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Abstract. We study rationality properties of smooth complete
intersections of three quadrics in P7. We exhibit a smooth family
of such intersections with both rational and non-rational fibers.

1. Introduction

The specialization method, introduced by Voisin [Voi15], and devel-
oped by Colliot-Thélène–Pirutka, Totaro, and others, has led to ma-
jor advances in higher-dimensional complex birational geometry. It
makes it possible, for the first time, to prove failure of stable rational-
ity of some smooth quartic threefolds [CTP16b], cyclic covers [Voi15],
[Bea16], [CTP16a], [Oka16], and large degree smooth Fano hypersur-
faces in projective space [Tot16].

The specialization method yields failure of stable rationality of a
very general member of a family of complex algebraic varieties from
the existence of a single, mildly singular, fiber with an explicit obstruc-
tion, that can be formulated in terms of integral decomposition of the
diagonal or universal CH0-triviality (see Section 2.1 for more details
and references). A surprising aspect of applications of the method was
that a priori different families of varieties admit specializations to the
same ‘reference varieties’. This allows us to propagate the failure of sta-
ble rationality, by finding suitable chains of specializations. Examples
of such ‘reference varieties’ are conic or quadric surface bundles over
rational surfaces, with carefully chosen discriminant loci (see [Pir17]).
A similar approach – via specialization to quartic del Pezzo fibrations
over P1 – may be used to essentially settle the stable rationality prob-
lem for very general smooth rationally connected threefolds [HKT16],
[HT16], [KO17], with the exception of cubic threefolds, whose stable
rationality remains elusive [Voi17].

New effects arise in dimension four: rationality properties can change
in smooth families [HPT16a]. The relevant reference variety is Y ⊂
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P2
λ × P3

y, given by the vanishing of the (2, 2) form

(1.1) λ1λ2y
2
0 + λ0λ2y

2
1 + λ0λ1y

2
2 + F (λ0, λ1, λ2)y

2
3,

with

(1.2) F (λ0, λ1, λ2) := λ2
0 + λ2

1 + λ2
2 − 2(λ0λ1 + λ0λ2 + λ1λ2)

defining a conic tangent to each coordinate line. The family is the
universal (2, 2) hypersurface, a Fano fourfold of Picard rank two.

The variety Y gives rise to other interesting families of fourfolds
failing stable rationality: double covers [HPT16b], and conic bundles
over P3 [APBvB16]. In this note, we exhibit another natural family
of smooth complex projective fourfolds X with rational and irrational
fibers: Fano fourfolds of Picard rank one, obtained as intersections of
three quadrics in P7.

Theorem 1. Let B ⊂ Gr(3,Γ(OP7(2))) be the open subset of the Hilbert
scheme parametrizing smooth complete intersections of three quadrics
in P7 and

(1.3) φ : X → B

the corresponding universal family.

(1) For very general b ∈ B the fiber Xb is not stably rational.
(2) The set of b ∈ B such that Xb is rational is dense in B for the

Euclidean topology.

Acknowledgments: The first author was partially supported by NSF
grant 1551514, the second author by NSF grant 1601680, and the third
by NSF grant 1601912. We would like to thank François Charles for
helpful conversations.

2. Strategy

We follow the approach in [HPT16a]. In this section, we recall the
main steps in the proof; details are provided in Section 3.

2.1. Fibers that are not stably rational.
Recall that a projective variety X over a field k is universally CH0-

trivial if for all field extensions k′/k the natural degree homomorphism
from the Chow group of zero-cycles

CH0(Xk′)→ Z
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is an isomorphism. A projective morphism

β : X̃ → X

of k-varieties is universally CH0-trivial if for all extensions k′/k the
push-forward homomorphism

β∗ : CH0(X̃k′)→ CH0(Xk′)

is an isomorphism.
In this paper, we apply the specialization method of Voisin in the

following form.

Theorem 2. [Voi15, Theorem 2.1], [CTP16b, Theorem 2.3] Let

φ : X → B

be a flat projective morphism of complex varieties with smooth generic
fiber. Assume that there exists a point b ∈ B such that the fiber

X := φ−1(b)

satisfies the following conditions:

(R) X admits a desingularization

β : X̃ → X

such that the morphism β is universally CH0-trivial;
(O) the variety X̃ is not universally CH0-trivial.

Then a very general fiber of φ is not universally CH0-trivial; in partic-
ular, it is not stably rational.

Condition (O) holds, for instance, if the unramified cohomology
group H2

nr(C(X)/C,Z/2) is nontrivial. By [CTP16b, Proposition 1.8]
and [CTP16a, Lemma 2.4] condition (R) is satisfied if for every scheme
point x of X, the fiber β−1(x), considered as a variety over the residue
field κ(x), could be written as β−1(x) = ∪iXi, where each component
Xi is smooth, geometrically irreducible and κ(x)-rational and each in-
tersection Xi ∩Xj is either empty or has a zero-cycle of degree 1.

In [HPT16a, Propositions 11, 12], we constructed a hypersurface
Y ⊂ P2 × P3 of bidegree (2, 2), satisfying the obstruction condition
(O) and the resolution condition (R) as above (see (1.1)). The first
projection Y → P2 endows Y with a structure of a quadric surface
bundle with discriminant curve of degree 8. As explained in [Bea77,
Exemple 1.4.4], smooth intersections of three quadrics in P7 are also
birational to quadric surface bundles over P2, with discriminant curve
of degree 8 (see Proposition 6 below). These two families, hypersurfaces
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of bidegree (2, 2) in P2 × P3 and intersections of three quadrics in P7,
are genuinely different; see Section 4 for a precise statement. Both
specialize (birationally) to the same reference fourfold: in Proposition 7
we provide an explicit example of a (singular) intersection of three
quadrics X ⊂ P7 such that X is birational to the variety Y above. We
deduce Theorem 1, Part (1), from Theorem 2 at the end of Section 3.1.

2.2. One rational fiber.
Let φ : X → B be the family (1.3). By Proposition 6, for any b ∈ B,

the fiber Xb is birational to a quadric bundle over P2. In Section 3.2
(Proposition 9), we provide an explicit example of a fiber Xb, birational
to a quadric bundle with a rational section. In particular, the fourfold
Xb is rational.

2.3. Density of rational fibers.
Let X ⊂ P7 be a smooth intersection of three quadrics. As in the

previous step, in order to establish that X is rational, it suffices to
exhibit a quadric surface bundle π : Q → P2 such that Q is birational
to X and such that π admits a rational section. By Springer’s theorem,
it suffices to show that π has a rational multisection of odd degree. For
quadric bundles this can be formulated as a Hodge-theoretic condition:

Proposition 3. [CTV12, Corollaire 8.2] Let Q be a smooth projective
complex algebraic variety, admitting a dominant morphism π : Q→ P2,
with generic fiber a quadric of dimension at least 1. Then the integral
Hodge conjecture holds for classes of degree (2, 2) on Q.

Thus, in order to show that X is rational, it suffices to provide a
(2, 2)-Hodge class intersecting the class of a fiber of π in odd degree. We
achieve this by studying the infinitesimal period map. This technique
is explained in [Voi07, 5.3.4].

The Hodge diamond of X is of the following form:

1

0 0

0 1 0

0 0 0 0

0 3 38 3 0

0 0 0 0

0 1 0

0 0

1
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In particular, the degree 4 cohomology is essentially of weight 2. We
can then apply the following criterion to the family X → B of Theo-
rem 1 (cf. [Voi07, 5.3.4]):

Proposition 4. Suppose there exists a b0 ∈ B and γ ∈ H2,2(Xb0) such
that the infinitesimal period map

(2.1) ∇̄ : TB,b0 → Hom(H2,2(Xb0), H1,3(Xb0)),
evaluated at γ, gives a surjective map

(2.2) ∇̄(γ) : TB,b0 → H1,3(Xb0).
Then for any b ∈ B and any Euclidean neighborhood b ∈ B′ ⊂ B, the
image of the natural map (composition of inclusion with local trivial-
ization):

(2.3) H2,2
R → H4(Xb,R)

contains an open subset Vb ⊂ H4(Xb,R). Here H2,2
R is a vector bun-

dle over B′ with fiber over u equal to the real classes of type (2, 2) in
H4(Xu).

In order to check the infinitesimal criterion we use an explicit de-
scription of the period map:

Proposition 5. [Ter90, Corollary 2.5, Proposition 2.6] Let X ⊂ P7 be
a smooth complete intersection of three quadrics, defined by equations

Qi(x0, . . . , x7) = 0, i = 0, 1, 2

and let

F = µ0Q0 + µ1Q1 + µ2Q2 ∈ C[µ0, µ1, µ2, x0, . . . , x7].

Let I ⊂ C[µ0, µ1, µ2, x0, . . . , x7] be the ideal generated by

∂F/∂µi, i = 0, 1, 2 and ∂F/∂xi, i = 0, . . . , 7.

Put
R = C[µ0, µ1, µ2, x0, . . . , x7]/I

and let R(a,b) be the space of homogeneous elements of degree (a, b) in
R, with respect to the grading (µ, x). Then there is an isomorphism

H4−q,q
prim (X) ' R(q,2q−2)

and the period map (2.1) is identified with the multiplication homomor-
phism

(2.4) R(1,2) ⊗R(2,2) → R(3,4).
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Recall that the primitive cohomology Hp,q
prim is the cokernel of the

natural map Hp,q(P7)→ Hp,q(X).
In Section 3.3, we provide an explicit example X = Xb0 such that

the period map 2.4 is surjective (Proposition 10). Theorem 1, Part
(2), then follows. In fact, by Proposition 3.2, there exists a smooth
intersection of three quadrics birational to a quadric bundle with a
rational section. Similarly to [HPT16a, Proposition 14] the density of
rational fibers follows from the infinitesimal criterion that we verify in
Proposition 10.

3. Computations

We work over the complex numbers. We first recall the construction
of Beauville [Bea77, Exemple 1.4.4]:

Proposition 6. Let X ⊂ P7 be a smooth complete intersection of
three quadrics. Then X is birational to a quadric bundle over P2, with
discriminant curve of degree 8.

Concretely, let ` ⊂ X be a line and G` ' P5 the space of 2-planes
Π ⊂ P7 containing `. Then X is birational to a quadric surface bundle

π : Q→ P2,

where Q ⊂ P2 ×G` is given by

(3.1) Q = {([λ0 : λ1 : λ2],Π)| {λ0Q0 + λ1Q1 + λ2Q2 = 0} ⊃ Π} .

More explicitly, assume that the line is given by equations

` : x2 = x3 = . . . = x7 = 0

and write, for i = 0, 1, 2,

Qi = x0Li(x2, x3, . . . , x7) + x1Mi(x2, x3, . . . , x7) + qi(x2, x3, . . . , x7),

where Li and Mi are linear forms and qi is quadratic. Any 2-plane
Π ⊂ P7 containing ` intersects the 5-plane x0 = x1 = 0 in a unique
point [0 : 0 : x2 : · · · : x7]. This allows us to identify the space of
2-planes Π ⊂ P7 containing ` with P5. Then the quadric bundle (3.1)
is defined in P2 × P5 by the equations

(3.2)
2∑
i=0

λiLi(x2, x3, . . . , x7) =
2∑
i=0

λiMi(x2, x3, . . . , x7) =

=
2∑
i=0

λiqi(x2, x3, . . . , x7) = 0.



INTERSECTIONS OF THREE QUADRICS 7

3.1. Fibers that are not stably rational. Let X ⊂ P7 be the inter-
section of three quadrics

(3.3) Q0 : −x0x5 + x2
3 + x4x6 − 2x2

5 = 0;

Q1 : x0x5 + x1x4 + x2
2 − 2x2

5 = 0;

Q2 : x0x7 − x1x6 + x2
5 + x2

7 = 0.

Note that X contains a line ` : x2 = . . . = x7 = 0. Using equations
(3.2), we obtain that X is birational to a quadric bundle Q → P2,
defined in P2×P5 as an intersection of two forms of bidegree (1, 1) and
one form of bidegree (1, 2):

(3.4) (λ0 − λ1)x5 = λ2x7, λ1x4 = λ2x6

λ1x
2
2 + λ0x

2
3 + λ0x4x6 + (λ2 − 2λ0 − 2λ1)x

2
5 + λ2x

2
7 = 0.

In the open set λ2 6= 0 we can define X by a single equation

λ1x
2
2 + λ0x

2
3 +

λ0λ1

λ2

x2
4 + (

(λ0 − λ1)
2

λ2

+ λ2 − 2λ0 − 2λ1)x
2
5 = 0,

hence, X is birational to a hypersurface Y ⊂ P2× P3 of bidegree (2, 2)
defined by

(3.5) λ1λ2x
2
2 + λ0λ2x

2
3 + λ0λ1x

2
4 + F (λ0, λ1, λ2)x

2
5 = 0,

where F (λ0, λ1, λ2) = λ2
0 + λ2

1 + λ2
2 − 2λ0λ1 − 2λ0λ2 − 2λ1λ2.

This is precisely the hypersurface we considered in [HPT16a, Proposi-
tions 11, 12].

Proposition 7. Let Q ⊂ P2×P5 be defined by the equations (3.4) and
let Y ⊂ P2 × P3 be the hypersurface given by the equation (3.5). Then
the birational map

(3.6) ϕ : Y 99K Q,

(λ0 : λ1 : λ2, x2 : . . . : x5) 7→
(λ0 : λ1 : λ2, λ2x2 : λ2x3 : λ2x4 : λ2x5 : λ1x4 : (λ0 − λ1)x5)

extends to the following diagram

Ỹ
ψ

���������� ϕ̃

��>>>>>>>

Y //_______ Q



8 BRENDAN HASSETT, ALENA PIRUTKA, AND YURI TSCHINKEL

where the morphisms ψ : Ỹ → Y and ϕ̃ : Ỹ → Q are birational and
universally CH0-trivial.

Proof. First note that ϕ is indeed a birational map between Y and Q.
The locus Y nd ⊂ Y where the map ϕ is not defined is a union of three
components
Y1 : λ2 = 0, x4 = x5 = 0;
Y2 : λ1 = λ2 = 0, x5 = 0;
Y3 : λ0 − λ1 = 0, λ2 = 0, x4 = 0.
Note that Y1 is isomorphic to a product P1

λ0:λ1
× P1

x2:x3
, and similarly

Y2 is isomorphic to a projective plane P2
x2:x3:x4

with homogeneous co-
ordinates [x2 : x3 : x4] and Y3 ' P2

x2:x3:x5
.

We construct Ỹ by successive blowups of Y1, the proper transform
of Y2 and the proper transform of Y3. After each blowup we verify:

• the indeterminacy locus of ϕ on the blowup;
• the universal CH0-triviality of fibers of the extension of ϕ to the

blowup and of the blowup map. In each case we obtain that
the corresponding fiber is either reduced to a point or projective
(or affine, if we compute on open charts) spaces. We provide
details for the first computations and the expressions in the co-
ordinates for the remaining charts.

Blowup of Y1. We have three charts:

(1) U1 : x4 = λ2u4, x5 = λ2u5, the exceptional divisor is given by
λ2 = 0. Since we blow up the locus λ2 = 0, x4 = x5 = 0, we
consider one of the charts λ0 6= 0 or λ1 6= 0 of P2 and one of the
charts x2 6= 0 or x3 6= 0 of P3.
We extend ϕ to a birational map ϕ1 : U1 99K Q,

(λ0, λ1, λ2, x2, x3, u4, u5) 7→ (λ0, λ1, λ2, x2, x3, λ2u4, λ2u5, λ1u4, (λ0−λ1)u5).

Since one of coordinates λ0, λ1 is nonzero, and one of coordi-
nates x2, x3 is nonzero, we have that ϕ1 is well-defined. The
image of ϕ1 is contained in the closure of the image of ϕ, hence
it is contained in Q, so that we obtain a map ϕ1 : U1 → Q.

The image of the exceptional divisor is the set of points

E1 = (λ0, λ1, 0, x2, x3, 0, 0, λ1u4, (λ0 − λ1)u5).

Then for any field k′/C and for any point P ∈ E1(k
′) the fiber

ϕ−1
1 (P ) is either a point or a line (if λ1 = 0 or λ0 − λ1 = 0),
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which ensures the universal CH0-triviality of the map ϕ1 on this
chart.

The equation defining U1 is

λ1x
2
2 + λ0x

2
3 + λ0λ1λ2u

2
4 + F (λ0, λ1, λ2)λ2u

2
5 = 0.

Let ψ1 : U1 → Y be the blowup map. Then, the image I1 of
the exceptional divisor is given by the conditions

λ2 = 0, λ1x
2
2 + λ0x

2
3 = 0.

The latter condition defines a point since the coordinates λ0 : λ1

and x2 : x3 are homogeneous. Then for any field k′/C and for
any point P ∈ I1(k′) the fiber ψ−1

1 (P ) is a plane with coordi-
nates u4 and u5, which ensures the universal CH0-triviality of
the map ψ1 on this chart.

(2) U2 :
• change of variables:

λ2 = x4λ
′
2, x5 = x4u5;

• equation defining the blowup:

λ1λ
′
2x

2
2 + λ0λ

2
2x

2
3 + λ0λ1x4 + F (λ0, λ1, λ

′
2x4)x4u

2
5 = 0.

• exceptional divisor:

x4 = 0, λ1λ
′
2x

2
2 + λ0λ

2
2x

2
3 = 0.

• extension of ϕ is given by:

(λ0, λ1, λ
′
2x4, λ

′
2x2, λ

′
2x3, λ

′
2x4, λ

′
2x4u5, λ1, (λ0 − λ1)u5).

• domain, where the extension is not defined is the proper
transform Y ′2 of Y2:

λ1 = λ′2 = 0, u5 = 0.

• the image of the exceptional divisor:

(λ0, λ1, 0, λ
′
2x2, λ

′
2x3, 0, 0, λ1, (λ0 − λ1)u5).

(3) U3 :
• change of variables:

λ2 = x5λ
′
2, x4 = x5u4;

• equation defining the blowup:

λ1λ
′
2x

2
2 + λ0λ

′
2x

2
3 + λ0λ1x5u

2
4 + F (λ0, λ1, λ

′
2x5)x5 = 0;
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• exceptional divisor:

x5 = 0, λ1λ
′
2x

2
2 + λ0λ

2
2x

2
3 = 0;

• extension of ϕ is given by:

(λ0, λ1, λ
′
2x5, λ

′
2x2, λ

′
2x3, λ

′
2x5u4, λ

′
2x5, λ1u4, λ0 − λ1)

• domain, where the extension is not defined is the proper
transform Y ′3 of Y3:

λ0 − λ1 = λ′2 = 0, u4 = 0.

• the image of the exceptional divisor:

(λ0, λ1, 0, λ
′
2x2, λ

′
2x3, 0, 0, λ1u4, λ0 − λ1).

Blowup of the proper transforms Y ′2 and Y ′3
Note that Y2 and Y3, and hence their proper transforms, do not

intersect. Hence we can use charts U2 and U3 independently for their
blowups.

(1) On the chart U2:
(a) • change of variables:

λ1 = λ′2λ
′
1, u5 = λ′2v5

• exceptional divisor:

λ′2 = 0, λ0x
2
3 + λ0λ

′
1x4;

• extension of ϕ is everywhere defined:

(λ0, λ
′
1λ
′
2, x4λ

′
2, x2, x3, x4, λ

′
2x4v5, λ

′
1, (λ0 − λ′1λ′2)v5);

• the image of the exceptional divisor:

(1, 0, 0, x2, x3, x4, x4v5, λ
′
1, v5).

(b) • change of variables:

λ′2 = λ1λ
′′
2, u5 = λ1v5;

• exceptional divisor:

λ1 = 0, λ0λ
′′
2x

2
3 + λ0x4 = 0;

• extension of ϕ is everywhere defined:

(λ0 : λ1 : λ1λ
′′
2, λ

′′
2x2, λ

′′
2x3, λ

′′
2x4, λ1λ

′′
2x4v5, 1, v5(λ0 − λ1));

• the image of the exceptional divisor:

(1, 0, 0, λ′′2x2, λ
′′
2x3, λ

′′
2x4, 0, 1, v5).
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(c) • change of variables:

λ′2 = u5λ
′′
2, λ1 = u5λ

′′
1;

• exceptional divisor:

u5 = 0, λ0λ
′′
2x

2
3 + λ0λ

′′
1x4 = 0;

• extension of ϕ is everywhere defined:

(λ0, λ
′′
1u5, λ

′′
2u5, λ

′′
2x2, λ

′′
2x3, λ

′′
2x4, λ

′′
2x4u5, λ

′′
1, λ0 − λ′′1u5);

• the image of the exceptional divisor:

(1, 0, 0, λ′′2x2, λ
′′
2x3, λ

′′
2x4, 0, λ

′′
1, 1).

(2) On the chart U3:
(a) • change of variables:

λ0 − λ1 = λ′2λ
′
0, u4 = λ′2v4;

• exceptional divisor:

λ′2 = 0, λ1x
2
2 + λ1x

2
3 − 4λ1x5 = 0;

• extension of ϕ is everywhere defined:

(λ1 + λ′2λ
′
0, λ1, λ

′
2x5, x2, x3, λ

′
2x5v4, x5, λ1v4, λ

′
0);

• the image of the exceptional divisor:

(λ1, λ1, 0, x2, x3, 0, x5, λ1v4, λ
′
0).

(b) • change of variables:

λ′2 = (λ0 − λ1)λ
′′
2, u4 = (λ0 − λ1)v4;

• exceptional divisor:

(λ0 − λ1) = 0, λ1λ
′′
2x

2
2 + λ1λ

′′
2x

2
3 − 4λ1λ

′′
2x5 = 0;

• extension of ϕ is everywhere defined:

(λ0, λ1, λ
′′
2(λ0 − λ1)x5, λ

′′
2x2, λ

′′
2x3, (λ0 − λ1)λ

′′
2x5v4, λ

′′
2x5, λ1v4, 1);

• the image of the exceptional divisor:

(λ1, λ1, 0, λ
′′
2x2, λ

′′
2x3, 0, λ

′′
2x5, λ1v4, 1).

(c) • change of variables:

λ′2 = u4λ
′′
2, λ0 − λ1 = u4λ

′
0;

• exceptional divisor:

u4 = 0, λ1λ
′′
2x

2
2 + λ1λ

′′
2x

2
3 − 4λ1λ

′′
2x5 = 0;
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• extension of ϕ is everywhere defined:

(λ1 + u4λ
′
0, λ1, λ

′′
2u4x5, λ

′′
2x2, λ

′′
2x3, λ

′′
2x5u4, λ

′′
2x5, λ1, λ

′
0);

• the image of the exceptional divisor:

(λ1, λ1, 0, λ
′′
2x2, λ

′′
2x3, 0, λ

′′
2x5, λ1, λ

′
0).

�

Corollary 8. Let Q ⊂ P2×P5 be defined by the equations (3.4). Then
Q admits a resolution of singularities β : Q̃→ Q such that

(i) the variety Q̃ is not universally CH0-trivial;
(ii) the map β is a universally CH0-trivial morphism.

Proof. We use Proposition 7: Q is birational to a variety Y with
H2
nr(C(Y )/C,Z/2) 6= 0 by [HPT16a, Proposition 11]. In particular,

property (i) holds for any resolution Q̃ of Q.
In [HPT16a, Proposition 12] we constructed a resolution of singu-

larities f : Z → Y such that f is a universally CH0-trivial morphism.
Then there is birational map f̃ : Z̃ → Z with Z̃ smooth, such that the
rational map Z 99K Ỹ extends to a map Z̃ → Ỹ :

Z̃

f̃

�� ��>>>>>>>>

Z

f

��

//___ Ỹ
ψ

���������� ϕ̃

��>>>>>>>

Y //_______ Q

Note that the map f̃ is universally CH0-trivial: by weak factoriza-
tion, f̃ factors through blow-ups and blow-downs at smooth centers,
each of these maps is universally CH0-trivial. Hence, in the diagram
above, the maps f̃ , f, ψ, ϕ̃ are universally CH0-trivial. We deduce from
the diagram that the composite map Z̃ → Q is also universally CH0-
trivial, which shows (ii). �

Proof of Theorem 1, Part (1):
From Theorem 2 and Corollary 8 we deduce that a very general quadric
bundle defined by equations (3.2) is not universally CH0-trivial. In par-
ticular, there exists a smooth intersection of three quadricsX birational
to a smooth quadric bundle Q defined by an equation of type (3.2), such
that Q is not universally CH0-trivial. Since universal CH0-triviality is
a birational invariant of smooth projective varieties, we deduce that
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X is not universally CH0-trivial. Then Theorem 1, Part (1), follows
directly from Theorem 2, applied to the universal family φ : X → B of
smooth complete intersections of three quadrics in P7. �

3.2. One rational fiber. Consider the quadrics

Q0 : x0(x3 + x5 + 2x6 + 3x7) + x1(−x5 + 5x6 + 2x7)−
− x2x3 − x2x4 + x2x5 + x2

3 − x4x6 + x2
5 + x2

6 + x2
7 = 0;

Q1 : x0(−x2 + 3x5 + 7x6 + 11x7) + x1(x4 + 9x5 + 4x6 + x7)+

+ x2
2 − x2x3 + 2x3x6 + x2

4 + 3x4x7 + 2x2
5 + 3x2

6 + 5x2
7 = 0;

Q2 : x0(11x5 + 13x6 + 8x7) + x1(−x3 + 6x5 + 7x6 + 3x7)+

+ x2
2 + 5x2x7 − x3x4 + 9x3x5 + 13x2

5 + 4x2
6 + 11x2

7 = 0.

Proposition 9. Let X ⊂ P7 be the intersection

Q0 = Q1 = Q2 = 0

Then X is smooth and rational.

Proof. A Magma [BCP97] computation shows that X is smooth. Fur-
thermore, X contains a line

` : x2 = . . . = x7 = 0.

As in Proposition 6, considering the space G` ' P5 of 2-planes Π ⊂ P7

containing `, we find that X is birational to a fibration in quadrics
Q→ P2, where Q ⊂ P2 ×G`,

Q = {([λ0 : λ1 : λ2],Π)| {λ0Q0 + λ1Q1 + λ2Q2 = 0} ⊃ Π}.
The first projection Q → P2 admits a rational section: the plane con-
taining ` and the point [0 : 0 : λ0 : λ1 : λ2 : 0 : 0 : 0] is contained in
{λ0Q0 +λ1Q1 +λ2Q2 = 0}. Indeed, by (3.2), we have that Q ⊂ P2×P5

is defined by the equations:

λ0(x3+x5+2x6+3x7)+λ1(−x2+3x5+7x6+11x7)+λ2(11x5+13x6+8x7) = 0

λ0(−x5+5x6+2x7)+λ1(x4+9x5+4x6+x7)+λ2(−x3+6x5+7x6+3x7) = 0

λ0(−x2x3−x2x4+x2x5+x
2
3−x4x6+x

2
5+x

2
6+x

2
7)+λ1(x

2
2−x2x3+2x3x6+x

2
4+

+3x4x7+2x2
5+3x2

6+5x2
7)+λ2(x

2
2+5x2x7−x3x4+9x3x5+13x2

5+4x2
6+11x2

7) = 0

and, substituting

[x2 : x3 : . . . : x7] = [0 : 0 : λ0 : λ1 : λ2 : 0 : 0 : 0],
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we obtain

λ0λ1 − λ0λ1 = 0, λ1λ2 − λ1λ2 = 0,

λ0(−λ0λ1 − λ0λ2 + λ2
1) + λ1(λ

2
0 + λ2

2 − λ0λ1) + λ2(λ
2
0 − λ1λ2) = 0.

�

3.3. Density of rational fibers. Using the notation of Section 3.2,
consider quadrics

Q′0 := Q0 + x2
0 + x2

5

Q′1 := Q1

Q′2 := Q2 + x2
1 + x2

3

Proposition 10. Let X ′ ⊂ P7 be the intersection

Q′0 = Q′1 = Q′2 = 0.

Then X ′ is smooth and there exists a γ ∈ H2,2(X ′) such that the period
map (2.2) is surjective.

Proof. A Magma computation shows that X ′ is smooth. In order to
compute the period map we use expression (2.4). We used Macaulay2
[GS] to verify that the following monomials

{µ0µ
2
2x

4
7, µ1µ

2
2x

4
7, µ

3
2x

4
7}

form a basis of the graded part R(3,4) ' H1,3(X ′). In particular γ =
µ2

2x
2
7 works. �

4. Differentiating quadric bundles

The goal of this section is to show that the quadric bundles arising
from complete intersection of three quadrics in P7 do in fact differ
from the (2, 2) hypersurfaces in P2 × P3 considered in [HPT16a]. Note
however that both families specialize to the same reference variety (1.1).

Let π : Q→ P2 be a quadric surface bundle with smooth degeneracy
curve D ⊂ P2, i.e., Q is a smooth complex projective fourfold, π is a
flat morphism with smooth (' F0) fibers over P2\D, and quadric cones
(' P(1, 1, 2)) as fibers over D. Let τ : S → P2 denote the associated
double cover, simply branched along D. We may interpret S as the
Stein factorization of the relative variety of lines

F1(Q/P2)→ S → P2;
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as such, S is equipped with a natural conic bundle structure and thus a
class αQ ∈ H2(S, µ2). We refer the reader to [APS15] for a close anal-
ysis of the equivalence between quadric surface bundles and Azumaya
algebras over double covers.

We present a cohomological interpretation of this correspondence due
to Laszlo [Las89]. Let H2

0 (S,Z) denote the primitive cohomology of S,
i.e., the kernel of τ∗. It carries the structure of a lattice with respect to
the intersection form, as well as a weight two Hodge structure. Choose
an embedding

Q ↪→ P(E)
π

↘ ↓
P2

where E → P2 is a rank four vector bundle. Let H4
0 (Q,Z) denote kernel

of the push forward homomorphism

H4(Q,Z)→ H6(P(E),Z).

This carries the structure of a lattice and a weight four Hodge structure.
Let H4

0 (Q,Z)(1) denote its Tate twist, a weight two Hodge structure;
this reverses the sign of the integral quadratic form.

Theorem 11. [Las89, Th. II.3.1] There exists an embedding of abelian
groups

Φ : H4
0 (Q,Z)(1) ↪→ H2

0 (S,Z)

compatible with the lattice and Hodge structures. The image has index
two and is characterized as follows:

image(Φ) = ΛQ := {γ ∈ H2
0 (S,Z) : (γmod 2, αQ) ≡ 0 mod 2}.

Now suppose we have a birational equivalence

Q1
∼
99K Q2

↘ ↙
P2

of quadric bundles over P2. It is clear that Q1 and Q2 must have the
same degeneracy curve D ⊂ P2 and induced double cover τ : S → P2.
Consider the classes αQ1 , αQ2 ∈ Br(S)[2], obtained via the canonical
surjection H2(S, µ2)→ Br(S)[2]. Since αQi

generates the kernel of

H2(C(S), µ2)→ H2(C(Qi), µ2)

by [Ara75, p.469], we have αQ1 = αQ2 .
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Proposition 12. Let D ⊂ P2 be a very general octic plane curve,
Q1, Q2 → P2 quadric surface bundles with degeneracy curve D, where
Q1 ⊂ P2 × P3 is a (2, 2) hypersurface and Q2 ⊂ P2 × P5 is a complete
intersection of hypersurfaces of bidegrees (1, 1), (1, 1), (1, 2). Then Q1

and Q2 are not birational over P2.

The precise condition we require is that Pic(S) ' Z.

Proof. For the first example, let h1 and h2 denote the pull-backs of the
hyperplane classes from each factor. Then we have [Q1] = 2h1 + 2h2

and
h2

1 h1h2 h2
2

h2
1 0 0 2

h1h2 0 2 2
h2

2 2 2 0

For the second example, let g1 and g2 denote the hyperplace classes as
above so that

[Q2] = 4g2
1g2 + 5g1g

2
2 + 2g3

2.

Then we have
g2
1 g1g2 g2

2

g2
1 0 0 2

g1g2 0 2 5
g2
2 2 5 4

These two lattices are inequivalent over the 2-adics. Indeed, their ranks
modulo two differ. It follows that the lattices H4

0 (Q1,Z) and H4
0 (Q2,Z)

are also inequivalent, as a nondegenerate lattice and its orthogonal
complement in a unimodular lattice have the same discriminant groups
up to sign. (The discriminant groups are a way of packaging the p-adic
invariants of a lattice.)

Under our assumption, Br(S)[2] = H2(S, µ2)/ 〈h〉 where h is the
hyperplane class pulled back from P2. If Q1 and Q2 were birational
over P2 then

αQ1 = αQ2 ∈ H2(S, µ2)/ 〈h〉 ,
whence ΛQ1 ' ΛQ2 . This would contradict Theorem 11. �

Remark 13. Observe that the common reference variety (1.1) admits
nontrivial 2-torsion in its unramified cohomology. It is intriguing that
we differentiate the smooth members through a 2-adic computation of
lattices.
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