INVOLUTION SURFACE BUNDLES OVER SURFACES
ANDREW KRESCH AND YURI TSCHINKEL

ABSTRACT. We construct models of involution surface bundles over
algebraic surfaces, degenerating over normal crossing divisors, and
with controlled singularities of the total space.

1. INTRODUCTION

In this paper, we continue our investigation of del Pezzo fibrations,
initiated in [7]. Here we treat the case of fibrations in minimal del Pezzo
surfaces of degree 8, also known as involution surfaces and described from
the arithmetic viewpoint, e.g., in [1]. These include, as a special case,
fibrations in quadric surfaces.

The main result of [2] gives a dictionary between quadric surface bun-
dles X — S, where S is regular and has dimension at most 2, degen-
erating along a regular divisor to A;-singular quadrics, and sheaves of
Azumaya quaternion algebras on a double cover of S. The approach
taken there is based on Clifford algebras and orders in quaternion alge-
bras.

Our results are more general in several respects:

e We allow more general degenerations, including quadric surface
fibrations where the defining equation drops rank by 2 along a
regular divisor (Definition 1).

e We allow the base S to have arbitrary dimension (Theorem 6).

e When S is a surface over an algebraically closed field, we allow de-
generation along an arbitrary divisor and construct (Theorem 2)
birational models with controlled singularities degenerating over
normal crossing divisors.

Definition 1. Let S be a regular scheme, in which 2 is invertible in
the local rings. An involution surface bundle over S is a flat projective
morphism 7: X — S such that the locus U C S over which 7 is smooth
is dense in S and the fibers of 7 over points of U are involution surfaces.
An involution surface bundle 7: X — S is said to have mild degeneration
if every singular fiber is geometrically isomorphic to one of the following
reduced schemes:
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e (Type I) a quadric surface with an A;-singularity;

e (Type II) the self-product of a reduced singular conic;

e (Type III) a union of two copies of the Hirzebruch surface Fy,
each with (—2)-curve glued to a fiber of the other;

e (Type IV) the product with P! of a reduced singular conic.

Theorem 2. Let k be an algebraically closed field of characteristic dif-
ferent from 2, S a smooth projective surface over k, and

m X =8

a morphism of projective varieties whose generic fiber is an involution
surface. Then there exists a commutative diagram

XX

]; I

s S

such that

® 05 is a proper birational morphism,

e ox is a birational map that restricts to an isomorphism over the
generic point of S,

e 7 is projective and flat, and the complement of the locus over
which 7 is smooth is a stmple normal crossing divisor 15, and

e the restriction of ™ over the complement in S of the singular locus
ofﬁ 1s a mildly degenerating involution surface bundle.

The singularities of X are analyzed in Section 2, and the structure
of 7 over the singular locus of D is analyzed in Section 3. Theorem 2
is restated, with this analysis, as Theorem 10 in Section 4. Our second
main result, Theorem 12, shows that an involution surface bundle X as in
Theorem 2 is determined uniquely, up to birational modification, by the
data of a (possibly ramified) double cover of S and a 2-torsion (possibly
ramified) Brauer group element on the double cover. In the same setting,
we obtain in Theorem 13 a strengthening of the dictionary of [2], which
allows degeneration over a simple normal crossing divisor.

Our approach is intrinsic to involution surfaces, and therefore the good
models that we produce, starting from a quadric surface fibration with
the more general degeneration pattern, will not embed into a P3-bundle
over the base. This more general degeneration pattern was an essential
ingredient in the application to stable rationality given in [6].

In our approach we continue the systematic use of root stacks, as in

141, [71, [3]-
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2. GENERIC DEGENERATIONS

In this section we examine models of an involution surface over a DVR;
see [3] for a general discussion in the context of the minimal model pro-
gram. We start with a description of an involution surface over a field K,
a surface that is geometrically isomorphic to P! x P!, Then we consider K
as the fraction field of a DVR and investigate the possible degenerations.

Let K be a field of characteristic different from 2. An involution surface
X over K is classified by the data of an étale K-algebra L of degree 2
and a central simple algebra B over L of degree 2; see, e.g., [1, Exa. 3.3].
The corresponding Brauer-Severi scheme is a conic C' over L, and X is
isomorphic to the restriction of scalars of C' via the extension L/K. We
have [B] = 0in Br(L) if and only if X (K') # 0 [1, Lem. 7.1]. Furthermore,
X has Picard number 2 if and only if L = K x K, and X is isomorphic to a
quadric surface if and only if [ B] corestricts to 0 in Br(K), or equivalently,
is in the image of the restriction map Br(K)[2] — Br(L)[2].

The extension L/K is called the discriminant extension of the involu-
tion surface X. Rulings of X, i.e., projections to genus zero curves, are
defined over L.

Now let o be a DVR with fraction field K and residue field &, also of
characteristic different from 2. Let o, be the integral closure of 0k in L.
Let § € Br(L)[2] denote the Brauer class of B. There are the following
possibilities.

e [ is isomorphic to K x K or is a split unramified quadratic ex-
tension of K. Then Spec(o;) has two closed points, each with
residue field k.

— ( is unramified at both closed points of Spec(oy).

— [ is unramified at one of the closed points points of Spec(oy)
and ramified at the other.

— [ is ramified at both closed points of Spec(oy).

e [ is an inert unramified quadratic extension field of K. Then oy,
is a DVR whose residue field X is a quadratic extension of k.

— [ is unramified.
— [ is ramified.

e [ is a ramified quadratic extension field of K. Then oy, is a DVR

with residue field k.
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— [ is unramified.
— [ is ramified.

In the first subcase of the first and second cases the description of X
over K as a restriction of scalars extends to yield a smooth model of X
over 0. We organize the remaining cases as follows.

e [: [ is ramified, and f is unramified.
e II: L is unramified, and ( is ramified at all closed points of
Spec(or).
Types I and II occur for quadric bundles. In this case, the rank of the
defining quadratic equation drops by 1, respectively by 2.

e III: L is ramified, and [ is ramified.
e [V: L is isomorphic to K x K or is split unramified, and 3 is ram-
ified at one and unramified at the other closed point of Spec(oy).

Types IIT and IV occur only in involution surfaces that are not quadric
surfaces.

Remark 3. For involution surfaces, as well as all of the singular degener-
ations in Definition 1, the dualizing sheaf has dual which is very ample
with 9-dimensional space of global sections. As in [7, Rem. 4.2] and its
consequences mentioned in Section 7 of op. cit., this implies that any
mildly degenerating involution surface bundle 7: X — S has relatively
very ample line bundle wy /85 inducing an embedding

X = P(m(wxys)”)
into the projectivization of a rank 9 vector bundle over S.

If S is irreducible, then an involution surface bundle 7: X — S has a
well-defined discriminant extension, an étale algebra extension of degree
2 of the function field of the generic point. We will describe the discrim-
inant extension, as well, by the integral closure of S with respect to this
étale algebra extension. In general, S is the disjoint union of its irre-
ducible components, and we extend the notion of discriminant extension
accordingly. If we fix, over the generic point n of each component of S,
an étale k(n)-algebra A\(n) and a compatible collection of identifications,
for all étale k(n)-algebras, of identifications of rulings of the base-change
of X with k(n)-algebra homomorphisms to A(n), then we will describe
X — S as rigidified by (A(n)/k(n)), (or by the integral closure of S
with respect to (A(n)/k(n)),). Given a rigidification of X — S, the
Brauer class 8 at the generic point of each component of 7" is determined
uniquely, and not only up to Galois conjugation.

Definition 4. Let ox and o; be as above, and let X be an involution
surface over K, rigidified by L/K. Suppose that L is isomorphic to
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K x K or is split unramified over K. We say that X has Type [V
marking € € Spec(oy) if € is a closed point of Spec(oy), such that the
Brauer class € Br(L)[2] determined by the rigidified involution surface
extends to Spec(or) \ {e}.

In the setting of an involution surface bundle 7: X — S| rigidified by
Y: T — S, we will speak of Type IV marking by a regular divisor D' C T,
mapping isomorphically to image D C S disjoint from the branch locus
of T"— S, when

e D is the locus in X of Type IV fibers, and
e for the generic point € of each component of D’, the restriction of
7 over Spec(QOg () has Type IV marking .

Let v: T'— S be a finite flat morphism of degree 2 between regular
schemes with branch locus Dy U D3, and let Dy and D, be divisors in S.
Suppose that Dy, ..., D, are regular and pairwise disjoint, and D) C T
is a divisor mapping isomorphically by 1 to D4. There are isomorphic
copies of Dy and D3 in T, which we again denote by D; and D3. We
describe a procedure that transforms a regular conic bundle C' — T with
singular fibers over ¢! (Dy)UD3UD}, to a mildly degenerating involution
surface bundle over S with Type I fibers over Dy, Type II fibers over D,
Type III fibers over D3, Type IV fibers over Dy, and Type IV marking
D). We will see that the resulting involution surface bundle X — S has
singularties only over Dy, as in the following definition.

Definition 5. Let S be a regular scheme, in which 2 is invertible in
the local rings. We call a mildly degenerating involution surface bundle
m: X — S simple if the locus where 7 has singular fibers is the disjoint
union of four regular divisors D, ..., D4, where m has Type I fibers
over Dy, Type II fibers over D,, Type III fibers over D3, and Type IV
fibers over Dy, and if, letting s: Dy — X X g Dy denote the section which
in each geometric fiber is the intersection point of all the components,
X N\ s(Dy) is regular and X has ordinary double point singularities along
S(DQ).

First, we consider the case that D; and D3 are empty:

C —T

|

S
The vertical map is finite étale of degree 2. We restrict scalars along this
to obtain X.

In the general case, we appeal to [T'/us], isomorphic to the root stack
\/ (S, D13) of S along Dy3 := Dy U D3, with finite étale cover by 7. The
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construction starts by replacing C' by a P!-fibration over the root stack

(T, D3), where the fibers over the gerbe of the root stack Gs are P! with
nontrivial action of the stabilizer ps. This is accomplished by applying [7,
Prop. 3.1] to C over the complement of the pre-image of Doy := Dy U Dy
and gluing with C|r.p,,:

P := C|r.p,, U (smooth P'-fibration over \/(T'\ ¢~(Das), D3)).

The following diagram contains a fiber square whose vertical maps are
finite étale of degree 2:

P (T, Ds) r
| e
(T4, G) — [T 1)
iterated root:
{(D1,2),(D3,4)}l %g
S

We restrict scalars to obtain a smooth P! x P'-fibration

w: L= /([T/ 2], Gs).

It remains to modify II over D, and D5 to obtain I’ that descends to an
involution surface bundle over S. Over the gerbe of the root stack G; over
D1 the stabilizer us acts on geometic fibers by swapping the factors, fixing
the diagonal. We blow up the diagonal, to obtain in each geometric fiber
a Hirzebruch surface Fy. Contracting the proper transform of w™(G;)
to a copy of Gy yields II' away from Ds3. To see that II', away from
D3, descends to a regular scheme, flat over S, we invoke [7, Prop. A.9],
which identifies the conormal sheaf Zg, /i /Ié1 v With the direct image
of the conormal sheaf of the proper transform of w™(G;). On geometric
fibers this is HO(P! x P!, Op1,p1(1, 1)), which as po-representation splits
as trivial rank 3 representation and nontrivial rank 1, the latter generated
by a local defining equation t of Dy in T whose square is a local defining
equation of Dy in S. The modification over D3 is more complicated and
proceeds in two steps:

(i) blow-up and contraction, descent to [(T"~ D1)/ua];
(ii) further blow-up and contraction to obtain IT'.

Fix a point « € D3, and let A be the coordinate ring of an affine neigh-
borhood of x in S, disjoint from Dy, Dy, and Dy. Let A" := A[t]/(t* — f),
where f is a local defining equation of D3. As in the proof of loc. cit.,
there is an étale local model for P of the form

[Proj(A"[u, v])/ pa),
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where A” denotes A’[s]/(s* —t), with us acting by scalar multiplication
on s and v and trivially on v. Over the affine neighborhood, the fiber
square in (2.1) becomes

[Spec(A”)/g] —— Spec(4')

| |

[Spec(A”)/pa] — [Spec(A’)/pe]
Now we claim that II is
[Spec(A”) x P* x P!/ 4],
where the action of yy on P x P! is by

i-((a:b),(c:d)):=((ic:d), (ia : b)).
Over each copy of Buy we find two geometric points with py-stabilizer
and one with pus-stabilizer.

The claim reduces to the following computation, over Spec(Z[1/2]) of
the restriction of scalars along Bus — By of [P!/us], where usy acts by
(u:v) — (—u:v). Consider a general py-torsor T"— S of schemes over
Spec(Z[1/2]). Then ps-equivariant T — P! morphisms are in bijective
correspondence with p-equivariant maps 7' — P x P!, for the py-action
on P! x P! indicated above, by

[ (f, (=i) o fo (i),
where the expression on the right is independent of the choice of primitive
fourth root of unity 7, by us-equivariance of f: T'— P!. Restriction of
scalars thus yields [P! x P/ py].

Step (i) is to blow up the locus with py-stabilizer, replacing each geo-
metric point with a copy of P2, acted upon by py with one isolated fixed
point, one pointwise fixed line, and generic stabilizer ps. The copy of
P! x P! becomes a degree 6 del Pezzo surface F', which may be con-
tracted to a line (as a conic bundle with, geometrically, two singular
fibers).

For step (ii) we blow up the fixed locus for the ps-action. Geometric
fibers then have four components: two copies of Fy pointwise fixed by
1o and two copies of ;. The latter may be contracted to yield II" with
contraction onto a locus Z, whose fibers over G3 are reduced singular
conics.

Theorem 6. Let S be a regular scheme, such that 2 is invertible in the
local rings of S, and let D C S be a reqular divisor. We suppose D is
written as a disjoint union of Dy, Ds, D3, Dy, and we are given a reqular
scheme T with finite flat morphism ¢: T — S of degree 2, branched
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over D1 U D3, and divisor D), mapping isomorphically to Dy. Then the
construction described above identifies, up to unique isomorphism:

o mildly degenerating reqular conic bundles over T, with singular
fibers over ¥~1(Dy) U D3 U D)), with

o mildly degenerating simple involution surface bundles over S, rigid-
ified by T — S, with singular fibers over Dy, ..., Dy as in Defi-
nition 5 and Type 1V marking D}.

Remark 7. Even over a DVR the construction of Theorem 6 includes new
cases.

Proof. We first treat that case that T" — S is unramified, i.e., D; and
D3 are empty. The restriction of scalars construction gives the forwards
construction, producing an involution surface bundle out of a mildly de-
generating regular conic bundle. The description of the singularities is
clear. For the reverse construction, a mildly degenerating involution
surface bundle over S determines an embedding in a PS-bundle over S
(Remark 3). Now the relative Grassmannian of planes meeting X in
a conic supplies, after throwing away overdimensional components over
D, the reverse construction. This produces a mildly degenerating conic
bundle over T'. To see that this is regular, we suppose the contrary. Then
the forwards construction recovers X, but with singularities not of the
type that X is assumed to possess.

For the general case, we follow the strategy of the proof of [7, Prop.
4.4]. The forwards construction has been described already. We need
to verify that the outcome of the modifications described over D; and
Dj satisfy the claimed conditions. This is carried out as in [7, §5]. We
provide details only for the treatment over Ds.

For the singularity analysis of the stack obtained by contracting F' to a
line in step (i), we pass to an affine étale neighborhood which trivializes
the discrimant extension, and let H, I, J, K denote the proper transforms
of rulings of X, labelled so that the locus blown up in step (i) consists of
the intersection (of the images) of H and K and of I and J. Then the
following Cartier divisors determine Cartier divisors upon contraction:

H+1, J+ K, E,+ Ey + F,
2B+ F+ H+ K, 2B+ F+1+J.
There is thus a local defining equation
yzs? = v

where y and z are sections of a line bundle that has degree 1 on each
of the components of the fiber P? Up: P2. Thus, after the descent in (i),
which replaces s? by ¢, we obtain geometric fibers over G with two points
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which are A;-singular points of the total space. The ps-action on P! is
nontrivial, swapping the singular points. The fixed locus for the action,
in each of the geometric fibers, consists of two disjoint lines, one in each
component.

The singularity analysis in step (ii) proceeds as before away from sin-
gular points of fibers. At a singular point r € Z, there is a new ingredi-
ent. Passing to an étale neighborhood, we may assume that the singular
conic is reducible, with local functions v and w, each vanishing on one
component and restricting to a local parameter on the other. Now the
sequence, analogous to [7, (5.2)], is only right exact: the left-hand map,
from the fiber of Z/Z% to the Zariski cotangent space at r, has kernel of
dimension one, generated by vw. The conclusion is, however, the same:
the Zariski cotangent space at r has dimension n + 3, where n is the
dimension of the local ring of S at the image of r.

In fact, with the analysis of the reverse construction below, it is possible
to determine an étale local form of the defining equation at 7:

u? — v?w? = 2.
Then, if we blow up the locus t = u = vw = 0, we find one chart

with t = uty, where u = 0 defines the exceptional divisor, and defining
equations

VW = ux,
2 _ 42
]_—l' —tl.

The fiber over ¢ = 0 consists of the exceptional divisor (two components)
and the proper transforms of components

t1 =0, u=vw, =1 and ty =0, u=—vw, r=-—1,

and two points
th="Fl, u=v=w=x=0,
at which the total space has A;-singularities.

The reverse construction needs to be checked over D; and Ds. Let r
be a singular point of a Type I fiber of 7. With D; locally defined by
f =0, we claim that there is an étale local equation for X at r of the
form

r}+ a5+ a5 = f,
in affine 3-space over the base as in [7, §6]. The relative singular locus is,
locally, a copy of D;. Denoting its ideal sheaf by Z, we have Z/Z? locally
free of rank 3, and we have an exact sequence as in [7, (5.2)] with a fiber
of Z/T?* at r (a 3-dimensional vector space over the residue field), the
Zariski cotangent space of X at r in the middle (dimension n 4 2), and
the Zariski cotangent space of D; at r (dimension n — 1) on the right;
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here n denotes the dimension of the local ring of S at the image s of r,
with maximal ideal generated by f and some n — 1 further elements ¢,

vy gn—1. As in [7, §5], the Zariski cotangent space of X at r surjects
onto the Zariski cotangent space of 771(s) at r, with kernel spanned by

g1, ---, gn—1 and f mapping to zero in the Zariski cotangent space of X
at r. So f maps to zero in every fiber of Z/Z?%, and hence
fer. (2.2)

Furthermore, the fiber of Z/Z? at s maps isomorphically to the Zariski
cotangent space of 771(s) at r, so we can let 1, T2, 3 be elements that
locally generate Z/Z? and, as in loc. cit., use these elements to write X,
étale locally, as a hypersurface in affine 3-space over the base. Now (2.2)
supplies a local defining equation

3
f= E QijTiLy,

ij=1

where (a;;) is a symmetric matrix with entries in the coordinate ring of
(an étale neighborhood of) the base. The matrix is invertible since it
has full rank over all points of the base. This gives the desired étale
local defining equation. It is now straightforward to verify the reverse
construction over Dj.

The reverse construction over Dj is straightforward once we verify an
étale local equation of the form

w? — v*w? = f,

where f is a local defining equation of D3 at a closed point s € S and
u £+ vw are local defining equations of the components of the fiber over
D5. We start by passing to an étale affine neighborhood of s in S where
the components of the fiber over D3 are defined, as are the components
of the relative singular locus Z. We let r denote the singular point of Z
in the fiber over s and let v’ and u” be local defining equations at r of
the components of the fiber over D3, with

f=u'u" (2.3)

As well, we take v to be a local function, vanishing on one component of
Z and restricting on the other component to a local defining equation for
the singular locus of Z (a copy of D3), and we take w to be an analogous
local function, where the roles of the two components of Z are exchanged.
Letting Z denote the ideal sheaf of Z, and denoting the maximal ideals
corresponding to s and r by m and n, respectively, we have the following
right exact sequences of vector spaces over the residue field x at r (which
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is also the reside field at s):
(Z)T*) ® Kk — n/n* = /(T +n?) =0, (2.4)
m/m? = n/n® = n/(mOx, +n?) — 0. (2.5)
By abuse of notation, Oy, denotes the structure sheaf at r of X, pulled
back over the étale neighborhood of S. We let n denote the dimension of
Ogs, with m generated by f and additional local functions ¢y, ..., gn—_1.
The Zariski cotangent space n/n? has dimension n + 2. By (2.3), f
maps to 0 in n/n? in (2.5), where the space on the right, the Zariski

cotangent space of the fiber over r, has basis u/, v, w; alternatively, u”,
v, w is a basis. It follows that n/n? has basis

/
915+ -5 9n-1,U,V, W.

By (2.4), noting that Z is locally the complete intersection defined by
and u”, we have Z/Z? locally free of rank 2, and the images of generators
v’ and u” in n/n? are equal up to scale. Adjusting v” (and f) by units,
we may suppose that v’ and u” are equal in n/n?. Tt follows that

u —u" e ITnn’
Now we claim that
u'n+ (vw) =T Nn?.

Since the left-hand side is evidently contained in the right-hand side, it
suffices by Nakayama’s lemma to show that «'n and vw span

(Z Nn?)/n(Z Nn?). (2.6)
We have an exact sequence
0—=ZNn* =7 (T+n?)/n*>—=0, (2.7)

where the space on the right is isomorphic to k. Tensoring with x yields
a long exact sequence of Tor spaces. It is readily verified that the map
Tory(Z, k) — Tory((Z + n?)/n? k) is zero, and the connecting homomor-
phism from

Tory ((Z + n2)/n2, k) = Tory (k, k) = n/n2

is given by multiplication by «'. It follows that the space (2.6) has di-
mension n+ 3, and the image of the connecting homomorphism has basis

!/ / 12 / /
uagy, ... u' gpo1,u u', uw. (2.8)

Now it suffices to show that this image does not contain the class of vw.
The space

n?/(mOx, +n?)
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has dimension 5, basis v?, w?, v'v, v'w, vw, and there the image of u/n
does not contain vw. So the claim is established.

In the right exact sequence obtained from (2.7) by tensoring with x
we have the class of v’ — «” in the middle mapping to zero on the right,
hence v’ —u” as an element of (2.6) is not in the span of (2.8). From the
claim and this observation it follows that

u — " =u'h+vwk
for some h € n and k € Og .. With
w =2k~ + vw,
we compute
w? —v*w? = 4(1 — h)k?f,
which (after adjusting f by a unit) is the desired local equation.

We conclude by using the case of unramified degree 2 cover, treated at
the beginning of the proof, to associate to the involution surface bundle

over \/([T'/uz],Gs), which no longer has fibers of Type I or Type III, a
regular conic bundle over /(7T, D3) with smooth fibers over the comple-
ment of ¥ ~1(Dy,). By applying [7, Prop. 3.1] over the complement of
¥~ 1(Dyy), this is converted to a regular conic bundle over T'. 0J

The following result gives an alternative description of the involution
surface in a simple setting.

Proposition 8. Let S be a reqular scheme, such that 2 is invertible in
the local rings of S, and let D = Dy be a regular principal divisor, defined
by the vanishing of a regular function f on S. Then the construction of
Theorem 6, applied to the degree 2 cover S 1S — S and conic bundle
Co U Cy, where

Co: 2022 — fzf =0 m S x P?,
yields an involution surface bundle
XcSxPp®

which sits in a commutative diagram

[S" X P X P! /o] — = = [S" /o] x5 X

|
| |
Y

CO Xsoo X

Segre
where S" = Spec(Oslt]/(t* — f)) with pa-action on S' x P x P! by

(tyu: v, 0" = (—t,—u:v,—u '),
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the top map is the rational map sending (t,u : v,u' : V') to

(2 v 2o tuou  uon'v' s tuon 2o 0t uy R e?o'™),

the left-hand map is the rational map given by
(tu:v,u ) = (tu? uw: t0? Y t'?),

the right-hand map is projection, and the bottom map is induced by the
Segre embedding P? x P2 — P8,

Proof. The involution surface bundle is obtained from the regular conic
bundle C' := Cy U Cy by restriction of scalars along S U .S — S. Since C
is pulled back from Cj over S, this yields Cy X g Cy. The rest is clear. [J

3. CODIMENSION 2 PHENOMENA

In this section we exhibit involution surface bundles X — A2, such
that X x,2 (A% \ {0}) is a mildly degenerating simple involution surface
bundle with D; equal to the z-axis and D;, to the y-axis, for some 7 and
J (where D; taken to be the union of the two axes when i = j). These
will be used in the following section to exhibit good models of general
involution surface bundles over surfaces, over an algebraically closed field
of characteristic different from 2.

Let k be a field of characteristic different from 2. We let S = A7, with
coordinates z and y. We take i € {1,2,3,4} and j = 2. When ¢ is odd,
we take T = A?, with coordinates s and y, with = s?, and when i is
even we take T" to be the disjoint union of two copies of S. We will also
consider the case i = j = 4, with T the disjoint union of two copies of .5,
which will split into two subcases according to the form of the Type IV
marking.

The strategy, when the machinery of Theorem 6 does not directly lead
to a construction of X — S, will be to write down a model p: P — S’ of
m: X° — 5°:= 5\ {so} over some S’, isomorphic to A?  with a finite flat
covering 7: S' — S and 771(0) = {so}. Here, X° — S° is determined
from a given cover T° — S° and regular conic bundle C° — T° by
Theorem 6, and P’ is supplied with a birational map to S’ x ¢ X°, which
restricts to an isomorphism over the generic point of S’. This determines
T(We50)|p — L for some line bundle L on P'. By abuse of notation,
we write the symbol for restriction to S’ (resp., to a scheme over S’) to
denote pullback to 771(S°), followed by direct image in S’ (resp., and
further pullback); the latter operation sends locally free coherent sheaves
to locally free coherent sheaves since 771(5°) = 5"\ {so}. In our case
p will be smooth and the isomorphism type of L will be determined
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by its restriction over the generic point of S’, from which we will have
L = wy, /- By adjunction, we will obtain

T (Wio r50 )57 = Papr - (3.1)

We will compute the image of (3.1) and then, with linear algebra, a
collection of polynomial equations vanishing on the image of

Pl -= P(ﬂ'*(w}/{o/so)vb/).

In every case these descend to yield equations of a subscheme X of pro-
jective space, flat over S. Having X flat over S, containing, and over
the generic point of S agreeing with, the anticanonically embedded X°,
it follows that X is the closure of X° under its anticanonical embedding.
It will emerge, in every case, that X is normal and locally a complete
intersection; as a consequence, wy /s is locally free and defines the anti-
canonical embedding.

3.1. I meets II. We start with S = Spec(k[z,y]) with Dy : = = 0,
Dy : y = 0, degree 2 cover T = Spec(k[s,y]) with z = s% and conic
bundle C' — T, pulled back from Cy — S, where C is defined by

2pR2 = ?JZ%

in S x P2. The recipe of Theorem 6 starts with the restriction of scalars
of C along
T — [T/ pel,

where o acts by (s,y) — (—s,y). This gives
[Co X1 Co/ pal,

where ps acts on T as before and by swapping the two factors Cy. Then,
we have to blow-up, contract, and descend over D;.

Away from Dy, Proposition 8 is applicable, at least if we forget about
[o-equivariance. We obtain a commutative diagram

[T" x P! x P!/ pio] = = = [T"/ pia] x P
: | (3.2)

Y
Co XTCQ T x P8

Here T" is the cover of T', gotten by adjoining ¢ with t* = y, and p, acts
by (s,t) = (s, —t) and on each P'-factor by (u : v) = (—u : v). We take

P =T xP' xP!
with
P - [O() X O()/,LLQ] I X,
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Over the complement of Dy, diagram (3.2) supplies equations for the
image of .(wyo g0 )| — HO(P', Opr(2,2)):

ks, s 1, t](t?uu?, tuPu'v', tPu?o?,

2 2

! [ /
tuvu”, uvu' v, tuvv,

120202, ot 2%,

Over the complement of ¢ = 0 the left-hand map in (3.2) is an iso-
morphism. We therefore can carry out the recipe of Theorem 6 with P’.
With standard coordinates uv, uv’, u'v, /v’ on P! x P!, we perform a
linear change of coordinates so that the defining equation uv’ — v'v = 0
of the diagonal becomes a coordinate hyperplane. The required blow-up
is readily computed, and the contraction to the image in P? is given by

the following space of global sections of the dual of the relative dualizing
sheaf:

k[s, t,t ] (s*u*u’?, s*(uwv' + u'v)?, (v’ — u'v)?, s*v*0’?,
sur/ (uv' — u'v), svv’ (w' — u'v), s(u?v? — uv?),
sPuu! (uv’ + u'v), s2vv (uv’ + vu'))

Over all of T” the space of global sections is given by the intersection:
k[s, t](s*uvu'v', stuv’ (uv’ — u'v), stov’ (uv’ — u'v),
s*tud (wv’ + u'v), Pt (' + '), P (un’ — u'v)?,
st?(utv? — u*0?), s*tPuu’?, P20,
With linear algebra we find
9-10

— - RO(P' x P, (Wi ypr)?) = 45 — 25 = 20

homogeneous polynomials of degree 2 in xg, ..., xg with coefficients in
k[s? t?], of degree at most 1 in s? and degree at most 1 in ¢?, vanishing
on the image of the map to A? x P® given by the basis elements listed

above. These polynomials fi, ..., fy are are listed in Table 1. We
introduce 7, := x; + 29 and T5 := x5 + x7 + x3 and verify just as in
[7, Lem. 9.1] that k[s,t,zo,...,xs]/(f1,..., fao) is free as a module over

k[s,t, xo, T, 5] with basis 1, xe, x5, x4, s, T7, Ts, v327 for any field k of
characteristic different from 2. The fiber over s = ¢ = 0 is the union of a
nonreduced quadric surface and two quadric cones, and

XI,II =X

is smooth outside of a curve of A;-singularities over D, at the point
(1:0:0:0:0:0:0:0:0).
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Toxs — L1229 s2x3 + dxorg — 13
ToXe — T1L4 Tole — T4ls
t2$0$2 — T1T8 4t21‘01‘2 + 82I2$5 — T4Tg
ToTg — ToaX3 t2$0$3 — T4X7
t2xory — Tol7 2% — w5y
s2a? + dxgry — 22 t2x2 — x5
1 o7 3 2 548
48202 + sPwywg — w31y At woxs + s°02 — 13
T1Tg — T3Ts t*x w3 — Teu7
4t2x0x1 + 82x1x5 — T3¢ t2$2$4 — Telsg
t2xors — T3Ts s*tPrors — Prsry + daras

TABLE 1. Equations for the case of Type I meeting Type II.

3.2. IT meets II. Here we have D; defined by xy = 0 on S = Spec(k[z, y])
and T'= SUS. So we take Cy to be the regular conic bundle on S defined
by

2 2 2 __

and, defining C' to be Cy xgT', obtain X — S as the restriction of scalars
of C"along T' — S

X := Cy xg Cy.
This has A;-singularities along four curves:
rT=2=2=21=12,=0, Y=20=120=25=2y =0,
r=y=12=20=0, [20:21] = [£2: 7]

There are two points of intersection of the curves, where there is a more
complicated toric sigularity:

y(z1 4+ 21) (21 — 21) = (22 + 25) (22 — 25), on the chart zy = 2z = 1,

z(20 + 25)(20 — 25) = (29 + 25)(29 — 23), on the chart z; = 2} = 1.
3.3. III meets II. Here we assume that k contains a primitive fourth
root of unity i. We have S = Spec(k[z,y]) with Dy : y =0, D3 : z = 0,

degree 2 cover T = Spec(k[s,y]) with z = s?, and conic bundle C' — T'
defined by

szg+yzi—25=0
Now the recipe of Theorem 6 starts with an application of [7, Prop. 3.1]

to pass from C' — T to P — +/(T, D3). Explicitly this is given by the
rational map

(rzo+29: 211 —rzo + 12),
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where 12 = s, to [U x P?/uy|, where U = Spec(k[r,y]) and p, acts by
(r,y) — (—7,y) and by permutation of coordinates on P2. With wy, wy,
wo as homogeneous coordinates, P is defined by

WoWg = yw%
Asin §3.1, Proposition 8 is applicable, leading to a commutative diagram
[U" x P! x P!/ po] = = = [U'/ o] x P
|
| l (3.3)

Y
P xy P U x P8

where U’ = Spec(k[r,t]), with t* = y and py acting on U’ by (r,t) —
(r,—t) and by (u:v) — (—u : v) on each P! factor.

As in §3.1 we obtain equations for global sections of the dual of the
relative dualizing sheaf:

E[r, v t){t*u*u?, tu®u'v, Puo’,
2, wou'v’, tuvv'2,

2o, 'y, t21;2v’2>.

/
tuvu

Introducing

ui=u+v, Vi=u—0, =+, 0=+

this becomes
klr, v~ ) (S aoa'v’, tav(a? + 02, Pao(—a? + %),

t(—a® 4+ )TV, (—0® + 0°) (@ + 0?), t(—a® + %) (—a” + 77,

t2(2~L2 + 52)ﬁ/@/,t(ﬁ2 + @2)(12/2 + ?7,2),752(112 + ’52)(—1]/2 + 17/2)>.
With respect to the new coordinates, the action of py on P! x P! in (3.3)
is by

(:0,4 :0")— (0:a, =0 :4).
Over the complement of Dy, the left-hand map in (3.3) is an isomor-

phism, induced by the isomorphism of smooth P!-fibrations that is ob-
tained by restricting

[U' x P!/ g x pg] —-» P, (rot,u:v) = (r 82, tu? e : to?),
over the complement of D,; on the left, the first factor us acts by
(r,t) — (=r,t) on U" and by (u : v) — (v : u) on P! and the sec-

ond, by (r,t) — (r,—t) on U’" and by (u : v) — (—u : v) on P*. We carry
out the construction of Theorem 6 over the complement of Dy using this
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isomorphism. We also use the coordinates u, v introduced above, with
respect to which the first and second factors py act by

(ryt,@:0)— (—rt,—u:0) and (ryt,@:0)— (r,—t,0:a),

respectively.

The computation of the restriction of scalars of [’ x P! /s X ps] along
(U’ /g X pa] — [U'/ pa X po] reduces to the computation of the restriction
of scalars of [P/ g X ps] along B(pug X p12) — B(g X p12). An analogous
computation was performed in Section 2; we just state the result as

(U x P x P!y x pol,

with respective actions

(@:0,d : ") — (it : 0, ia:0), (@:0,0 :0)— (0:a, 0" :4).

We carry out the blow-up and descent steps of Theorem 6 over Dj,
following [7, Sect. 8]. First, we blow up (0,0) and (0o, 00) over D, with
respective exceptional divisors E; and Fs,, and semiample line bundle
0(2,2)(—2E; — 2E,), leading to the first contraction

©1 BL(0,£0,0,0)10{(0,£0,00,00)3 (IT) = 11

and descent

I —— [(U ~ {t = 0}) /s x pu]

| o]

Mo — [(T"~ {t = 0})/pa x p]

For some line bundle L we have p*L = O(2,2)(—2FE; — 2E,), and there
is a line bundle Ly on ﬁo that pulls back to L. The second blow-up,
of a locus W in ﬁg consisting of two lines in the ﬁbers over Ds, yields
exceptional divisors F; and Fy. Then Ly(—E; — E3) is semiample and
leads to the second contraction. Its sections correspond to sections of L,
vanishing on x~*(W). These are readily computed and lead to

klr,t, ¢t~ {r'a?a”, rad (00" + a'0), r*ud (a0’ — '),
r2(ad’ 4 @'0)?, a0 + 0*u?, rPov (ad’ + '),

r2(ad’ — a'v)?, rov' (a0 — @), r*v*v’?).
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drozy + 223 — 25 rieory + 376 + 22475
ToXs — 2T12T4 + ToX3 raoxs + 20325 + 220426
ToTe + 21175 — 22974 7‘420% — 3T + 22477
2x0%s + T1T + ToTs rixors — rieixe — t2r3rr + 21478
2rixd — 20%x0wy + 22125 + ToT T3x8 + 2477 — T2
ToT7 — T1T5 — T3 ra e — Axy18 — T5T6
Toxs + TaTs + 20374 rizi + Atwyoy — 20%2% + 2
T1T8 + ToX7 + T3T5 T4I1.T3 + T5x8 + Ty
2rtaory — 20107 — ToTs + T3k drtaizy — rixoxs — tPasrr — T6T8
riad — 1223 + 423 2rte ws + rixd — 222 + 22

TABLE 2. Equations for the case of Type III meeting Type II.

As in §3.1, the next step is to compute the intersection of the two
modules of sections of the dual of the relative dualizing sheaf:
Elr, t](t*(—u®v™ + v*u?), rt(un (uv’ + w'v) + vv' (w’ — u'v)),
rt? (ud (uwv’ + 0'v) — v’ (' — u'v)), Pt (v 4+ v*u’?),
r22un’vv’, Pt (ud (w’ — u'v) — v’ (w’ + u'v)),
32 (uu (wv’ — u'v) + v’ (' + u'v)),
r(—u? +0?) (u? + o), rit(uPu? + o)),
Relations fi, ..., foo are listed in Table 2. As before, we verify that
klr,t,xo,...,xs]/(f1,..., foo) is free as a module over kr,t,xq,z1, z7]
with basis 1, x9, x3, x4, x5, g, g, x4x5 for any field k of character-
istic different from 2. The fiber over r =t = 0 is a nonreduced scheme
whose underlying reduced scheme is a quadric cone. The singularities in

X LI == X

occur at (0:0:0:0:0:0:0:1:0) over Dy and are of type Dy, an
isolated line singularity [9] with the local analytic defining equation

2 2 2 2

3.4. TV meets II. Here we have Dy : y = 0 and Ds : z = 0 on § =
Spec(k[z,y]) and T = S U S. We take C to be the regular conic bundle

x2g +y— 2 =0
on the first copy of S and

2 2 _ .2
2 +yzi —2z5 =0
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on the second copy of S. Restriction of scalars yields
X : w2y +yz — 25 =0, 2yt — 2 =0,
with singularities of type Dy at (0:1:0,0:1:0) over Ds.
3.5. IV meets IV. With Dy defined by zy = 0 in S = Spec(k[z,y]),
we divide into subcases according to whether or not, on 7' = S U S,

the (closures of the) Type IV marked divisors meet. If they meet, the
outcome is a product

/ . ol

where C denotes the regular conic bundle z23 + y2? — 22 = 0 over A”.
If not, then we get the locus

" 2 2 2 12 12 12
XIV’IV Doxzy 2y — 25 =0, 2o Yz — 25 =0.

In both cases, the total space is smooth.

4. EXISTENCE OF GOOD MODELS

We employ the involution surface bundles constructed in the previous
section as local models of involution surface bundles over surfaces. We
work over an algebraically closed field of characteristic different from 2.

Definition 9. Let k be an algebraically closed field of characteristic
different from 2, and let S be a smooth surface over k. We call an
involution surface bundle 7: X — S simple if the locus where 7 has
singular fibers is a simple normal crossing divisor

D:D1UD2UD3UD4
such that

e over the complement in S of the singular locus D" of D,
is a mildly degenerating simple involution surface bundle with

singular fibers over Dy, ..., D4 as in Definition 5;
e D and D3 are smooth, disjoint from each other, and disjoint from
Dy; and

e letting 0%, denote the henselization of a local ring of S and writ-

ing X for X xg Spec(0%,), we have at all s € D" that X is
isomorphic to one of

~ ~ ~ ~ >, <,
Xom, X, X, Xavor, XIV,IV: XIV,IV-

Theorem 10. Let k be an algebraically closed field of characteristic dif-
ferent from 2, S a smooth projective surface over k, and

T X =S
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a morphism of projective varieties whose generic fiber is an involution
surface. Then there exists a commutative diagram

such that

® 0g5 s a proper birational morphism,

e ox s a birational map that restricts to an isomorphism over the
generic point of S,

e T is a simple involution surface bundle.

Proof. By embedded resolution of singularities, we may suppose that
X — S is rigidified by a double cover T' — S, branched over a simple
normal crossing divisor. Blowing up the singular locus of the branch
locus, we obtain a smooth branch locus. The conic, corresponding to
X xg Spec(k(S5)), extends to a standard conic bundle on some smooth
projective T with birational morphism T—T [8]. We remark, as well,
that such a model exists as well over T' for any smooth projective T
with birational morphism T = T. It is straightforward to exhibit such
T , fitting into a commutative diagram of smooth projective surfaces

T —>T

L

S——9

where the bottom morphism is proper birational, T' — S is finite of
degree 2, and the ramification locus of 77 — S has normal crossings with
the degeneracy locus of the conic bundle, no component of which may
have image in S that is singular, is tangent to the branch locus, or meets
other than with normal crossings the image of another component. We
conclude by applying Theorem 6 over the complement of the singular
locus of the union of the branch locus of 77 — S and the image in S
of the degeneracy locus of the conic bundle, filling in over the missing
points as in the proof of Theorem 1.2 of [7]. O

Remark 11. Given a quadric surface fibration, similar machinery can be
employed to produce models, fibered in quadric surfaces, with controlled
singularities. These have, as we recall, D3 = Dy = (). Over D, the
models have, generically, geometrically reducible fibers (unions of two
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planes), and the models have A;-singularities along a double cover of Ds.
An explicit description of the singularities can be extracted from [6, §5].

Theorem 12. Let k be an algebraically closed field of characteristic dif-
ferent from 2, S a smooth projective surface, T a smooth projective sur-
face with morphism : T — S that is generically finite of degree 2 or
the disjoint union of two copies of S with ¢»: S 1S — S, and 5 a pos-
sibly ramified 2-torsion Brauer group element on T, i.e., an element of
Br(k(T))[2] or a pair of elements of Br(k(S))[2]. Then there exists a
diagram

X
S-—-5
where 7 _is a simple involution surface bundle over a smooth projective
surface S and og is a birational morphism, such that the involution sur-
face
X x gz Spec(k(9))
is classified by the étale k(S)-algebra k(T'), respectively k(S) x k(S), and

a central simple algebra with Brauer class 3.

The classification data of an involution surface over a field has been
recalled at the beginning of Section 2.

Proof. The function field of a surface over k is a Cs-field, hence [ is the
class of a quaternion algebra. 0

Theorem 13. Let k be an algebraically closed field of characteristic dif-
ferent from 2, 1¢: T — S a finite morphism of degree 2 of smooth surfaces
over k or a morphism of the form SU S — S for a smooth surface S.
Let the branch divisor of v be written as a disjoint union

Dy U Dy

of divisors on S, and let Dy and Dy be additional divisors on S and D), on
T, such that D := D1 U Dy U D3 U Dy is a simple normal crossing divisor
on S, for i # j diisors D; and D; have no component in common,
(Dy U D3) N Dy = 0, and (D)) = Dy, with every component of D)
mapping isomorphically to a component of Dy and no two components
mapping to the same component of Dy. The correspondence of Theorem
6 over the complement of D™ extends to a correspondence between

e reqular conic bundles over T with singular fibers over 1~(Dq) U
D3 U D}, and
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e simple involution surface bundles over S, rigidified by T — S,
where away from D" we have singular fibers over Dy, ..., Dy
as in Definition 5 and Type IV marking D).

Proof. We apply Theorem 6 over the complement of DS"¢ with the ar-

gument as before for filling in over D8, O
REFERENCES
[1] A. Auel and M. Bernardara. Semiorthogonal decompositions and birational ge-

ometry of del Pezzo surfaces over arbitrary fields, 2015. arXiv:1511.07576, to
appear in Proc. London Math. Soc.

A. Auel, R. Parimala, and V. Suresh. Quadric surface bundles over surfaces. Doc.
Math., (Extra vol.: Alexander S. Merkurjev’s sixtieth birthday):31-70, 2015.

A. Corti. Del Pezzo surfaces over Dedekind schemes. Ann. of Math. (2),
144(3):641-683, 1996.

B. Hassett, A. Kresch, and Yu. Tschinkel. Stable rationality and conic bundles.
Math. Ann., 365(3-4):1201-1217, 2016.

B. Hassett, A. Kresch, and Yu. Tschinkel. Stable rationality in smooth families of
threefolds, 2018. arXiv:1802.06107.

B. Hassett, A. Pirutka, and Yu. Tschinkel. Stable rationality of quadric surface
bundles over surfaces, 2016. arXiv:1603.09262, to appear in Acta Math.

A. Kresch and Yu. Tschinkel. Models of Brauer-Severi surface bundles, 2017.
arXiv:1708.06277.

V. G. Sarkisov. On conic bundle structures. Izv. Akad. Nauk SSSR Ser. Mat.,
46(2):371-408, 432, 1982.

D. Siersma. Isolated line singularities. In Singularities, Part 2 (Arcata, Calif.,
1981), volume 40 of Proc. Sympos. Pure Math., pages 485-496. Amer. Math. Soc.,
Providence, RI, 1983.

INSTITUT FUR MATHEMATIK, UNIVERSITAT ZURICH, WINTERTHURERSTRASSE

190, CH-8057 ZURICH, SWITZERLAND

FE-mail address: andrew.kresch@math.uzh.ch

COURANT INSTITUTE, 251 MERCER STREET, NEW YORK, NY 10012, USA
E-mail address: tschinkel@cims.nyu.edu

SIMONS FOUNDATION, 160 FIrTH AVENUE, NEW YORK, NY 10010, USA



