BIRATIONAL TYPES OF ALGEBRAIC ORBIFOLDS
ANDREW KRESCH AND YURI TSCHINKEL

ABSTRACT. We introduce a variant of the birational symbols group
of Kontsevich, Pestun, and the second author, and use this to define
birational invariants of algebraic orbifolds.

1. INTRODUCTION

Let k£ be a field of characteristic zero and X a smooth projective variety
over k, of dimension n; we require our varieties to be irreducible, but
not necessarily geometrically irreducible. The paper [15] introduced the
Burnside group of varieties

Burn,, = Burn,, 4,

the free abelian group on isomorphism classes of finitely generated fields
of transcendence degree n over k; for such a field K we denote the cor-
responding generator by [K]. To X one associates its class

[X] := [k(X)] € Burn,,
extended by additivity for general smooth projective schemes. To
UcX\D,
the complement to a simple normal crossing divisor
D=DyU---UDy,
one may also associate a class in Burn,,:
U] :=[X]= Y [DixP+ > [(DinDj)xP—.... (L1)
1<i<e 1<i<j<e

This is not only an invariant of the isomorphism type of U, but is a
birational invariant in the following sense: [U] = [U’] in Burn,, if there
exist a quasiprojective variety V and birational projective morphisms

V —sU and vV = U.

This formalism was used to establish specialization of rationality.
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Now we suppose that X is equipped with a faithful action of a finite
abelian group G. Then Burn, is replaced by the equivariant Burnside

group
Burn, (G),

introduced in [14] (in a slightly different form, as explained in Appendix
A). This is the quotient by suitable relations of the free abelian group
on triples consisting of:

e a subgroup H C G,

e a (G/H-Galois algebra extension K of a field K of transcendence
degree d < n over k, up to equivariant isomorphism, required
to satisfy Assumption 1 in Appendix A (a technical condition,
always satisfied when k is algebraically closed), and

e a faithful (n — d)-dimensional linear representation of H over K
with trivial space of invariants, up to equivalence.

Then an invariant of the G-equivariant birational type of X is obtained
from a stratification of X by the stabilizer group H C G as the sum

Yo Y G/HCKY), (X)), (1.2)

HcG YCX
with stabilizer H

where the inner sum is over unions Y of G-orbits of components, with
k(Y') understood as the product of function fields of the components of
Y, and where By (X) records the generic normal bundle representation
along Y. There is an analogous G-equivariant birational invariant of U
as above, where each D; is assumed to be G-invariant.

This paper concerns birational invariants of (quasi)projective orbifolds
X. Here, by an orbifold we mean a smooth separated irreducible finite-
type Deligne-Mumford stack over k£ with trivial generic stabilizer. Such a
stack has a coarse moduli space [12], a separated algebraic space of finite
type over k. Following [16], we say that the orbifold X" is quasiprojective
when the coarse moduli space is a quasiprojective variety, and is projective
when the coarse moduli space is a projective variety. By Theorems 4.4
and 5.3 of op. cit., every quasiprojective orbifold may be presented as a
locally closed substack of a projective orbifold.

We will introduce a variant

Burn,,

of the groups Burn,, and Burn,(G). In essence, we only carry in Burn,
the information of representations of finite abelian groups, up to auto-
morphisms of those groups. Working with Burn,,, we exhibit a birational
invariant of a quasiprojective n-dimensional orbifold X.
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It suffices to consider finite abelian groups thanks to the divisorialifi-
cation procedure of [6], a sequence of blow-ups in smooth centers which,
when applied to a general orbifold, yields an orbifold with only abelian
groups as geometric stabilizer groups. Weak factorization [2], in a functo-
rial form proved in [3], is used to exhibit the desired birational invariance.

In Section 2 we recall the Burnside group of varieties and establish a
presentation by scissors-like relations, analogous to the scissors relations
defining the Grothendieck group of varieties. Section 3 introduces the
orbifold version Burn,,, where the birational invariant of quasiprojective
orbifolds defined in Section 4 takes its value (Theorem 4.1). A compu-
tation of invariants of orbifold surfaces reveals an intriguing connection
with modular curves (Proposition 4.3), whose proof is given in Section 5.

Acknowledgments: The first author was partially supported by the
Swiss National Science Foundation.

2. BURNSIDE GROUP VIA SCISSORS RELATIONS

Let k be a field of characteristic zero. The Grothendieck group
KO (Vark)

may be approached in two ways, as an abelian group generated by the
classes of algebraic varieties over k with the classical scissors relations
(where it makes no difference if we restrict to just smooth quasiprojective
varieties), or via the Bittner presentation [8], which only involves smooth
projective varieties. Of course, Ko(Vary) has a ring structure as well, but
we do not concern ourselves with this here.

In this section we record the observation that the Burnside group
Burn,, also admits a description in terms of scissors relations. As men-
tioned in the Introduction, we only require our varieties to be irreducible
(but not necessarily geometrically irreducible).

Lemma 2.1. Let k be a field of characteristic zero, and let W be a
smooth quasiprojective variety over k. For any nonempty open U C W
there exist divisors Dy, ..., Dy such that W ~. Dy is contained in U, and
Dy~ Dy, ..., Dy_1~ Dy, Dy are all smooth.

Proof. Let Z = W ~ U. By [13, Thm. 7], given an embedding of W
in projective space, a general hypersurface of sufficiently large degree
containing Z defines a divisor D; on W whose singular locus D} is
contained in Z and does not contain any irreducible component of Z.
If Dy is smooth, then we are done with ¢/ = 1. Otherwise, we have

dim(D;™®) < dim(Z), and we conclude by induction on dim(Z). O
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Proposition 2.2. Let k be a field of characteristic zero and n a natural
number. Then the assignment to [k(X)] of [X] for smooth projective
varieties X of dimension n over k defines an isomorphism

Burn,, — ( @ Z - [U])/modiﬁed—scissors,
[U],dim(U)=n
where, on the right, we have the quotient of the free abelian group on

isomorphism classes of smooth quasiprojective varieties of dimension n
over k by the modified scissors relations

U] = [V xP" 9 +[U\V]

for smooth closed subvarieties V- C U of dimension d < n. The inverse
isomorphism is given by the formula (1.1).

Proof. We check that the map from the statement of the proposition is
well-defined, i.e., the classes of any pair of birationally equivalent smooth
projective n-dimensional varieties are equal modulo the modified scissors
relations.

By weak factorization, it suffices to consider the case of X and Bly X,
where X is smooth and projective of dimension n and Y is a smooth
subvariety of X of dimension d < n. We have

[(X]=[Y x P4 +[X \Y],
[Bly X] = [P(Ny/x) x P+ [X \ Y],

where Ny, x denotes the normal bundle. We are done if we can show that
[P(Ny,x) x PY] = [Y x P"~?]. We will show, more generally, that for any
smooth quasiprojective variety W of dimension e < n and vector bundle
Fon W of rank r <n+1— e, we have

[P(F) x P = [W x P"). (2.1)

For any smooth quasiprojective variety Z of dimension n — 1 we have
[Z x A'] = 0 (by considering Z x {oo} C Z x P!), and hence

W x P"¢ = [W x (PY)"]

(by considering W x P*=¢~1 € W x P"~¢). We prove (2.1) by induction
on e; the case e = 0 is now clear. Let U C W be a nonempty open subset
on which F' is trivial, and Dy, ..., Dy, divisors as in Lemma 2.1. The
modified scissors relation and the induction hypothesis lead to

[P(F) X Ip)n-i-l—e—r] _ [DZ « ]Pm-i-l—e] + [(Dg_l N Dg) « Pn-ﬁ-l—e]
+"'+[(D1\(D2U"'UD5) XIPm+1—e]
(W~ (DyU---U D) x P].
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We conclude with the relations, for 1 <17 < £:

[(W N (Dig1U---U D)) x P] = [(Di \ (Digg U--- U Dy)) x P
+ [(W AN (DZ u---u Dg)) X ]Pm—e]‘

Now we verify that the map in the reverse direction, given by the
formula (1.1), is well-defined, i.e., respects the modified scissors relations.
Let V be a smooth closed subvariety of U of dimension d. Then U may be
presented as the complement in a smooth projective variety X of a simple
normal crossing divisor Dy U ---U Dy, with which a smooth subvariety
Y C X has normal crossing, such that Y NU = V. We have [U], given
by the formula (1.1). For [V x P"~4] we have the embedding in Y x P"~¢,
complement to the simple normal crossing divisor

(DiNY)x P y...u(D,NY) x P4

and thus an analogous formula in Burn,. The blow-up Bly X has the
simple normal crossing divisor Dy U ---U D, U E, where D; denotes the
proper transform of D;, and E, the exceptional divisor, leading to a for-
mula for [U \ V] in Burn,,. Comparing formulas and using that any in-
tersection not involving FE is birational to the corresponding intersection
in X, while any intersection involving E' is birational to the product of
an intersection in Y with projective space of the appropriate dimension,
we obtain the desired relation.

That the composite of the forward and reverse maps, in either order, is
the identity, is clear for the composite Burn,, — Burn,,, and for the other,
comes down to iterated application of the modified scissors relations. [

3. BURNSIDE GROUP FOR STACKS

In this section we introduce a variant of the equivariant Burnside group
which is adapted to the setting of orbifolds.

Definition 3.1. We define the Z[t]-module B by starting with the free
Z-module on pairs (A, S) consisting of a finite abelian group A and finite
generating system S of A, where the action of ¢ is to append the element
0 to .S, and passing to the quotient by the following relations:

e (A, S) and (A,S’) are equivalent if S’ is a permutation of S.
e (A, S) and (A, S") are equivalent if some isomorphism A = A’
transforms S to S’
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e (A,S), S=(a,...,a,),is equivalent, for any 2 < j < m, to

Z (—t)‘”‘1<A/(a,-—aio>i€I,

0AIC{L,....5}
(@iy, G1—@iy, - . . (omitting all 4 € I) ..., a;—a;y, Gj11,- - -, dm)>,

where inside the sum iy denotes an element of I, with sequence
of elements of A/(a;—a;,)ier of length 1+ (j —|I|) 4+ (m —j) that
is independent of the choice of ig.

We let [A, S] denote the class in B of a pair (4, S). The natural grading
on Z[t] yields a grading on B that assigns degree |S| to [A, S]:
B =P B,.

n=0

Representations determine elements of B: if G is a finite diagonalizable
group scheme with representation

p: G—GL,
(over an arbitrary field), then there is an associated element
0] € B,

given by the Cartier dual group, with the sequence of weights supplied by
a decomposition of p as a sum of n one-dimensional linear representations.
Restricting to e-torsion groups A for a positive integer e, respectively,

to p-primary A for a prime number p, leads to a Z[t]-module E[e], respec-
tively B®. The evident homomorphisms from these modules to B are
split monomorphisms, with splittings given by

[A,S] — [A/eA, S], respectively, [A,S] — [A(p), 5],

where A(p) denotes the p-primary subgroup of A. We have
B— @E(p)7 B(p) _ MEW]‘
J

p

Definition 3.2. Let k be a field of characteristic zero and n a natural
number. The group
Burn,,
is the abelian group generated by pairs (K, ), where
e Kisa field of transcendence degree d < n over k and
e 0 € B, 4
modulo the identification of (K (t), ) and (K,t3) for 8 € B,_q_1.
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Example 3.3. For 82 we have generators t2[0, ()], t[Cs, (1)], [Cs, (1, 1)],
[Cs, (1,2)], [Cs, (1,4)], [C5 & Cs, ((1,0), (0,1))], and relations:

t[Cs, (1)] = [C5, (1,4)] +#[C5, (1)] = £°[0, ()],
[Cs, (1,1)] = 2¢[C5, (1)] = ¢[C5, (1)],
(G5, (1,2)] = [Cs, (1, )] + [C5, (1, 2)] = £[0, ()],
(G5, (1,4)] = 2(Cs5, (1,2)] - %[0, ()],
[Cs & Cs, ((1,0),(0,1))] = 2[Cs & C5, ((1,0), (0, 1))] — ¢[Cs5, (1)],
where C5 = Z/5Z. We deduce
(C @ Cs, (1,0, (0,1))] = G5, (1, 1)] = [C5, (1,4)] = G5, (1)] = [0, (),
with

2([C5, (1,2)] = #%[0, 1) = 0.

As may be seen directly, or by application of Theorem 4.1, below, over an
algebraically closed field of characteristic zero, among rational orbifold
surfaces whose only nontrivial stabilizer groups have order 5, the parity
of the number of isolated points with Cs-stabilizer and unequal weights
not summing to zero remains invariant under blow-ups of points. As
noted in [5, Exa. 4.3], it is not possible to eliminate such an isolated
point with Cs-stabilizer just with blow-ups of points.

4. BIRATIONAL INVARIANTS OF ORBIFOLDS

In this section we introduce new birational invariants of n-dimensional
orbifolds over a field k of characteristic zero, taking values in Burn,,.

Let X be an orbifold. We recall from [5] (see also [6]): if D;U---U D,
is a simple normal crossing divisor on X, then X is called divisorial with

respect to Dy, ..., D, if the morphism
X — BG!,
determined by Ox(D;), for i = 1, ..., £, is representable. We will apply

this terminology more generally to any a finite collection of line bundles.
Divisorialification is a procedure that, when applied to an orbifold X,
yields a succession of blow-ups along smooth centers

y—=--= X,

such that ) is divisorial with respect to a suitable simple normal crossing
divisor. This is given as Algorithm C in [5], initially with a requirement
to have abelian geometric stabilizer groups, later with this requirement
removed [6].

As explained in the introduction, invariance under birational projecive
morphisms is the statement of invariance under the equivalence relation
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of existence of a third object (variety or Deligne-Mumford stack) with
birational projective morphisms to two given objects. In this section we
are interested in quasiprojective orbifolds X and X”, and the equivalence
takes the form of existence of a Deligne-Mumford stack ) with birational
projective morphisms

y - X and y — X

There is no loss of generality in supposing ) as well to be an orbifold,
since resolution of singularities in a functorial form as in [22] and [7] is
applicable to algebraic stacks. Here we remind the reader that when X
and Y are quasiprojective orbifolds, a representable morphism ) — X
is projective if and only if it is proper. (Every projective morphism is
proper. The reverse implication uses that J — X factors up to a 2-
isomorphism through X xx Y, where X and Y denote the respective
coarse moduli spaces, that X — X and )Y — Y induce bijections on
geometric points, and that a representable proper morphism inducing a
bijection on geometric points is finite, hence projective.)

Theorem 4.1. Let k be a field of characteristic zero, n a natural number,
and X an n-dimensional quasiprojective orbifold over k. The following
recipe, assigning to X a class [X] € Burn, gives an invariant under
representable birational projective morphisms:

e Use divisorialification to replace X by a quasiprojective orbifold
Y that s divisorial with respect to some finite collection of line
bundles.

e Stratify ) by the isomorphism type of the geometric stabilizer
group and attach to each component the normal bundle:

Y= HyG> Ny,g = Ny, /y.
G

o Writing the coarse moduli space of Vq, for each G, as Yq, we
assign the element

4] = S (Y], [Nyg]) € Bumn,

In the last step, if Y is irreducible of dimension d, then we understand
[Ye] to be the associated element of Burng, with [Nyq] € B,,_q4 associated
to the representation of G at the geometric generic point of Y. In gen-
eral, we understand ([Yc], [Ny.c]) to be the sum of the elements of Burn,
attached to the irreducible components.
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Proof. Let X’ be a quasiprojective orbifold with representable birational
projective morphism to X'. We divisorialize X’ to obtain ). The diagram

yl

|

y—>X

may be completed to a 2-commutative square of representable birational
projective morphisms of quasiprojective orbifolds by desingularizing the
closure in the fiber product of a nonempty open substack where the mor-
phisms are isomorphisms. This way, we are reduced to showing that for a
representable birational projective morphism Z — ) of quasiprojective
orbifolds we have

Z([YGL [Nyg]) = Z([ZGL [Nzc]) € Burn,. (4.1)
G G
Let £, ..., L, be line bundles, relative to which ) is divisorial. The

functorial form of weak factorization in [3] is applicable to stacks and
yields a factorization of Z — ) as a composite of maps of divisorial
projective orbifolds (with respect to pullbacks of Ly, ..., L), each equal
to or inverse to a blow-up along a smooth center.

Let V be a smooth closed substack of ) of dimension d < n, with
coarse moduli space V, and let Z = B{,,). We verify (4.1) in this case.
On the left, we break up Vg into the unions of components )y, disjoint
from V and )”, meeting V nontrivially, and apply the modified scissors
relation to Y

> (Yal, [Nval) = D (Y4 [Nve)
a a
i Z([YC/?, NV, $dim)—dim(gny) [Nyg]) + Z([yéf < V], [Nyal),
G G

where in the second sum on the right, the dimensions are understood to
be taken componentwise. Breaking up the sum on the right of (4.1) in
a similar fashion, we obtain an expression with identical first and third
sums and a second sum that differs from the second sum in the expression
above by relations in B. O

Example 4.2. Functorial destackification [5] of an orbifold provides a
sequence of blow-ups along smooth centers and root stack operations
along smooth divisors that simplify the stack structure. The root stack
operation adds stabilizer u, (for some positive integer n) along a divisor
[10, §2], [1, App. B], and the outcome of destackification is an orbifold
that is obtained from a smooth variety by iterating root stack operations
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p BYjcnBYy p BY/CnBY)  p Eé“/wgBé”)

5 7.]27 17 ZRZ&Z 31 Z

7 0 19 Z 37 Z)27.& 72
11 Z 23 7’ A1 7)27.6 73
13 7./27 29 Z/2LSTZF 43 7?

TABLE 1. Isomorphism type of ng} /(CN E[zp ])

along components of a simple normal crossing divisor. Blow-ups alone
are, as noted in Example 3.3, insufficient to bring a general orbifold into
this form. Correspondingly, we view the quotient B/C, where C denotes
the submodule generated by the classes of pairs

(Ca1 @ @Cary(gh""gT))

of direct sums of finite cyclic groups and tuples of generators, as an
invariant of an orbifold up to smooth blow-ups and root stacks. We have

B" cc for  pe {23},

since blow-ups suffice for the destackification in these cases [17], [20].

Table 1, which records the isomorphism type of E[f /(C mBép}) for some
primes p > 5, reveals a pattern that we are able to confirm.

Proposition 4.3. For a prime p > 5 let
9= 9(Xo(p))

denote the genus of the modular curve, i.e.,

{ [£] F1, whenp=+1 mod 12,
g:

[%} , otherwise.

Then
2)27Z. 77, if p=1mod 4,

5, /(CmBz):{Zg, if p=3 mod 4.

The proof of Proposition 4.3, based on computations with Manin’s
modular symbols [18], is given in the next section.

The entry 0 in Table 1 for p = 7 indicates that B[;] C C. In fact, we
have Egﬂ C C as well. But we find

B¢ nB" = z/27.
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5. MODULAR SYMBOLS AND THE PROOF OF PROPOSITION 4.3

The equivariant Burnside group introduced in [14] is shown to exhibit
a tantalizing connection with the modular curves X;(NN) for various N.
Here, we see the appearance of the modular curves

Xo(p) = To(p)\H U {0, 00}

and the corresponding modular symbols [18].
Fix a prime p > 5; we are interested in the isomorphism type of the
abelian group

B}'/(cNnB)
with generators
[va(lva)]v 2<a<p-2
and relations
Cy, (1,a)] = [C), (1, a_l)] for all a, (5.1)
2[C,, (1,2)] =0, (5.2)
[Cp, (1,2)] = =[Gy, (1,p = 2)], (5.3)
[va (17 a)] = [va (17 a— 1)] + [va (17 a_l - 1)] (54)

forae{3,...,7%1}U{p—f,...,p—2},

where a~! denotes the positive integer less than p, inverse to a mod p.
The modular group

To(p) = { (‘CL Z) € SLy(Z)

has index p + 1 in SLy(Z), with right coset representatives

1) G )G )00

We let T'y(p) act in the standard way on the upper half-plane H and as
well on Q U {ioo}, the latter with two orbits corresponding to the cusps
0, o0 € Xo(p). Here, 0 corresponds to the set of all b/d € Q with p td
and oo, to the set of a/c € Q with p | ¢. The real structure on Xy(p) is
determined by the standard complex conjugation H — H, z +— —Zz. It is
well known that the real locus of Xy(p) is connected.

With Manin’s modular symbols [18], applied to I'g(p), we get a pre-
sentation of Hy(Xo(p),Z) by generators and relations. Proposition 4.3 is
established by showing that these relations, together with the additional
relations that the sum of any cycle and its complex conjugate is zero,
match the presentation (5.1)—(5.4). In fact, we use a simpler set of rela-
tions, which yield the homology not of the Riemann surface Xy(p), but

cz()modp}
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rather of the corresponding orbifold curve which carries orbifold struc-
ture at elliptic points. The quotient of H by I'g(p)/{£1} is an orbifold,
compactified by adding the cusps to obtain the orbifold curve

XO(p)orb-

Orbifolds and their topological invariants are explained, for instance,
n [19], while a convenient reference for orbifold curves is [4]. However,
Hy(Xo(p)ow, Z) may also be presented directly as the homology of the
complement of the elliptic points, modulo the relation that an appro-
priate multiple of a small loop around an elliptic point is zero. When
p = 1 mod 4 there is a complex conjugate pair of elliptic points of
Hi(Xo(p)orb, Z) where the stabilizer (of a representative point of H) has
order 2 in T'g(p)/{%1}; for each of these, twice a small loop is declared
to be zero in homology. When p = 1 mod 6 there is a complex conjugate
pair of elliptic points where the stabilizer has order 3 in I'g(p)/{£1}, for
which we declare 3 times a small loop to be zero in homology.

We summarize the needed results from [18], modified appropriately to
the orbifold setting. We maintain the convention from (5.1)—(5.4) about
a and o' and, when a ¢ {p—2, (p—1)/2} define positive integers a’ and
a” less than p by the requirements

d =—-a"'—1mod p, a’ = —(a+1)"" mod p.
Lemma 5.1 ([18, (1.4)]). A surjective homomorphipsm
Lo(p) = Hi(Xo(p)orb, Z)

is defined by sending v € T'y(p) to the image

in Xo(p) of a geodesic path in HUQ from 0 to ~-0. The kernel is generated
by the commutator subgroup of I'g(p) and the parabolic elements of T'y(p).

Lemma 5.2 ([18, (1.5)-(1.9)]). The abelian group Hy(Xo(p)orb, Z) is
presented by generators

{0,%}, 2<a<p-2,
and relations
{0, —}+{0 _1}—0 (5.5)
{0,—} + {0,—} + {0, 7} =0, (5.6)
{o, = /2} + {0 } 0. (5.7)
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Now the proof of Proposition 4.3 combines an algebraic result with
topological reasoning.

Lemma 5.3. An isomorphism

B”/(cnBY -

Hl(Xo(p)Orb,Z)/<{0,2} + {o,p%a}, ac{2...p-2})
is given by [Cy, (1,a)] — {0,1/a} for all a.

Proof. Suppose 2 < b < (p — 3)/2. We subtract the relations (5.4)
corresponding to @ = b+ 1 and a = p — b, noticing that the rightmost
terms cancel thanks to (5.1), to obtain

[Cp’ (17 b+ 1)] - [Cp, (1ap - b)] = [Cp, (1’ b)] - [Cp’ (1>p —b— 1)]

Starting from (5.3) we obtain, inductively,

[va (17 CL)] = _[va (Lp - a)] (58)
for all a. Using (5.8) and (5.1), we rewrite (5.4) as
[Cp, (1, a)] + [Cp, (1, )] + [C, (1,0")] = 0 (5.9)

for a ¢ {(p —1)/2,p — 2}. We conclude by matching relations (5.1)—
(5.2), (5.8)—(5.9) with (5.5)-(5.7) and the additional relations from the
quotient group in the statement of the lemma. ([l

While H;(Xo(p),Z) is free of rank 2g (where ¢ is the genus of Xy(p)),
there may be torsion in Hy(Xo(p)orb, Z):
Z/67 ® 7%, if p=1mod 12,
Z)27.® 7%, if p=>5mod 12,
Z)37.® 7%, if p=7mod 12,
729, if p=11 mod 12.

Hl (XO(p)orba Z) =

Complex conjugation acts on Hy(Xo(p)ow, Z) by

0.5) = {0}

a p—a
Lemma 5.3 identifies E[;]/(C N E[zp]) with the quotient of Hq(Xo(p)orb, Z)
by the elements of the form sum of a cycle and its conjugate.

Complex conjugation acts trivially on Hy(Xo(p)orbs Z)tors- When p =1
mod 4, intersection number mod 2 with a conjugation-invariant curve
joining the order 2 elliptic points splits off Hi(Xo(p)om, Z)[2] equivari-

antly as a direct summand of Hy(Xo(p)orn, Z). Now E[;]/(C N B[zp]) is a
direct sum of Z/2Z when p = 1 mod 4, zero when p = 3 mod 4, and the
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quotient of Hy(Xo(p),Z) by the elements of the form sum of a cycle and
its conjugate. The latter is accessed by choosing a conjugation-invariant
triangulation of Xy(p) and using spectral sequences relating the equivari-
ant homology of X,(p) with the group homology of H;(X(p),Z), on the
one hand, and the group homology of the groups of j-chains on the other,
for j =0, 1, 2; cf. [9, §VIL.7]. (All group homology is for the group Z /27,
corresponding to complex conjugation.) We omit the details and report
only the outcome:

Hi(Z/22Z, Hy(Xo(p),Z)) =0 forall i > 1,

A if j =0,
HY(Xo(p), 2) 2 2229 79, itj=1,
7,27, if j > 2.

The vanishing of H;(Z/2Z, Hi(Xo(p),Z)) has the consequence that the
subgroup of Hy(Xo(p),Z) of elements of the form sum of a cycle and its
conjugate is saturated, i.e., has torsion-free quotient.

APPENDIX A. G-EQUIVARIANT BURNSIDE GROUP

Let G be a finite abelian group, with character group A, and X a
smooth projective variety over an algebraically closed field of character-
istic zero, with a faithful action of G. The paper [14] introduced

e the abelian group
B.(G),
as the quotient of the Z-module generated by symbols (ay, . .., a,),
with a; € A, and subject to conditions and relations similar to
those in Definition 3.1,
e the equivariant Burnside group

Burn, (G),

and
e the G-equivariant birational invariant

B(X) € Burn,(G).

The invariant 5(X) is the term corresponding to H = G in the first sum
in the formula (1.2) from the Introduction, with some indices shifted by
1. The shift of indices reflects that, under the assumption that G is non-
trivial and the fixed locus X¢ is nonempty, X has positive codimension
in X. In this Appendix we explain in detail the formula (1.2).

Now, let k be an arbitrary field of characteristic zero and X a smooth
projective variety over k, with a faithful action of a finite abelian group
G. Let H C G be a subgroup. The H-fixed locus X is smooth, a finite
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union of orbits of components. After removing those where the generic

point has stabilizer strictly larger than H we are left with Y;, ..., Y},
each with an induced faithful action of the quotient group G/H. Let
Z1, ..., Z, denote the respective quotient varieties. With the convention

from the Introduction, by which we may write k(Y") when Y is not nec-
essarily irreducible, we have a G/H-Galois algebra extension k(Y;)/k(Z;)
for every 1.

Assumption 1. For all H and all k(Y;)/k(Z;), the field k(Z;) contains
primitive eth roots of unity, where e is the exponent of H, and the ho-
momorphism

HYG, k(Y;)) = H'(H, k(Y;)) )™ = H'(H, k(Z:))
of the Hochschild-Serre spectral sequence is surjective.

The homomorphism in Assumption 1 is always injective, since by the
Hochschild-Serre spectral sequence the kernel is H'(G/H, k(Y;)*), which
vanishes by Hilbert’s Theorem 90 (for Galois algebras, this may be found
in [11, §4.3]). Thus, Assumption 1 implies that it is an isomorphism.

The next result tells us that, that under Assumption 1, for every n the
non-abelian cohomology set H'(G,GL,(k(Y;))) (see, e.g., [21, §1.3.2])
may be identified with H'(H, GL,(k(Z;))), the set of equivalence classes
of linear n-dimensional representations of H over k(Z;).

Proposition A.1. Let G be a finite abelian group, H C G a subgroup, K
a field containing a primitive eth root of unity, where e denotes the expo-
nent of H, and K a G/H-Galois algebra over K. If the homomorphism
HYG,K*) — HYH,K{) of the Hochschild-Serre spectral sequence is
surjective, then for every positive integer n there is a unique bijective
map of non-abelian cohomology sets

HY(G,GL,(K)) = H'(H,GL,(K,))
that is compatible with restriction

HY(G,GL,(K)) = H'(H,GL,(K))
and extension of scalars

HY(H,GL,(K,)) — H'(H, GL.(K)).

Proof. We fix a primitive eth root of unity ( € Ky. The extension of
scalars map from the statement is injective (by standard representation
theory), so it suffices to exhibit a compatible bijective map of the indi-
cated non-abelian cohomology sets. In fact, it suffices to verify the com-
patibility condition after replacing H'(H, GL,(K)) with H'(H, GL,(K))
for some étale extension K /K.
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By the structure theorem of finite abelian groups,
H=Z/mZx ---xZ|n.Z

forny, ..., n, > 2withn; | njpq fori =1,...,r—1; we have e = n,.. Let
¢ € Ky be a primitive eth root of unity. Sending the ith generator of H
to ¢¢/™ and all other generators to 1, we have an element of H'(H, K{)
which, by hypothesis, comes from a 1-cocycle (u; 4),ec With values in K*.
As remarked above, the homomorphism from the statement is always
injective, therefore ( " )gec is a l-coboundary, i.e., for some v; € K* we
have
up = =9v; /v, for all g€ G.

The data of (u;" )4 and (v;); give us a way to assign, functorially, a H-
Galois algebra over an étale Ky-algebra Ly to every G-Galois L/ Ly with
G-equivariant Ky-algebra homomorphism K — L. Specifically, given G-
Galois L/Lg with ¢: K — L we apply Hilbert’s Theorem 90 to obtain
w; € L* for every i, satisfying ¢(u; z) = 9w, /w; for all g. Now ¢(v;)w; ™
is Galois-invariant, i.e., lies in Ly, and is unique up to multiplication by
an element of (Lg)"i for every i (since w; is unique up to multiplication
by an element of Lj); we associate the H-Galois algebra

Lolty, ...t/ (7" — v(vp)wy ™, .ot — o(vp)w, ™).

The functorial association is fully faithful. We deduce that it is essentially
surjective, hence gives an equivalence of categories, using that any H-
Galois L/ Ly is trivialized by an étale extension of Ly (e.g., Lj ®r, L =
[1,cy Lo) and described up to isomorphism by an H-valued 1-cocycle (
Galois cohomology).

Finally, the non-abelian cohomology sets from the statement are in-
variants of the categories described in the previous paragraph. A unique
element of H'(G, GL,(K)), respectively, H'(H, GL,(Ky)), is associated
to a functorial association of a free Ly-module of rank n to every G-Galois
L/Ly with G-equivariant Ky-algebra homomorphism K — L, respec-
tively, to every H-Galois algebra over Lj. The equivalence of categories
of the previous paragraph identifies these two non-abelian cohomology
sets. For the compatibility, we use the category of H-Galois Lj/L, with
extension of the Kjy-algebra structure of Ly to a K-algebra structure,
with functor

(Ly/Lo. K 2 Lo) = ((I1 e Lo)™ /Lo, = (B(92))gec)

whose composite with the functor of the previous paragraph becomes nat-
urally isomorphic to the forgetful functor after replacing K by a suitable
étale extension K. Functorial associations on this category, as above, are
characterized by elements of H'(H, GLy,(K)), such that the functors give
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rise to the relevant maps on non-abelian cohomology sets. We obtain the
required compatibility. O

Assumption 1 always holds when k contains all roots of unity. In
general, after performing the divisorialification procedure (see Section 4)
the following stronger condition will hold.

Assumption 2. For all H and all k(Y;)/k(Z;) the field k(Z;) contains
primitive eth roots of unity, where e is the exponent of H, and the com-
position of the map from Assumption 1 with the restriction

Pic®(X) — Pic®(Spec(k(Y;))) = HY (G, k(Y;)™)
is a surjective homomorphism
Pic(X) — H'(H, k(Z)*).

Proposition A.2. Let k be a field of characteristic zero and X a smooth
projective variety over k with a faithful action of a finite abelian group
G. Then there exist smooth projective varieties with G-action and G-
equivariant morphisms

X'=X,— =X = X=X,

each the blow-up of a smooth G-invariant subscheme, such that X' O G
satisfies Assumption 2.

Proof. The divisorialification procedure, applied to [X/G], translates into
a sequence of blow-ups that meets the stated conditions. O

Proposition A.3. Let k be a field of characteristic zero, X and X'
smooth projective varieties with faithful actions of a finite abelian group
G satisfying Assumption 2, and

o: X' --+ X

a G-equivariant birational map restricting to an isomorphism over open
U C X. Then there exists a weak factorization of ¢, where each map 1is,
or is inverse to, the blow-up of a smooth G-invariant subscheme disjoint
from U and the intermediate projective varieties with G-action satisfy
Assumption 2.

Proof. There is no loss of generality in supposing ¢ to be a morphism. By
Assumption 2 there is a finite collection of G-linearized line bundles on X
whose classes in Pic”(X) map to a generating system of H'(H, k(Z;)*)
for every H and k(Y;)/k(Z;). We represent these by a G’ -torsor V —
X (where r denotes the number of line bundles), with G-action on V'
determined by the linearizations. By [5, Rmk. 7.14], Assumption 2 for
X implies that the G-action on V' is free. Let V' = X’ xx V. Functorial
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weak factorization [3] provides compatible weak factorizations of X’ — X
(G-invariant, maintaining isomorphisms over U) and V' — V', with G/, -
torsor structure preserved throughout the weak factorization. Since, for
any subgroup H C G, the property of having a point with stabilizer
exactly H is preserved under blow-up of a smooth G-invariant subscheme,
we see that the freeness of the G-action is maintained throughout the
weak factorization. By [5, Rmk. 7.14], again, we deduce that Assumption
2 is maintained throughout the weak factorization. O

As stated in the Introduction, Burn,, (G) is a quotient of the free abelian
group on triples consisting of a subgroup H of G, a G/H-Galois algebra
extension K of a field K of some transcendence degree d < n over k
satisfying Assumption 1, and a faithful (n — d)-dimensional linear repre-
sentation of H over K with trivial space of invariants. Any such repre-
sentation splits as a sum of one-dimensional representations, so we may
write the representation as a sequence of (n — d) nonzero elements that
generate the Cartier dual H. Triples related by an equivariant isomor-
phism of algebras over k are regarded as equivalent, as are those which
differ by a permutation of the elements of H. Then we identify

[G/H ¢ K, (a1,...,a0,-q)]

with, for any 2 < j < n — d, the sum over pairs (I,Cy) with ) £ I C
{1,...,7} and C; a coset (of some subgroup) in A, satisfying

I={1<i<jl|a; €Cr}, Cr = ai, + (@i — aiy)ier (i € 1),
of the generator indexed by the triple that we get as follows:

e Set Hy =) ker(x), where A; = (a; — a;,)ier. So,

XEAT
H; = AJA;.

e Let a representation of H; be determined by a;, together with
a; — a;, for all i < j with ¢ ¢ I and a4, ..., a,_g; this gives a
sequence of elements of A/A; that is independent of iy € I.

o Writing I = {ig, 1,...,47-1} and letting

O = (1)gec

g

denote the 1-cocycle with values in K™ corresponding by As-
sumption 1 to a; € H = H'(H, K{), we let G/Hj act on the field
K(ti,...,ti5—1) by the given action on K and by b /b on t,,
fore=1,..., |[I] —1.
It may happen, for some (I, C}), that 0 appears in the sequence of ele-
ments of A/A;. Those (I, C}) are simply omitted from the sum, leaving
a sum of generators associated with valid triples.
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