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ABSTRACT. We study homomorphisms of multiplicative groups of
fields preserving algebraic dependence and show that such homo-
morphisms give rise to valuations.

INTRODUCTION

In this paper we formulate and prove a version of the Grothendieck
section conjecture. For function fields of algebraic varieties over alge-
braically closed ground fields, this conjecture states, roughly, that the
existence of group-theoretic sections of homomorphisms of their abso-
lute Galois groups implies existence of geometric sections of morphisms
of models of these fields.

In detail, let k£ be an algebraically closed field, X an irreducible
algebraic variety over k, and K = k(X) its function field. Let Gk
be the absolute Galois group of K. Fix a prime ¢ not equal to the
characteristic of k£ and let G be the maximal pro-f-quotient of G,
the Galois group of the maximal (-extension of K. Write

G =G6k/|9k,Gk] and Gy :=Gk/[Gk, Gk, Gkl
for the abelianization and its canonical central extension:
(1) 1= Zx — G ™% G — 1.

Let Xk = 3(GY) be the set of topologically noncyclic subgroups o C
G% whose preimages 7, ' (o) C G& are abelian. It is known that func-
tion fields K = k(X) of transcendence degree > 2 over k = [, are de-
termined, modulo purely inseparable extensions, by the pair (G%, ¥)
5], [7], and [14].

This raises the question of functoriality, i.e., the reconstruction of
rational morphisms between algebraic varieties from continuous ho-
momorphisms of absolute Galois groups of their function fields. This
general fundamental question was proposed by Grothendieck and lies

at the core of the Anabelian Geometry Program.
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The main open problem in this program relates to a Galois-theoretic
criterium for the existence of rational sections of fibrations. Let

m: X =Y,

be a fibration of integral algebraic varieties over k with geometrically
irreducible generic fiber of dimension at least 1 over a base Y of dimen-
sion > 2. This defines a field embedding
™ k(YY) = k(X),

with the image of L := k(Y') algebraically closed in K := k(X). Du-
ally, we have a surjective homomorphism of absolute Galois groups (a
restriction map)

G — G L,
as well as the induced homomorphisms

G — G5, i — G,

A minimalistic version of Grothendieck’s Section conjecture, over alge-
braically closed k, would be:

Conjecture 1. Assume that m, : Gf — G{ admits a section

(2) fa : gi — g(IL{
such that
(3) éa(2L> C 2K

Then there exist a finite purely inseparable extension
VL= L=k
and a rational map
Y — X,
such that
Eom*(L)=1(L)C L.
Thus £(Y") is a section over Y, modulo purely inseparable extensions.

Conjecture 1 is closely related to questions considered in this note.
Recall that, by Kummer theory,

G = Hom(K™, Z(1)),

and that (2) induces the dual homomorphism of pro-¢-completions of
the multiplicative groups

O KX — L.
Then (3) says that i respects the skew-symmetric pairings on K*
and L™, with values in the second Galois cohomology group of the
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corresponding field (with (-torsion coefficients). The groups K* and

L* contain K* /k* and L*/k*, respectively. If the restriction ¢ of 0
to K*/k* satisfies

v KX /B C L k™ C L*,
then v respects algebraic dependence, mapping algebraically dependent
elements in K* to algebraically dependent elements of L* (modulo
k*). For function fields this is equivalent to (3) (see, e.g., [6, Section
5]). This relates the “minimalistic” version of the Section conjecture
for “rational” maps to our main result, which we now explain.

From now on, let K be an arbitrary field over k. Let v be a nonar-
chimedean valuation of K, i.e., a homomorphism

v:K*—=T,
onto a totally ordered group such that the induced map
v:K—=T,U{c0}, v(0)=oc0,
satisfies a nonarchimedean triangle inequality. Let

My, Cog,, K, :=o0g,/mg,, fogw
be the maximal ideal, valuation ring, residue field, and units with re-
spect to v, respectively. If K|k is a (transcendental) field extension and
v a valuation of K, then its restriction to k is also a valuation; and we
have

oi(,umkx = Ol>c<,1/7 0}((,1//0;;1/ - KX/kXJ
and a natural surjection

0%/, — K[k
We consider extensions of fields
kCkCk,CK,

where k is the prime subfield of K, ie., k =T, or Q, and k, C K the
algebraic closure of k in K, i.e., the set of all algebraic elements over k
contained in K. Assume that z;, T, € K*/E* satisfy

(4) tr deg,;(fc(xl,xg)) <1,
for their lifts zy, x5 € K*; and this does not depend on the choice of
lifts. We write z1 ~; 22 and say that z; and z, are contained in the
same one-dimensional field; clearly 1 ~; z, for all z € K*/k*. From
now on, we use the same notation for an element x € K* and its image
in K*/k*. Let

ICicCl,CL
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be field extensions, where [ is the prime subfield of L, I, the algebraic
closure of [ in L, and let

v KXk — LX/l~X
be a homomorphism of multiplicative groups. We say that i) preserves
algebraic dependence with respect to k, [ if

Ty~ T2 = "Lp(l’l) ~i w(l'g), V:cl,xg € Kx/kx.

Theorem 2. Let k:~§ /% C K andl C [ C L be field extensions as
above. Assume that | = [, and that there exists a homomorphism

(5) O KXk — L*)1%,

such that

e 1) preserves algebraic dependence with respect to k and l~;
e there exist

y1,Y2 € YK k™), such that  y1 %7 yo;
e 1 satisfies Assumption (AD) of Section 7.
Then either
(P) there exists a field FF C K such that 1) factors through
KXk —» K*/F*,

(V) there exists a nontrivial valuation v on K such that the restric-

tion of ¥ to

0% 0%, C K[
18 trivial on
(1+m,)" /oy,
and it factors through the reduction map

0%/, — K [k — L™ /I%,

(VP) there exist a nontrivial valuation v on K and a field F, C K,
such that the restriction of ¢ to oy /oy, factors through

0% fof, —» K[ - L*|I*.

Note that we do not assume that & is algebraically closed. In the
geometric setting treated in [8], when K = k(X)) is a function field of an
algebraic variety X over k= I_Fp, case (P) corresponds to projections,
the center of the valuation v arising in case (V) is, birationally, the im-
age of the section, and the above theorem can be viewed as a “rational”
version of the minimalistic section conjecture (case (VP) corresponds

to valuations composed with projections).
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To see this connection in more detail, recall that K> admits a natural
homomorphism with dense image to K %, the dual to Gf. The usual
form of the section conjecture, as in Conjecture 1, is equivalent to the
statement about homomorphisms

v KX — L*
such that pairs f, § with (f,§) = 0 map to a pairs with (¢(f),¥(g)) =
0. Note that the image of K* C KX plays the role of a Z-sublattice,
in the geometric case of function fields of algebraic varieties over alge-
braically closed fields. The corresponding statement of the theorem in
the case of a function field is indeed a rational version of the section
conjecture; we expect that it can be deduced from our version, using
the fact that the natural sublattice K* C K* is necessarily mapped
into L*  L*, modulo multiplication by a constant a € Z (as in [5]).

Note that the abelian-by-central version of section conjecture does
not hold for big fields. Indeed, as it was pointed in [3], the maximal
extensions coprime to £ of function fields have isomorphic Galois group,
depending only on the algebraically closed ground field and the dimen-
sion. However, our theorem says that we can still obtain valuations
from the multiplicative group homomorphisms respecting algebraic de-
pendence.

Here we extend the argument in [8] from function fields to arbitrary
fields, under the additional technical assumption (AD) on 1, which
holds for K of positive characteristic. Although we believe that the
main theorem holds in full generality, i.e., without the (AD) assump-
tion, we were forced to add it, due to purely technical difficulties in
our treatment of valuations of K which extend p-valuations of Q. To
achieve clarity of the presentation, we decided to remove such valua-
tions from present considerations.

Related results on connections between Galois groups, valuations,
and projective geometry can be found in [1], [9], [10], [11], [13].

The idea of the proof is to reduce the problem to a question in plane
projective geometry over the prime subfield k, as in [4] and [5]. We view
P(K) := K*/k* as a projective space over k. To establish Theorem 2,
it suffices to show the existence of a subgroup 4 C K*/k* such that:

Condition 3. For every projective line | C P(K), 4N [ is either

(1) the line [,

(2) a point q € I,

(3) the affine line ['\ q, or

(4) if k = Q, a set projectively equivalent to

Zy) C AY(Q) C PYQ),
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the set of rational numbers with the denominator coprime to p.

Indeed, such a subgroup is necessarily either £’ /k* for some subfield
F C K, or of,, for some valuation v (see Section 7). By construction,
the homomorphism 1) will satisfy the cases (P) or (V) in Theorem 2,
respectively.

To find such 4, we use the results of [12] and [2]. First we deduce that
the restriction of 1) to every plane P? C P(K) is either an embedding
or is induced by a natural construction from some nonarchimedean
valuation (see Section 5). We distinguish two cases:

e there exists a line [ C P(K) such that the restriction of ¥ to [
is injective,

e 1o such lines exist.
In the first case, property (4) of Condition 3 does not occur, and the
proof works uniformly for & = F, or Q. In this case, we construct { by
first taking the union u of all lines [(1, ) on which % is injective and
then putting 4 := u-u. We should that 4l is closed under multiplication
and its intersections with projective subspaces II C P (K') define a flag
structure on II, and thus a valuation on K.

In the second case, the proofs are slightly different, leading to a

case-by-case analysis in Section 5.
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1. PROJECTIVE GEOMETRY

Let P be a projective space over a field k, i.e., the projectivization
of a vector space over k. Let I1(qo, ..., q,) C P the projective envelope
of points qo, ..., q, € P. Working with lines and planes, we write

[= [(Cl07 Cll), resp. II = H(Cloa di1, Clz)a

for a projective line through qg, g1, or a plane through qo, q1, g2-
Let v a nonarchimedean valuation of k, 0 = o0, the corresponding
valuation ring, and k, the residue field. Fixing a lattice

o o+l +1
Ao~ o™ 5 BT
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we obtain a natural surjection

(6) p=pa:P"(k) = P"(ky).
A 3-coloring of P?(k) is a surjection
(7) ¢: P*(k) — {e,0,%},

onto a set of 3 elements, such that

e every [ C P?(k) is colored in exactly two colors, i.e., ¢(I) consists
of two elements.
A 3-coloring is called trivial of type
e [ if there exists a line [ C P? such that ¢ is constant on P? \ [,
e [I if there exists a point q € P?(k) such that for every [ C P?
containing q, ¢ is constant on [\ g.
It was discovered in the early 1980s that such colorings are related to
valuations, see, e.g., [12]. The same structure resurfaced in the study
of the commuting elements of Galois groups of function fields in [4],
exhibiting unexpected projective structures within G§%. This was a
crucial step in the recognition of inertia and decomposition subgroups
in G%.
Precisely, we have (see [12, Theorem 2| and [4]):
Proposition 4. Assume that P?(k) carries a 3-coloring. Then there
exists a nonarchimedean valuation v such that the coloring ¢ in (7) is
induced from a trivial covering

¢, : P*(k,) — {e,0,%},
for some p as in (6).
2. FLAG MAPS
We will consider maps (respectively, homomorphisms)
f:P— A

from projective spaces over k to a set (respectively, an abelian group).
The map f is called a flag map if its restriction fi; to every finite
dimensional projective subspace II C P is a flag map. For £ = F,, and

f:PYF,) — A,
this means that there exists a flag of projective subspaces
(8) ProP" .. . ODP DP =g

such that f is constant on P(F,) \ P""!(F,), for all i = 1,...,n. For
k= Q and
[PMQ) = A4,
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this means that either

e there is a flag as in (8) so that f is constant on PY(Q) \ P 1(Q),
foralli=1,...,n,or
e there exist a prime p, a surjection

p=pa: P(Q) - P"(F,)
as in (6), and a flag map
[P F,) = A,
such that
f="rfop
Proposition 5. [4, Theorem 6.3.4] Let
fiP(K) = K*/k* — A

be a group homomorphism which is also a flag map. Then there exist a
valuation v of K and a homomorphism r : I, — A such that [ factors
through

v

K*/k* 2T, 15 A
A map f on P"(k) that is a flag map on every hyperplane defines an
f P 5 A
A = faen(A)
on the dual space, by assigning to a projective hyperplane the generic
value of f on this hyperplane, i.e., the constant value on the comple-

ment to a codimension one subspace of that hyperplane.
Every map

(9)

fP2(Fs) — {0, 1}
has the property that its restriction f; to any line [ C P?(FFy) is a flag

map, but not all such f are flag maps. The following theorem, gener-
alizing results in [4, Section 2], shows that this is the only exception.

Theorem 6. Let f: P"(k) — A be a map such that fi is a flag map,
for every I C P™(k). Then f is a flag map, unless k = Fy and P"
contains a plane I1 = P? such that f is not a flag map on II.

Proof. We proceed by induction, assuming that f is a flag map on every
Pt C P, n > 2. We separate the cases:

° f is constant,
o f takes at least two values.



HOMOMORPHISMS AND ALGEBRAIC DEPENDENCE 9

In the first case, let a be the generic value of f on hyperplanes and
S C P be such that f(z) # a, for x € S. The projective span P(5)
of S is a proper subspace of P, of codimension at least 2. Indeed,
consider a subset of distinct elements x; € S;i = 1,...,n; it contains
an element with generic value of f on the span P(x1, ..., z,). Hence, by
assumption, dimP(xy,...,x,) <n — 2. Thus the dimension of P(S) is
also bounded by (n — 2). In particular, f(z) = a, for all x € P™\ P(S).
By induction, f is flag on P(S), thus also on P™.

In the second case, let ay := fzen(A) be the generic value of f on
I, CcP"\e P". We have two possibilities:

(1) There is a Ay, with feen(A1) = a4, so that for q € P* \ II,,, one
has f(q) # a1.

(2) There are A\; # Ay, with different generic values a;, as, such
that there are points q; € P™ \ II,, with f(q;) = a;.

In Case (1), f is constant outside of II,, and hence a flag map, by
induction. Indeed, let P" C II,, be a projective subspace with f = a4
on Iy, \ P". On any line [(z1,25) C P, with xy, x5 ¢ II,,, intersecting
IT), \P" at some point zy, f is constant on [(x1, z5) \ 21. Hence f(z1) =
f(x9) in this case. It remains to show that for x; € P" \ II,, with
z1 € P we also have f(z1) = f(x2). Consider the II(z, z1,q), for any
q € Iy, \ P, If 20 € I(21,9),22 # q,21, then [(z 2) and [(xq, 20)
intersect at some point w € P" \ II,, and hence f(z;) = f(w) = f(z2),
which concludes the proof.

Case (2) does not occur unless n = 2. Indeed, let 11, 4, be a hyper-
plane containing q; and intersecting IT,, \ P" nontrivially The latter
contains an affine plane A?7? in the intersection P{,* = Pr !t NPy
and A2 spans P{_*. Thus P?~! is spanned by q; and A”~2 and hence
ay is the generic value on P;‘;ll These hyperplanes are parametrized

by I@Wf—l C P" minus a subset of hyperplanes which do not intersect
IT,, \ P". This set is empty if r < n — 2 and consists of one point
p1 if 7 = n — 2. Applying the same argument to ap we obtain a dif-
ferent P3~! < P". The hyperplanes PP~ P! intersect at P"~2 and
we obtain a contradiction if n — 2 > 0, since P2 contains at least
3-points. Thus we obtain hyperplanes in P" with two generic values,
contradicting the inductive assumption.

We have reduced to n = 2, with the additional assumption that f is
nonconstant on any line.

Lemma 7. Case (2) does not occur for n =2 unless k = Fs.

Proof. Consider II, and its subset of generic points, which contains
Ail. Any line from q; to a point in A}\l has generic value a;. Let E
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be the union of all such lines and E(a;) C F; the subset of points with
value a;. We define Ey and Es(ag) in a similar fashion. If £ = F, then
each set F(a;) and Es(az) contains at least q(¢ — 1) + 1 points. The
total number of points in P%(F,) is (¢* + ¢ + 1), hence

2(g =1 +1) < (¢ +q+1)
which implies ¢ < 2. It completes the proof for finite fields k.

For infinite k, let [, [y be lines through g2 € Es which do not pass
through q; and which intersect A}\I. These lines intersect all lines
through q; € F;. Note that all those intersection points in Ej \ Iy,
are different for [; # [,.

The generic value on [y, [ is as and hence at all but at most 4 lines

[ in E; through q; we have at least 2 points [ N [; with value as which
contradicts the fact that generic value on [ is a;. O

This concludes the proof of Theorem 6.
O

Corollary 8. (1) Theorem 6 holds also P"(IFy) if f takes at least
(n+ 1) distinct values.
(2) There is only one two-valued map on P*(Fy), modulo projective
transformations, which is not a flag map.

Proof. The first statement follows by induction on dimension, the case
of P*(F;) clear by Lemma 7. The second statement follows by direct
verification. U

Lemma 9. Let
fPK)=K"/k*— A
be a homomorphism whose restriction to every line is a flag map and
such that there exists a plane 11 = I1(1, x,y), with f(x), f(y) # 1, and
fr not a flag map. Then
f@) = fly) and @) =1.

In particular, if f is not a flag map, then k = Fy and f? is a flag map.
Proof. Let 11 := II(1,z,y)) C P(K) such that f is not a flag map.

Changing x, y by projective transformations and division by an element
we can assume that f takes two values 1,a on II, with

f=flz+1)=fy+1)=flz+y) =1
and

fle)=fly)=fla+y+1) =a
On l(zy,z +y + 1), we have

flay)=d®, flay+r+y+1)=1 fl@a+y+1l)=a
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and hence three values. Since a? # a, by assumption, f is not flag on
(zy,z+y+1). d

Lemma 10. Assume that the two-torsion part A[2] C A is nontrivial.
Consider the composition

fo  P(K) -1 A 2 A/A[2),
with ro the projection. Then fy is a flag map on every plane II C P(K).

Proof. 1f f is a flag map on II(1,z,y), then f; is also flag. If f is not
a flag map, then we apply Lemma 9: f takes only two values, 0 or 1,
and f(r)* =1, thus f(x) = 1.

In particular, fo =1 on II(1,z,y) and hence is a flag map. Thus fo
is a flag map on every plane, and hence a flag map. O

To summarize, if A # A[2] then f determines a valuation v. If
A = AJ2|, then f is trivial on some subfield K’ C K such that K|K’ is
a purely inseparable extension of exponent 2.

3. Z(y)-LATTICES

Let p be a prime number and Z,y C Q the set of rational numbers
with denominator coprime to p. A Z,)-lattice, or simply, a lattice
B C Q"' is a Z,-submodule such that B ®z, Q = Q"*'. Given a
lattice B C Q" and an element x € Q"*!\ 0, there exists an element
xp € B\ pB such that x and zp define the same point in P*(Q),
this element is unique in B\ pB, modulo scalar multiplication by ZE; X

Lattices B, B’ C Q™! are called equivalent if B = a - B’, for some
a € Q*.
In this section, we consider the maps
f(Q"N\0) — A,
which are invariant under scalar multiplication by Q*; and we use the
same notation for the induced map

f:P"(Q) — A.
We say that f is induced from P"(Z/p) via a lattice B if there exists a
map

f P (Z/p) = A,
such that

flz) = (fopp)(xp), forall zeP"(Q),
where
pp 1 (B\pB) — (B/pB)\ 0 — P"(Z/p).
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This is well-defined since pp is invariant under Z(Xp )- Any such lattice
will be called f-compatible, or simply compatible. If f is induced from
P*(Z/p) via a lattice B, then it is also induced via any equivalent
lattice.

Any sublattice of Q™ is compatible with a constant function. How-
ever, if f takes at least two values then the set of f-compatible lattices
is much smaller. Note that equivalence classes lattices in Q? are nat-
urally parametrized by a p-tree (a tree where each vertex has (p + 1)
outgoing edges).

Lemma 11. If f is a Q*-homogeneous function on Q*\ 0 and f(x) #
f(y) then the set of f-compatible lattices consists of Zy)-lattices gen-
erated by p™=x,p™vy, with my, m, € Z.

Proof. Let B be f-compatible and consider the projection pg. Then,
for z € Q*\ 0 there is a unique m, € Z such that p™=x is a generator of
B, ie., p™x € B\ pB. We have pg(p™x) = 7 € P(B/pB). Consider
y € Q*\ 0 and p™y € B\ pB with pg(p™y) =y € P(B/pB). Then
pp(P™y) # pp(p™=x) since f is induced from f on PY(B/pB) and
f(z) # f(y). This implies that p™ 2 and p™vy generate B. O

In the discussion below, we use projective and affine geometry. The
following lemma connects these concepts.

Lemma 12. Assume that f : PY(Q) — A is induced from a noncon-
stant map f : PY(Z/p) — A, via some lattice.
(1) If f is a flag map, then there are exvactly two equivalence classes
of f-compatible lattices By, By C Q2.
(2) If f is not a flag map, then there is exvactly one equivalence class
of f-compatible lattices B C Q2.

Proof. By assumption, f is induced via some pg. Fix generators x,y €

B such that f(y) # f(z), in particular pg(zg) # pa(ys) € PYZ/p).
We have

fly+pB) = f(y) and f(z+pB) = f(x) # f(y).
Any lattice B’ C Q? is equivalent to a lattice with x as a generator.
Since B'/Zy) - © ~ Z), B’ is one of the following: B; := (z, p'y), for
some ¢ € Z. If f is induced from B;, for some 7 < —1, then

fle+p@'y)) = f() # f(y) and fz+pp'y) = 0~ e +y) = f(y),
a contradiction. The same argument yields a contradiction when ¢ > 1.
Thus ¢ = 1,0, or —1.

Analysis of values of f at other points of P!(Z/p) leads to further
restrictions. We have the following cases:
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(1) f is constant on PY(Z/p) \ ps(ys)-

(2) f is not constant on the complement to a point in P'(Z/p).
In Case (1), f(z+y) = f(z), excluding i = 1. Then we have exactly
two lattices By, B_1, such that f is induced from these (or equivalent)

lattices.
In Case (2), if f is induced from B; then

[z +y) = f(prx+p~'y) = fly), forany k€ Zy),

and hence f is constant on P'(Z/p) \ pp(zp), contradicting the second
condition. A similar argument works for B_;. Thus there is only one
compatible lattice By = B, modulo equivalence. O

A similar analysis holds for f-compatible lattices in Q", for arbitrary
n. For x € Q" \ 0 we let (x) be the ray consisting of its nonzero mul-
tiples. Then, for any sublattice B, the image of (z)p in P""1(Z/p) is
well-defined. However, it may happen that for some B the correspond-
ing images lie in a proper subspace of P"7'(Z/p) while for another
f-compatible lattice they span the whole P"~'(Z/p).

Lemma 13. Assume that f is induced from f via some lattice B and
that the images (1), (x2)B, .-, {xn)p span P""Y(Z/p). Then B is
generated by pxy, ..., p"nx,, for some iy, ..., in,.

Lemma 14. Assume that f : P*(Q) — A satisfies the following:

(1) f takes three values;
(2) f takes at most two values on every line [ C P?;
(3) on every PL(Q) C P2(Q), f is induced from a flag map on
PY(Z/p), via pp:, for some lattice B' C Q2.
Then there are exactly three equivalence classes of lattices By C Q® such
that f is induced from a flag map f : P*(Z/p) — A, via pg,, i = 1,2, 3.

Proof. 1t follows from Proposition 4, applied to k = Q (see also [12] or
[4]). The first two conditions imply that there exists a lattice B C Q3
such that f is induced from some We conclude that f is a flag map,
with 3 distinct values. Hence

P?(Q) = S; LISy LI Ss,

with S the preimage of an affine plane in P*(Z/p), Sy an affine line,
and S3 a point in P?(Z/p), and f is constant on these sets.

Thus, for any B’ C Q? such that f is induced from P?(Z/p) via pp,
the restriction of f to any (Q?\ 0) C (Q?*\ 0) is induced from a flag
map on P}(Z/p). Hence f is also induced from a flag map, via pg,. On
the other hand, in coordinates x1, x2, x3, we have

Si={a1 #0}, Sy={z1=0,20#0}, S5={x1=2,=0,23#0},



14 FEDOR BOGOMOLOV, MARAT ROVINSKY, AND YURI TSCHINKEL

and the only possible coordinates compatible with the structures on all

PY(Q) are

Ty T3 T3

T, —,—, X1,To,—, and  xq,To, T3.

p p p
Indeed, consider lattices Bi, By, B3 as above and assume that there
exists another sublattice B’ C Q3 such that f is induced via B’. Choose
Q? C Q3 so that f is not constant on Q?. Then we can choose B; so
that

BiNQ:=a-B'NQ}, acQ*,

since there are only two possible equivalence classes of compatible lat-
tices in Q2. Note that there are at least two such B; whose intersections
with a complementary subspace Q3, with f nontrivial on it, are differ-
ent. Thus for at least one B; we can assume that

BNnQ:=BnNQ; j=12

and B; N Q? generate B; over Z,). Hence B’ is equal to B;, for one of
the 1 =1,2,3. U

4. A RESULT FROM FIELD THEORY

Let
kChkCh,CK
be an extension of fields. We say that x1, x5 € K*/k* are algebraically
dependent with respect to k if they satisfy Equation (4) from the In-
troduction; in this case, we write x; ~; x2, or simply z; ~ 5. We
record the following obvious properties of this equivalence relation:
(AD) If 2y ~p 29, @1/ & kX /KX, and @ ot 21, then ) /2 o4f 2o/
(AC) For all z; € K*/k*\ kX /k*, the set of 25 such that the closure
of ku(z1) in K coincides with the closure of k,(x2), together
with (kX /k*), forms a subgroup of K*/k*.

Lemma 15. Let K|k and L|l be field extensions, v a valuation of K,
and

(10) b KXk 5 LX)I¥
a homomorphism, such that its restriction to oy /o, , factors as
(11) 0%, /0%, —» K[k % L I”.

Assume that 1, preserves algebraic dependence with respect to k, and
[. Then 1 also preserves algebraic dependence with respect to k and [.
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Proof. Let k(x) C K be a purely transcendental extension and

E=k(zx)CK

its algebraic closure in K. We claim that the restriction of ¢ to £ /k*
preserves algebraic dependence. There are two cases:

Case 1. v(k*) = v(E*). Then
EX =op, k™.

Since 1), preserves algebraic dependence with respect to k, and [, the
claim follows.

Case 2. v(k*) € v(E*). Then v(E*)/v(k*) has Q-rank 1, i.e., for
y,z € E* with nonzero v(y),v(z) € v(E*)/v(k*) there are nonzero
ny,n, € Z such that n,v(y) = n,v(z). Indeed, y,z define a finite
algebraic extension k, . (x)|k(z), hence v is nontrivial on k(z), and the

group

v(ky,(2)")/v(k(x)")
is finite. Let g € k(x)* be such that the image of v(g) in v(E*)/v(k*)
is infinite. Then for any " a;g", with a; € k,

n

v(> aig') = ml.in(”(aigi)),

=0

since none of the monomials a;¢g* have the same value under v. Thus,

v(k(9)") = v(k™) x (v(9))-

The extensions k, .(x)|k(z) and k(x)|k(g) are finite, thus

v(ky,z(2))/ (v (k") x (v(9)))

is also finite, which implies the result for v(E*). Since ¥ (k*) = 1,
Y (ky.(x)*) is the product of a finite group and Z. In particular,
Y (ky.(x)*) consists of algebraically dependent elements. Since E is
a union of subfields k, .(x), the same holds for £*.

Thus ¢ (E* /k*) coincides with the image of v(E*)/v(k*). Since all
elements in v(E*)/v(k*) have the same powers, i.e., the Q-rank of this
group is at most one, we see that the lifts of elements in ¢)(E*) to L*
are algebraically dependent over [. 0
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5. RESTRICTION TO PLANES

Here we study the restrictions of homomorphisms
Y P(K) = K* /X — A:= L*)I*,
satisfying the assumptions of Theorem 2, to projective planes Il C
P(K).
Proposition 16. Let IT := II(1,z,y) C P(K) be a projective plane
such that ¥(x) o W(y). Then one of the following holds:
(a) o is injective.
(b) There exists a line [ C II such that vy is constant on I\ [.
(c) There exists a point q € 11 such that ¥y is constant on [\ q, for
every [ C 11 passing through q.
(d) k= Q, ¥n is induced from

v PA(Z/p) — A,
via a lattice B C Q®, and ¥y is of type (a), (b), or (c).

Proof. Assume that ¢ is not injective: there are distinct x1, x5 € I,
with ¢ (z1) = ¢ (x9) # 1. Consider
Hl = xfl I = H(17 1/'T17 y/x1>7

since ¥(y) # ¥(1/x1), I1; satisfies the conditions of the theorem; if it
holds for II;, then it holds for the initial II. Thus we may assume that

(12) Sp:={a" eIl | () =1}
contains at least two elements. Consider the map

b i P(K) = A,
with values in dependency classes:

o Y(af) =1if (/) =1,
o U (') = Yo () I ("), $(2") £ 1 and (a') ~ $(a").
We record the properties of ¢.:
(TI) For every [ C IT with [N S} = (), we have

{v(@) [ 2" € 1} ={vu(a”) [ 2" € T\ 51},
in particular, ¥ ([) has algebraically independent elements.
(TC) For every [ C II with [N Sy # 0, ¥ is constant on [\ (IN.Sy).

Property (AI) from Section 4 relates ¢, and 1.

Lemma 17. If INS; =0 and 2/, 2" € | are such that (z') ~ p(a”),
then ¥(x') = (z").
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Proof. There is a z € [ with 1(2) % ¥(2'),¥(2"). Since z71- [N S} # 0,
all values of ¢ on [(2//z,2"/2z) \ 1 are algebraically dependent (here

we use that I, = ). By (AI), if ¢(2) # ¥(2"), then (') /¢(z) #
W(2") /1 (2), a contradiction. O

Lemma 18. Let [, ' C II be disjoint from Sy, put z := NI, and assume
that there exist x € | and ' € ' such that

(@) ~ (@), ¥(x) #¢(a),  and  Y(z),(@") £ P(2).
Let y € Land y' € U be such that ¥ (y) ~ ¥(y'). Then either

V(y) # ), or
e Y(y) = YY) = ¥(2).

Proof. Assume that

then
v(x) Py
o(z) " U(z)
and
) Py)

0(z) " U(z)
by (TC), by the same argument as in Lemma 17. Finally, by (AI),
vlx) v
o(z) " u(z)
is not possible. O

Let {7} };es be the set of intersections of algebraic dependency classes
in P(K') with II. Split J = J, U J3 and consider the decomposition

(13) II = S’ll_JSQI_|53, with Sl == Tl, SQ == ujeJQJ_}‘, Sg == UjEJBJ—‘]',

(here S; is the same set as in (12)).
For any such decomposition, the induced map

U=y {1,2,3}

factors through 1. and satisfies the conditions of Proposition 4. Thus
¥ is induced from a trivial coloring, with S; not depending on the
decomposition. Since there exist lines disjoint from Sy, and S; contains
at least two points, it follows that either

(B) Sy =1I\ [, for some [ C II, and we are in Case (b), or

(C) S1 = User(l; \ q), for some q € IT and [; through q, and we are

in Case (c), as is proved below in Lemma 19, or
(D) k=Q, and ¥ is induced from a trivial coloring on P?(Z/p).

Note that in Case (B), » = 1 on the affine plane IT \ [.
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Lemma 19. In case (C), 1 is constant on an affine plane, or on [\ q,
for all lines | passing through q.

Proof. Consider x € II'\ (S; U q) and lines [ containing  but not q.
Then ¢ = ¢ (x) on [\ (INSy), by (TI). Since S} is not an affine plane,
there is an 2/ € II'\ (S; U (2, q)). We have ¢ (z) = ¢ (z’). The union
of lines [ C I1, q ¢ I, through z, 2/, is equal to IT\ q. Thus v takes only
three values {1, ¢(x),¥(q)} and is constant on IT\ (S; Uq). Lemma 17,
applied to [ through g, implies that v is constant on ['\ g. U

We are left with Case (D), when ¥ is induced via some
p: I =P*(Q) = P*(Z/p)
from a trivial coloring
¢ PAZ/p) — {1,2,3},
in the sense of Proposition 4. Put
S;=c¢ i), i=1,2,3.

Note that S; is a finite union of subsets Z,) +Z,) and does not contain
a complete line [. Consider shifts II, := 2! - II, for 2 € II. The shift
from II to II, changes algebraically dependent subsets. Note that II,
contains 1 and S; contains Z,) + Zy), by assumption of case (D), thus
on lines [ through 1 all elements in [\ 1 are algebraically dependent.
If there are at least two elements z/z,y/z with ¢(x/2) + 1(y/z) then
we have a splitting into S, S, 3, and since Sy contains Z,y + Z,) we
can proceed by induction.

Lemma 20. For every z € I, the restriction of ¢ to 11, is induced
from P2(Z/p).

Proof. We subdivide (D) into subcases:
(D1) For every z and every splitting II, = Sy, U S, U S5 ., where
53,2, 93, are unions of algebraic dependency classes, the set
Sy, C P?(Z/p) is either a point, an affine line, or an affine
plane.
(D2) Otherwise: for some II, this is not the case.
First we treat (D1). Fix II, and a decomposition II, = S; , LIS, . LS5 ,;
we have
v P*(Z/p) — {1,2,3},
and
PQ(Z/]?) = l—l?zl‘gLZ? Si,z = pfl(SLZ) C II.

By assumption (D1), we have 3 cases.
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e S, =q, forsomeq € P*Z/p). Forz € 1.\ S, and [ = [(q, ),
with p(q) = g, ¥~ is constant on [\ (IN S ,), by (TC). Apply
this to all I(q, z1), where z; runs over S ., to conclude that 1.
is constant on preimages of affine lines (I'\\ ), with g € [, hence
is induced from P?(Z/p).

e Si.=1\q, for some [ C P?(Z/p) and q € [. Then S, ., S, . and
S, form a flag on P*(Z/p): all points projecting to P2(Z/p) \ |
belong to the same algebraic dependency class because each
pair of such points can be connected by a pair of lines which
intersect S .. Lemma 14 reduces the proof to the previous case,
after changing to a different ¢..-compatible lattice.

e Si. =P*Z/p)\ I, for some line [ € P?(Z/p). This reduces to

the case S, = q.
We pass to (D2) and fix a plane II,, with a splitting

Hz - Sl,z L SQ,Z U S3,zu

violating (D1). Note that II, contains points 1,1/z, x/z with ¢(1/z) 7
Y(z/z). We also know that the subset S;/z C II,, with S; defined in
(13), is a finite union of subsets projectively equivalent to Zy) + Z,) C
P?(Q). By Proposition 4, we have an induction of ¥, from the trivial
coloring on P%(Q,), for some valuation v on @, and we obtain that v
is nontrivial on Q, i.e., corresponds to some prime number. Since S;/z
is contained in either S; . or Ss ., the corresponding prime equals p.
Thus ¥, is induced from a trivial 3-coloring of P?(Z/p).

Now, we may assume that 5’1@ is a union of more than one subset of
type [; \ g C P?(Z/p) (otherwise, we are in Case (D1)). Note that one
of the subsets Si,z,i = 2,3 is q and the complement of all such is S; ..

Then there exist a point g € P2(Z/p) and a set {[;}ic; of at least two
lines passing through g such that S; ., = U;c;(I;\ §), since we are in the
case (D2), by assumption. Moreover, we may assume that 5272 = q,
then 5’372 has the same structure as 5”1,2, i.e., a union of affine lines
containing q in their closure.

We claim that .. is constant on Ss ,: consider g3, q5 € 5372 not lying
on a line through q. Let g3, g5 be any points projecting to qs, q5. Since
(g3, q5) N Sy # 0, the line [(qs, q5) intersects Sp, thus ¥(qs) ~ ¥(q5).
By assumption on Sj ., any two points in Sz, can be connected by a
chain of such lines.

Note that 1. is constant on S, ,: consider

1,92 with  p(a1) = p(q2) = G € Sa...
Then w(q1> = ’w(qg) Indeed, consider [5 = [(ql,ZL’l) and [6 = [(qQ,Ig),

where p(z;) = z; € S1,%1 # Te. Hence q3 := [5 N [ projects to g. Thus
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Yo(q1) = ¥o(q3) = ¥(gz2). Thus ¢ is constant on S, ., hence . is
induced from P*(Z/p). O

Now we use ., to prove the induction from P?(Z/p) result for ¢ itself.
The difference between S; and S, S3 is that ¢ is already constant on
S1 but not necessarily on Ss, S3. We treat the cases:

(1) SlZEb»SQ:[\q,_EIE[,SgZPQ(Z[p)i\[; _
(2) 51 = q’SQ = Uﬁlli \ q,m = 27E| S Sz = ]PQ(Z/p) \ UL;;
(3) Si=U L\ g,m>2,5 =q,5% =P%Z/p) \ UL

Lemma 21. The map vy is induced from vy : P*(Z/p) — A which is
of the type (a), (b), or (c).

Proof. By Lemma 20, we have the following possibilities:

(1) 9~ is induced from a flag map on P?(Z/p) and we can assume
that S; = q, by Lemma 14;

(2) 9~ is induced from a map on P?(Z/p) which is constant on
affine lines [; \ §, with g € [, and S = g;

(3) 1~ is induced from a map on P?(Z/p) which is constant on
affine lines [; \ g, with q € [, and S; contains [; \ q,i = 1, 2.

Case (1): We may assume that S3 = P2(Z/p) \ [, for some [ with
g€l and [\ g =S, Let[be disjoint from S; and pick two points
q,q9" € [N Ss. Since ¥.(q) = ¥.(q') and [ intersects S, ¥(q) = ¥(q),
by Lemma 17. Since any two points in S5 can be connected by a chain
of lines disjoint from Sy, 1 is constant on S3. It is also constant on
p~1(2), for g, € S,. Indeed, if gs, q) are distinct points projecting to
go and [, " lines containing qs, resp. g5, avoiding S and projecting to
distinct lines in P*(Z/p), then qj := [N I also projects to g. Thus
¥(d2) = ¢(a2) = ¥(g3).

Case (2): Si = q. If 1. is induced from a noninjective ¢ : P*(Z/p) —
A, 1) is constant on the preimage of every affine line [\ g, by the same
analysis over a finite field.

If there exist y1, s, projecting to the same points z € [\ §, with
W(y1) # ¥(y2), let z1, 29 be such that ¥..(z1) = ¥.(22) but ¥(z;) #
¥~ (y;). Consider

2=y, 21) N (Y2, 22),
so that p(z) = Z. Then ¥(y1) = ¥(2) = ¥(y2), by Lemma 18. Since
all points over T are connected by a chain of lines of such type, ¥ is
constant on p~(Z).
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Case (3): The argument of Case (1) shows that 1) is constant on the
preimage of any affine line '\ § contained in Ss. Indeed, let 21, 2o € S5
be in the preimage of an affine line S; and consider [ := (21, 22).
It intersects Sy and hence ¥(z1) = 1¥(z3). Thus ¢ is induced from
P2(Z/p) \ q = S1 U S3. Let q,q’, projecting g. Consider lines [(q, z;)
and (¢, z9) with z; € Ss, which intersect in q”,p(q”) = q. Then
¥(q) = ¥(q") = ¥(q'), by Lemma 18. Since any pair of points over ¢
can be connected by a chain of such lines, v is constant on p~1(q). O

This concludes the proof of Proposition 16. O
Remark 22. This Lemma is similar to [12] and [8, Lemma 13].

6. LINES OF INJECTIVITY

In our analysis of the restriction ¢ of
Y :P(K) = A= L*/I¥
to lines [ = [(1,2) C P(K), we distinguish the following possibilities:
e 7 is not induced from a map 1 : P(Z/p) — A and 1y is:
(I) injective
(N) not injective and nonflag
(F) a nonconstant flag map B
e ¢y is induced from ¢ : P'(Z/p) — A and 9y is
I) injective

(N) not injective and nonflag

(F) a nonconstant flag map
o (C) 1y is constant

Definition 23. Let u C P(K) be the union of all lines through 1, on
which v is injective, and put
= {zy | z,y € u} CP(K).

Lemma 24. If ¢)(u) contains at least two algebraically independent
elements, then 3 is a group.

Proof. Clearly, u and 4 contain 1 € K*/k*. If x € 4 then 7! € 4, by
the injectivity of ¥ on [(1,z71). Furthermore,
(14) xy~ ' € u, for all 7,y € u such that ¥(z) # ¥(y).
Indeed, if ¥(x) % ¢(y), then @ is injective on II(1,x,y), by Proposi-
tion 16, and in particular on [(x,y) =y - [(1,2y~1); thus, 2y~ € u.

If ¥(z) ~ ¥ (y), but are not equal in A, take z € u such that 1 (z)

¥(z). Then z/z,y/z € u, as above. Since (x/z) o ¥ (y/z), the same
argument shows that (z/z)/(y/z) = xy~! € u, proving (14).
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To show that &l is multiplicatively closed, it suffices to check that
for every x1, x5, 23 € u\ {1} there exist s, 2 € u with x;x9w5 = 5159.
Note that ¢(z;x;) # 1 for some 1 <1i < j < 3. (Otherwise,

Y(129) = Y(1173) = Y(T273) = 1,

and therefore,

U(x7) = D((z122) (2123) [ (2923)) = 1,
so ¢ (x1) = 1.) Then, by (14), z;x; € u, so we can take s; := z;x; and
Sg := xy, where {17, 7,t} = {1,2,3}. d

Definition 25. Let t C P(K) be the union of all lines [ through 1,
such that the restriction of ¥ to [is induced via an injective map

Uy Pl(Z/P) — A,

and put -
= {ay | z,y € u} CP(K).

Lemma 26. If 1 (i) contains at least two algebraically independent
elements, then 4 is a group.

Proof. The proof follows the same steps as the proof of Lemma 24. [

Lemma 27. Assume P(K) contains lines of type (1) and one of the
types

(15) (N), (D), (N), or (F).

Then there exists a one-dimensional subfield E C L such that for all

lines | C P(K) of type (1), (N), (I), (N), or (F) we have
V(1) c EXJI*.

In particular, if (u) contains algebraically independent elements, lines

of type (N), (I), (N), and (F) do not exist.
Proof. Let [ =1(1,y) be a line of type (I).

If there exists another line [(1,y') of type (I) with ¥(y) # ¥(y), i.e.,
1(u) contains independent elements, then lines of the listed type cannot
exist, indeed, if [(1, z) is of types listed in (15), we apply Proposition 16
to II =TII(1, z,y). In Case (b), the exceptional line is [(1,y) and hence
the restriction of ¥ to any other line is either constant or of type (F), a
contradiction. In Case (c), all lines are either of type (I) or (F), again
a contradiction. Case (d) does not apply, since [(1,y) is not induced
from a map P?(Z/p) — A, a contradiction.

If ¢»(u) does not contain algebraically independent elements, but one
of the lines [(1, x) in (15) is such that ¥ (z) ¢ ¥(y), then we apply the
same argument to II(1, z,y) and obtain the same contradiction. U
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Lemma 28. Assumep(u) contains algebraically independent elements.
Consider | :=(1,y) € u and assume that [N consists of at least two
points 1,z". Then LNl is either L or I\ q, for some point q € L.

Proof. Assume that 1)y is not constant, e.g., ¥(y) # 1. By assumption,
there is an x with [(1,z) C u with ¢(x) % ¥(y). We apply Proposi-
tion 16 to I :=II(1, z,y). We are not in Case (c) of this lemma. If we
are in Case (a), then 1) is constant on IT \ [(1,z), which implies that [
is of type (F). If we are in Case (b), then the exceptional point q = v,
and 1 is constant, on the complement to ¢, on every line through q,
thus [ is of type (F).

Put 2/ = t/t/, with ¢, € u. If ¥(t) # ¢(t') then Equation (14)
implies that 2/ € u, a contradiction. Thus ) is either constant or
contains one point y' ¢ 4. In Case (a), ¢ is constant on IT\ [(1, z),
thus identically 1 on the line [. In Case (b), v is injective on every line
not containing the exceptional point ¢, in particular on [(1,¢/t"), for
all t”, thus t'/t" € u, thus t” € 4. Taking t” € [\ q we obtain the claim.

Now assume that 1)y is constant. We claim that ['\ (IN4[) contains
at most one point. Assume otherwise. Note that 1 is injective on
every line [(v/,t) C II, with ¢ € II(1,x,y) Nu, ' # 1, and any point
v € INLL Indeed, we can represent v’ = w/w', with w, w’ € u and with
Y(w) = P(w') £ Y(t'). Then t'w'/w € u and [(H'w'/w,1) C u. The
converse is also true, and (IT'\ [) C u. Indeed, consider lines through v’
which are not equal to [; ¢ is injective on such lines.

Now consider two families of lines: those passing through w (except
[), and those throgh w’ (again, except [). All such lines are of type
(F), with generic value # 1, since 1 does not take value 1 on IT \ [, by
Lemma 27. Consider lines [(w,v) and [(w’, v) from these families, with
v € (IT\ [). The generic 1-value on these lines is the same and is equal
to ¥ (v). A line through «’, which does not contain v cannot be of type
(I), since it intersects lines [(w,v) and [(w’,v) in distinct points, but
taking the same value on these points, contradicting the established
fact that such lines are of type (I). O

Lemma 29. Assume P(K) contains lines of type (I) and there exist
lines of type (1), or (N), or (N). Then ¥(u) does not contain alge-
braically independent elements.

Proof. Assume the contrary. Let [(1,z) be a line of type (I) or (N).
Then there exists a y € 1 such that ¥(y) 4 ¥ (z). We apply Proposi-
tion 16 to IT = II(1, x,y) and obtain a contradiction as in the proof of
Lemma 27.
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Let [(1,z) be of type (N). We claim that IT does not contain lines of
type (F). To exclude this possibility, let [ = [(z,t) € II be such a line
with a generic 1-value equal to s € A.

Take points z1, 9 € [(1, z) such that ¢(x1) # 1(z2). This is possible
since 1 takes at least two values on [(1,z). Choose y1,y2 € [(1,y) and
¥(y1) # ¥(y2) and are both not equal to 1 € A, and this is possible

because 1) takes at least three values on [(1,y) which is of type (I).

Yo q
Y1
1 T )
Moreover, we can assume that the lines [;; := [(z;,y;) do not pass

through the distinguished point q € [(z,¢) (where 1 takes the non-
generic value). Thus [;; := [;; N[(2, 1) is a generic point of [(z,¢), which
differs from x1, x9, y1,y2. Then

Y(x;) Y(y1) N U(y2)

~
)

S S S

for both ¢ = 1,2. Hence

ICIVRLICY)
Y(r2) (Y

Therefore, 1(x) ~ 1(y), a contradiction.

Thus, for every [ C II(1,z,y) the restriction 1 is induced from a
map ¢ : PY(Z/p) — A. Now we apply Lemma 21. In Case (a) of that
Lemma, the exceptional line is [(1,y) and of type (I) and hence the
restriction of 1 to any other line is either constant or of type (F), a
contradiction the assumption that [(1,z) is of type (N). Cases (b) and
(c) are excluded: % is not induced from an injective map, nor a flag

map on [(1,z). O

1+# # 1.

Lemma 30. Assume that the pair of lines (I(1,z),1(1,y)) is of one of
the following types

(N,N), (N,N),(N,F), (N,N).
Then (x) ~ P (y).

Proof. Follows from the same arguments as in Lemma 29 and Lemma 27.
O
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Lemma 31. Assume that ¥(u) contains algebraically independent ele-
ments. Consider | := [(1,2) € u, and assume that [N consists of at
least two points 1,z". Then ¥ (2') =1 and LN is either

(1) L

(2) an affine line, with v not constant on |;
(3) projectively equivalent to Z,y C P(Q);
(4) an affine line and 1 is constant on L.

Proof. Assume that [ ¢ (C). Write 2’ = /2’ with z, 2’ € u.

o If (z) # 1(2') then x/2" € 1, by Equation 14, thus [ C 1t C 4,
contradiction, so that ¢(z") = 1.

o If ¢)(x) = ¢(2’) # 1, choose a point ¢t € u be such that ¥ (t)
('), and such that it is also algebraically independent from a
nontrivial value on . Then ¢/2" € u and the restriction of ¢ to
(a shift of) (¢, /") is of type (I). In particular, [(1,¢), [(t, z/z")
are also of type (I), by the same argument as in the proof of
Lemma 29.

This lemma implies that [ is of type (F) or (F).

e [ € (F). In the notation of Proposition 16, 1 is of type b) on
I1(1,¢, z) and the restriction of ¢ to every line in II(1, ¢, ), not
passing through a distinguished point q € [, with ¢ (q) # 1, is
of type (I), which implies that [\ q C 4, i.e., we are in Case
(V), i.e., the valuation case.

e [ € (F). In this case, II(1,t, z) does not contain lines of type (F),
because otherwise, by Proposition 16, [ will also be of type (F).
Hence 1) is induced from P*(Z/p) on any line in TI(1,¢, 2) and
there are two independent values of ¢ on II(1, ¢, z) not equal to
1. Then ¢ on II(1,t,2) is induced from v : P3(Z/p) — A, by
Lemma 21.

The map 1 is injective on [(1,#) and (¢, z}), where both
t', 2] are the images of ¢, 2/ under the reduction map, and a flag
map on [(1, z;), where z; is the image of z in P*(Z/p). Thus
¥ is induced from type b), and hence $4 N [ consists of y, with
Y(y) = 1, a set projectively equivalent to Zgy C P(Q), and we
are in Case (P), the projection case.

Assume that [ € (C). Here the difficulty is that ¢ (II(1, z,t)) does
not contain algebraically independent elements and we cannot apply
Lemma 21. Note that [(¢,s), for s = r/r',r,;r" € u, s € [, are of type

(I), by the argument above.
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Then any line [(¢/, ) C II(1, z,t), with (') # ¥ (), is of type (I),
since 1) takes at least three values on this line. Hence s := [(#',u) NI €
s1

On the other hand, if s’ € [ is not in &, then there are at most two
values on any line containing s', including ¢ (s’) = 1. We split all points
into subsets:

(1) Sr = {z|y(x) # 1}
(2) S1:=A{z e d|y(x) =1}
(3) S2:=A{z ¢ U|y(z) = 1}.

Note that Sp,S; # 0. If Sy = @ then [ C 4; and 4 N [ satisfies the
lemma.

Assume that Sy N[ # (). We claim that every line in TI(1, 2, ¢) lies
in the union of two of such subsets. Clearly, this holds for [. Let
[ C (1, 2,t) be a different line and put s := [N . If s € 4, then
[(s,t) C 4, by construction, and all points s € [N Sy are in & and those
with ¢(s) = 1 in {. In particular, [(s,#) C Sy U S;. If s’ € [is in Ss,
then [(s',x) is of type (F), (F) or (C), and hence 1 takes at most two
values on [(¢', z), including ¥(s') = 1.

If 55 € (s, 2),¢(s2) = 1,2 € u,9p(x) # 1, then sy € Sy. Otherwise,
if so € 4,z € 1, and then ¥ is injective on [(s',x) = [(s9, ), by the
argument above. Hence sy € Sy. Thus [(sq,t'), with ¢ € [(s,t), is
contained either in Sy U .St or Sy L Ss.

Any y € TI(1, z, t), with ¢(y) # 1, is contained in u. Indeed, consider
((y, '), with ¥(y) # ('), v € U, s),%(y) # 1, and s, == [(y,y') N
[(1,2). Then ¢(s,) = 1, hence y'/s, € u, and 9 is injective on [(y,y').
Since y' € u, we find that y € & and s, € 5.

Thus S7 C u and any line [(y, s), with ¢)(s) = 1, is either contained in
SolUSt orin SpLISy. This implies that any [(s, s2), with s € Sy, 55 € Sa,
is contained in S; U S3. Note that none of the lines is contained in
one of the subsets Sr,S1,5:. By Proposition 5, the decomposition
II =SrUS; US, is either

(1) a cone over the decomposition of [(¢,s) into the intersection
with Sr and Sy, and S5 is just one point in [;

(2) or is induced from a decomposition of P*(Z/p) over the residue
of [, with S; equal to the preimage of a point, and hence S, N[
is projectively equivalent to Z,).
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7. PROOF OF THE MAIN THEOREM
We turn to the proof of Theorem 2, describing the homomorphisms
¥ B(K) - P(L),
preserving algebraic dependence. There are two possibilities:

(V) 9 factors through a valuation,
(P) # factors through a subfield,

described in detail in the Introduction.

We organize our proof as a case by case analysis, based on types of
line, introduced at the beginning of Section 6. We consider two sets of
cases as follows.

e Generic cases: 1(u) (respectively, ¥ (1)), contains nonconstant
algebraically independent elements, i.e., there exist y,y2 €

¥ (u) (respectively, (1)) such that y; 7 ys.
e Degenerate cases: these sets do not contain algebraically inde-

pendent elements.
In our proof we need the following technical assumption:

(AD) #(u) does not contain nonconstant algebraically independent
elements.
This is satisfied when K has positive characteristic. In characteristic

zero, this assumption allows us to avoid the case of geometric valuations
which are induced from fields of positive characteristic.

Lemma 32. Assume that 1(u) contains nonconstant algebraically de-
pendent elements and that P(K) contains lines of type (F) and possibly
also (C). Then there exists a valuation v of K such that o) C 4 and

P((1+m,)*) = 1.

Proof. By Lemma 24, ${ C K*/k* is a group, the induced quotient
map K*/k* — K* /il is a nontrivial flag map, by the assumption on
the existence of lines of type (F) in P(K) and by Proposition 5 und
using Theorem 6 and Lemmas 7, 9. By Proposition 5, there is a map

0, - K* =T,
for some valuation u, with the property that K* — K* /il is a com-
position
K* =T, —% KX/l
Let

I =wv(o,\0)CT,
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be the subsemigroup of positive elements and put
Ker(r,)" := Ker(r,) N T}.
e Assume that Ker(r,)" = 0. Then for any nonconstant
reo;/(k*Noy)Cu, ye(m,\0)/(k*Noy),

the restriction of ¥ to [(x, y) is a flag map with generic value 1 by
Proposition 16, Case (c), with y = q. Indeed, the assumption
implies that the generic value on the line [(1,y/x) is 1, since
v(y/x) > 0. Since v(z) = 0, the same holds for the line [(z,y).
Hence the result holds for v = pu.

e Assume that Ker(r,)™ # 0. Assume in addition that there
exists a v* € (I} \ Ker(r,)") and such that v+ < ' for some
v € Ker(r,)". Consider z € (u\ 1), with p(z) = +/, and
y € oy /(KX No), with u(y) = 7*. The restriction of ¥ to
[(1,y) C P(1,x,y) is a flag map with generic value 1, for the
same reason as avove. On the one hand, [ := [(x,y) ¢ u, hence
Yy is a flag map, with generic value ¢(x). On the other hand,
the generic value of ¥ on [(1,y) is 1, hence ¥ (x + y) = ¥(x)
and z +y € u. We have u(y) < p(z) and, on [(x,y), we have
w(x +y) = u(y), hence ¥ (x + y) = ¥(y), a contradiction.

This implies that the elements of Ker(r,)* are smaller than
all elements in (I} \ Ker(r,)"). Thus the subgroup of I';, gen-
erated by Ker(r,)" is an ordered subgroup. The homomor-
phism I', — T',/Ker(r,)* identifies T, /Ker(r,)" with a valua-
tion group I, for some valuation v of K, and ¢((14+m,)>) = 1.

U

We can also treat all degenerate cases, i.e., 1¥(u) and ¥ (u) do not
contain nonconstant algebraically independent elements.

Most degenerate case: no (1), (I), (N), and (N)-lines:

e Then ¢ is a flag map on all [ C P(K), hence a flag map, by
Proposition 5 and Lemma 7, note that A has no 2-torsion. Thus
there exists a valuation v such that ¢ factors through I',, and
we are in Case (V) of Theorem 2, since (o)) = 1.

Degenerate case: no (1) and (1)-lines, but (N) or (N)-lines:

e If there exist (N) or (N)-lines then by Lemma 30, there exists a
1-dimensional subfield L; C L such that the images of all such
lines are contained in L; /I*. Consider the induced projection
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homomorphism
U P(K) — L*/1* — L™ /LY.

Note that the restriction of ¢; to any line [ € P(K) is a flag map,
and there exist lines on which it is a nontrivial flag map, since
the image of 1) contains at least two algebraically independent
elements. Thus there is a nontrivial valuation p of K such that
Y, factors through the value group I',,.

Degenerate case: there exist (I)-lines [ and ¥(I) C L /1*, for some
1-dimensional field Ly C L.

e Let Ly be the algebraic closure of Ly in L. There may also exist
lines [ C P(K) of type (N), (N), (I), or (F), with respect to 1,
but () C L3 /I* for all such [, by Lemma 27. Again, every
[ C P(K) is either of type (C) or (F), with respect to

e P(K) — L*/1* — L*/LJ,

and there exists a nontrivial valuation p of K such that s
factors through I',.

Degenerate case: there are no (I)-lines but there exist (I)-lines whose
images are contained in Ly /I*, for some 1-dimensional subfield of L.

e Let Ly be its algebraic closure in L. There may exist lines of
type (N), (N), or (I), but their images are contained in Ly /I*.
Every [ C P(K) is of type (C), (F), or (F), with respect to

Wy : P(K) — L* /1" — L™ /L3,

and there exists a nontrivial valuation v of K such that s
factors through I',.

Thus, in all the degenerate cases the homomorphism
K*/k* — L*/L5,

is a flag map, thus arises from a nontrivial valuation g,

1 o; 'y, 1
LX/LX

i.e., ¥y = r o pu. The following lemma will show that ¢ is either as in
(V) or (VP) of Theorem 2, by constructing a valuation as required,

using .
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Lemma 33. There is a valuation v of K and a surjective homomor-
phism of ordered groups
r,--r,
such that
(1) v=rou: K* =T, is a surjective map of ordered groups with
Ker(y) C Ker(r).
(2) ¥((1+m,)*) =1.

Proof. Let z € 0, be such that r(u(z)) # 0 and thus ¥y(z) # 1 €
L*/L3. Let = € oy C Ker(1,). We have

plx + az) = p(x), pla) = 0,

and r is nonconstant on [(z, ). Thus ¢ is a flag map on [, and

U(z +az) = P(z)
so that (14 az/x) = 1. Note that zz also has r(u(zx)) # 0 and hence
we can apply the same to zz, obtaining (1 + az) = 1, for any z with

(=) > 0.

Note that elements z with p(z) = a generate additively the subgroup
K, C K. Now the elements of the form 14z with (14 2) = 0 generate
the multiplicative subgroup (1 + K,)*. Indeed, consider

/
14+2)1+2)Y=1+2+2+22"=1+2+2) <1+%),

where p(z) = p(2') and (1+ 2+ 2') € o). Since (22") # 1 we have

27
1+—— ) =1
w(—i_l—i—z—i—z’) ’

by the same argument applied to z,z’; thus ¢» = 1 on (1 + K,)*.
This implies that ¥(1 +y) = 1, even if r(u(y)) = 0, but there is a
z,7(u(2)) # 1 and p(z) < p(y). Consider the subset I', p > 0 in ).

Since L* /L35 is torsion-free,
rkg(Ker(r)) < rko(I',).

Hence Ker(r) intersects I'} in a proper subsemigroup Ker(r,)" and
the subset of elements s € Ker(r,)* with s > u(z) for any x € '} \
Ker(r,)*.

We are looking at a subset of elements S inside Ker(r,)* \ 0 such
that for each s € S such that s < u for any v > 0 with r(u) # 0.
Note that S has to contain the smallest elements in '\ 0 if they exist.
Assume that s,s € S,s,8 < u,r(u) # 0 and s + s > u. Note that
s+s —u>0ands>u—s >0 but r(u—s") # 0 which provides
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a contradiction. Thus S is an ordered subsemigroup in Ker(r,)* \ 0
which generates an ordered subgroup (S) such that

K* > T,/(S) =T,

is a valuation map for some valuation v. For this valuation, Ker(v) D
(1 4+ m,)*, by the computation above. O
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