INTERSECTIONS OF THREE QUADRICS IN P’
BRENDAN HASSETT, ALENA PIRUTKA, AND YURI TSCHINKEL

ABSTRACT. We study rationality properties of smooth complete
intersections of three quadrics in P7. We exhibit a smooth family
of such intersections with both rational and non-rational fibers.

1. INTRODUCTION

The specialization method, introduced by Voisin [Voil5], and devel-
oped by Colliot-Thélene—Pirutka, Totaro, and others, has led to ma-
jor advances in higher-dimensional complex birational geometry. It
makes it possible, for the first time, to prove failure of stable rational-
ity of some smooth quartic threefolds [CTP16b], cyclic covers [Voil5l,
[Beal6l, [CTP16al, [Okal6], and large degree smooth Fano hypersur-
faces in projective space [Tot16].

The specialization method yields failure of stable rationality of a
very general member of a family of complex algebraic varieties from
the existence of a single, mildly singular, fiber with an explicit obstruc-
tion, that can be formulated in terms of integral decomposition of the
diagonal or universal CHg-triviality (see Section for more details
and references). A surprising aspect of applications of the method was
that a prior: different families of varieties admit specializations to the
same ‘reference varieties’. This allows us to propagate the failure of sta-
ble rationality, by finding suitable chains of specializations. Examples
of such ‘reference varieties’ are conic or quadric surface bundles over
rational surfaces, with carefully chosen discriminant loci (see [Pirl7]).
A similar approach — via specialization to quartic del Pezzo fibrations
over P! — may be used to essentially settle the stable rationality prob-
lem for very general smooth rationally connected threefolds [HKT16],
[HT16], [KO17], with the exception of cubic threefolds, whose stable
rationality remains elusive [Voil7].

New effects arise in dimension four: rationality properties can change
in smooth families [HPT16a]. The relevant reference variety is Y C
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P% x IP?, given by the vanishing of the (2,2) form

(1.1) AAays + Aodayt + Aodiws + F(Ao, A, Aa)3,

with

(12) F()\o, )\17 )\2) = )\3 + )\% + >\§ — 2()\0)\1 + /\0)\2 + )\1)\2)

defining a conic tangent to each coordinate line. The family is the
universal (2,2) hypersurface, a Fano fourfold of Picard rank two.

The variety Y gives rise to other interesting families of fourfolds
failing stable rationality: double covers [HPT16bh], and conic bundles
over P3 [APBvBI16]. In this note, we exhibit another natural family
of smooth complex projective fourfolds X with rational and irrational
fibers: Fano fourfolds of Picard rank one, obtained as intersections of
three quadrics in P7.

Theorem 1. Let B C Gr(3,I'(Opr(2))) be the open subset of the Hilbert
scheme parametrizing smooth complete intersections of three quadrics
in PT and

(1.3) ¢: X — B

the corresponding universal family.
(1) For very general b € B the fiber X, is not stably rational.

(2) The set of b € B such that X, is rational is dense in B for the
FEuclidean topology.

Acknowledgments: The first author was partially supported by NSF
grant 1551514, the second author by NSF' grant 1601680, and the third
by NSF grant 1601912. We would like to thank Francois Charles for
helpful conversations.

2. STRATEGY

We follow the approach in [HPT16a]. In this section, we recall the
main steps in the proof; details are provided in Section [3]

2.1. Fibers that are not stably rational.

Recall that a projective variety X over a field k is universally CHg-
trivial if for all field extensions k’/k the natural degree homomorphism
from the Chow group of zero-cycles

CHD(Xk/) — Z
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is an isomorphism. A projective morphism
: X —>X

of k-varieties is universally CHg-trivial if for all extensions k'/k the
push-forward homomorphism

B, : CHy(X)) — CHp(Xy)

is an isomorphism.
In this paper, we apply the specialization method of Voisin in the
following form.

Theorem 2. [Voil5, Theorem 2.1], [CTP16b, Theorem 2.3] Let
b:X — B

be a flat projective morphism of complex varieties with smooth generic
fiber. Assume that there exists a point b € B such that the fiber

X = ¢7'(b)
satisfies the following conditions:

(R) X admits a desingularization
: X —>X

such that the morphism (3 is universally CHo-trivial;
(O) the variety X is not universally CHg-trivial.

Then a very general fiber of ¢ is not universally CHq-trivial; in partic-
ular, it 1s not stably rational.

Condition (O) holds, for instance, if the unramified cohomology
group H2 (C(X)/C,Z/2) is nontrivial. By [CTP16b] Proposition 1.8]
and |[CTPI16a, Lemma 2.4] condition (R) is satisfied if for every scheme
point x of X, the fiber 37!(z), considered as a variety over the residue
field k(x), could be written as 3~!(z) = U; X;, where each component
X; is smooth, geometrically irreducible and x(x)-rational and each in-
tersection X; N X is either empty or has a zero-cycle of degree 1.

In [HPT16al, Propositions 11, 12], we constructed a hypersurface
Y C P? x P? of bidegree (2,2), satisfying the obstruction condition
(O) and the resolution condition (R) as above (see (L.1)). The first
projection Y — P? endows Y with a structure of a quadric surface
bundle with discriminant curve of degree 8. As explained in [Bea77,
Exemple 1.4.4], smooth intersections of three quadrics in P7 are also
birational to quadric surface bundles over P?, with discriminant curve
of degree 8 (see Proposition@ below). These two families, hypersurfaces
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of bidegree (2,2) in P? x P? and intersections of three quadrics in P7,
are genuinely different; see Section [4] for a precise statement. Both
specialize (birationally) to the same reference fourfold: in Proposition 7]
we provide an explicit example of a (singular) intersection of three
quadrics X C P7 such that X is birational to the variety Y above. We
deduce Theorem [1] Part (1), from Theorem [2]at the end of Section [3.1]

2.2. One rational fiber.

Let ¢ : X — B be the family . By Proposition @, for any b € B,
the fiber A}, is birational to a quadric bundle over P?. In Section
(Proposition@, we provide an explicit example of a fiber A}, birational
to a quadric bundle with a rational section. In particular, the fourfold
A}, is rational.

2.3. Density of rational fibers.

Let X C P be a smooth intersection of three quadrics. As in the
previous step, in order to establish that X is rational, it suffices to
exhibit a quadric surface bundle 7 : Q — P? such that Q is birational
to X and such that m admits a rational section. By Springer’s theorem,
it suffices to show that 7 has a rational multisection of odd degree. For
quadric bundles this can be formulated as a Hodge-theoretic condition:

Proposition 3. [CTV12, Corollaire 8.2] Let Q) be a smooth projective
complex algebraic variety, admitting a dominant morphism m : Q — P?,
with generic fiber a quadric of dimension at least 1. Then the integral
Hodge congecture holds for classes of degree (2,2) on Q.

Thus, in order to show that X is rational, it suffices to provide a
(2,2)-Hodge class intersecting the class of a fiber of 7 in odd degree. We
achieve this by studying the infinitesimal period map. This technique
is explained in [Voi07, 5.3.4].

The Hodge diamond of X is of the following form:

0 0
0 1 0
0 0 0 0
0 3 38 3 0
0 0 0 0
0 1 0
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In particular, the degree 4 cohomology is essentially of weight 2. We
can then apply the following criterion to the family X — B of Theo-
rem (1| (cf. [Voi0T7, 5.3.4]):

Proposition 4. Suppose there exists a by € B and v € H*?*(X,,) such
that the infinitesimal period map

(2.1) V : Ty, — Hom(H**(Xy,), H?(X,)),
evaluated at v, gives a surjective map
(2.2) V() : Tppy — H"(Xy,).

Then for any b € B and any Euclidean neighborhood b € B’ C B, the
image of the natural map (composition of inclusion with local trivial-
ization):

(2.3) HE? — H*(X,R)

contains an open subset Vi, C H*(X,,R). Here H?kfz is a vector bun-

dle over B with fiber over u equal to the real classes of type (2,2) in
HY(X,).

In order to check the infinitesimal criterion we use an explicit de-
scription of the period map:

Proposition 5. [Ter90, Corollary 2.5, Proposition 2.6] Let X C P7 be
a smooth complete intersection of three quadrics, defined by equations

Qi(l’o,...,ﬂh):()’ 22071’2
and let

F = poQo + Q1 + p12Q2 € Cluo, pa, pi2, xo, - - ., 7).
Let I C Clug, pi1, fto, o, - - - , 7] be the ideal generated by
OF/ou;, i=0,1,2 and OF/0x;, i=0,...,7.
Put
R = Clpo, p, pr2, o, - - -, 7] /1

and let Ri,p) be the space of homogeneous elements of degree (a,b) in
R, with respect to the grading (., x). Then there is an isomorphism

H4_q’q(X) ~ R4 2q-2)

prim
and the period map is identified with the multiplication homomor-
phism

(2.4) Ra2) @ Rp2) = Rz
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Recall that the primitive cohomology HP: is the cokernel of the
natural map HP4(P7) — HP4(X).

In Section [3.3] we provide an explicit example X = X}, such that
the period map is surjective (Proposition . Theorem , Part
(2), then follows. In fact, by Proposition , there exists a smooth
intersection of three quadrics birational to a quadric bundle with a
rational section. Similarly to [HPT16al, Proposition 14] the density of
rational fibers follows from the infinitesimal criterion that we verify in
Proposition

3. COMPUTATIONS

We work over the complex numbers. We first recall the construction
of Beauville [Bea77, Exemple 1.4.4]:

Proposition 6. Let X C P7 be a smooth complete intersection of
three quadrics. Then X is birational to a quadric bundle over P?, with
discriminant curve of degree 8.

Concretely, let £ C X be a line and Gy ~ P° the space of 2-planes
II C P7 containing £. Then X is birational to a quadric surface bundle

T:Q — P?
where Q C P? x Gy is given by
(3.1) Q@ ={([Mo:A1: ), ID)| {XoQo+ MQ1+ X2Q2 =0} DII}.
More explicitly, assume that the line is given by equations
bixg=23=...=27=0
and write, for 1 =0, 1, 2,
Qi = xoLi(xa, x5, ..., x7) + 21 M (29, T3, .. ., 7) + qi(T2, T3, . .., X7),

where L; and M, are linear forms and ¢; is quadratic. Any 2-plane
II C P7 containing ¢ intersects the 5-plane xy = x; = 0 in a unique
point [0 : 0 : xy : -+ : x7]. This allows us to identify the space of
2-planes II C P7 containing ¢ with P>. Then the quadric bundle
is defined in P? x P> by the equations

2 2

(32) Z )\Z‘Li(ﬂfz, T3, ... ,I‘7) = Z )\iMZ'(xQ, T3, ... ,I‘7) =

i=0 =0
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3.1. Fibers that are not stably rational. Let X C P7 be the inter-
section of three quadrics

(3.3) Qo: —wows + 23 + 2476 — 272 = 0;
Q1 : x5 + w114 + 75 — 225 = 0;
Qs : ToT7 — 1126 + T2 + 22 = 0.
Note that X contains a line ¢ : 9 = ... = 27y = 0. Using equations
(3.2), we obtain that X is birational to a quadric bundle Q@ — P?,
defined in P? x P® as an intersection of two forms of bidegree (1,1) and
one form of bidegree (1, 2):
(34) ()\0 — )\1)%5 = /\2.’177, )\11‘4 = )\2%6
Alxg + )\01’3 + /\01‘41‘6 + ()\2 - 2)\0 — 2/\1)1’% + )\ng = 0.
In the open set A\ # 0 we can define X by a single equation
AoAr ((>\o - A1)
Ay A A2

hence, X is birational to a hypersurface Y C P? x P3 of bidegree (2, 2)
defined by

(35) )\1)\233% + >\0)\2$;2?, + )\0)\11'421 + F(AOa )‘17 )\2)1% = 07

where Pw(/\()7 Al, /\2) = /\(2) + /\% + )\% - 2/\0/\1 - 2)\0)\2 — 2A1>\2.
This is precisely the hypersurface we considered in [HPT16a), Proposi-
tions 11, 12].

Proposition 7. Let Q C P? x P be defined by the equatz’o and
3-5)

/\117% + /\Oxg + + /\2 - 2)\0 - 2/\1)1’% = 0,

let Y C P?2 x P3 be the hypersurface given by the equation (3.5)). Then
the birational map

(3.6) ¢:Y --»Q,
Mo A1 A, w0 ix5) —
()\0 . )\1 . )\2, )\21’2 . /\2[[‘3 . )\2[E4 . )\2$5 . )\11’4 . ()\0 — )\1)275)

extends to the following diagram
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where the morphisms ¥ : Y — Y and @ Y — Q are birational and
universally CHg-trivial.

Proof. First note that ¢ is indeed a birational map between Y and Q.
The locus Y™ C Y where the map ¢ is not defined is a union of three
components

}/12/\2:07174:1’5:0;

3/21/\1:/\2:0,ZE5:0;

YE},Z)\O—)\l:O,)\QZ(LIq:O.

Note that Y; is isomorphic to a product P} ., x P} . . and similarly
Y, is isomorphic to a projective plane P?

oz, With homogeneous co-
. o ~ P2
ordinates [z5 : T3 ! r4) and Yy~ P7 .

We construct Y by successive blowups of Y;, the proper transform
of Y5 and the proper transform of Y;. After each blowup we verify:

e the indeterminacy locus of ¢ on the blowup;

e the universal CHy-triviality of fibers of the extension of ¢ to the
blowup and of the blowup map. In each case we obtain that
the corresponding fiber is either reduced to a point or projective
(or affine, if we compute on open charts) spaces. We provide
details for the first computations and the expressions in the co-
ordinates for the remaining charts.

Blowup of Y1. We have three charts:

(1) Uy : x4 = Aug, x5 = Aous, the exceptional divisor is given by
A2 = 0. Since we blow up the locus Ay = 0,24 = x5 = 0, we
consider one of the charts A\g # 0 or A\; # 0 of P? and one of the
charts xy # 0 or x3 # 0 of P3.

We extend ¢ to a birational map ¢, : Uy --» @,

(/\07 >\17 >\27 T2, T3, Uq, U5) = ()\07 )\17 )\27 T2, T3, )\2'&4, )\2'1115, )\1'&4, (AO_)\1>U5)-

Since one of coordinates Ag, A; is nonzero, and one of coordi-
nates xo,r3 is nonzero, we have that ¢; is well-defined. The
image of ; is contained in the closure of the image of ¢, hence
it is contained in @, so that we obtain a map ¢y : U} — Q.
The image of the exceptional divisor is the set of points

El - (>\07 >\17 Oa T2, T3, 07 Oa )\1U4, (>\0 - Al)US)-

Then for any field £’/C and for any point P € E;(k') the fiber
@7 1(P) is either a point or a line (if A; = 0 or Ay — A\; = 0),
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which ensures the universal CHy-triviality of the map (; on this
chart.

The equation defining U; is
)\1.%% + )\01}% + )\0)\1)\2%2 -+ F()\o, )\1, )\2))\2’&% =0.

Let ¢ : Uy — Y be the blowup map. Then, the image [; of
the exceptional divisor is given by the conditions

)\2 = 0, /\117% + )\QI:% = 0.

The latter condition defines a point since the coordinates A\g : Ay
and x5 : x3 are homogeneous. Then for any field £'/C and for
any point P € I(k') the fiber ¢;*(P) is a plane with coordi-
nates uy and usz, which ensures the universal CHy-triviality of
the map v, on this chart.
(2) U2 :
e change of variables:

Ay = $4/\/2, Ts = T4Us;
e equation defining the blowup:
MAGTS 4+ AA5x3 + AoAixa + F(Xo, A, ANyzg)z4ui = 0.
e exceptional divisor:
x4 = 0, \Ayx5 + AoA3z; = 0.
e cxtension of ¢ is given by:
(Ao, A1, Ao, NyTo, Ao, Aoy, Apwaus, A1, (Ao — Ap)us).

e domain, where the extension is not defined is the proper
transform Y3 of Y:

A =X, =0,us = 0.
e the image of the exceptional divisor:
(Xos A1, 0, Aywa, Ayz3, 0,0, A1, (Ao — Ap)us).
(3) Us:

e change of variables:
A2 = T5 Xy, Ty = T5Us;
e equation defining the blowup:

)\1)\,25133 + /\0)\,213;2) + /\0/\11’5@62 + F()\(), )\1, )\,2$5)ZE5 = 07
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e exceptional divisor:
x5 = 0, M Ayx3 + AoAszs = 0;
e cxtension of ¢ is given by:
(Mo, A1, ASTs, AoTo, Ny3, ANoTstiy, Ao, A, Ag — A1)

e domain, where the extension is not defined is the proper
transform Y3 of Ys:

AO—/\1:/\§:07U4:0.
e the image of the exceptional divisor:
<)\07 )\17 07 )\/2']:27 /\/2'T37 07 07 /\1U4, )\0 — )\1)

Blowup of the proper transforms Yy and Y3

Note that Y5 and Y3, and hence their proper transforms, do not
intersect. Hence we can use charts U, and Us independently for their
blowups.

(1) On the chart Us:
(a) e change of variables:

/\1 = )\/2)\11, Us = )\/2’05
e exceptional divisor:
Ny = 0, A3 + AoA|24;
e extension of ¢ is everywhere defined:
(Ao, /\/1/\,27 $4X2, L2, X3, T4, )\,25E4U57 Xl, (Ao — )\,1)\'2)05);
e the image of the exceptional divisor:
(17 07 O’ X2, T3, T4, T4Vs, >\,17 U5)'
(b) e change of variables:
Ay = M Ay, us = \us;
e exceptional divisor:
AL = 0, \Ayz2 + Nowy = 0;
e extension of ¢ is everywhere defined:
()\0 : )\1 : )\1/\,2/, )\/2,1)2, )\/2,3?3, )\/2/1'4, )\1)\/2,1'41)5, 17 ’U5<)\0 — )\1))7
e the image of the exceptional divisor:

(]_, 0, 0, )\gZL’Q, )\IQIZL':;, )\,2/ZE4, 0, ]_, U5>.
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(c) e change of variables:
Ay = us\y, A\; = usAf;
e exceptional divisor:
us = 0, AOAgx§ + AoA[zy = 0;
e extension of ¢ is everywhere defined:
(X0, Mus, Nyus, Nywo, Aows, Aoxy, Nyxaus, A, Ao — AJus);
e the image of the exceptional divisor:
(1,0,0, \ywa, Nox3, Nyxg, 0, N[, 1).
(2) On the chart Us:

(a) e change of variables:
Ao — A1 = ApAg, g = Aquy;
e exceptional divisor:
Ny = 0, \x5 + \s — 4\ x5 = 0;
e extension of ¢ is everywhere defined:
(A1 + AGAG, A1, Aps, o, T3, Ny@s Uy, T5, A1Ug, Ag);
e the image of the exceptional divisor:
(A1, A1,0, 29, 23,0, x5, A1v4, Ay)-
(b) e change of variables:
)\/2 = (Ao — 1) lgl,u4 = (Ao — A\1)vg;
e exceptional divisor:
(Mo — A1) = 0, M Ajz3 + AMiAjag — 4 Njas = 0;
e extension of ¢ is everywhere defined:
Aoy A1, A5 (Ao — A1)ws, Agwa, Aoz, (Ao — A1) Ay T504, Ags, Ajug, 1);
e the image of the exceptional divisor:
(A1, A1, 0, Ao, Ao, 0, Ajws, Ajvg, 1).
(c) e change of variables:
Ay = ug\y, Ao — A1 = ug\;
e exceptional divisor:

ug =0, \A\j23 + /\1/\/2/:E§ — 4\ Nyx5 = 0;
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e extension of ¢ is everywhere defined:
(A1 + wgAg, A, Ajuams, Ao, Ay, AgTstg, NaTs, A1, Ay);
e the image of the exceptional divisor:
(A1, A1, 0, ANyxa, A3, 0, Aoxs, A1, Ag)-
O

Corollary 8. Let Q C P? x P be defined by the equations (5.4). Then
Q admits a resolution of singularities B : () — Q such that

(i) the variety Q is not universally CHy-trivial;
(ii) the map B is a universally CHy-trivial morphism.

Proof. We use Proposition [} @ is birational to a variety Y with
H2 (C(Y)/C,Z/2) # 0 by [HPT16a, Proposition 11]. In particular,
property (i) holds for any resolution Q of Q.

In [HPT16a, Proposition 12] we constructed a resolution of singu-
larities f : Z — Y such that f is a universally CHy-trivial morphism.
Then there is birational map f . 7 — Z with Z smooth, such that the
rational map Z --» Y extends to a map Z — Y

\
N,

Note that the map f is universally CHy-trivial: by weak factoriza-
tion, f factors through blow-ups and blow-downs at smooth centers,
each of these maps is universally CHy-trivial. Hence, in the diagram
above, the maps f , [, ¢ are universally CHy-trivial. We deduce from
the diagram that the composite map Z — Q is also universally CHy-
trivial, which shows (ii). O

Proof of Theorem[1], Part (1):

From Theorem 2] and Corollary [§]we deduce that a very general quadric
bundle defined by equations is not universally CHy-trivial. In par-
ticular, there exists a smooth intersection of three quadrics X birational
to a smooth quadric bundle () defined by an equation of type , such
that () is not universally CHy-trivial. Since universal CHq-triviality is
a birational invariant of smooth projective varieties, we deduce that



INTERSECTIONS OF THREE QUADRICS 13

X is not universally CHo-trivial. Then Theorem [I Part (1), follows
directly from Theorem [2] applied to the universal family ¢ : X — B of
smooth complete intersections of three quadrics in P7. O

3.2. One rational fiber. Consider the quadrics

Qo:  zo(xs + x5+ 226 + 3x7) + 1 (—25 + Dag + 227)—
— ToT3 — TaTy + TaTs + T3 — T4 + T2 + 35 + 25 = 0;
Q1: zo(—x9+ 3w5+ Twg + 1la7) + 21(24 + 925 + 46 + 27)+
+ IL“% — ToT3 + 2w376 + ZEZ + 3z427 + 2x§ + 3ZL‘§ + 5x§ =0;
Qs xo(llxs 4+ 13z + 8x7) + x1(—x3 + 625 + T2 + 327)+
+ 5 + DToT7 — T3T4 + 375 + 1322 + 4af + 1122 = 0.

Proposition 9. Let X C P be the intersection
Qo=01=0Q2=0
Then X is smooth and rational.

Proof. A Magma [BCP97] computation shows that X is smooth. Fur-
thermore, X contains a line

l:xzg=...=x7=0.

As in Proposition @, considering the space Gy ~ P° of 2-planes II C P7
containing ¢, we find that X is birational to a fibration in quadrics
Q — P2, where Q C P? x G,

Q={([Mo: A1 A, IT)| {XQo + MQ1 + A2Qo = 0} D IT}.
The first projection Q — P? admits a rational section: the plane con-
taining ¢ and the point [0 : 0 : Ao : Ay : Ay : 0: 0 : 0] is contained in
{XQo+A1Q1 +A2Qo = 0}. Indeed, by (3.2), we have that Q C P? x P°
is defined by the equations:

)\0(1‘3+$5+2$6+35L‘7)+)\1 (—$2+3ZL‘5+7ZE6—|—11.’B7)—|—)\2(11$5+13$6+8l‘7) =0

/\0(—$5+5$6+21’7)+)\1 ($4+9$5+4I6+J}7)+>\2(—$3+6$5+7$6+3I7) =0

No(—ToT3—ToTy+ToT5+75—T4Te+T2+T5+73)+ A1 (25— ToT3+27376+25+

+32407 4202+ 375 +522) + Ao (v5+5 2907 — 1374+ 97375+ 1323+ 473 +1123) = 0

and, substituting

[T :xg: ... ix7] =[0:0:Xg:A1:A2:0:0:0],
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we obtain
AA1L — XA =0, Ao — A A =0,
Ao(=AoA1 — Ao + )\f) + /\1(/\(2) + )\g — XoM1) + )\2()\3 — AiA2) =0.
O

3.3. Density of rational fibers. Using the notation of Section |3.2]
consider quadrics

Qy = Qo+ap+ a3
Q = @
Q) = Qo+ 2%+ 22

Proposition 10. Let X’ C P7 be the intersection

Q= =0;=0
Then X' is smooth and there exists a v € H**(X') such that the period
map 18 surjective.

Proof. A Magma computation shows that X’ is smooth. In order to
compute the period map we use expression ([2.4). We used Macaulay?2
[GS] to verify that the following monomials

2.4 2.4 3.4
{kopaw7, pnpaws, poas

form a basis of the graded part R34 ~ H"?(X’). In particular v =
pax? works. O

4. DIFFERENTIATING QUADRIC BUNDLES

The goal of this section is to show that the quadric bundles arising
from complete intersection of three quadrics in P” do in fact differ
from the (2,2) hypersurfaces in P? x P considered in [HPT16a]. Note
however that both families specialize to the same reference variety .

Let 7 : Q — P? be a quadric surface bundle with smooth degeneracy
curve D C P2, ie., Q is a smooth complex projective fourfold, 7 is a
flat morphism with smooth (~ Fy) fibers over P?\ D, and quadric cones
(~ P(1,1,2)) as fibers over D. Let 7 : S — P? denote the associated
double cover, simply branched along D. We may interpret S as the
Stein factorization of the relative variety of lines

Fl(Q/P?) — S — P?
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as such, S is equipped with a natural conic bundle structure and thus a
class ag € H*(S, pa). We refer the reader to [APS15] for a close anal-
ysis of the equivalence between quadric surface bundles and Azumaya
algebras over double covers.

We present a cohomological interpretation of this correspondence due
to Laszlo [Las89]. Let HZ(S,Z) denote the primitive cohomology of S,
i.e., the kernel of 7,. It carries the structure of a lattice with respect to
the intersection form, as well as a weight two Hodge structure. Choose
an embedding

Q — P(E)
N
]P)2

where E — P? is a rank four vector bundle. Let Hg(Q,Z) denote kernel
of the push forward homomorphism

H*(Q,Z) — H°(P(E),Z).

This carries the structure of a lattice and a weight four Hodge structure.
Let Hy(Q,Z)(1) denote its Tate twist, a weight two Hodge structure;
this reverses the sign of the integral quadratic form.

Theorem 11. [Las89, Th. I1.3.1] There ezists an embedding of abelian
groups

D1 HNQ.Z)(1) — H(S,Z)
compatible with the lattice and Hodge structures. The image has index
two and is characterized as follows:

image(®) = Ag := {y € HZ(S,Z) : (ymod 2, ag) = 0mod 2}.

Now suppose we have a birational equivalence

~

@ - Q2
N\ /
]P)2

of quadric bundles over P2, It is clear that Q; and @ must have the
same degeneracy curve D C P? and induced double cover 7 : S — P2
Consider the classes ag,,ag, € Br(S5)[2], obtained via the canonical
surjection H%(S, ua) — Br(S)[2]. Since ag, generates the kernel of

H*(C(S), p2) — H*(C(Qy), 12)
by [Ara75l p.469], we have ag, = ag,.
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Proposition 12. Let D C P? be a very general octic plane curve,
Q1, Q2 — P? quadric surface bundles with degeneracy curve D, where
Q, C P2 x P2 is a (2,2) hypersurface and Qo C P? x P° is a complete
intersection of hypersurfaces of bidegrees (1,1), (1,1), (1,2). Then Qy
and Qo are not birational over P2.

The precise condition we require is that Pic(S) ~ Z.

Proof. For the first example, let h; and hy denote the pull-backs of the
hyperplane classes from each factor. Then we have [@Q1] = 2h; + 2hs
and
\ h? hihy h3
i |0 0 2
hiha | O 2 2
22 2 0

For the second example, let g; and go denote the hyperplace classes as
above so that

[Qa] = 49792 + 59197 + 25

Then we have

These two lattices are inequivalent over the 2-adics. Indeed, their ranks
modulo two differ. It follows that the lattices Hy(Q1,Z) and Hy(Q2,Z)
are also inequivalent, as a nondegenerate lattice and its orthogonal
complement in a unimodular lattice have the same discriminant groups
up to sign. (The discriminant groups are a way of packaging the p-adic
invariants of a lattice.)

Under our assumption, Br(S)[2] = H?(S, u2)/ (h) where h is the
hyperplane class pulled back from P2. If Q; and ), were birational
over P? then

aQ, = aq, € H2(Sv p2)/ (h)
whence Ag, ~ Ag,. This would contradict Theorem O

Remark 13. Observe that the common reference variety (|1.1)) admits
nontrivial 2-torsion in its unramified cohomology. It is intriguing that
we differentiate the smooth members through a 2-adic computation of
lattices.
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