand on the right span
A follows from the corresponding condition on the left for the groups
A′, A′′. Note that ∇ descends to a Z-bilinear map of corresponding
quotient groups

∇− :M−
n′(G

′)⊗M−
n′′(G

′′)→M−
n′+n′′(G),

where both G′ and G′′ are nontrivial.
Next we define a ‘co-multiplication’ map

∆ :Mn′+n′′(G)→Mn′(G
′)⊗M−

n′′(G
′′),

where G′′ is nontrivial, and which on generators is given by the formula

(5.4) 〈a1, . . . , an〉 7→
∑
〈aI′ mod A′′〉 ⊗ 〈aI′′〉−.

Here we put

〈aI′ mod A′′〉 = 〈ai1 mod A′′, . . . , ain′ mod A′′〉, I ′ := {i1, . . . , in′}
and, similarly, for 〈aI′′〉, using the symmetry relation (S). The sum is
over all subdivisions

{1, . . . , n} = I ′ t I ′′, with #I ′ = n′,#I ′′ = n′′,

such that

• for all j ∈ I ′′, we have aj ∈ A′′ ⊂ A, and, in the first term on
the right, the elements ai, i ∈ I ′, are replaced by their images
in A′ = A/A′′;
• (generation condition) the elements aj, j ∈ I ′′, span A′′.

Note that, given the generation condition in each term of the right side
of the formula, the expression 〈aI′ mod A′′〉− is a symbol, since the
condition

∑
Zai = A implies that

∑
i∈I′(ai mod A′′) = A′. Therefore,

the generation condition for the first term is automatic.

Proposition 9. The map ∆ extends to a well-defined Z-linear homo-
morphism.



20 MAXIM KONTSEVICH, VASILY PESTUN, AND YURI TSCHINKEL

Proof. For any a ∈ A, we put

δgena∈A′′ :=

{
1 a ∈ A′′ and Za+

∑
j∈J ′′ Zaj = A′′,

0 otherwise.

By Lemma 8, it suffices to check 2-term relations (R2). We need to
show that the image of the relation

〈a1, a2, . . .〉 = 〈a1 − a2, . . .〉+ 〈a1, a2 − a1, . . .〉
on the left is a relation on the right, and that the terms on the right
satisfy the generation condition (linear combinations of elements span
the corresponding group). The only interesting part is when the first
two arguments are distributed over the different factors in (5.4), so that

(5.5) 〈a1, a2, . . .〉 7→ δgena1∈A′′ · 〈a2 mod A′′, . . .〉 ⊗ 〈a1, . . .〉−

+ δgena2∈A′′ · 〈a2 mod A′′, . . .〉 ⊗ 〈a2, . . .〉−

There are four cases:

(1) a1 ∈ A′′, a2 ∈ A′′
(2) a1 ∈ A′′, a2 /∈ A′′
(3) a1 /∈ A′′, a2 ∈ A′′
(4) a1 /∈ A′′, a2 /∈ A′′

We fix disjoint subsets

J ′ := I ′ ∩ {3, . . . , n}, J ′′ := I ′′ ∩ {3, . . . , n}
of cardinality n′ − 1, respectively, n′′ − 1. For each symbol on the left
of (5.4) there are at most two nonzero terms on the right (depending
the generation condition) corresponding to the cases a1 ∈ I ′, a2 ∈ I ′′

or a1 ∈ I ′′, a2 ∈ I ′.
In Case (1), we have

〈a1, a2, . . .〉 7→ δgena1∈A′′ · 〈0, . . .〉 ⊗ 〈a1, . . .〉− + δgena2∈A′′ · 〈0, . . .〉 ⊗ 〈a2, . . .〉−

and

〈a1 − a2, a2, . . .〉+ 〈a1, a2 − a1, . . .〉 7→
δgena1−a2∈A′′ · 〈0, . . .〉 ⊗ 〈a1 − a2, . . .〉−

+ δgena2∈A′′ · 〈0, . . .〉 ⊗ 〈a2, . . .〉− + δgena1∈A′′ · 〈0, . . .〉 ⊗ 〈a1, . . .〉−

+ δgena2−a1∈A′′ · 〈0, . . .〉 ⊗ 〈a2 − a1, . . .〉−

The first and the last term on the right cancel by relation (5.1), and
the second and the third term are the image of 〈a1, a2, . . .〉.
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In Case (2), we have

〈a1, a2, . . .〉 7→ δgena1∈A′′ · 〈a2 mod A′′, . . .〉 ⊗ 〈a1, . . .〉−

and

〈a1 − a2, a2, . . .〉+ 〈a1, a2 − a1, . . .〉 7→
δgena1∈A′′ · 〈a2 − a1 mod A′′, . . .〉 ⊗ 〈a1 − a2, . . .〉−

The right sides of both expressions coincide, since a2 = a2−a1 mod A′′.
Case (3) is similar to Case (2).

In Case (4), we have

〈a1, a2, . . .〉 7→ 0

and

〈a1 − a2, a2, . . .〉+ 〈a1, a2 − a1, . . .〉 7→
δgena1−a2∈A′′ · 〈a2 mod A′′, . . .〉 ⊗ 〈a1 − a2, . . .〉−

+ δgena2−a1∈A′′ · 〈a1 mod A′′, . . .〉 ⊗ 〈a2 − a1, . . .〉−,

the terms on the right cancel by (5.1). �

A straightforward check shows that ∆ descends to a Z-linear homo-
morphism

(5.6) ∆− :M−
n′+n′′(G)→M−

n′(G
′)⊗M−

n′′(G
′′).

Denote by G• a flag of subgroups

0 = G≤0 ( G≤1 ( . . . ( G≤r = G,

let r be its length. Consider the diagram of homomorphisms

M−
n (G) �

⊕
n1+n2=n

G• of lengths 2

M−
n1

(gr1(G•))⊗M−
n1

(gr2(G•))

�
⊕

n1+n2+n3=n
G• of lengths 3

M−
n1

(gr1(G•))⊗M−
n2

(gr2(G•))⊗M−
n3

(gr3(G•)) � · · ·

where the right arrows are the natural simplicial extensions of the co-
multiplication ∆− (given by alternating sums) and the left arrows are
corresponding extensions of the multiplication maps. We obtain two
complexes

C•,−(G, n), C−• (G, n),

with differentials d∆− and d∇− of degree (+1) and (−1), respectively.
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Theorem 10. Let G be a finite cyclic group. Then the cohomology of
both complexes

C•,−(G, n), C−• (G, n),

after tensoring by Q, is concentrated in degree 0.

Proof. The assumption that G is cyclic will only be used at the last
step of the proof.

Let
M∼

n (G)

be the Q-vector space generated by symbols

〈a1, . . . , an〉∼

satisfying the symmetry condition (S), such that a1, . . . , an generate A,
and such that aj 6= 0, for all j. There is a natural map of Q-vector
spaces

M∼
n (G)→M−

n (G)⊗Q,
given by

(5.7) 〈a1, . . . , an〉∼ 7→ 〈a1, . . . , an〉−

Consider the co-multiplication

∆∼ :M∼
n′+n′′(G)→M∼

n′(G
′)⊗M∼

n′′(G
′′),

defined by

(5.8) 〈a1, . . . , an〉∼ 7→
∑
〈aI′ mod A′′〉∼ ⊗ 〈aI′′〉∼,

where I ′, I ′′ ( I are nonempty subsets such that

• I ′ t I ′′ = {1, . . . , n},
• I ′′ = {i | ai ∈ A′′ with

∑
i∈I′′ Zai = A′′}.

Similarly, we have a multiplication map

∇∼ :M∼
n′(G

′)⊗M∼
n′′(G

′′)→M∼
n′+n′′(G

′)

defined by formulas similar to (5.3). We obtain two complexes, as
above:

C•,∼(G, n), C∼• (G, n),

with corresponding differentials by d∇∼ and d∆∼ . We have natural
surjective homomorphisms of complexes

C•,∼(G, n) � C•,−(G, n)⊗Q, C∼• (G, n) � C−• (G, n)⊗Q,
induced by the maps

〈a1, . . . , ani〉∼ 7→ 〈a1, . . . , ani〉−.
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Clearly, these maps are compatible with respective differentials; here
we use the fact that symbols 〈a1, . . . , ani〉− vanish, modulo torsion, if
at least one aj = 0.

Consider the following statements:

(1) H>0(C•,∼(G, n)) = 0,
(2) The operator

∆∼ = d∆∼ ◦ d∇∼ + d∇∼ ◦ d∆∼ ,

is invertible in degree > 0,
(3) The operator

∆− = d∆− ◦ d∇− + d∇− ◦ d∆− ,

is invertible in degree > 0,
(4) H>0(C•,−(G, n)) = 0, H>0(C∼• (G, n)) = 0.

We have a sequence of implications

(1)⇒ (2)⇒ (3)⇒ (4).

Indeed:

• (1) and (2) are equivalent, this follows from the fact that dif-
ferentials d∇∼ and d∆∼ are adjoint with respect to a positive-
definite quadratic form, given by the identity matrix in the
natural basis.
• (2) ⇒ (3), since we have a surjective homomorphism of com-

plexes.
• (3)⇒ (4), since the Laplacian ∆− is an endomorphism of both

complexes

C•,−(G, n)⊗Q, C−• (G, n)⊗Q,

which is homotopic to zero, for both complexes. The invertibil-
ity of this endomorphism on degrees > 0 implies invertibility
in cohomology, in degrees > 0, and hence implies vanishing of
cohomology in those degrees.

Hence it suffices to prove statement (1). For this, we will construct
a homotopy

h : C∼j (G, n)→ C∼j−1(G, n), j = 1, . . .

such that

(5.9) ∆∼h := h ◦ d∆∼ + d∆∼ ◦ h
is invertible, in degrees > 0.



24 MAXIM KONTSEVICH, VASILY PESTUN, AND YURI TSCHINKEL

Recall, that

C∼j (G, n), j ≥ 0,

is a direct sum of terms labeled by flags of subgroups

0 = G≤0 ( G≤1 ( . . . ( Gr = G, r = j + 1.

Passing to characters, we obtain a chain of surjective homomorphisms

0 = A≤0

6=
� A≤1

6=
� · · ·

6=
� A≤r = A.

We define h as follows:

M∼
n1

(A≤1)⊗M∼
n2

(Ker(A≤2 � A≤1))⊗ · · · →M∼
n1+n2

(A≤2)⊗ · · ·

acting as the identity on the omitted factors, and as

〈a1, . . . , an1〉∼ ⊗ 〈b1, . . . , bn2〉∼ 7→ 〈ψ(a1), . . . , ψ(an1), b1, . . . , bn2〉∼,

on the first two terms, where

ψ : A≤1 → A≤2

is a section of the natural surjection, defined below.
We now use the assumption that G, and hence all A≤j are cyclic.

Write

G = Z/NZ =
∏
i

Z/pkii Z,

and identify

Z/pkii Z = {0, . . . , pi − 1}ki ,
by regarding the sequence of digits in the base pi. In this setup, there
is a natural lift

ψ : A≤1 → A≤2

by adding zeroes to the corresponding sequences of digits, for all pi.
Note that the differential d∆∼ is given by removing digits in this pre-
sentation. The operator (see Equation (5.9))

∆∼h − Id

acting on Cj,∼(G, n), for j ≥ 1, is nilpotent, since it strictly increases
the number of zeroes in our collection of digit sequences. Therefore,
∆∼h is invertible in degrees ≥ 1. �

Remark 11. For noncyclic G, the structure of cohomology of C•,− is
more complicated. Let G = (Z/pZ)2. In this case, the complex is

M−
2 (G)→ ⊕p+1 copies M−

1 (Z/pZ)⊗M−
1 (Z/pZ).



EQUIVARIANT BIRATIONAL GEOMETRY 25

We claim that this map fails to be surjective, for p ≥ 3. Indeed, it
suffices to produce a nontrivial functional on the right side, vanishing
on the image of the differential d∆− . We can describe

Ker(d∆−)⊗Q

as the space of Q-valued functions f on pairs of linear independent
vectors a1, a2 ∈ (Z/pZ)2, such that

• f(a1, a2) = −f(−a1, a2) = −f(a1,−a2) = f(a1, a2 + λa1), for
all λ ∈ Z/pZ,
• f(a1, a2) + f(a2, a1) = 0.

The first property describes functionals on C1,−(G, 2) and the second
condition means that f is in Ker(d∆−). Here we do not use the defin-
ing relation (M) for M2(G). Solutions of this system of functional
equations are given by maps

f(a1, a2) = g(a1 ∧ a2)

where g is any map

g := (Z/pZ)× = ∧2(Z/pZ) \ 0→ Q,

which is odd, i.e., g(−λ) = −g(λ), for all λ. Hence

H1(C•,−(G, 2))⊗Q 'M1(Z/pZ)⊗Q = Q(p−1)/2.

We define
(5.10)

M−
n,prim(G) := Ker

M−
n (G)→

⊕
n′+n′′=n,
n′,n′′≥1
0(G′(G

M−
n′(G

′)⊗M−
n′′(G/G

′)

 ,

this is the cohomology of the complex C•,−(G, n) in degree 0, with
differential d∆. We define
(5.11)

M−
n,coprim(G) := Coker

M−
n (G)←

⊕
n′+n′′=n,
n′,n′′≥1
0(G′(G

M−
n′(G

′)⊗M−
n′′(G/G

′)

 ,
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this is the cohomology of the complex C−• (G, n) in degree 0, with dif-
ferential d∇. Theorem 10 implies that, for G cyclic, we have

(5.12) dim(M−
n,prim(G)⊗Q) = dim(M−

n,coprim(G)⊗Q)

and

(5.13)

dim(M−
n (G)⊗Q) =

∑
r

∑
n1+···+nr=n
G• of lengths r

r∏
i=1

dim(M−
ni,prim

(gri(G•))⊗Q).

Using ∇−, we can obtain a homomorphism of vector spaces

M−
n1,prim

(gr1(G•))⊗ · · · ⊗M−
nr,prim

(grr(G•))⊗Q→M−
n (G)⊗Q

Similarly, using ∆−, we obtain a homomorphism of Q-vector spaces

M−
n1,coprim

(gr1(G•))⊗ · · · ⊗M−
nr,coprim

(grr(G•))⊗Q←M−
n (G)⊗Q

In view of the numerical identities (5.12) and (5.13) it is tempting to
guess that the above maps are isomorphisms of Q-vector spaces.

Now consider the diagram of homomorphisms

Mn(G)→
⊕

n1+n2=n
G• of lengths 2

Mn1(gr1(G•))⊗M−
n1

(gr2(G•))

→
⊕

n1+n2+n3=n
G• of lengths 3

Mn1(gr1(G•))⊗M−
n2

(gr2(G•))⊗M−
n3

(gr3(G•))→ · · ·

where

• G• is a flag of subgroups of type

0 = G≤0 ⊆ G≤1 ( . . . ( G≤r = G, r ≥ 1,

with strict inclusions, except in the first step;
• in each term, the leftmost factor is the full group, and not the

quotient by the relation (5.1).

Here the differential uses both maps ∆ and ∆−. Again, this is a com-
plex, which we denote by

C•(G, n),

notice that here we do not have a dual differential in the other direction.

Theorem 12. Let G be a finite cyclic group. Then the cohomology of
the complex

C•(G, n),

after tensoring by Q, is concentrated in degree 0.
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Proof. The proof is similar to the one given for Theorem 10. The key
observation is that for finite cyclic groups, the projection µ− defined in
Equation (5.2) admits a section:

(5.14) ν :M−
n (G)→Mn(G),

which on symbols is given by the formula:

(5.15) 〈a1, . . . , an〉− 7→
∑

ε1,...,εn

(−1)ε1+...+εn〈ε1a1, . . . , εnan〉,

where εi ∈ {+1,−1}, and the sum is over all possibilities.
For n = 1, this is clearly compatible. To check the defining relations

in general, it suffices to consider the case n = 2. For

a, b ∈ Z/NZ, gcd(a, b,N) = 1,

Equation (5.15) translates to

(5.16) 〈a, b〉− 7→ 〈a, b〉+ 〈−a,−b〉 − 〈−a, b〉 − 〈a,−b〉.

We need to verify that the relation

〈a, b〉− = 〈a, b− a〉− + 〈a− b, b〉−

is mapped to a relation in M2(Z/NZ). We write out the relations for
each term in (5.16):

〈a, b〉+ 〈−a,−b〉 − 〈−a, b〉 − 〈a,−b〉
?
= 〈a, b− a〉+ 〈−a, a− b〉 − 〈−a, b− a〉 − 〈a, a− b〉

+ 〈a− b, b〉+ 〈b− a,−b〉 − 〈b− a, b〉 − 〈a− b,−b〉.

The first terms on each line (and the second terms, considered sepa-
rately) give a relation in M2(Z/NZ). It suffices to check

− 〈−a, b〉 − 〈a,−b〉
?
= −〈−a, b− a〉 − 〈a, a− b〉 − 〈b− a, b〉 − 〈a− b,−b〉.

Replacing a 7→ −a, we have to show that

〈a, b〉+ 〈−a,−b〉
?
= 〈a, b+ a〉+ 〈−a,−a− b〉+ 〈b+ a, b〉+ 〈−a− b,−b〉.

Using the relations

〈a, b+a〉 = 〈a, b〉+ 〈−b, b+a〉, 〈−a,−b−a〉 = 〈−a,−b〉+ 〈b,−b−a〉,
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we are reduced to showing

δ(a+ b, b) := 〈a+ b, b〉+ 〈−(a+ b), b〉+ 〈a+ b,−b〉+ 〈−(a+ b),−b〉
?
= 0 ∈M2(Z/NZ),

i.e., that

δ(a, b)
?
= 0 ∈M2(Z/NZ).

Note that

δ(a+ b, b) = δ(a+ b, a), δ(a, b) = δ(−a, b) = δ(b, a).

It follows that δ is invariant under the matrices(
1 −1
0 1

)
,

(
0 1
1 0

)
,

which generate GL2(Z/NZ), so that δ(a, b) is constant. Considering
the average and applying the defining relation to each term we obtain

S :=
∑
a,b

δ(a, b) = 2S, thus S = 0.

To prove Theorem 12 we need to show that

Mn(Z/NZ)→
⊕

N=N ′N ′′

Mn′(Z/N ′Z)⊗M−
n′′(Z/N

′′Z), n = n′ + n′′,

is surjective, where the sum is over all exact sequences

0→ Z/N ′′Z→ Z/NZ→ Z/N ′Z→ 0, N = N ′N ′′, N ≥ 2,

of finite cyclic groups. We now use the inverse (after tensoring by Q),
as discussed above:

∇̃ :Mn′(Z/N ′Z)⊗M−
n′′(Z/N

′′Z)→Mn(Z/NZ), n = n′ + n′′,

which on generators is given by

〈a′1, . . . , a′n′〉 ⊗ 〈b1, . . . , bn′′〉−

7→
∑

all lifts
ε1,...,εn′′

(−1)ε1+···+εn′′ 〈a1, . . . an′ , b1, . . . , bn′′〉,

where the sum is over all lifts ai to Z/NZ of a′i ∈ Z/N ′Z and all
possibilities for εj ∈ {+1,−1} (see the definition of ν, (5.14)). This is
compatible with defining equations.

�
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We now define
(5.17)

Mn,prim(G) = Ker

Mn(G)→
⊕

n′+n′′=n
n′,n′′≥1
0⊆G′(G

Mn′(G
′)⊗M−

n′′(G/G
′)

 ,

this is the cohomology of the complex in degree 0; note that the inclu-
sion G′ could be trivial. We have

M1(G) =M1,prim(G)

for all G; when G = 1 = Z/1Z we have

M1(1) = Z, Mn(1) =Mn,prim(1) = 0, for n ≥ 2.

Theorem 12 implies that there is a noncanonical isomorphism

Mn(G)⊗Q '⊕
r

⊕
n1+···+nr=n
G• of lengths r

Mn1,prim(gr1(G•))⊗ · · · ⊗M−
nr,prim

(grr(G•))⊗Q.

Computer experiments (see Section 12) suggest that, for all N ≥ 1:

•
M2,prim(Z/NZ)⊗Q =M−

2,prim(Z/NZ)⊗Q

and is equal to the dimension of the space of cusp forms of
weight 2 for Γ1(N); we will discuss this in Section 11,
•

M3,prim(Z/NZ)⊗Q =M−
3,prim(Z/NZ)⊗Q

and is equal to the number of certain cuspidal automorphic
representations for a congruence subgroup of GL3(Z), generated
by a vector invariant under a congruence subgroup,
•

Mn,prim(Z/NZ)⊗Q =M−
n,prim(Z/NZ)⊗Q = 0, n ≥ 4,

Theorems 10 and 12 allow us to compute Q-ranks ofMn(Z/NZ) using
the
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• Euler function:

dim(M1,prim(Z/NZ)⊗Q) = φ(N), N ≥ 1

dim(M−
1,prim(Z/NZ)⊗Q) =

{
0 N = 2,

φ(N)/2 N ≥ 3.

• well-known dimensions of the spaces of cusp-forms for Γ1(N),
which are given by closed formulas in N , e.g.,

N ... 11 12 13 14 15 16 17 18 19 20 . . . 180 181

0 1 0 2 1 1 2 5 2 7 3 . . . 705 1276

• somewhat mysterious dimensions in the case n = 3, e.g,

N 43 51 52 59 63 67 68 72 73 75 . . . 239 240

1 1 1 1 2 2 1 1 8 4 . . . 3 22

Example 13. Theorem 12 implies that

dim(Mn(Z/3n−1Z)⊗Q) = 1, n ≥ 1,

coming from the term

M1,prim(Z/1Z)⊗M−
1,prim(Z/3Z)⊗ · · · ⊗M−

1,prim(Z/3Z)︸ ︷︷ ︸
(n−1)times

.

Directly, we see that the co-multiplications ∆,∆− give homomorphisms:

Hom(M(−)
n1

(G),Q)⊗ Hom(M(−)
n2

(G),Q)→ Hom(M(−)
n (G),Q).

Using explicit nonzero elements

(〈0〉 7→ 1) ∈ Hom(M1(Z/1Z),Q),

(〈±1 mod 3〉− 7→ ±1) ∈ Hom(M−
1 (Z/3Z),Q)

we obtain an explicit functional on Mn(Z/3n−1Z) which maps

〈1 mod 3n−1, 3 mod 3n−1, . . . , 3n−1 mod 3n−1〉 7→ 1,

hence is nonzero. In particular, we have

dim(Mn(Z/3n−1Z)⊗Q) ≥ 1.

Similarly, one can show that

dim(Mn(Z/2n−1Z)⊗ F2) ≥ 1,
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Thus we obtain explicit nontrivial invariants for equivariant birational
actions of G = Z/3n−1Z on n-dimensional varieties. Surprisingly, ex-
periments show that the nontrivial invariant in Hom(Mn(Z/2n−1Z),F2)
lifts to the trivial element in Hom(Bn(Z/2n−1Z),F2), for n = 2, 3, 4, 5.

Experiments suggest that

dim(Mn(Z/NZ)⊗Q) = 0, for all N < 3n−1

and

dim(Mn(Z/NZ)⊗ F2) = 0, for all N < 2n−1.

Moreover,

dim(Bn(Z/NZ)⊗ F2) = 0, for all

{
N < 2n − 1 n = 2, 3,

N < 2n−1 n ≥ 4.

6. Hecke operators

In this section, we define analogs of Hecke operators onMn(G). Fix
a prime ` not dividing #G and an integer 1 ≤ r ≤ n− 1. Put

(6.1) T`,r(ψ(L, χ,Λ)) :=
∑

L⊂L′⊂L⊗R,L′/L'(Z/`Z)r

ψ(L′, χ,Λ),

where χ is now interpreted as an element of L′ ⊗ A, via inclusion

L⊗ A ⊂ L′ ⊗ A,

the surjectivity property for χ ∈ L′⊗A follows from the surjectivity of
χ ∈ L⊗A and the assumption on coprimality of ` and the order of G.

Proposition 14. The Hecke operators T`,r are well-defined onMn(G),
and commute with each other.

Proof. Follows from the additivity of (4.4) and (6.1). �

Example 15. We consider the case n = 2 and G = Z/NZ ' A. Then
Mn(G) is generated by

〈a1, a2〉, a1, a2 ∈ Z/NZ, gcd(a1, a2, N) = 1,

such that

• 〈a1, a2〉 = 〈a2, a1〉,
• 〈a1, a2〉 = 〈a1, a2 − a1〉+ 〈a1 − a2, a2〉, for all a1, a2.
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We write down an example of a Hecke operator onM2(G). For each
` coprime to N we have only one Hecke operator T` = T`,1.

Assume that N is odd and ` = 2. Let

L = Z2, χ = (1, 0)⊗ a1 + (0, 1)⊗ a2, Λ = R2
≥0,

the standard octant. There are three overlattices of L of index 2,
corresponding to the three elements of P1(F2):

• L′0 := Z · (1
2
, 0) + Z · (0, 1),

• L′1 := Z · (1
2
, 1

2
) + Z · (0, 1) = Z · (1

2
, 1

2
) + Z · (1, 0),

• L′∞ := Z · (0, 1
2
) + Z · (1, 0).

The corresponding cones in the first and third case are basic simplicial,
whereas in the second case it is not basic and can be decomposed in
the union of two basic simplicial cones, with respect to L′1:

Λ = Λ1 ∪ Λ2,

Λ1 = R≥0 · (1, 0) + R≥0 · (1, 1), Λ2 = R≥0 · (1, 1) + R≥0 · (0, 1).

Therefore,

T2(〈a1, a2〉) = 〈2a1, a2〉+
(
〈a1 − a2, 2a2〉+ 〈2a1, a2 − a1〉

)
+ 〈a1, 2a2〉.

The middle term follows from equalities

e1⊗a1+e2⊗a2 =e1⊗(a1−a2)+
e1 + e2

2
⊗2a2 =

e1 + e2

2
⊗2a1+e2⊗(a2−a1).

We leave it as an exercise to write down a similar formula for the action
of T3 on M2(G) and T2 on M3(G).

To define Hecke operators T ∗`,r in the co-vector version, we consider
sublattices L′ ⊂ L, of index `r, such that the quotient is isomorphic to
(Z/`Z)r. In particular, T ∗2 = T ∗2,1 on M∗

2(G) is given by

T ∗2 ([a1, a2]∗) = [2a1, a2]∗ + [2a1, a1 + a2]∗ + [a1 + a2, 2a2]∗ + [a1, 2a2]∗

and T ∗2,1 on M3(G) by

T ∗2,1([a1, a2, a3]∗) = [2a1, a2, a3]∗ + [a1, 2a2, a3]∗ + [a1, a2, 2a3]∗+

+[2a1, a1 + a2, a3]∗ + [a1 + a2, 2a2, a3]∗+

+[a1, 2a2, a2 + a3]∗ + [a1, a2 + a3, 2a3]∗+

+[2a1, a2, a1 + a3]∗ + [a1 + a3, a2, a3]∗+

+[2a1, a1 +a2, a1 +a3]∗+[a1 +a2, 2a2, a2 +a3]∗+[a1 +a3, a2 +a3, 2a3]∗+

+[a1 + a2, a2 + a3, a1 + a3]∗.

Remark 16. The groupsMn,prim(G)− defined in (5.11) are preserved
under the action of Hecke operators.
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Part 2

7. Refined birational invariants

There is a refinement of Bn(G), connecting it to the Burnside group
of varieties considered in [KT17]. Let K be an algebraically closed field
of characteristic zero. Let

Birn−1,m(K), 0 ≤ m ≤ n− 1,

be the set of equivalence classes of (n−1)-dimensional irreducible vari-
eties over K, modulo K-birational equivalence, which are K-birational
to products W × Am, and not to W ′ × Am+1, for any W ′. Let

Bn(G,K) := ⊕n−1
m=0 ⊕[Y ]∈Birn−1,m(K) Bm+1(G),

with

B1(G) =

{
⊕a∈(Z/NZ)× Z if G = Z/NZ, N ≥ 2,

0 if G is not cyclic.

Let X be an irreducible K-variety with a generically free action of G.
As in Section 1, we may assume that G acts regularly; let

XG = tαFα
be the decomposition of the fixed point locus into irreducible, disjoint,
components. The spectrum for the G-action in the tangent space to X
at any point xα ∈ Fα is given by

a1, . . . , an−dim(Fα), 0, . . .︸ ︷︷ ︸
dim(Fα)

, ai 6= 0.

Define
βK(X) ∈ Bn(G,K)

by taking into account the birational types of fixed loci under G, as
follows: write

Yα := Fα × An−1−dim(Fα)

and let mα ∈ Z>0 be the maximal integer such that

Yα ∼ Zα × Amα ,

clearly,
mα ≥ n− 1− dim(Fα).

Then
βK(X) =

∑
α

βα(X),
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where

βα(X) = [a1, . . . , an−dim(Fα), 0, . . .︸ ︷︷ ︸
n−1−mα

] ∈ copy of Bmα+1(G),

labeled by the birational type of Yα.
The invariance under blowups follows from the fact that all (n− 1)-

dimensional birational types arising as labels in each particular subcase
of the proof of Theorem 3 coincide with each other.

8. Hecke operators: variants

Let G be a finite abelian group and A its group of characters. An-
other variant concerns coefficients. It works both for the vector and
co-vector versions. For simplicity, we consider symbols with coefficients
in Q. Consider an irreducible algebraic representation

ρλ : GLn(Q)→ Aut(Vλ),

with highest weight

λ = (λ1 ≤ . . . ≤ λn), λi ∈ Z.
The representation ρλ defines a functor from the groupoid of n-

dimensional Q-vector spaces to the category VectQ of all Q-vector
spaces, which we denote by the same letter. In particular, for any
lattice L of rank n we can speak of

ρλ(L⊗Q) ∈ VectQ.

For example, if ρλ is the m-th symmetric power Symm(V ) of the stan-
dard representation, i.e., λ = (0, . . . , 0,m), then

ρλ(L⊗Q) = Symm(L⊗Q).

Consider the Q-vector space

Mn(G, ρλ)

generated by symbols

ψ(L, χ,Λ, v),

on isomorphism classes of quadrupels, where L, χ,Λ are as in Section 6
and

v ∈ ρλ(L⊗Q),

subject to relations

• ψ(L, χ,Λ, v1 + v2) = ψ(L, χ,Λ, v1) + ψ(L, χ,Λ, v2),
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• ψ(L, χ,Λ, v) =
∑k

i=1 ψ(L, χ,Λi, v), for any decomposition

Λ = Λ1 ∪ · · · ∪ Λk.

Here, one can assume that subcones Λi are basic simplicial and that
the decomposition is standard, as in Section 6, or simply that Λi are
finitely-generated rational subcones of full dimension, with disjoint in-
teriors. The action of Hecke operators on Mn(G, ρλ) is defined as in
(6.1).

The co-vector version of this construction is straightforward.

Remark 17. We expect that for n = 2, G = Z/NZ, and ρλ given by
the m-th symmetric power, the Q-vector spaces Mn(G, ρλ), endowed
with the action of Hecke operators T`,r, are related to modular forms
of weight (m+ 2), for the congruence subgroup Γ1(N).

9. Algebraic versions of automorphic forms

A further generalization of results in Section 8 takes place in the
following context. Let G be a connected reductive group over Q. There
is a notion of admissible Harish-Chandra modules E for G(R): these are
C-vector spaces of countable dimension, endowed with an action of the
maximal compact subgroup K ⊂ G(R) and a compatible action of the
complexified Lie algebra gC = Lie(G)⊗C. The action of K decomposes
E as a countable sum of finite-dimensional representations of K, each
appearing with finite multiplicity. We assume that the center z ⊂ U(g)
acts by scalars, called the central character of E . The group G(R) acts
on the Schwartz completion of S(E). Let S(E)′ be the continuous dual
space, it is a subspace of the algebraic dual space E∨. The congruence
subgroups of G(Q) have finite-dimensional invariants in S(E)′. One
can view the theory of automorphic forms as the study of these finite-
dimensional spaces of invariants, together with the action of a Hecke
algebra. Note that in the last step we consider S(E)′ only as a G(Q)-
module, and not as a G(R)-module.

Almost all automorphic forms are not related to motives or Galois
representations; the part relevant for number theory (called algebraic
automorphic forms) is specified by a certain integrality constraint on
the central character.

Returning to considerations above, we see that we can imitate the
theory of automorphic forms, with representations of G(Q) in S(E)′,
by a different class of representations of G(Q), defined over Q. Assume
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that G = GLn, over Q. Let

(9.1) Fn = 〈XΛ〉⊗Q = FL,Z ⊗Q, for L = Zn,

be the Q-vector space generated by characteristic functions XΛ of con-
vex finitely generated rational polyhedral cones Λ ⊂ Rn, modulo func-
tions with support of dimension ≤ (n− 1). Note that

Fn ⊂ L∞(Rn),

the space of bounded measurable functions. Clearly, G(Q) = GLn(Q)
acts on Fn. Let

ρ = ρλ : GLn(Q)→ Aut(Vλ)

be a finite-dimensional irreducible representation as above. Let

Γ ⊂ GLn(Q)

be an arithmetic subgroup. The spaces of invariants, respectively, coin-
variants

(9.2) H0(Γ,F∨n⊗V∨λ ) = (F∨n⊗V∨λ )Γ, H0(Γ,Fn⊗Vλ) = (Fn⊗Vλ)Γ,

are dual to each other finite-dimensional spaces, since the module of
characteristic functions is finitely-generated over the group ring of the
arithmetic subgroup Γ.

For example, for n ≥ 2, if ρ is the trivial representation, and Γ ⊂
GLn(Z) = Aut(L) is the stabilizer of the vector

χ = (1, 0, 0, . . .) ∈ L⊗ Z/NZ

then the group of coinvariants is (up to torsion) our groupMn(Z/NZ).
Similarly, by taking the stabilizer of the coordinate co-vector modulo
N , we obtain the co-vector version M∗

n(Z/NZ).
More generally, for any finite abelian group G with character group

A such that G can be generated by at least n elements let us choose
an element

χ ∈ L⊗ A, L = Zn,
such that the induced homomorphism L∨ → A is surjective. We define

Γ(G, n) ⊂ GLn(Z)

as the stabilizer of χ. Note that the conjugacy class of the stabilizer
does not depend on the choice of χ. Then, for n ≥ 2 and such that G
is generated by at most n elements, we have

(9.3) Mn(G)⊗Q = H0(Γ(G, n),Fn).
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A key observation is that Fn is a GLn(Q)-module which is finitely
generated as GLn(Z)-module; moreover,

(9.4) Res
GLn(Q)
GLn(Z) (Fn) ∈ Perf(Q[GLn(Z)]−mod),

i.e., Fn, considered as a GLn(Z)-module, admits a finite-length reso-
lution by finitely-generated projective modules over the group ring of
GLn(Z) (see Proposition 19).

Question 18. Are there other interesting GLn(Q)-modules which are
finitely-generated as GLn(Z)-modules, or more strongly, belong to

Perf(Q[GLn(Z)]−mod)?

An even more general question would be to find a bounded from
above complex of representations of G(Q) which, after restriction to
G(Z), is quasi-isomorphic to a complex of finitely-generated projective
modules over the group ring.

Both Q-vector spaces in (9.2) carry actions of Hecke operators, which
have algebraic eigenvalues in these spaces. By (9.4),

dim(Hi(Γ,Fn ⊗ Vλ)) <∞, for all i ≥ 0,

and the spaces, for i ≥ 1, also carry actions of Hecke operators with
algebraic eigenvalues.

We will see below that our representation Fn falls into a well-studied
subclass of cohomological automorphic forms, i.e., those realized in co-
homology of arithmetic groups with coefficients in finite-dimensional
representations ρ.

Recall the definition of Steinberg modules: Let V/Q be a Q-vector
space of dimension n ≥ 0, and Tn the simplicial complex of flags of
Q-vector subspaces of V , i.e., the geometric realization of the poset of
nontrivial subspaces in V . Put

St(V ) :=


Hn−2(Tn,Z) n ≥ 3

Z-combinations of lines in V with total weight 0 n = 2

Z n = 0, 1.

This is a representation of Aut(V ), which we denote by Stn for V =
Qn. One of the roles of the Steinberg module is as a dualizing module,
in the sense that

Hi(SLn(Z), Stn ⊗M) = Hn(n−1)/2−i(SLn(Z),M),

for any representation M of SLn(Z) with coefficients in Q.
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Let
F(V ) = Fn,

as in (9.1), where the identification depends on the choice of a basis of
V , different choices are related by the action of Gn(Q) on Fn. It has a
filtration by submodules

0 ⊂ F≤0(V ) ⊂ F≤1(V ) ⊂ · · · ⊂ F≤n(V ) = F(V ),

where F≤i(V ) are generated by functions pulled back from quotient
spaces of dimension i. In particular,

F≤0(V ) = Z = {constant Z-valued functions on V }.
The following fact is presumably well-known:

Proposition 19.

gri(F(V )) = ⊕V�V ′,dim(V ′)=i St(V ′)⊗ or(V ′),
where or(V ′) is the 1-dimensional Z-module of orientations of V ′, i.e.,
GL(V ′) acts via the sign of the determinant.

Proof. Let us first prove that

grn(F(V )) = F(V )/F≤n−1(V )

is isomorphic to
St(V )⊗ or(V ).

We apply the Fourier transform to elements of F(V ) viewed as distri-
butions with moderate growth on V ⊗ R ' Rn.

For example, the Fourier transform of the characteristic function of
the standard coordinate octant (R≥0)n is equal to the distribution

n∏
i=1

(
√
−1 v.p.(1/xi) + πδ(xi))

n∏
i=1

|dxi|

with values in volume forms, where v.p.(1/x) is the unique odd distri-
bution of homogeneity degree −1 on R1 equal to 1/x on R \ 0.

The image of F≤n−1(V ) is characterized by the property that the
support of the distribution is contained in a finite union of hyperplanes.
Therefore, the quotient group F(V )/F≤n−1(V ) is identified with the
abelian group generated by volume elements on the dual space (V⊗R)∨,
of the form

(
√
−1)n|dx1 ∧ · · · ∧ dxn|/(x1 · · ·xn),

where x1, . . . , xn are coordinates in (V ⊗R)∨ in a rational basis. Choos-
ing an orientation of V (or, equivalently, of V ∨) and dividing by (

√
−1)n,
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we identify the latter space with top-degree meromorphic differential
forms on the vector space V ∨ considered as an algebraic variety An

Q over
Q spanned by forms of type ∧ni=1(dxi/xi) for coordinates in a rational
basis. This is an alternative description of the Steinberg module. The
case of deeper terms of the dimension filtration is similar. �

This implies that the computation of cohomology with coefficients
in F(V ), tensored with finite-dimensional modules, and, in particular,
of coinvariants, would reduce to the computation of cohomology for
St-modules and their pullbacks from parabolic subgroups. There is
extensive literature on the cohomology of St-modules (see, e.g., [APS18]
and the references therein), but these computations do not capture the
potentially interesting extension data in F(V ).

To summarize, we have a surjective homomorphism

Fn � Stn ⊗ orn,

where
orn : GLn(Q)→ Q×, γ 7→ sgn(det(γ)).

It gives rise to a surjective homomorphism

H0(Γ(G, n),Fn) � H0(Γ(G, n), Stn ⊗ orn).

Proposition 20. There exists a commutative diagram

H0(Γ(G, n),Fn)

'
��

// // H0(Γ(G, n), Stn ⊗ orn)

'
��

Mn(G)⊗Q
µ− // //M−

n (G)⊗Q,

where the horizontal arrows are the natural surjections, the left verti-
cal arrow is the isomorphism (9.3) and the right vertical arrow is an
isomorphism as well.

Proof. The proof of the commutativity of the diagram is straightfor-
ward, we explain only the right vertical isomorphism. Recall that the
Steinberg representation Stn restricted to GLn(Z) is generated by the
set of Z-bases

{(e1, . . . , en)},
modulo relations

• (eσ(1), . . . , eσ(n)) = (−1)n(e1, . . . , en), σ ∈ Sn,
• (e1, e2, e3 . . . , en) = (e1 + e2, e2, e3, . . . , en) + (e1, e1 + e2, . . . , en),
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• (e1, . . . , en) = (−e1, e2, . . . , en),

see, e.g., [CP17, Theorem B] and the references therein. Therefore,
Stn⊗orn, restricted to GLn(Z) is again generated by the set of Z-bases

{(e1, . . . , en)},
but subject to new relations

• (eσ(1), . . . , eσ(n)) = (e1, . . . , en), σ ∈ Sn,
• (e1, e2, e3 . . . , en) = (e1 + e2, e2, e3, . . . , en) + (e1, e1 + e2, . . . , en),
• (e1, . . . , en) = −(−e1, e2, . . . , en).

We see that the first relation is the symmetry relation (S), and the last
relation the anti-symmetry relation (5.1); the second relation translates
to relation (M) for k = 2.

�

Put
Hn := GLn(R)/R×>0 ·On(R);

we have, for n ≥ 2, and G generated by at most n elements,

M−
n (G)⊗Q = H0(Γ(G, n), Stn ⊗ orn)

= HBM
n−1(Γ(G, n)\Hn, orn)

= H
n(n−1)

2 (Γ(G, n)\Hn, or⊗nn )

= H
n(n−1)

2 (Γ(G, n), or⊗nn ).

Indeed, the generator (e1, . . . , en) of Stn, where e1, . . . , en is the stan-
dard basis of Zn, maps to the homology class of the Borel-Moore chain

(R×>0)n−1 ' Diag>0,n(R)/R×>0 ⊂ Hn.

The third isomorphism is Poincare duality.
Let Γ ⊂ GLn(Z) be an arithmetic group. The cuspidal part of co-

homology, with coefficients in a finite-dimensional representation ρ of
GLn(Q), is

H∗cusp(Γ, ρ) := Image (H∗c (Γ\Hn, ρ)→ H∗(Γ\Hn, ρ)) .

Notice, that orn, restricted to GLn(Z) coincides with the algebraic rep-
resentation detn : γ 7→ det(γ).

It is known that
H i
cusp(Γ, ρ) 6= 0

only for
n(n+1)

2
− 1

2
−

[n−1
2

]

2
≤ i ≤

n(n+1)
2
− 1

2
+

[n−1
2

]

2
.
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The upper bound coincides with n(n−1)
2

for n = 1, 2, 3 and is strictly
smaller for n ≥ 4. Our experiments (see Section 12) suggest that

M−
n,prim(G) = H

n(n−1)
2

cusp (Γ(G, n), or⊗nn ),

hence vanish for n ≥ 4.
In the following section, we will see that, for n = 2, the main actors

are modular forms of weight 2, and sums of two Tate motives twisted
by characters.

Among other variants in the definition of F are:

• using Z or finite fields as coefficients, instead of Q-coefficients,
one can study torsion effects.
• one can omit the condition of factoring by characteristic func-

tions with support in dimension ≤ (n− 1).
• when the representation ρ is on the space of degree-d polynomi-

als, one can consider polynomial splines, with respect to some
complete rational fan Σ on Rn, i.e., functions on Rn which are
piecewise polynomial on the cones of Σ, with Q-coefficients, and
with continuous derivatives up to some fixed d′ < d.

The last example is especially interesting as such representations are
realized as submodules of extensions of Steinberg modules, and coin-
variants with values in such modules could, potentially, capture higher
homology groups of Steinberg modules, thus making them computa-
tionally much more accessible.

We finish this section with a challenge concerning the possibility, in
the framework of Question 18, to go beyond the realm of cohomological
(but still algebraic) automorphic forms.

Question 21. Can one find a representation of SL2(Q) whose restric-
tion to SL2(Z) is finitely-generated, and whose Hecke spectrum cap-
tures modular forms of weight 1 and Maass forms with Laplace eigen-
value 1/4?

Morally, such modules should be realized in a class of odd/even dis-
tributions on R2 of homogeneity degree −1.

10. Lattice-theoretic approach to multiplication and
co-multiplication

In this section, we reinterpret the multiplication and co-multiplication
on M−

n (G), defined in Section 5, in terms of lattices.
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For any n ≥ 1 and any nontrivial finite abelian group G we define

En(G) := Q{epi Zn�G},

it is a finite-dimensional permutation module for GLn(Z). Define the
stack (with finite stabilizers)

Xn := GLn(Z)\GLn(R)/On(R).

This stack parametrizes rank n Arakelov bundles on ̂Spec(Z), i.e., pairs
(L, h), where L is a lattice of rank n and h is a positive-definite qua-
dratic form on L⊗ R. Let Ln,G be a Q-local system on Xn associated
with the representation En(G)⊗ orn. Then we have

(10.1) M−
n (G)⊗Q = HBM

n (Xn,Ln,G).

The multiplication ∇−, defined in in Section 5, admits the following
reformulation in this language: consider flags G• of subgroups

0 = G≤0 ( G≤1 ⊂ . . . ( G≤r = G, r ≥ 1,

and sequences of positive integers n1, . . . , nr, such that n1+· · ·+nr = n.
We have a homomorphism

(10.2)
r⊗
i=1

HBM
ni

(Xni ,Lni,gri(G•))→ HBM
n (Xn,Ln,G),

defined as follows: consider the graph

Y∇n1,...,nr
⊂ (Xn1 × · · · × Xnr)× Xn,

of the closed embedding (hence proper map)

Xn1 × · · · × Xnr → Xn,

given by

(L1, h1), . . . , (Lr, hr) 7→ (L = L1 ⊕ · · · ⊕ Lr, h = h1 � · · ·� hr).

We have a diagram

Y∇n1,...,n
πn1,...,nr

wwooo
ooo

ooo
ooo πn

""F
FF

FF
FF

F

Xn1 × · · · × Xnr Xn

Here, πn1,...,nr is an isomorphism. The morphism of local systems

π∗n1,...,nr
(Ln1,gr1(G•) � · · ·� Lnr,grr(G•))→ π∗nLn,G

is given, at any point, by
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• a canonical identification of orientation bundles

or(L1)⊗ · · · ⊗ or(Lr)
∼−→ or(L)

• a morphism of fibers of local systems associated to the permu-
tation modules

(10.3) Q{epi L∨1 �A1} ⊗ · · · ⊗Q{epi L∨r�Ar} → Q{epi L∨�A};

consider

χ ∈ L⊗ A := Hom(L∨, A),

such that the restriction of χ to L∨i ⊂ L∨ takes values in char-
acters of G vanishing on G≤i−1, for all i; such characters induce
characters of gri(G•), and homomorphisms

χi : L∨i → Ai := Hom(gri(G•),C×),

we insist that χi are surjective, for all i (this implies that χ is
surjective as well). Such χ defines a morphism of permutation
modules of rank 1, given by an elementary matrix, with indices

(χ1, . . . , χr), χ

taking the sum over all such elementary matrices defines the
desired homomorphism (10.3).

The co-multiplication ∆−, defined in Section 5, also admits a geo-
metric reformulation. We have a homomorphism

(10.4) HBM
n (Xn,Ln,G)→

r⊗
i=1

HBM
ni

(Xni ,Lni,gri(G•))

defined similarly to (10.2), but instead of the graph Y∇n1,...nr
of a map,

we consider the correspondence

Y∆
n1,...,nr

⊂ Xn × (Xn1 × · · · × Xnr) ,

which is étale over Xn and proper over (Xn1 × · · · × Xnr), and which
can be viewed as a graph of a multi-valued map. In detail, an element
of Yn1,...,nr is given by the data:

• (L, h), a lattice of rank n, with a metric, i.e., a positive qua-
dratic form h on L⊗ R as above,
• flag L• of full sublattices

0 = L≤0 ( L≤1 ( . . . ( L≤r = L.
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• choice of isomorphisms

Li ' gri(L•)

such that the induced metrics on Lni ⊗ R coincide with hi.

We have a diagram

Y∆
n1,...,n

πn

||xx
xx
xx
xx πn1,...,nr

''PP
PPP

PPP
PPP

P

Xn Xn1 × · · · × Xnr .

The morphism of local systems on Yn

π∗nLn,G → π∗n1,...,nr

(
Ln1,gr1(G•) ⊕ · · · Lnr,grr(G•)

)
is given, at any point, by

• a natural isomorphism of orientation bundles

or(L) ' or(L1)⊗ · · · ⊗ or(Lr),

• a morphism of fibers of local systems associated to the permu-
tation modules

(10.5) Q{epi L∨�A} → Q{epi L∨1 �A1} ⊗ · · · ⊗Q{epi L∨r�Ar};

consider

χ ∈ L⊗ A := Hom(L∨, A),

such that it induces a commutative diagram

L∨ = L⊥≤0

����

) L⊥≤1

����

· · · ) L⊥≤r

����
A = G⊥≤0 ) G⊥≤1 · · · ) G⊥≤r

i.e.,

G⊥≤i = χ(L⊥≤i), i = 0, . . . , r − 1.

Such character χ is surjective (case i = 0) and induces surjective
homomorphisms

χi : L∨i → Ai = Hom(Gi), i = 1, . . . , r,

where Li = L≤i/L≤i−1 and Gi = G≤i/G≤i−1. Again, such χ
defines an elementary matrix with indices

χ, (χ1, . . . , χr),
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taking the sum over all such χ we obtain the desired homomor-
phism.

Proposition 22. Using the identifications

M−
n (G)⊗Q = HBM

n (Xn,Ln,G)

and formulas (10.2) and (10.4) we obtain homomorphisms

M−
n1

(G1)⊗ · · · ⊗M−
nr(Gr)⊗Q �M−

n (G)⊗Q

which are the same as those induced from ∆ and ∇ in Section 5.

Proof. The case of the product follows immediately from the defini-
tion: a basis e1, . . . , en of L gives a closed Borel-Moore chain ' Rn

>0,
consisting of diagonal forms h in this basis.

To verify the co-product we need the following: let L ' Zn be the
standard coordinate lattice, up to the action of Sn n (Z/2Z)n inter-
changing the coordinates and acting by sign on each coordinate. We
have a canonical Borel-Moore closed chain

Cn ⊂ ChainsBMn (Xn,Z), ∂(Cn) = 0,

given by the image of positive diagonal matrices. Given a flag

0 = L≤0 ( · · · ( L≤r = L

and using the correspondence

Y∆
n1,...,nr

we obtain a closed Borel-Moore chain

CL• ⊂ ChainsBMn (Xn1 × · · · × Xnr ,Z),

to any point h in Cn we associate a collection

(h1, . . . , hr) ∈ Xn1 × · · · × Xnr .

The main observation is that if the flag is not compatible with the
chosen coordinate decomposition, then the corresponding chain is a
boundary. From this it follows that only the coordinate flags contribute
to the formula. �

Following the reasoning in Section 5, specifically (5.17), we define

HBM
n,prim(Xn,Ln,G) ⊂ HBM

n (Xn,Ln,G)
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as the common kernel of all nontrivial co-multiplication homomor-
phisms (r ≥ 2). Evidently, we have

M−
n,prim(G)⊗Q = HBM

n,prim(Xn,Ln,G),

under the above identifications.
We recall the topological definition of cuspidal cohomology:

Hn,cusp(Xn,Ln,G) := Image
(
Hn(Xn,Ln,G)→ HBM

n (Xn,Ln,G)
)
.

Conjecture 23. For every nontrivial finite abelian group G and every
n ≥ 1, we have

HBM
n,prim(Xn,Ln,G) = Hn,cusp(Xn,Ln,G) ⊂ HBM

n (Xn,Ln,G)

This conjecture is essentially our guess, stated implicitly in Section 5.
Assuming this conjecture, we would obtain the following reformulation:

Conjecture 24. For every nontrivial finite abelian group G and every
n ≥ 1, the natural homomorphism
n⊕
r=1

⊕
n1+···+nr=n
G• of length r

Hn1,cusp(Xn1 ,Ln1,gr1(G•))⊗· · ·⊗Hnr,cusp(Xnr ,Lnr,grr(G•))→

→ HBM
n (Xn,Ln,G)

is an isomorphism.

Representation theory gives a canonical splitting of cohomology of
arithmetic groups into the sum of the cuspidal and the remaining
(Eisenstein) parts, after tensoring by C. Our considerations, for GLn(Z),
suggest that we have a splitting over Q. Namely, define

HBM
n,coprim(Xn,Ln,G)

as the quotient by the sum of images of all nontrivial product maps
(10.2). It is tempting to make a companion conjecture:

Conjecture 25. For every nontrivial finite abelian group G and every
n ≥ 1, the homomorphism

HBM
n (Xn,Ln,G)→

→
n⊕
r=1

⊕
n1+···+nr=n
G• of length r

Hn1,coprim(Xn1 ,Ln1,gr1(G•))⊗· · ·⊗Hnr,coprim(Xnr ,Lnr,grr(G•))

is an isomorphism.
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Conjecture 26. The composition

HBM
n,prim(Xn,Ln,G) ↪→ HBM

n (Xn,Ln,G) � HBM
n,coprim(Xn,Ln,G)

is an isomorphism.

The considerations above fit into a general framework. For n ≥ 1,
let Rn be the set of finite-dimensional irreducible representations of
GLn(Z) which appear as direct summands of tensor products of

• representations of

GLn(Ẑ) =
∏
p

GLn(Zp)

• irreducible algebraic representations

ρλ : GLn(Q)→ Vλ

with highest weight λ.

Obviously, R1 consists of two elements, and Rn are countable infinite
sets for n ≥ 2.

Given

ρ1 ∈ Rn1 , ρ2 ∈ Rn2 , ρ ∈ Rn, for n = n1 + n2,

we can define the multiplicity space

multρρ1,ρ2 ∈ VectC,

a finite-dimensional complex vector space, by

HomGLn1 (Z)×GLn1 (Z)(ρn1 � ρn2 , ρ|GLn1 (Z)×GLn2 (Z)).

The correspondence
Y∇n1,n2

gives rise to a natural homomorphism

multρρ1,ρ2 ⊗H
BM
∗ (Xn, ρn1)⊗HBM

∗ (Xn2 , ρn2)→ HBM
∗ (Xn, ρ).

The collection of these can be organized in the following way: let C be
a semi-simple (in the countable sense) C-linear tensor category, with
countable sums and tensor products commuting with sums, and with
simple objects ερ, corresponding to ρ ∈

∐
n≥1Rn; the tensor product

given by
ερ1 ⊗ ερ2 = ⊕ρ multρρ1,ρ2 ⊗C ερ.

The expression on the right is infinite. Put

A• :=
⊕
n≥1

⊕
ρ∈Rn

HBM
• (Xn, ρ⊗ ερ) ∈ Ob(C)
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The object A• carries the structure of a super-commutative associated
Z-graded nonunital algebra in C. Using chains instead of homology
groups gives rise to a commutative differential Z-graded nonunital al-
gebra which by Koszul duality can be identified with a differential
graded Lie algebra (or L∞-algebra). The next question is: what is this
algebra, or its Koszul dual dg Lie algebra?

The category C itself seems to have a description as a category of
representation of a certain type of an infinite-dimensional semi-group.

In the model example, consider Rfin
n , consisting of irreducible repre-

sentations of the symmetric group Sn. Then the corresponding analog
Cfin of the category C is the a subcategory of Deligne’s category of
representations of glt, where t is a parameter (fractional dimension).

In the second model example, more relevant to our considerations,
let Ralg

n be the set of irreducible algebraic representations

ρλ : GLn(Q)→ Vλ

with highest weights λ. Defining multiplicity spaces multρρ1,ρ2 in a sim-

ilar fashion, we obtain a category Calg, which is the category of highest
weight representations of the (well-known) central extension

1→ C× → G→ GL∞(C)◦ → 1,

where GL∞(C)◦ is the connected component of the identity of the group

{g ∈ Autcont,C−mod(C∞)}, where C∞ := C((t)).

The group G acts on a space of countable dimension

V := ⊕i∈Z ∧
∞
2

+i (C∞).

An analog of Weyl-Schur duality says that, for all n ≥ 1, GLn(C)
acts on V⊗n, commuting with G-action, and identifying highest weight
representations of G of level n (i.e., those where the central extension
acts with character z 7→ zn) with algebraic irreducible representations
of GLn(C).

From our perspective, it would be important to identify explicitly
the category C/p, whose simple objects correspond to irreducible finite-
dimensional representations of the groups GLn(Fp), n ≥ 1, and the
category Cp, whose simple objects correspond to irreducible finite-
dimensional continuous GLn(Zp), n ≥ 1.

We can develop a similar framework for co-multiplication. Given

ρ1 ∈ Rn1 , ρ2 ∈ Rn2 , ρ ∈ Rn, for n = n1 + n2,
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we can define the co-multiplicity space

comultρ1,ρ2ρ ∈ VectC,

a finite-dimensional complex vector space, as

HomPn1,n2 (Z)(ρ|Pn1,n2 (Z) , ρn1 � ρn2),

where

Pn1,n2 ⊂ GLn1

is the stabilizer of the flag Zn1 ⊂ Zn. The correspondence

Y∆
n1,n2

gives rise to a natural homomorphism

comultρρ1,ρ2 ⊗H
BM
∗ (Xn, ρ)→ HBM

∗ (Xn, ρn1)⊗HBM
∗ (Xn2 , ρn2).

We obtain a co-associative co-algebra, without a unit, in a tensor cat-
egory which is no longer symmetric, a priori.

Note that there might be nontrivial extensions between two repre-
sentations from Rn, which suggests that the definition of the category
C and algebra A• could be enhanced by considering extension data.
Also, the category C is not rigid, and hence should interpreted not as
a category of representations of a group but rather of a semi-group.

Finally, all considerations above can be carried over to the number
field case, but in this case, instead of lattices we should consider all
nontrivial finitely-generated torsion-free modules.

11. Case n = 2: modular symbols

We recall the definition of modular symbols of weight 2 for

Γ1(N):=

{
γ ∈ SL2(Z) : γ =

(
1 ∗
0 1

)
mod N

}
, N ∈ Z≥2.

Let M2(Γ1(N)) be the Q-vector space generated by pairs (c, d) with

c, d ∈ Z/N, gcd(c, d,N) = 1,

and subject to relations

(1) (c, d) = −(d,−c) (and hence = (−c,−d) = −(−d, c) ),
(2) (c, d) + (d,−c− d) + (−c− d, c) = 0.
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It is known that M2(Γ1(N)) is naturally identified with Borel-Moore
homology group HBM

1 (X1(N),Q) of the complex modular curve

X1(N) := Γ1(N)\H,

where H is the upper half-plane. The symbol (c, d) corresponds to the
image in X1(N) of the geodesic path from a/c to b/d, where(

a b
c d

)
∈ Γ1(N)

is any element with c, d = c,d mod N .
Using (1) we can rewrite (2) as

(2′) (d, c) = (d, c− d) + (d− c, c).
Indeed, substituting c 7→ −c into (2), we obtain

0
(2)
= (−c, d) + (d, c− d) + (c− d,−c)
(1)
= −(d, c) + (d, c− d) + (c− d,−c)
(1)
= −(d, c) + (d, c− d) + (d− c, c)

There is an involution on M2(Γ1(N))

ι : (c, d) 7→ (−c, d)
(1)
= −(d, c).

Written in the form (c, d) 7→ −(d, c) it obviously preserves relations (2′)
and cyclic anti-symmetry (1). It corresponds to the automorphism of
the first homology group coming from the anti-holomorphic involution
on X1(N) associated with the map τ 7→ −τ̄ , τ ∈ H, on the universal
cover. Denote by M−2 (Γ1(N)) the (−)-eigenspace for the involution ι.

The dimensions are given by

dim(M2(Γ1(N))) = 2g+C(N)−1, dim(M−2 (Γ1(N))) = g+
C(N)− C2(N)

2
,

where

• g = g(N) is the genus of X1(N), which is the same as the
dimension of the space of cusp forms of weight 2 for Γ1(N) (see
the table in Section 5),
• C(N) is the number of cusps (elements of P1(Q)/Γ1(N)), and
• C2(N) is the number of cusps fixed by the anti-holomorphic

involution described above.
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For N = 1, 2, 3, 4, C(N) = C2(N) = 1, 2, 2, 3, respectively; and for
N ≥ 5, the cardinalities C(N), C2(N) are given by

C(N) =
1

2

∑
d|N

φ(d)φ(N/d),

C2(N) =

{
φ(N) + φ(N/2) if N is even,
φ(N) if N is odd.

Now we will discuss the relation to our groups of symbolsM2(Z/NZ)
and M−

2 (Z/NZ).

Proposition 27. M−
2 (Z/NZ)⊗Q is isomorphic to M−2 (Γ1(N)) .

Proof. Indeed, the subspace M−2 (Γ1(N)) (or, better, quotient space)
can be described in terms of generators and relations as

(R1) (a1, a2)− = (a2, a1)−

(R2) (a1, a2)− = (a1, a2 − a1)− + (a1 − a2, a2)−

(R3) (a1, a2)− = −(a2,−a1)−

Here (R3) is the same as (1), (R2) is the same as (2’), and (R1) is
ι-invariance. Therefore, the natural map

M−
2 (Z/NZ)⊗Q ∼−→M−2 (Γ1(N)), 〈a1, a2〉− 7→ (a1, a2)−

is an isomorphism, as relations (R1),(R2),(R3) are exactly the defining
relations for M−

2 (Z/NZ). �

Note that

(a, 0)− = (0, a)− = 0 ∈M−2 (Γ1(N)),

by (R1) and (R3). Incidentally, relation (R2) can be replaced by the
co-vector version

(R2∗) (a1, a2)− = (a1 + a2, a2)− + (a1, a1 + a2)−

Indeed, substitute a1 7→ a1, a2 7→ a1 + a2 into relation (R2) and use
dihedral symmetry by (R1) and (R3).

As a corollary of Theorems 10 and 12, together with the guesses

dim(M2,prim(Z/NZ)⊗Q) = dim(M−
2,prim(Z/NZ)⊗Q) = g(N),
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we would obtain a formula which follows from Proposition 27:

dim(M−
2 (Z/NZ)⊗Q)=g(N) +

1

4

∑
d|N,3≤d≤N/3

φ(d)φ(N/d)

for all N≥1
= dim(M−2 (Γ1(N))) =g(N) +

C(N)− C2(N)

2

and a hypothetical formula:

dim(M2(Z/NZ)⊗Q)
?
=g(N) +

1

2

∑
d|N,d≥3

φ(d)φ(N/d)

for N≥5
= g(N) + C(N)− C2(N)

2

Presumably, one can deduce the above formula using the relation
between the Steinberg module and module F2 (see Proposition 19).
The formulas for dimensions simplify when N = p ≥ 5 is a prime:

g(p) =
(p− 5)(p− 7)

24
, C(p) = C2(p) = p− 1,

dim(M−
2 (Z/pZ)⊗Q) = dim(M−2 (Γ1(p))) = g(p)

(11.1) dim(M2(Z/pZ)⊗Q)
?
=
p2 + 23

24
= g(p) +

p− 1

2
.

The rest of the section will be devoted to a direct proof of (11.1).
We have two maps

M2(Z/pZ) �M−
2 (Z/pZ), 〈a, b〉 7→ 〈a, b〉−(11.2)

M2(Z/pZ)
∆→M1(1)⊗M−

1 (Z/pZ) =M−
1 (Z/pZ),(11.3)

where the second map (11.3) is the (only possible) co-product map
given by

〈a, b〉 7→ (1− δa,0)〈a〉− + (1− δb,0)〈b〉−.
The first map (11.2) is surjective by definition, and second map (11.3)
is surjective up to 2-torsion: its right inverse after tensoring with Q is
given by

(11.4) 〈a〉− 7→ 1

2

(
〈a, 0〉 − 〈−a, 0〉

)
The validity of formula (11.1) follows from the following result:
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Proposition 28. The map given by the sum of (11.2) and (11.3):

M2(Z/pZ)→M−
2 (Z/pZ)⊕M−

1 (Z/pZ)

is an isomorphism up to torsion.

Proof. We will check (after tensoring with Q) that the kernel of (11.2)
is generated by the image of (11.4).

By definition (5.1), the kernel of (11.2) is spanned by elements

〈a, b〉+ 〈a,−b〉 ∈ M2(Z/pZ).

Lemma 29. For all a, b,∈ Z/pZ, with a 6= 0, we have

〈a, b〉+ 〈a,−b〉 = 2 · 〈a, 0〉 ∈ M2(Z/pZ).

Proof. We have from (M):

〈a, b〉 = 〈a− b, b〉+ 〈a, b− a〉
〈a− b, a〉 = 〈−b, a〉+ 〈a− b, b〉.

Taking the difference between the first and the second line, we obtain

〈a, b〉+ 〈−b, a〉 = 〈a, b− a〉+ 〈a, a− b〉,
which we can write, by (S), as

〈a, b〉+ 〈a,−b〉 = 〈a, b− a〉+ 〈a,−b+ a〉.
Iterating this, we get

〈a, b〉+ 〈a,−b〉 = 〈a, b−ma〉+ 〈a,−b+ma〉, m = 1, . . . , p.

For a 6= 0 (mod p), there is anm solving the equationma = b (mod p),
which implies the claimed identity

(11.5) 〈a, b〉+ 〈a,−b〉 = 2 · 〈a, 0〉.
�

Lemma 30. For all a ∈ Z/pZ, a 6= 0, we have

〈a, 0〉+ 〈−a, 0〉 = 0 ∈M2(Z/pZ)⊗Q.

Proof. Replacing a by −a in (29) and adding the equations, we obtain(
〈a, b〉+ 〈−a, b〉

)
+
(
〈a,−b〉+ 〈−a,−b〉

)
= 2 ·

(
〈a, 0〉+ 〈−a, 0〉

)
.

Using again (29), with a replaced by b, respectively −b, we find

(11.6) 2 ·
(
〈b, 0〉+ 〈−b, 0〉

)
= 2 ·

(
〈a, 0〉+ 〈−a, 0〉

)
,

for all a, b 6= 0. To show the vanishing of

δ := 〈1, 0〉+ 〈−1, 0〉 ∈ M2(Z/pZ)⊗Q
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consider the sum∑
a,b 6=0

(
〈a, b〉+ 〈b,−a〉

)
= 2(p− 1) ·

∑
b 6=0

〈b, 0〉 = (p− 1)2δ,

here we substituted (11.5) and (11.6). Apply the blow-up relation (M)
to each term and relate to the original sum:

(M)
=
∑
a,b 6=0

〈a− b, b〉+
∑
a,b 6=0

〈a, b−a〉+
∑
a,b 6=0

〈b+a,−a〉+
∑
a,b 6=0

〈b,−a− b〉 =

(S)
= 4

∑
b 6=0,a6=−b

〈a, b〉 =

= 4
∑
a,b 6=0

〈a, b〉+ 4
∑
a6=0

〈a, 0〉 − 4
∑
a6=0

〈a,−a〉 =

= 2(p− 1)2 δ + 2(p− 1) δ = 2p(p− 1) δ

After the blow-up relation, we changed the variables in the summa-
tion using symmetry relation, then related to the original range of the
summation with discrepancy terms, and used the relations∑

a6=0

(
〈a, 0〉+ 〈−a, 0〉

)
= (p− 1) δ

and

〈a,−a〉 = 0 ⇐= 〈a, 0〉 (M)
= 〈a, 0〉+ 〈a,−a〉.

Finally, we obtain
(p− 1)2 δ = 2p(p− 1) δ,

which implies

(11.7) (p2 − 1) δ = 0 ∈M2(Z/pZ).

It follows that for all a 6= 0 we have the claimed identity

〈a, 0〉+ 〈−a, 0〉 = 0 ∈M2(Z/pZ)⊗Q.
�

Now we are ready to finish the proof of Proposition 28. By Lemma
29, the kernel of (11.2) is spanned (up to torsion) by elements of the
form 〈a, 0〉. It follows from Lemma 30 that these elements can be
written as

〈a, 0〉 =
1

2

(
〈a, 0〉 − 〈−a, 0〉

)
∈M2(Z/pZ)⊗Q
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Therefore, we get exactly the image of the right inverse (11.4). �

Remark 31. The factor (p2−1) in (11.7) gives a partial explanation for
the experimentally observed jumping behavior of dim(M2(Z/pZ)⊗F`),
for primes ` | (p± 1), see Section 12.

12. Experiments

Here we present results of numerical experiments, performed using
a fast linear algebra solver [gro17]. We computed dimensions of

Bn(Z/NZ), Mn(Z/NZ)

over Q and various finite fields. The size of the (very sparse) matrices
grows as ∼ Nn. For example, for n = 5 and N = 81, the part of
constraints corresponding to k = 2 in (B) or (M), gives ∼ 3 · 108

equations on ∼ 3 · 107 variables, with ∼ 109 non-zero coefficients. This
overdetermined system has a unique (up to scalar) nontrivial solution
in Q. The calculation takes about 4 hours.

Numerically, we found:

• For p a prime,

dim(B2(Z/pZ)⊗Q) =
p2 − 1

24
+ 1 =

p2 + 23

24
,

while the difference

∆2,`(Z/pZ) := dim(B2(Z/pZ)⊗ F`)−
p2 + 23

24

varies significantly; there are frequent jumps when ` | (p ± 1),
e.g.,

∆2,31(Z/61Z) = 1.

• For p a prime,

∆3,Q(Z/pZ) := dim(B3(Z/pZ)⊗Q)− (p− 5)(p− 7)

24
= 0

for all primes up to 41, but

∆3,Q(Z/pZ) = 1, for p = 43, 59, . . . .

• The difference

∆3,`(Z/pZ) := dim(B3(Z/pZ)⊗ F`)−
(p− 5)(p− 7)

24

also jumps for many ` | (p± 1).
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• For all primes p up to 41 we have dim(B4(Z/pZ)⊗Q) = 0, but

dim(B4(Z/pZ)⊗Q) = 1, for p = 43, 59, . . . .

On the next page we present a more systematic table of dimensions.
All dimensions, for Q-coefficients, are compatible with the conjectures
in Section 5. The items in bold indicate the smallest N for which the
rank is positive.

• dim(Bn(Z/NZ)⊗Q) = dim(Mn(Z/NZ)⊗Q) for n = 2, 3:

N 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

n=2 0 1 1 2 2 3 3 5 4 6 7 8 7 13 10 13 12
n=3 0 0 0 0 0 0 0 1 0 1 2 2 1 5 3 5 5

N 19 20 21 22 23 24 25 26 27 28 29 . . . 180 181

n=2 16 17 23 16 23 23 30 22 34 31 36 . . . 989 1366
n=3 7 7 11 7 12 13 16 12 21 17 22 . . . 1740 1276

• dim(Bn(Z/NZ)⊗Q) = dim(Mn(Z/NZ)⊗Q) for n = 4:

N 27 28 29 30 31 32 33 34 35 36 . . . 105 106 107

n=4 1 0 0 0 0 0 2 0 0 3 . . . 114 0 3

• dim(M−
4,prim(Z/NZ)⊗Q) = 0 for N ≤ 242:

• dim(Bn(Z/NZ)⊗Q) = dim(Mn(Z/NZ)⊗Q) for n = 5:

N . . .≤ 80 81 82

n=5 0 1 0

• dim(Bn(Z/NZ)⊗F2) and dim(Mn(Z/NZ)⊗F2) for n = 2, 3, 4, 5:
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N 2 3 4 5 6 7 8 . . . 16 . . . 32

B2 0 1 1 2 3 4 4 . . . 13 . . . 44
M2 1 2 3 5 5 8 8 . . . 21 . . . 60

B3 0 0 0 0 0 1 1 . . . 8 . . . 43
M3 0 0 1 1 3 2 5 . . . 21 . . . 87

B4 0 0 0 0 0 0 0 . . . 1 . . . 12
M4 0 0 0 0 0 0 1 . . . 9 . . . 55

B5 0 0 0 0 0 0 0 . . . 0 . . . 1
M5 0 0 0 0 0 0 0 . . . 1 . . . 13

Equations (B) in Section 1 are labeled by pairs of positive integers n, k,
where n is the dimension and 2 ≤ k ≤ n. Computer experiments show a
remarkable property of our equations: for given n and k, the highly overde-
termined subsystem of linear equations (B) or (M) (and assuming implicitly
(S), the symmetry property) has a very large space of solutions, usually
much larger than the whole system for given n, which is the conjunction of
subsystems for k = 2, . . . , n (or just the subsystem for k = 2, see Lemma 8
in Section 4). We have no explanation for this striking fact. There are no
obvious actions of Hecke operators on the solution spaces n, k individually,
for k > 2, and it is very surprising that the highly overdetermined systems
admit any nontrivial solution at all.

• Q-ranks of partial systems Bn,k and Mn,k for k ≥ 3, and for some
primes and composite numbers N :

N 2 3 5 7 11 13 17 19 23 9 12 27 36

B3,3 1 2 4 6 12 15 22 27 35 11 36 87 468
M3,3 0 1 3 3 7 10 15 18 24 9 40 78 480

B4,3 0 0 0 0 0 0 0 0 0 0 1 5 63
M4,3 0 0 0 0 1 2 5 7 12 1 5 24 121

B4,4 0 3 6 9 17 20 29 35 45 42 101 620 2515
M4,4 0 3 2 3 7 8 13 17 23 45 123 649 2716

B5,3 0 0 0 0 0 0 0 0 0 0 0 0 1
M5,3 0 0 0 0 0 0 0 0 0 0 0 1 7

B5,4 0 0 0 0 0 0 0 0 0 0 3 4 55 267
M5,4 0 0 0 0 1 2 5 7 12 5 12 122 ?

B5,5 1 3 9 12 22 26 37 44 56 30 161 572 ?
M5,5 0 1 3 3 7 8 13 17 23 17 212 ? ?
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