
BIRATIONAL TYPES OF ALGEBRAIC ORBIFOLDS

ANDREW KRESCH AND YURI TSCHINKEL

Abstract. We introduce a variant of the birational symbols group
of Kontsevich, Pestun, and the second author, and use this to define
birational invariants of algebraic orbifolds.

1. Introduction

Let k be a field of characteristic zero and X a smooth projective variety
over k, of dimension n; we require our varieties to be irreducible, but
not necessarily geometrically irreducible. The paper [14] introduced the
Burnside group of varieties

Burnn = Burnn,k,

the free abelian group on isomorphism classes of finitely generated fields
of transcendence degree n over k; for such a field K we denote the cor-
responding generator by [K]. To X one associates its class

[X] := [k(X)] ∈ Burnn,

extended by additivity for smooth projective schemes that are not nec-
essarily irreducible. To

U = X \D,
the complement to a simple normal crossing divisor

D = D1 ∪ · · · ∪D`,

one may also associate a class in Burnn:

[U ] := [X]−
∑
1≤i≤`

[Di × P1] +
∑

1≤i<j≤`

[(Di ∩Dj)× P2]− . . . . (1.1)

This is not only an invariant of the isomorphism type of U , but is a
birational invariant in the following sense: [U ] = [U ′] in Burnn if there
exist a quasiprojective variety V and birational projective morphisms

V → U and V → U ′.

This formalism was used to establish specialization of rationality.
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Now we suppose that X is equipped with a faithful action of a finite
abelian group G. Then there is a G-equivariant birational invariant of X
introduced in [13], taking its value in a group

Bn(G)

which records the normal bundle representation generically along com-
ponents of the fixed locus XG.

This paper concerns birational invariants of orbifolds. An (algebraic)
orbifold is a smooth separated irreducible finite-type Deligne-Mumford
stack over k with trivial generic stabilizer. Such a stack has a coarse
moduli space [11], separated and of finite type over k. We call the orbifold
quasiprojective (respectively projective) when the coarse moduli space is
a quasiprojective (respectively projective) variety (see [15]). For instance,
the G-action on X determines a projective orbifold [X/G]. The orbifolds
in this article are always quasiprojective.

We will introduce a group

Burnn

that combines features of the groups Burnn and Bn(G). We only carry
in Burnn the information of representations of finite abelian groups, up
to automorphisms of those groups. Working with Burnn, we will exhibit
a birational invariant of a quasiprojective n-dimensional orbifold.

It suffices to consider finite abelian groups thanks to divisorialification
[6], a sequence of blow-ups in smooth centers which, when applied to a
general orbifold, yields an orbifold with only abelian groups as geometric
stabilizer groups. Weak factorization [2], in a functorial form proved in
[3], is used to exhibit the desired birational invariance.

In Section 2 we establish a presentation of the Burnside group of va-
rieties with relations that are analogous to the scissors relations, used
to define the Grothendieck group of varieties. Section 3 introduces the
group Burnn. In Section 4 the class of an algebraic orbifold in Burnn is
defined. Section 5 confirms a connection between invariants of orbifold
surfaces and modular curves.

Acknowledgments: The first author was partially supported by the
Swiss National Science Foundation. The second author was partially
supported by NSF grant 2000099.

2. Burnside group via scissors relations

Let k be a field of characteristic zero. The Grothendieck group

K0(Vark)
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may be approached in two ways, as an abelian group generated by the
classes of algebraic varieties over k with the classical scissors relations
(where it makes no difference if we restrict to just smooth quasiprojective
varieties), or via the Bittner presentation [8], which only involves smooth
projective varieties. We do not concern ourselves in this article with the
further structure of K0(Vark) as a ring.

In this section we record the observation that the Burnside group
Burnn also admits a description in terms of scissors relations. As men-
tioned in the Introduction, we only require our varieties to be irreducible
(but not necessarily geometrically irreducible).

Lemma 2.1. Let k be a field of characteristic zero, and let W be a
smooth quasiprojective variety over k. For any nonempty open U ⊂ W
there exist divisors D1, . . . , D` such that W rD1 is contained in U , and
D1 rD2, . . . , D`−1 rD`, D` are all smooth.

Proof. Let Z = W r U . By [12, Thm. 7], given an embedding of W
in projective space, a general hypersurface of sufficiently large degree
containing Z defines a divisor D1 on W whose singular locus Dsing

1 is
contained in Z and does not contain any irreducible component of Z.
If D1 is smooth, then we are done with ` = 1. Otherwise, we have
dim(Dsing

1 ) < dim(Z), and we conclude by induction on dim(Z). �

Proposition 2.2. Let k be a field of characteristic zero and n a natural
number. Then the assignment to [k(X)] of [X] for smooth projective
varieties X of dimension n over k defines an isomorphism

Burnn
∼−→
( ⊕

[U ], dim(U)=n

Z · [U ]
)/

modified-scissors,

where, on the right, we have the quotient of the free abelian group on
isomorphism classes of smooth quasiprojective varieties of dimension n
over k by the modified scissors relations

[U ] = [V × Pn−d] + [U r V ]

for smooth closed subvarieties V ⊂ U of dimension d < n. The inverse
isomorphism is given by the formula (1.1).

Proof. We check that the map from the statement of the proposition is
well-defined, i.e., the classes of any pair of birationally equivalent smooth
projective n-dimensional varieties are equal modulo the modified scissors
relations.

By weak factorization, it suffices to consider the case of X and B`YX,
where X is smooth and projective of dimension n and Y is a smooth
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subvariety of X of dimension d < n. By the modified scissors relations
we have

[X] = [Y × Pn−d] + [X r Y ],

[B`YX] = [P(NY/X)× P1] + [X r Y ],

where NY/X denotes the normal bundle. We are done if we can show that
[P(NY/X)×P1] = [Y ×Pn−d]. We will show, more generally, that for any
smooth quasiprojective variety W of dimension e < n and vector bundle
F on W of rank r ≤ n+ 1− e, we have

[P(F )× Pn+1−e−r] = [W × Pn−e]. (2.1)

For any smooth quasiprojective variety Z of dimension n − 1 we have
[Z × A1] = 0 (by considering Z × {∞} ⊂ Z × P1), and hence

[W × Pn−e] = [W × (P1)n−e]

(by considering W × Pn−e−1 ⊂ W × Pn−e). We prove (2.1) by induction
on e; the case e = 0 is now clear. Let U ⊂ W be a nonempty open subset
on which F is trivial, and D1, . . . , D`, divisors as in Lemma 2.1. The
modified scissors relation and the induction hypothesis lead to

[P(F )× Pn+1−e−r] = [D` × Pn+1−e] + [(D`−1 rD`)× Pn+1−e]

+ · · ·+ [(D1 r (D2 ∪ · · · ∪D`))× Pn+1−e]

+ [(W r (D1 ∪ · · · ∪D`))× Pn−e].

We conclude with the relations, for 1 ≤ i ≤ `:

[(W r (Di+1 ∪ · · · ∪D`))× Pn−e] = [(Di r (Di+1 ∪ · · · ∪D`))× Pn+1−e]

+ [(W r (Di ∪ · · · ∪D`))× Pn−e].

We verify that the map in the reverse direction, given by the formula
(1.1), is well-defined, i.e., respects the modified scissors relations. Let
V be a smooth closed subvariety of U of dimension d. Then U may be
presented as the complement in a smooth projective variety X of a simple
normal crossing divisor D1 ∪ · · · ∪ D`, with which a smooth subvariety
Y ⊂ X has normal crossing, such that Y ∩ U = V . We have [U ], given
by the formula (1.1). For [V ×Pn−d] we have the embedding in Y ×Pn−d,
complement to the simple normal crossing divisor

(D1 ∩ Y )× Pn−d ∪ · · · ∪ (D` ∩ Y )× Pn−d,

and thus an analogous formula in Burnn. The blow-up B`YX has the

simple normal crossing divisor D̃1 ∪ · · · ∪ D̃` ∪ E, where D̃i denotes the
proper transform of Di, and E, the exceptional divisor, leading to a for-
mula for [U r V ] in Burnn. Comparing formulas and using that any in-
tersection not involving E is birational to the corresponding intersection
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in X, while any intersection involving E is birational to the product of
an intersection in Y with projective space of the appropriate dimension,
we obtain the desired relation.

It is clear that the composite Burnn → Burnn of the two maps is the
identity. The composite in the other order is seen to be the identity using
the modified scissors relations. �

3. Burnside group for stacks

In this section we introduce the group Burnn.

Definition 3.1. We define the Z[t]-module B by starting with the free
Z-module on pairs (A, S) consisting of a finite abelian group A and finite
generating system S of A, where the action of t is to append the element
0 to S, and passing to the quotient by the following relations:

• (A, S) and (A, S ′) are equivalent if S ′ is a permutation of S.
• (A, S) and (A′, S ′) are equivalent if some isomorphism A ∼= A′

transforms S to S ′.
• (A, S), S = (a1, . . . , am), is equivalent, for any 2 ≤ j ≤ m, to∑

∅6=I⊂{1,...,j}

(−t)|I|−1
(
A/〈ai−ai0〉i∈I ,

(āi0 , ā1−āi0 , . . . (omitting all i ∈ I) . . . , āj−āi0 , āj+1, . . . , ām)
)
,

where inside the sum i0 denotes an element of I, with sequence
of elements of A/〈ai−ai0〉i∈I of length 1 + (j− |I|) + (m− j) that
is independent of the choice of i0.

Example 3.2. When m = j = 2, we obtain (A, (a1, a2)) equivalent to

(A, (a1, a2 − a1)) + (A, (a2, a1 − a2))− t(A/〈a1 − a2〉, (ā1)).

We let [A, S] denote the class in B of a pair (A, S). We define a grading
on B by assigning degree |S| to [A, S]:

B =
∞⊕
n=0

Bn.

With this grading, B is a graded Z[t]-module, for the natural grading on
Z[t].

Representations determine, via their weights, elements of B. If G is a
finite diagonalizable group scheme with faithful representation

ρ : G→ GLn

(over an arbitrary field), then there is a pair (A, S), where A is the
Cartier dual group to G and S is the sequence of weights supplied by a
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decomposition of ρ as a sum of n one-dimensional linear representations.
The element

[ρ] := [A, S] ∈ Bn

is canonically determined by ρ.
Restricting to e-torsion groups A for a positive integer e, respectively,

to p-primary A for a prime number p, leads to a Z[t]-module B[e]
, respec-

tively B(p)
. The evident homomorphisms from these modules to B are

split monomorphisms, with splittings given by

[A, S]→ [A/eA, S], respectively, [A, S]→ [A(p), S],

where A(p) denotes the p-primary subgroup of A. We have

B =
⊕
p

B(p)
, B(p)

= lim−→
j

B[pj ]
.

Definition 3.3. Let k be a field of characteristic zero and n a natural
number. The group

Burnn

is the abelian group generated by pairs (K,α), where

• K is a finitely generated field of transcendence degree d ≤ n over
k and
• α ∈ Bn−d,

modulo the identification of (K(t), β) and (K, tβ) for β ∈ Bn−d−1.

Example 3.4. For B[5]

2 we have generators t2[0, ()], t[C5, (1)], [C5, (1, 1)],
[C5, (1, 2)], [C5, (1, 4)], [C5 ⊕ C5, ((1, 0), (0, 1))], and relations:

t[C5, (1)] = [C5, (1, 4)] + t[C5, (1)]− t2[0, ()],
[C5, (1, 1)] = 2t[C5, (1)]− t[C5, (1)],

[C5, (1, 2)] = [C5, (1, 1)] + [C5, (1, 2)]− t2[0, ()],
[C5, (1, 4)] = 2[C5, (1, 2)]− t2[0, ()],

[C5 ⊕ C5, ((1, 0), (0, 1))] = 2[C5 ⊕ C5, ((1, 0), (0, 1))]− t[C5, (1)],

where C5 = Z/5Z. We deduce

[C5 ⊕ C5, ((1, 0), (0, 1))] = [C5, (1, 1)] = [C5, (1, 4)] = t[C5, (1)] = t2[0, ()],

with

2
(
[C5, (1, 2)]− t2[0, ()]

)
= 0.

Hence B[5]

2
∼= Z⊕ Z/2Z.



BIRATIONAL TYPES OF ORBIFOLDS 7

4. Birational invariants of orbifolds

In this section we introduce birational invariants of n-dimensional orb-
ifolds over a field k of characteristic zero, taking values in Burnn.

Let X be an orbifold. We recall from [5] (see also [6]): if D1 ∪ · · · ∪D`

is a simple normal crossing divisor on X , then X is called divisorial with
respect to D1, . . . , D` if the morphism

X → BG`
m,

determined by OX (Di), for i = 1, . . . , `, is representable; this implies
that the stabilizer group schemes of X are diagonalizable. We will apply
this terminology more generally to any finite collection of line bundles.

Divisorialification is a procedure that, when applied to an orbifold X ,
yields a succession of blow-ups along smooth centers

Y → · · · → X ,
such that Y is divisorial with respect to a suitable simple normal crossing
divisor. This is given as Algorithm C in [5], initially with a requirement
to have abelian geometric stabilizer groups, later with this requirement
removed [6].

As explained in the introduction, invariance under birational projective
morphisms is the statement of invariance under the equivalence relation
of existence of a third object (variety or Deligne-Mumford stack) with
birational projective morphisms to two given objects. In this section we
are interested in quasiprojective orbifolds X and X ′, and the equivalence
takes the form of existence of a Deligne-Mumford stack Y with birational
projective morphisms

Y → X and Y → X ′. (4.1)

We recall that a morphism of stacks is projective if it factors up to 2-
isomorphism as a closed immersion followed by projection from a pro-
jective bundle P(E) for some quasi-coherent sheaf E of finite type; in
particular, projective morphisms are always representable.

In the situation (4.1) there is no loss of generality in supposing Y as
well to be an orbifold, since resolution of singularities in a functorial
form as in [20] and [7] is applicable to algebraic stacks. When X and
Y are quasiprojective orbifolds, a morphism Y → X is projective if and
only if it is representable and proper. (Every projective morphism is
representable and proper. The reverse implication uses that Y → X
factors up to 2-isomorphism through X ×X Y , where X and Y denote
the respective coarse moduli spaces, that X → X and Y → Y induce
bijections on geometric points, and that a representable proper morphism
inducing a bijection on geometric points is finite, hence projective.)
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Theorem 4.1. Let k be a field of characteristic zero, n a natural number,
and X an n-dimensional quasiprojective orbifold over k. The following
recipe, assigning to X a class [X ] ∈ Burnn gives an invariant under
birational projective morphisms:

• Use divisorialification to replace X by a quasiprojective orbifold
Y that is divisorial with respect to some finite collection of line
bundles.
• Stratify Y by the isomorphism type of the geometric stabilizer

group and attach to each component the normal bundle:

Y =
∐
G

YG, NY,G = NYG/Y .

• Writing the coarse moduli space of YG, for each G, as YG, we
assign the element

[X ] :=
∑
G

([YG], [NY,G]) ∈ Burnn.

In the last step, if YG is irreducible of dimension d, then we understand
[YG] to be the associated element of Burnd, with [NY,G] ∈ Bn−d associated
to the representation of G at the geometric generic point of YG. In gen-
eral, we understand ([YG], [NY,G]) to be the sum of the elements of Burnn

attached to the irreducible components.

Proof. Let X ′ be a quasiprojective orbifold with birational projective
morphism to X . We divisorialize X ′ to obtain Y ′. The diagram

Y ′

��
Y // X

may be completed to a 2-commutative square of birational projective
morphisms of quasiprojective orbifolds by desingularizing the closure in
the fiber product of a nonempty open substack where the morphisms are
isomorphisms. This way, we are reduced to showing that for a birational
projective morphism Z → Y of quasiprojective orbifolds we have∑

G

([YG], [NY,G]) =
∑
G

([ZG], [NZ,G]) ∈ Burnn. (4.2)

Let L1, . . . , L` be line bundles, relative to which Y is divisorial. The
functorial form of weak factorization in [3] is applicable to stacks and
yields a factorization of Z → Y as a composite of maps of divisorial
projective orbifolds (with respect to pullbacks of L1, . . . , L`), each equal
to or inverse to a blow-up along a smooth center.
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Let V be a smooth closed substack of Y of dimension < n, with coarse
moduli space V , and let Z = B`VY . We verify (4.2) in this case. On the
left, we break up YG into the unions of components Y ′G disjoint from V
and Y ′′, meeting V nontrivially, and apply the modified scissors relation
to Y ′′G:∑

G

([YG], [NY,G]) =
∑
G

([Y ′G], [NY,G])

+
∑
G

([Y ′′G ∩ V ], tdim(Y ′′
G)−dim(Y ′′

G∩V)[NY,G]) +
∑
G

([Y ′′G r V ], [NY,G]),

where in the second sum on the right, the dimensions are understood to
be taken componentwise. Breaking up the sum on the right of (4.2) in
a similar fashion, we obtain an expression with identical first and third
sums and a second sum that differs from the second sum in the expression
above by relations in B. �

Remark 4.2. Over an algebraically closed field of characteristic zero, if
we consider orbifold surfaces whose only nontrivial stabilizer groups are
of order 5, then the parity of the number of isolated points with C5-
stabilizer and unequal weights not summing to zero remains unchanged
under blow-up of points. This observation is reflected in the 2-torsion in

B[5]

2 obtained in Example 3.4 and the birational invariance in Theorem
4.1. In this context we mention [5, Exa. 4.3], the observation that a single
such point with C5-stabilizer persists under blow-up.

Example 4.3. Functorial destackification [5] of an orbifold provides a
sequence of blow-ups along smooth centers and root stack operations
along smooth divisors that simplify the stack structure. The root stack
operation adds stabilizer µn (for some positive integer n) along a divisor
[10, §2], [1, App. B], and the outcome of destackification is an orbifold
that is obtained from a smooth variety by iterating root stack operations
along components of a simple normal crossing divisor. Blow-ups alone
are, as noted in Remark 4.2, insufficient to bring a general orbifold into
this form. Correspondingly, we may view the quotient B/C, where C
denotes the submodule generated by the classes of pairs

(Ca1 ⊕ · · · ⊕ Car , (g1, . . . , gr))

of direct sums of finite cyclic groups (r ≥ 0 arbitrary) and tuples of
generators, as an obstruction to destackification with blow-ups alone.

We have

B[p] ⊂ C for p ∈ {2, 3},
since blow-ups suffice for the destackification in these cases [16], [19].
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p B[p]

2 /(C ∩ B
[p]

2 ) p B[p]

2 /(C ∩ B
[p]

2 ) p B[p]

2 /(C ∩ B
[p]

2 )
5 Z/2Z 17 Z/2Z⊕ Z 31 Z2

7 0 19 Z 37 Z/2Z⊕ Z2

11 Z 23 Z2 41 Z/2Z⊕ Z3

13 Z/2Z 29 Z/2Z⊕ Z2 43 Z3

Table 1. Isomorphism type of B[p]

2 /(C ∩ B
[p]

2 )

Table 1 records the isomorphism type of B[p]

2 /(C∩B
[p]

2 ) for some primes
p ≥ 5. The next result confirms the evident pattern.

Proposition 4.4. For a prime p ≥ 5 let

g = g(X0(p))

denote the genus of the modular curve, i.e.,

g =

{[
p
12

]
∓ 1, when p ≡ ±1 mod 12,[

p
12

]
, otherwise.

Then

B[p]

2 /(C ∩ B
[p]

2 ) ∼=

{
Z/2Z⊕ Zg, if p ≡ 1 mod 4,

Zg, if p ≡ 3 mod 4.

The proof of Proposition 4.4, based on computations with Manin’s
modular symbols [17], is given in the next section.

The entry 0 in Table 1 for p = 7 indicates that B[7]

2 ⊂ C. In fact, we

have B[7]

3 ⊂ C as well. But we find

B[7]

4 /(C ∩ B
[7]

4 ) ∼= Z/2Z.

5. Modular symbols and the proof of Proposition 4.4

The equivariant Burnside group introduced in [13] is shown to exhibit a
connection with the modular curves X1(N) for various N . In this section
the modular curves

X0(p) = Γ0(p)\H ∪ {0,∞}
and the corresponding modular symbols [17] play a role; the connection
between 2-dimensional birational geometry and modular curves remains
mysterious to us.

Fix a prime p ≥ 5; we are interested in the abelian group

B[p]

2 /(C ∩ B
[p]

2 )
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with generators

[Cp, (1, a)], 2 ≤ a ≤ p− 2,

and relations

[Cp, (1, a)] = [Cp, (1, a
−1)] for all a, (5.1)

2[Cp, (1, 2)] = 0, (5.2)

[Cp, (1, 2)] = −[Cp, (1, p− 2)], (5.3)

[Cp, (1, a)] = [Cp, (1, a− 1)] + [Cp, (1, a
−1 − 1)] (5.4)

for a ∈
{

3, . . . , p−1
2

}
∪
{

p+3
2
, . . . , p− 2

}
,

where a−1 denotes the positive integer less than p, inverse to a mod p.
(We have [Cp, (1, 1)] = t[Cp, (1)] ∈ C and [Cp, (1, p− 1)] = t2[0, ()] ∈ C.)

The modular group

Γ0(p) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod p

}
has index p+ 1 in SL2(Z), with right coset representatives(

1 0
0 1

)
,

(
1 0
1 1

)
, . . . ,

(
1 0

p− 1 1

)
,

(
0 −1
1 0

)
.

We let Γ0(p) act in the standard way on the upper half-plane H and as
well on Q ∪ {i∞}, the latter with two orbits corresponding to the cusps
0, ∞ ∈ X0(p). Here, 0 corresponds to the set of all b/d ∈ Q with p - d
and ∞, to the set of a/c ∈ Q with p | c. The real structure on X0(p) is
determined by the standard complex conjugation H→ H, z 7→ −z̄. It is
well known that the real locus of X0(p) is connected.

With Manin’s modular symbols [17], applied to Γ0(p), we get a pre-
sentation of H1(X0(p),Z) by generators and relations. Proposition 4.4
is established by showing that these relations, together with the addi-
tional relations that the sum of any cycle and its complex conjugate is
zero, match the presentation (5.1)–(5.4). In fact, we use a simpler set of
relations, which yield the homology not of the Riemann surface X0(p),
but rather of the corresponding orbifold with stabilizers at elliptic points.
The quotient of H by Γ0(p)/{±1} is an orbifold, which we compactify by
adding the cusps to obtain

X0(p)orb.

Orbifolds and their topological invariants are explained, for instance,
in [18], while a convenient reference for orbifold curves is [4]. However,
H1(X0(p)orb,Z) may also be presented directly as the homology of the
complement of the elliptic points, modulo the relation that an appropri-
ate multiple of a small loop around an elliptic point is zero.
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When p ≡ 1 mod 4 there is a complex conjugate pair of elliptic points
of X0(p)orb where the stabilizer (of a representative point of H) has order
2 in Γ0(p)/{±1}; for each of these, twice a small loop is declared to be
zero in homology. When p ≡ 1 mod 3 there is a complex conjugate pair of
elliptic points where the stabilizer has order 3 in Γ0(p)/{±1}, for which
we declare 3 times a small loop to be zero in homology.

We summarize the needed results from [17], modified appropriately to
the orbifold setting. We maintain the convention from (5.1)–(5.4) about
a and a−1 and, when a /∈ {p−2, (p−1)/2} define positive integers a′ and
a′′ less than p by the requirements

a′ ≡ −a−1 − 1 mod p, a′′ ≡ −(a+ 1)−1 mod p.

Lemma 5.1 ([17, (1.4)]). A surjective homomorphipsm

Γ0(p)→ H1(X0(p)orb,Z)

is defined by sending γ ∈ Γ0(p) to the image

{0, γ · 0}

in X0(p) of a geodesic path in H∪Q from 0 to γ·0. The kernel is generated
by the commutator subgroup of Γ0(p) and the parabolic elements of Γ0(p).

Lemma 5.2 ([17, (1.5)–(1.9)]). The abelian group H1(X0(p)orb,Z) is
presented by generators{

0,
1

a

}
, 2 ≤ a ≤ p− 2,

and relations {
0,

1

a

}
+
{

0,
1

p− a−1
}

= 0, (5.5){
0,

1

a

}
+
{

0,
1

a′
}

+
{

0,
1

a′′
}

= 0, (5.6){
0,

1

(p− 1)/2

}
+
{

0,
1

p− 2

}
= 0. (5.7)

Now the proof of Proposition 4.4 combines an algebraic result with
topological reasoning.

Lemma 5.3. An isomorphism

B[p]

2 /(C ∩ B
[p]

2 )→

H1(X0(p)orb,Z)
/〈{

0,
1

a

}
+
{

0,
1

p− a
}
, a ∈ {2, . . . , p− 2}

〉
is given by [Cp, (1, a)] 7→ {0, 1/a} for all a.
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Proof. Suppose 2 ≤ b ≤ (p − 3)/2. We subtract the relations (5.4)
corresponding to a = b + 1 and a = p − b, noticing that the rightmost
terms cancel thanks to (5.1), to obtain

[Cp, (1, b+ 1)]− [Cp, (1, p− b)] = [Cp, (1, b)]− [Cp, (1, p− b− 1)].

Starting from (5.3) we obtain, inductively,

[Cp, (1, a)] = −[Cp, (1, p− a)] (5.8)

for all a. Using (5.8) and (5.1), we rewrite (5.4) as

[Cp, (1, a)] + [Cp, (1, a
′)] + [Cp, (1, a

′′)] = 0 (5.9)

for a /∈ {(p − 1)/2, p − 2}. We conclude by matching relations (5.1)–
(5.2), (5.8)–(5.9) with (5.5)–(5.7) and the additional relations from the
quotient group in the statement of the lemma. �

While H1(X0(p),Z) is free of rank 2g (where g is the genus of X0(p)),
there may be torsion in H1(X0(p)orb,Z):

H1(X0(p)orb,Z) ∼=


Z/6Z⊕ Z2g, if p ≡ 1 mod 12,

Z/2Z⊕ Z2g, if p ≡ 5 mod 12,

Z/3Z⊕ Z2g, if p ≡ 7 mod 12,

Z2g, if p ≡ 11 mod 12.

Complex conjugation acts on H1(X0(p)orb,Z) by{
0,

1

a

}
7→
{

0,
1

p− a
}
.

Lemma 5.3 identifies B[p]

2 /(C ∩ B
[p]

2 ) with the quotient of H1(X0(p)orb,Z)
by the elements of the form sum of a cycle and its conjugate.

Complex conjugation acts trivially on H1(X0(p)orb,Z)tors. When p ≡ 1
mod 4, intersection number mod 2 with a conjugation-invariant curve
joining the order 2 elliptic points splits off H1(X0(p)orb,Z)[2] equivari-

antly as a direct summand of H1(X0(p)orb,Z). Now B[p]

2 /(C ∩ B
[p]

2 ) is a
direct sum of Z/2Z when p ≡ 1 mod 4, zero when p ≡ 3 mod 4, and the
quotient of H1(X0(p),Z) by the elements of the form sum of a cycle and
its conjugate. The latter is accessed by choosing a conjugation-invariant
triangulation of X0(p) and using spectral sequences relating the equivari-
ant homology of X0(p) with the group homology of Hj(X0(p),Z), on the
one hand, and the group homology of the groups of j-chains on the other,
for j = 0, 1, 2; cf. [9, §VII.7]. (All group homology is for the group Z/2Z,
corresponding to complex conjugation.) We omit the details and report



14 ANDREW KRESCH AND YURI TSCHINKEL

only the outcome:

Hi(Z/2Z, H1(X0(p),Z)) = 0 for all i ≥ 1,

H
Z/2Z
j (X0(p),Z) ∼=


Z, if j = 0,

Z/2Z⊕ Zg, if j = 1,

Z/2Z, if j ≥ 2.

The vanishing of H1(Z/2Z, H1(X0(p),Z)) has the consequence that the
subgroup of H1(X0(p),Z) of elements of the form sum of a cycle and its
conjugate has torsion-free quotient. Hence the quotient is isomorphic to
Zg.
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