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Abstract. We study homomorphisms of multiplicative groups of
fields preserving algebraic dependence and show that such homo-
morphisms give rise to valuations.

Introduction

In this paper we formulate and prove a version of the Grothendieck
section conjecture. For function fields of algebraic varieties over alge-
braically closed ground fields, this conjecture states, roughly, that the
existence of group-theoretic sections of homomorphisms of their abso-
lute Galois groups implies existence of geometric sections of morphisms
of models of these fields.

In detail, let k be an algebraically closed field, X an irreducible
algebraic variety over k, and K = k(X) its function field. Let GK

be the absolute Galois group of K. Fix a prime ` not equal to the
characteristic of k and let GK be the maximal pro-`-quotient of GK ,
the Galois group of the maximal `-extension of K. Write

GaK = GK/[GK ,GK ] and GcK := GK/[GK , [GK ,GK ]],

for the abelianization and its canonical central extension:

(1) 1→ ZK → GcK
πa−→ GaK → 1.

Let ΣK = Σ(GcK) be the set of topologically noncyclic subgroups σ ⊂
GaK whose preimages π−1

a (σ) ⊂ GcK are abelian. It is known that func-
tion fields K = k(X) of transcendence degree ≥ 2 over k = F̄p are de-
termined, modulo purely inseparable extensions, by the pair (GaK ,ΣK)
[5], [7], and [14].

This raises the question of functoriality, i.e., the reconstruction of
rational morphisms between algebraic varieties from continuous ho-
momorphisms of absolute Galois groups of their function fields. This
general fundamental question was proposed by Grothendieck and lies
at the core of the Anabelian Geometry Program.
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The main open problem in this program relates to a Galois-theoretic
criterium for the existence of rational sections of fibrations. Let

π : X → Y,

be a fibration of integral algebraic varieties over k with geometrically
irreducible generic fiber of dimension at least 1 over a base Y of dimen-
sion ≥ 2. This defines a field embedding

π∗ : k(Y ) ↪→ k(X),

with the image of L := k(Y ) algebraically closed in K := k(X). Du-
ally, we have a surjective homomorphism of absolute Galois groups (a
restriction map)

GK → GL,

as well as the induced homomorphisms

GcK → GcL, GaK → GaL.
A minimalistic version of Grothendieck’s Section conjecture, over alge-
braically closed k, would be:

Conjecture 1. Assume that πa : GaK → GaL admits a section

(2) ξa : GaL → GaK
such that

(3) ξa(ΣL) ⊂ ΣK .

Then there exist a finite purely inseparable extension

ι∗ : L ↪→ L′ = k(Y ′)

and a rational map
ξ : Y ′ → X,

such that
ξ∗ ◦ π∗(L) = ι∗(L) ⊂ L′.

Thus ξ(Y ′) is a section over Y , modulo purely inseparable extensions.

Conjecture 1 is closely related to questions considered in this note.
Recall that, by Kummer theory,

GaK = Hom(K×,Z`(1)),

and that (2) induces the dual homomorphism of pro-`-completions of
the multiplicative groups

ψ̂ : K̂× → L̂×.

Then (3) says that ψ̂ respects the skew-symmetric pairings on K̂×

and L̂×, with values in the second Galois cohomology group of the
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corresponding field (with `-torsion coefficients). The groups K̂× and

L̂× contain K×/k× and L×/k×, respectively. If the restriction ψ of ψ̂
to K×/k× satisfies

ψ : K×/k× ⊆ L×/k× ⊂ L̂×,

then ψ respects algebraic dependence, mapping algebraically dependent
elements in K× to algebraically dependent elements of L× (modulo
k×). For function fields this is equivalent to (3) (see, e.g., [6, Section
5]). This relates the “minimalistic” version of the Section conjecture
for “rational” maps to our main result, which we now explain.

From now on, let K be an arbitrary field over k. Let ν be a nonar-
chimedean valuation of K, i.e., a homomorphism

ν : K× → Γν

onto a totally ordered group such that the induced map

ν : K → Γν ∪ {∞}, ν(0) =∞,
satisfies a nonarchimedean triangle inequality. Let

mK,ν ⊂ oK,ν , Kν := oK,ν/mK,ν , o×K,ν ,

be the maximal ideal, valuation ring, residue field, and units with re-
spect to ν, respectively. If K|k is a (transcendental) field extension and
ν a valuation of K, then its restriction to k is also a valuation; and we
have

o×K,ν ∩ k
× = o×k,ν , o×K,ν/o

×
k,ν ⊆ K×/k×,

and a natural surjection

o×K,ν/o
×
k,ν −→→K×

ν /k
×
ν .

We consider extensions of fields

k ⊆ k̃ ⊆ k̃a ⊂ K,

where k is the prime subfield of K, i.e., k = Fp or Q, and k̃a ⊂ K the

algebraic closure of k̃ in K, i.e., the set of all algebraic elements over k̃
contained in K. Assume that x̄1, x̄2 ∈ K×/k× satisfy

(4) tr degk̃(k̃(x1, x2)) ≤ 1,

for their lifts x1, x2 ∈ K×; and this does not depend on the choice of
lifts. We write x1 ∼k̃ x2 and say that x1 and x2 are contained in the
same one-dimensional field; clearly 1 ∼k̃ x, for all x̄ ∈ K×/k×. From
now on, we use the same notation for an element x ∈ K× and its image
in K×/k×. Let

l ⊆ l̃ ⊆ l̃a ⊂ L
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be field extensions, where l is the prime subfield of L, l̃a the algebraic
closure of l̃ in L, and let

ψ : K×/k× → L×/l̃×

be a homomorphism of multiplicative groups. We say that ψ preserves
algebraic dependence with respect to k̃, l̃ if

x1 ∼k̃ x2 ⇒ ψ(x1) ∼l̃ ψ(x2), ∀x1, x2 ∈ K×/k×.

Theorem 2. Let k ⊆ k̃ ⊂ K and l ⊆ l̃ ⊂ L be field extensions as
above. Assume that l̃ = l̃a and that there exists a homomorphism

(5) ψ : K×/k× → L×/l̃×,

such that

• ψ preserves algebraic dependence with respect to k̃ and l̃;
• there exist

y1, y2 ∈ ψ(K×/k×), such that y1 6∼l̃ y2;

• ψ satisfies Assumption (AD) of Section 7.

Then either

(P) there exists a field F ⊂ K such that ψ factors through

K×/k× −→→ K×/F×,

(V) there exists a nontrivial valuation ν on K such that the restric-
tion of ψ to

o×K,ν/o
×
k,ν ⊆ K×/k×

is trivial on
(1 + mν)

×/o×k,ν
and it factors through the reduction map

o×K,ν/o
×
k,ν −→→K×

ν /k
×
ν → L×/l̃×,

(VP) there exist a nontrivial valuation ν on K and a field F ν ⊂Kν

such that the restriction of ψ to o×K,ν/o
×
k,ν factors through

o×K,ν/o
×
k,ν −→→K×

ν /F
×
ν → L×/l̃×.

Note that we do not assume that k is algebraically closed. In the
geometric setting treated in [8], when K = k̃(X) is a function field of an

algebraic variety X over k̃ = F̄p, case (P) corresponds to projections,
the center of the valuation ν arising in case (V) is, birationally, the im-
age of the section, and the above theorem can be viewed as a “rational”
version of the minimalistic section conjecture (case (VP) corresponds
to valuations composed with projections).
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To see this connection in more detail, recall that K× admits a natural
homomorphism with dense image to K̂×, the dual to GaK . The usual
form of the section conjecture, as in Conjecture 1, is equivalent to the
statement about homomorphisms

ψ : K̂× → L̂×

such that pairs f̂ , ĝ with (f̂ , ĝ) = 0 map to a pairs with (ψ(f̂), ψ(ĝ)) =

0. Note that the image of K× ⊂ K̂× plays the role of a Z-sublattice,
in the geometric case of function fields of algebraic varieties over alge-
braically closed fields. The corresponding statement of the theorem in
the case of a function field is indeed a rational version of the section
conjecture; we expect that it can be deduced from our version, using
the fact that the natural sublattice K× ⊂ K̂× is necessarily mapped
into L× ⊂ L̂×, modulo multiplication by a constant a ∈ Z×` (as in [5]).

Note that the abelian-by-central version of section conjecture does
not hold for big fields. Indeed, as it was pointed in [3], the maximal
extensions coprime to ` of function fields have isomorphic Galois group,
depending only on the algebraically closed ground field and the dimen-
sion. However, our theorem says that we can still obtain valuations
from the multiplicative group homomorphisms respecting algebraic de-
pendence.

Here we extend the argument in [8] from function fields to arbitrary
fields, under the additional technical assumption (AD) on ψ, which
holds for K of positive characteristic. Although we believe that the
main theorem holds in full generality, i.e., without the (AD) assump-
tion, we were forced to add it, due to purely technical difficulties in
our treatment of valuations of K which extend p-valuations of Q. To
achieve clarity of the presentation, we decided to remove such valua-
tions from present considerations.

Related results on connections between Galois groups, valuations,
and projective geometry can be found in [1], [9], [10], [11], [13].

The idea of the proof is to reduce the problem to a question in plane
projective geometry over the prime subfield k, as in [4] and [5]. We view
P(K) := K×/k× as a projective space over k. To establish Theorem 2,
it suffices to show the existence of a subgroup U ⊂ K×/k× such that:

Condition 3. For every projective line l ⊂ P(K), U ∩ l is either

(1) the line l,
(2) a point q ∈ l,
(3) the affine line l \ q, or
(4) if k = Q, a set projectively equivalent to

Z(p) ⊂ A1(Q) ⊂ P1(Q),
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the set of rational numbers with the denominator coprime to p.

Indeed, such a subgroup is necessarily either F×/k× for some subfield
F ⊂ K, or oK,ν , for some valuation ν (see Section 7). By construction,
the homomorphism ψ will satisfy the cases (P) or (V) in Theorem 2,
respectively.

To find such U, we use the results of [12] and [2]. First we deduce that
the restriction of ψ to every plane P2 ⊂ P(K) is either an embedding
or is induced by a natural construction from some nonarchimedean
valuation (see Section 5). We distinguish two cases:

• there exists a line l ⊂ P(K) such that the restriction of ψ to l
is injective,
• no such lines exist.

In the first case, property (4) of Condition 3 does not occur, and the
proof works uniformly for k = Fp or Q. In this case, we construct U by
first taking the union u of all lines l(1, x) on which ψ is injective and
then putting U := u ·u. We should that U is closed under multiplication
and its intersections with projective subspaces Π ⊂ Pk(K) define a flag
structure on Π, and thus a valuation on K.

In the second case, the proofs are slightly different, leading to a
case-by-case analysis in Section 5.
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ratory of Mirror Symmetry NRU HSE, RF grant 14.641.31.0001. The
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lence Project ‘5-100’. The first author was also supported by a Simons
Fellowship and by EPSRC program grant EP/M024830. The third
author was partially supported by NSF grant 1601912.

1. Projective geometry

Let P be a projective space over a field k, i.e., the projectivization
of a vector space over k. Let Π(q0, . . . , qn) ⊆ P the projective envelope
of points q0, . . . , qn ∈ P. Working with lines and planes, we write

l = l(q0, q1), resp. Π = Π(q0, q1, a2),

for a projective line through q0, q1, or a plane through q0, q1, q2.
Let ν a nonarchimedean valuation of k, o = oν the corresponding

valuation ring, and kν the residue field. Fixing a lattice

Λ ' on+1 ↪→ kn+1,



HOMOMORPHISMS AND ALGEBRAIC DEPENDENCE 7

we obtain a natural surjection

(6) ρ = ρΛ : Pn(k)→ Pn(kν).

A 3-coloring of P2(k) is a surjection

(7) c : P2(k)→ {•, ◦, ?},
onto a set of 3 elements, such that

• every l ⊂ P2(k) is colored in exactly two colors, i.e., c(l) consists
of two elements.

A 3-coloring is called trivial of type

• I: if there exists a line l ⊂ P2 such that c is constant on P2 \ l,
• II: if there exists a point q ∈ P2(k) such that for every l ⊂ P2

containing q, c is constant on l \ q.

It was discovered in the early 1980s that such colorings are related to
valuations, see, e.g., [12]. The same structure resurfaced in the study
of the commuting elements of Galois groups of function fields in [4],
exhibiting unexpected projective structures within GaK . This was a
crucial step in the recognition of inertia and decomposition subgroups
in GaK .

Precisely, we have (see [12, Theorem 2] and [4]):

Proposition 4. Assume that P2(k) carries a 3-coloring. Then there
exists a nonarchimedean valuation ν such that the coloring c in (7) is
induced from a trivial covering

cν : P2(kν)→ {•, ◦, ?},
for some ρ as in (6).

2. Flag maps

We will consider maps (respectively, homomorphisms)

f : P→ A

from projective spaces over k to a set (respectively, an abelian group).
The map f is called a flag map if its restriction fΠ to every finite
dimensional projective subspace Π ⊂ P is a flag map. For k = Fp and

f : Pn(Fp)→ A,

this means that there exists a flag of projective subspaces

(8) Pn ⊃ Pn−1 . . . ⊃ P1 ⊃ P0 = q

such that f is constant on Pi(Fp) \ Pi−1(Fp), for all i = 1, . . . , n. For
k = Q and

f : Pn(Q)→ A,
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this means that either

• there is a flag as in (8) so that f is constant on Pi(Q)\Pi−1(Q),
for all i = 1, . . . , n, or
• there exist a prime p, a surjection

ρ = ρΛ : Pn(Q)→ Pn(Fp)

as in (6), and a flag map

f̄ : Pn(Fp)→ A,

such that

f = f̄ ◦ ρ.

Proposition 5. [4, Theorem 6.3.4] Let

f : P(K) = K×/k× → A

be a group homomorphism which is also a flag map. Then there exist a
valuation ν of K and a homomorphism r : Γν → A such that f factors
through

K×/k×
ν−→ Γν

r−→ A.

A map f on Pn(k) that is a flag map on every hyperplane defines an

(9)
f̂ : P̂n → A

λ 7→ fgen(λ)

on the dual space, by assigning to a projective hyperplane the generic
value of f on this hyperplane, i.e., the constant value on the comple-
ment to a codimension one subspace of that hyperplane.

Every map

f : P2(F2)→ {0, 1}
has the property that its restriction fl to any line l ⊂ P2(F2) is a flag
map, but not all such f are flag maps. The following theorem, gener-
alizing results in [4, Section 2], shows that this is the only exception.

Theorem 6. Let f : Pn(k) → A be a map such that fl is a flag map,
for every l ⊂ Pn(k). Then f is a flag map, unless k = F2 and Pn
contains a plane Π = P2 such that f is not a flag map on Π.

Proof. We proceed by induction, assuming that f is a flag map on every
Pn−1 ⊂ Pn, n ≥ 2. We separate the cases:

• f̂ is constant,
• f̂ takes at least two values.
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In the first case, let a be the generic value of f on hyperplanes and
S ⊂ Pn be such that f(x) 6= a, for x ∈ S. The projective span P(S)
of S is a proper subspace of Pn, of codimension at least 2. Indeed,
consider a subset of distinct elements xi ∈ S, i = 1, . . . , n; it contains
an element with generic value of f on the span P(x1, . . . , xn). Hence, by
assumption, dimP(x1, . . . , xn) ≤ n− 2. Thus the dimension of P(S) is
also bounded by (n− 2). In particular, f(x) = a, for all x ∈ Pn \P(S).
By induction, f is flag on P(S), thus also on Pn.

In the second case, let aλ := fgen(λ) be the generic value of f on

Πλ ⊂ Pn, λ ∈ P̂n. We have two possibilities:

(1) There is a λ1, with fgen(λ1) = a1, so that for q ∈ Pn \ Πλ1 , one
has f(q) 6= a1.

(2) There are λ1 6= λ2, with different generic values a1, a2, such
that there are points qi ∈ Pn \ Πλi with f(qi) = ai.

In Case (1), f is constant outside of Πλ1 and hence a flag map, by
induction. Indeed, let Pr ⊂ Πλ1 be a projective subspace with f = a1

on Πλ1 \ Pr. On any line l(x1, x2) ⊂ Pn, with x1, x2 /∈ Πλ1 , intersecting
Πλ1 \Pr at some point z1, f is constant on l(x1, x2)\z1. Hence f(x1) =
f(x2) in this case. It remains to show that for xi ∈ Pn \ Πλ1 with
z1 ∈ Pr we also have f(x1) = f(x2). Consider the Π(x, z1, q), for any
q ∈ Πλ1 \ Pri . If z2 ∈ l(z1, q), z2 6= q, z1, then l(x,z1) and l(x1, z2)
intersect at some point w ∈ Pn \Πλ1 and hence f(x1) = f(w) = f(x2),
which concludes the proof.

Case (2) does not occur unless n = 2. Indeed, let Πx1,q1 be a hyper-
plane containing q1 and intersecting Πλ1 \ Pr nontrivially. The latter
contains an affine plane An−2

x in the intersection Pn−2
1,x = Pn−1

x,q1
∩ Pn−1

1

and An−2
x spans Pn−2

1,x . Thus Pn−1
x is spanned by q1 and An−2

x and hence
a1 is the generic value on Pn−1

x,q1
. These hyperplanes are parametrized

by P̂n−1
1 ⊂ P̂n minus a subset of hyperplanes which do not intersect

Πλ1 \ Pr. This set is empty if r < n − 2 and consists of one point
p1 if r = n − 2. Applying the same argument to a2 we obtain a dif-
ferent P̂n−1

2 ⊂ P̂n. The hyperplanes P̂n−1
1 , P̂n−1

1 intersect at P̂n−2 and

we obtain a contradiction if n − 2 > 0, since P̂n−2 contains at least
3-points. Thus we obtain hyperplanes in Pn with two generic values,
contradicting the inductive assumption.

We have reduced to n = 2, with the additional assumption that f is
nonconstant on any line.

Lemma 7. Case (2) does not occur for n = 2 unless k = F2.

Proof. Consider Πλ1 and its subset of generic points, which contains
A1
λ1

. Any line from q1 to a point in A1
λ1

has generic value a1. Let E1



10 FEDOR BOGOMOLOV, MARAT ROVINSKY, AND YURI TSCHINKEL

be the union of all such lines and E(a1) ⊆ E1 the subset of points with
value a1. We define E2 and E2(a2) in a similar fashion. If k = Fq then
each set E1(a1) and E2(a2) contains at least q(q − 1) + 1 points. The
total number of points in P2(Fq) is (q2 + q + 1), hence

2(q(q − 1) + 1) ≤ (q2 + q + 1)

which implies q ≤ 2. It completes the proof for finite fields k.
For infinite k, let l1, l2 be lines through q2 ∈ E2 which do not pass

through q1 and which intersect A1
λ1

. These lines intersect all lines
through q1 ∈ E1. Note that all those intersection points in E1 \ Πλ1

are different for l1 6= l2.
The generic value on l1, l2 is a2 and hence at all but at most 4 lines

l in E1 through q1 we have at least 2 points l ∩ li with value a2 which
contradicts the fact that generic value on l is a1. �

This concludes the proof of Theorem 6.
�

Corollary 8. (1) Theorem 6 holds also Pn(F2) if f takes at least
(n+ 1) distinct values.

(2) There is only one two-valued map on P2(F2), modulo projective
transformations, which is not a flag map.

Proof. The first statement follows by induction on dimension, the case
of P2(F2) clear by Lemma 7. The second statement follows by direct
verification. �

Lemma 9. Let
f : P(K) = K×/k× → A

be a homomorphism whose restriction to every line is a flag map and
such that there exists a plane Π = Π(1, x, y), with f(x), f(y) 6= 1, and
fΠ not a flag map. Then

f(x) = f(y) and f(x)2 = 1.

In particular, if f is not a flag map, then k = F2 and f 2 is a flag map.

Proof. Let Π := Π(1, x, y)〉 ⊂ P(K) such that fΠ is not a flag map.
Changing x, y by projective transformations and division by an element
we can assume that f takes two values 1, a on Π, with

f(1) = f(x+ 1) = f(y + 1) = f(x+ y) = 1

and
f(x) = f(y) = f(x+ y + 1) = a.

On l(xy, x+ y + 1), we have

f(xy) = a2, f(xy + x+ y + 1) = 1, f(x+ y + 1) = a
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and hence three values. Since a2 6= a, by assumption, f is not flag on
l(xy, x+ y + 1). �

Lemma 10. Assume that the two-torsion part A[2] ⊆ A is nontrivial.
Consider the composition

f2 : P(K)
f−→ A

r2−→ A/A[2],

with r2 the projection. Then f2 is a flag map on every plane Π ⊂ P(K).

Proof. If f is a flag map on Π(1, x, y), then f2 is also flag. If f is not
a flag map, then we apply Lemma 9: f takes only two values, 0 or 1,
and f(x)2 = 1, thus f(x) = 1.

In particular, f2 ≡ 1 on Π(1, x, y) and hence is a flag map. Thus f2

is a flag map on every plane, and hence a flag map. �

To summarize, if A 6= A[2] then f determines a valuation ν. If
A = A[2], then f is trivial on some subfield K ′ ⊂ K such that K|K ′ is
a purely inseparable extension of exponent 2.

3. Z(p)-lattices

Let p be a prime number and Z(p) ⊂ Q the set of rational numbers
with denominator coprime to p. A Z(p)-lattice, or simply, a lattice
B ⊂ Qn+1 is a Z(p)-submodule such that B ⊗Z(p)

Q = Qn+1. Given a

lattice B ⊂ Qn+1 and an element x ∈ Qn+1 \ 0, there exists an element
xB ∈ B \ pB such that x and xB define the same point in Pn(Q),
this element is unique in B \ pB, modulo scalar multiplication by Z×(p).
Lattices B,B′ ⊂ Qn+1 are called equivalent if B = a · B′, for some
a ∈ Q×.

In this section, we consider the maps

f : (Qn+1 \ 0)→ A,

which are invariant under scalar multiplication by Q×; and we use the
same notation for the induced map

f : Pn(Q)→ A.

We say that f is induced from Pn(Z/p) via a lattice B if there exists a
map

f̄ : Pn(Z/p)→ A,

such that

f(x) = (f̄ ◦ ρB)(xB), for all x ∈ Pn(Q),

where
ρB : (B \ pB)→ (B/pB) \ 0→ Pn(Z/p).
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This is well-defined since ρB is invariant under Z×(p). Any such lattice

will be called f -compatible, or simply compatible. If f is induced from
Pn(Z/p) via a lattice B, then it is also induced via any equivalent
lattice.

Any sublattice of Qn is compatible with a constant function. How-
ever, if f takes at least two values then the set of f -compatible lattices
is much smaller. Note that equivalence classes lattices in Q2 are nat-
urally parametrized by a p-tree (a tree where each vertex has (p + 1)
outgoing edges).

Lemma 11. If f is a Q×-homogeneous function on Q2 \ 0 and f(x) 6=
f(y) then the set of f -compatible lattices consists of Z(p)-lattices gen-
erated by pmxx, pmyy, with mx,my ∈ Z.

Proof. Let B be f -compatible and consider the projection ρB. Then,
for x ∈ Q2 \0 there is a unique mx ∈ Z such that pmxx is a generator of
B, i.e., pmxx ∈ B \ pB. We have ρB(pmxx) = x̄ ∈ P1(B/pB). Consider
y ∈ Q2 \ 0 and pmyy ∈ B \ pB with ρB(pmyy) = ȳ ∈ P1(B/pB). Then
ρB(pmyy) 6= ρB(pmxx) since f is induced from f̄ on P1(B/pB) and
f(x) 6= f(y). This implies that pmxx and pmyy generate B. �

In the discussion below, we use projective and affine geometry. The
following lemma connects these concepts.

Lemma 12. Assume that f : P1(Q) → A is induced from a noncon-
stant map f̄ : P1(Z/p)→ A, via some lattice.

(1) If f̄ is a flag map, then there are exactly two equivalence classes
of f -compatible lattices B1, B2 ⊂ Q2.

(2) If f̄ is not a flag map, then there is exactly one equivalence class
of f -compatible lattices B ⊂ Q2.

Proof. By assumption, f is induced via some ρB. Fix generators x, y ∈
B such that f(y) 6= f(x), in particular ρB(xB) 6= ρB(yB) ∈ P1(Z/p).
We have

f(y + pB) = f(y) and f(x+ pB) = f(x) 6= f(y).

Any lattice B′ ⊂ Q2 is equivalent to a lattice with x as a generator.
Since B′/Z(p) · x ' Z(p), B

′ is one of the following: Bi := 〈x, piy〉, for
some i ∈ Z. If f is induced from Bi, for some i < −1, then

f(x+p(piy)) = f(x) 6= f(y) and f(x+p(piy)) = f(p−i−1x+y) = f(y),

a contradiction. The same argument yields a contradiction when i > 1.
Thus i = 1, 0, or −1.

Analysis of values of f̄ at other points of P1(Z/p) leads to further
restrictions. We have the following cases:
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(1) f̄ is constant on P1(Z/p) \ ρB(yB).
(2) f̄ is not constant on the complement to a point in P1(Z/p).

In Case (1), f(x+ y) = f(x), excluding i = 1. Then we have exactly
two lattices B0, B−1, such that f is induced from these (or equivalent)
lattices.

In Case (2), if f is induced from B1 then

f(κx+ y) = f(pκx+ p−1y) = f(y), for any κ ∈ Z(p),

and hence f̄ is constant on P1(Z/p) \ ρB(xB), contradicting the second
condition. A similar argument works for B−1. Thus there is only one
compatible lattice B0 = B, modulo equivalence. �

A similar analysis holds for f -compatible lattices in Qn, for arbitrary
n. For x ∈ Qn \ 0 we let 〈x〉 be the ray consisting of its nonzero mul-
tiples. Then, for any sublattice B, the image of 〈x〉B in Pn−1(Z/p) is
well-defined. However, it may happen that for some B the correspond-
ing images lie in a proper subspace of Pn−1(Z/p) while for another
f -compatible lattice they span the whole Pn−1(Z/p).
Lemma 13. Assume that f is induced from f̄ via some lattice B and
that the images 〈x1〉B, 〈x2〉B, . . . , 〈xn〉B span Pn−1(Z/p). Then B is
generated by pi1x1, . . . , p

inxn, for some i1, . . . , in.

Lemma 14. Assume that f : P2(Q)→ A satisfies the following:

(1) f takes three values;
(2) f takes at most two values on every line l ⊂ P2;
(3) on every P1(Q) ⊂ P2(Q), f is induced from a flag map on

P1(Z/p), via ρB′, for some lattice B′ ⊂ Q2.

Then there are exactly three equivalence classes of lattices Bi ⊂ Q3 such
that f is induced from a flag map f̄ : P2(Z/p)→ A, via ρBi, i = 1, 2, 3.

Proof. It follows from Proposition 4, applied to k = Q (see also [12] or
[4]). The first two conditions imply that there exists a lattice B ⊂ Q3

such that f is induced from some We conclude that f̄ is a flag map,
with 3 distinct values. Hence

P2(Q) = S1 t S2 t S3,

with S1 the preimage of an affine plane in P2(Z/p), S2 an affine line,
and S3 a point in P2(Z/p), and f is constant on these sets.

Thus, for any B′ ⊂ Q3 such that f is induced from P2(Z/p) via ρB′ ,
the restriction of f to any (Q2 \ 0) ⊂ (Q3 \ 0) is induced from a flag
map on P1(Z/p). Hence f is also induced from a flag map, via ρB′ . On
the other hand, in coordinates x1, x2, x3, we have

S1 = {x1 6= 0}, S2 = {x1 = 0, x2 6= 0}, S3 = {x1 = x2 = 0, x3 6= 0},



14 FEDOR BOGOMOLOV, MARAT ROVINSKY, AND YURI TSCHINKEL

and the only possible coordinates compatible with the structures on all
P1(Q) are

x1,
x2

p
,
x3

p
, x1, x2,

x3

p
, and x1, x2, x3.

Indeed, consider lattices B1, B2, B3 as above and assume that there
exists another sublattice B′ ⊂ Q3 such that f is induced via B′. Choose
Q2

1 ⊂ Q3 so that f is not constant on Q2
1. Then we can choose Bi so

that

Bi ∩Q2
1 = a ·B′ ∩Q2

1, a ∈ Q×,
since there are only two possible equivalence classes of compatible lat-
tices in Q2

1. Note that there are at least two such Bi whose intersections
with a complementary subspace Q2

2, with f nontrivial on it, are differ-
ent. Thus for at least one Bi we can assume that

B′ ∩Q2
j = Bi ∩Q2

j , j = 1, 2

and Bi ∩Q2
j generate Bi over Z(p). Hence B′ is equal to Bi, for one of

the i = 1, 2, 3. �

4. A result from field theory

Let

k ⊆ k̃ ⊆ k̃a ⊆ K

be an extension of fields. We say that x1, x2 ∈ K×/k× are algebraically

dependent with respect to k̃ if they satisfy Equation (4) from the In-
troduction; in this case, we write x1 ∼k̃ x2, or simply x1 ∼ x2. We
record the following obvious properties of this equivalence relation:

(AI) If x1 ∼k̃ x2, x1/x2 /∈ k̃×a /k×, and x 6∼k̃ x1, then x1/x 6∼k̃ x2/x.

(AG) For all x1 ∈ K×/k× \ k̃×a /k×, the set of x2 such that the closure

of k̃a(x1) in K coincides with the closure of k̃a(x2), together

with (k̃×a /k
×), forms a subgroup of K×/k×.

Lemma 15. Let K|k and L|l be field extensions, ν a valuation of K,
and

(10) ψ : K×/k× → L×/l×

a homomorphism, such that its restriction to o×K,ν/o
×
k,ν factors as

(11) o×K,ν/o
×
k,ν −→→K×

ν /k
×
ν

ψν−→ L×/l×.

Assume that ψν preserves algebraic dependence with respect to kν and
l. Then ψ also preserves algebraic dependence with respect to k and l.
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Proof. Let k(x) ⊂ K be a purely transcendental extension and

E = k(x) ⊂ K

its algebraic closure in K. We claim that the restriction of ψ to E×/k×

preserves algebraic dependence. There are two cases:

Case 1. ν(k×) = ν(E×). Then

E× = o×E,ν · k
×.

Since ψν preserves algebraic dependence with respect to kν and l, the
claim follows.

Case 2. ν(k×) ( ν(E×). Then ν(E×)/ν(k×) has Q-rank 1, i.e., for
y, z ∈ E× with nonzero ν(y), ν(z) ∈ ν(E×)/ν(k×) there are nonzero
ny, nz ∈ Z such that nyν(y) = nzν(z). Indeed, y, z define a finite
algebraic extension ky,z(x)|k(x), hence ν is nontrivial on k(x), and the
group

ν(ky,z(x)×)/ν(k(x)×)

is finite. Let g ∈ k(x)× be such that the image of ν(g) in ν(E×)/ν(k×)
is infinite. Then for any

∑n
i=0 aig

i, with ai ∈ k,

ν(
n∑
i=0

aig
i) = min

i
(ν(aig

i)),

since none of the monomials aig
i have the same value under ν. Thus,

ν(k(g)×) = ν(k×)× 〈ν(g)〉.

The extensions ky,z(x)|k(x) and k(x)|k(g) are finite, thus

ν(ky,z(x)×)/(ν(k×)× 〈ν(g)〉)

is also finite, which implies the result for ν(E×). Since ψ(k×) = 1,
ψ(ky,z(x)×) is the product of a finite group and Z. In particular,
ψ(ky,z(x)×) consists of algebraically dependent elements. Since E is
a union of subfields ky,z(x), the same holds for E×.

Thus ψ(E×/k×) coincides with the image of ν(E×)/ν(k×). Since all
elements in ν(E×)/ν(k×) have the same powers, i.e., the Q-rank of this
group is at most one, we see that the lifts of elements in ψ(E×) to L×

are algebraically dependent over l. �



16 FEDOR BOGOMOLOV, MARAT ROVINSKY, AND YURI TSCHINKEL

5. Restriction to planes

Here we study the restrictions of homomorphisms

ψ : P(K) = K×/k× → A := L×/l̃×,

satisfying the assumptions of Theorem 2, to projective planes Π ⊂
P(K).

Proposition 16. Let Π := Π(1, x, y) ⊂ P(K) be a projective plane
such that ψ(x) 6∼ ψ(y). Then one of the following holds:

(a) ψΠ is injective.
(b) There exists a line l ⊂ Π such that ψΠ is constant on Π \ l.
(c) There exists a point q ∈ Π such that ψΠ is constant on l \ q, for

every l ⊂ Π passing through q.
(d) k = Q, ψΠ is induced from

ψ̄Π : P2(Z/p)→ A,

via a lattice B ⊂ Q3, and ψ̄Π is of type (a), (b), or (c).

Proof. Assume that ψΠ is not injective: there are distinct x1, x2 ∈ Π,
with ψ(x1) = ψ(x2) 6= 1. Consider

Π1 := x−1
1 · Π = Π(1, 1/x1, y/x1),

since ψ(y) 6∼ ψ(1/x1), Π1 satisfies the conditions of the theorem; if it
holds for Π1, then it holds for the initial Π. Thus we may assume that

(12) S1 := {x′ ∈ Π | ψ(x′) = 1}

contains at least two elements. Consider the map

ψ∼ : P(K)→ A∼,

with values in dependency classes:

• ψ∼(x′) = 1 if ψ(x′) = 1 ,
• ψ∼(x′) = ψ∼(x′′) iff ψ(x′), ψ(x′′) 6= 1 and ψ(x′) ∼ ψ(x′′).

We record the properties of ψ∼:

(TI) For every l ⊂ Π with l ∩ S1 = ∅, we have

{ψ∼(x′) | x′ ∈ l} = {ψ∼(x′′) | x′′ ∈ Π \ S1},

in particular, ψ(l) has algebraically independent elements.
(TC) For every l ⊂ Π with l ∩ S1 6= ∅, ψ∼ is constant on l \ (l ∩ S1).

Property (AI) from Section 4 relates ψ∼ and ψ.

Lemma 17. If l ∩ S1 = ∅ and x′, x′′ ∈ l are such that ψ(x′) ∼ ψ(x′′),
then ψ(x′) = ψ(x′′).
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Proof. There is a z ∈ l with ψ(z) 6∼ ψ(x′), ψ(x′′). Since z−1 · l∩S1 6= ∅,
all values of ψ on l(x′/z, x′′/z) \ 1 are algebraically dependent (here

we use that l̃a = l̃). By (AI), if ψ(x′) 6= ψ(x′′), then ψ(x′)/ψ(z) 6∼
ψ(x′′)/ψ(z), a contradiction. �

Lemma 18. Let l, l′ ⊂ Π be disjoint from S1, put z := l∩l′, and assume
that there exist x ∈ l and x′ ∈ l′ such that

ψ(x) ∼ ψ(x′), ψ(x) 6= ψ(x′), and ψ(x), ψ(x′) 6∼ ψ(z).

Let y ∈ l and y′ ∈ l′ be such that ψ(y) ∼ ψ(y′). Then either

• ψ(y) 6= ψ(y′), or
• ψ(y) = ψ(y′) = ψ(z).

Proof. Assume that
ψ(y) = ψ(y′) 6= ψ(z),

then
ψ(x)

ψ(z)
∼ ψ(y)

ψ(z)
and

ψ(x′)

ψ(z)
∼ ψ(y′)

ψ(z)
,

by (TC), by the same argument as in Lemma 17. Finally, by (AI),

ψ(x)

ψ(z)
∼ ψ(x′)

ψ(z)

is not possible. �

Let {Tj}j∈J be the set of intersections of algebraic dependency classes
in P(K) with Π. Split J = J2 t J3 and consider the decomposition

(13) Π = S1tS2tS3, with S1 = T1, S2 = tj∈J2Tj, S3 = tj∈J3Tj,
(here S1 is the same set as in (12)).

For any such decomposition, the induced map

Ψ = ΨΠ : Π→ {1, 2, 3}
factors through ψ∼ and satisfies the conditions of Proposition 4. Thus
Ψ is induced from a trivial coloring, with S1 not depending on the
decomposition. Since there exist lines disjoint from S1, and S1 contains
at least two points, it follows that either

(B) S1 = Π \ l, for some l ⊂ Π, and we are in Case (b), or
(C) S1 = ∪i∈I(li \ q), for some q ∈ Π and li through q, and we are

in Case (c), as is proved below in Lemma 19, or
(D) k = Q, and Ψ is induced from a trivial coloring on P2(Z/p).

Note that in Case (B), ψ ≡ 1 on the affine plane Π \ l.
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Lemma 19. In case (C), ψ is constant on an affine plane, or on l \ q,
for all lines l passing through q.

Proof. Consider x ∈ Π \ (S1 ∪ q) and lines l containing x but not q.
Then ψ∼ ≡ ψ∼(x) on l\(l∩S1), by (TI). Since S1 is not an affine plane,
there is an x′ ∈ Π \ (S1 ∪ l(x, q)). We have ψ∼(x) = ψ∼(x′). The union
of lines l ⊂ Π, q /∈ l, through x, x′, is equal to Π\q. Thus ψ∼ takes only
three values {1, ψ(x), ψ(q)} and is constant on Π\ (S1∪q). Lemma 17,
applied to l through q, implies that ψ is constant on l \ q. �

We are left with Case (D), when Ψ is induced via some

ρ : Π = P2(Q)→ P2(Z/p)

from a trivial coloring

c : P2(Z/p)→ {1, 2, 3},
in the sense of Proposition 4. Put

S̄i = c−1(i), i = 1, 2, 3.

Note that S1 is a finite union of subsets Z(p) +Z(p) and does not contain
a complete line l. Consider shifts Πz := z−1 · Π, for z ∈ Π. The shift
from Π to Πz changes algebraically dependent subsets. Note that Πz

contains 1 and S1 contains Z(p) +Z(p), by assumption of case (D), thus
on lines l through 1 all elements in l \ 1 are algebraically dependent.
If there are at least two elements x/z, y/z with ψ(x/z) 6∼ ψ(y/z) then
we have a splitting into S1, S2, S3, and since S1 contains Z(p) + Z(p) we
can proceed by induction.

Lemma 20. For every z ∈ Π, the restriction of ψ∼ to Πz is induced
from P2(Z/p).

Proof. We subdivide (D) into subcases:

(D1) For every z and every splitting Πz = S1,z t S2,z t S3,z, where
S2,z, S3,z are unions of algebraic dependency classes, the set
S̄1,z ⊂ P2(Z/p) is either a point, an affine line, or an affine
plane.

(D2) Otherwise: for some Πz this is not the case.

First we treat (D1). Fix Πz and a decomposition Πz = S1,ztS2,ztS3,z;
we have

Ψ̄ : P2(Z/p)→ {1, 2, 3},
and

P2(Z/p) = t3
i=1S̄i,z, Si,z = ρ−1(S̄i,z) ⊂ Π.

By assumption (D1), we have 3 cases.
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• S̄1,z = q̄, for some q̄ ∈ P2(Z/p). For x ∈ Πz \S1,z and l = l(q, x),
with ρ(q) = q̄, ψ∼ is constant on l \ (l ∩ S1,z), by (TC). Apply
this to all l(q, x1), where x1 runs over S1,z, to conclude that ψ∼
is constant on preimages of affine lines (̄l \ q̄), with q̄ ∈ l̄, hence
is induced from P2(Z/p).
• S̄1,z = l̄ \ q̄, for some l̄ ⊂ P2(Z/p) and q̄ ∈ l̄. Then S̄1,z, S̄2,z and
S̄3,z form a flag on P2(Z/p): all points projecting to P2(Z/p) \ l̄
belong to the same algebraic dependency class because each
pair of such points can be connected by a pair of lines which
intersect S1,z. Lemma 14 reduces the proof to the previous case,
after changing to a different ψ∼-compatible lattice.
• S̄1,z = P2(Z/p) \ l̄, for some line l̄ ∈ P2(Z/p). This reduces to

the case S̄1,z = q̄.

We pass to (D2) and fix a plane Πz, with a splitting

Πz = S1,z t S2,z t S3,z,

violating (D1). Note that Πz contains points 1, 1/z, x/z with ψ(1/z) 6∼
ψ(x/z). We also know that the subset S1/z ⊂ Πz, with S1 defined in
(13), is a finite union of subsets projectively equivalent to Z(p) +Z(p) ⊂
P2(Q). By Proposition 4, we have an induction of Ψz from the trivial
coloring on P2(Qν), for some valuation ν on Q, and we obtain that ν
is nontrivial on Q, i.e., corresponds to some prime number. Since S1/z
is contained in either S2,z or S3,z, the corresponding prime equals p.
Thus Ψz is induced from a trivial 3-coloring of P2(Z/p).

Now, we may assume that S̄1,z is a union of more than one subset of
type li \ q ⊂ P2(Z/p) (otherwise, we are in Case (D1)). Note that one
of the subsets S̄i,z, i = 2, 3 is q̄ and the complement of all such is S3,z.

Then there exist a point q̄ ∈ P2(Z/p) and a set {̄li}i∈I of at least two
lines passing through q̄ such that S̄1,z = ∪i∈I (̄li \ q̄), since we are in the
case (D2), by assumption. Moreover, we may assume that S̄2,z = q̄,
then S̄3,z has the same structure as S̄1,z, i.e., a union of affine lines
containing q̄ in their closure.

We claim that ψ∼ is constant on S3,z: consider q̄3, q̄
′
3 ∈ S̄3,z not lying

on a line through q̄. Let q3, q
′
3 be any points projecting to q̄3, q̄

′
3. Since

l̄(q̄3, q̄
′
3) ∩ S̄1 6= ∅, the line l(q3, q̄

′
3) intersects S1, thus ψ(q3) ∼ ψ(q′3).

By assumption on S̄3,z, any two points in S3,z can be connected by a
chain of such lines.

Note that ψ∼ is constant on S2,z: consider

q1, q2 with ρ(q1) = ρ(q2) = q̄ ∈ S̄2,z.

Then ψ(q1) = ψ(q2). Indeed, consider l5 = l(q1, x1) and l6 = l(q2, x2),
where ρ(xi) = x̄i ∈ S̄1, x̄1 6= x̄2. Hence q3 := l5 ∩ l6 projects to q̄. Thus
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ψ∼(q1) = ψ∼(q3) = ψ∼(q2). Thus ψ∼ is constant on S2,z, hence ψ∼ is
induced from P2(Z/p). �

Now we use ψ∼ to prove the induction from P2(Z/p) result for ψ itself.
The difference between S1 and S2, S3 is that ψ is already constant on
S1 but not necessarily on S2, S3. We treat the cases:

(1) S̄1 = q̄, S̄2 = l̄ \ q, q̄ ∈ l̄, S̄3 = P2(Z/p) \ l̄;
(2) S̄1 = q̄, S̄2 = ∪mi=1l̄i \ q,m ≥ 2, q̄ ∈ l̄i, S̄3 = P2(Z/p) \ ∪̄li;
(3) S̄1 = ∪mi=1l̄i \ q,m ≥ 2, S̄2 = q̄, S̄3 = P2(Z/p) \ ∪̄li.

Lemma 21. The map ψΠ is induced from ψ̄Π : P2(Z/p)→ A which is
of the type (a), (b), or (c).

Proof. By Lemma 20, we have the following possibilities:

(1) ψ∼ is induced from a flag map on P2(Z/p) and we can assume
that S̄1 = q̄, by Lemma 14;

(2) ψ∼ is induced from a map on P2(Z/p) which is constant on
affine lines l̄i \ q̄, with q̄ ∈ l̄, and S̄1 = q̄;

(3) ψ∼ is induced from a map on P2(Z/p) which is constant on
affine lines l̄i \ q̄, with q̄ ∈ l̄, and S̄1 contains l̄i \ q̄, i = 1, 2.

Case (1): We may assume that S̄3 = P2(Z/p) \ l̄, for some l̄ with
q̄ ∈ l̄, and l̄ \ q̄ = S̄2. Let l be disjoint from S1 and pick two points
q, q′ ∈ l ∩ S3. Since ψ∼(q) = ψ∼(q′) and l intersects S2, ψ(q) = ψ(q′),
by Lemma 17. Since any two points in S3 can be connected by a chain
of lines disjoint from S1, ψ is constant on S3. It is also constant on
ρ−1(q̄2), for q̄2 ∈ S̄2. Indeed, if q2, q

′
2 are distinct points projecting to

q̄2 and l, l′ lines containing q2, resp. q′2, avoiding S1 and projecting to
distinct lines in P2(Z/p), then q′′2 := l ∩ l′ also projects to q̄2. Thus
ψ(q2) = ψ(q′2) = ψ(q′′2).

Case (2): S̄1 = q̄. If ψ∼ is induced from a noninjective ψ̄ : P2(Z/p)→
A, ψ is constant on the preimage of every affine line l̄ \ q̄, by the same
analysis over a finite field.

If there exist y1, y2, projecting to the same points x̄ ∈ l̄ \ q̄, with
ψ(y1) 6= ψ(y2), let z1, z2 be such that ψ∼(z1) = ψ∼(z2) but ψ∼(zi) 6=
ψ∼(yi). Consider

z := l(y1, z1) ∩ l(y2, z2),

so that ρ(z) = x̄. Then ψ(y1) = ψ(z) = ψ(y2), by Lemma 18. Since
all points over x̄ are connected by a chain of lines of such type, ψ is
constant on ρ−1(x̄).
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Case (3): The argument of Case (1) shows that ψ is constant on the
preimage of any affine line l̄ \ q̄ contained in S̄3. Indeed, let z1, z2 ∈ S3

be in the preimage of an affine line S̄3 and consider l := l(z1, z2).
It intersects S2 and hence ψ(z1) = ψ(z2). Thus ψ is induced from
P2(Z/p) \ q = S̄1 ∪ S̄3. Let q, q′, projecting q̄. Consider lines l(q, z1)
and l(q′, z2) with zi ∈ S3, which intersect in q′′, ρ(q′′) = q̄. Then
ψ(q) = ψ(q′′) = ψ(q′), by Lemma 18. Since any pair of points over q̄
can be connected by a chain of such lines, ψ is constant on ρ−1(q̄). �

This concludes the proof of Proposition 16. �

Remark 22. This Lemma is similar to [12] and [8, Lemma 13].

6. Lines of injectivity

In our analysis of the restriction ψl of

ψ : P(K)→ A = L×/l̃×

to lines l = l(1, x) ⊂ P(K), we distinguish the following possibilities:

• ψl is not induced from a map ψ̄l : P1(Z/p)→ A and ψl is:
(I) injective

(N) not injective and nonflag
(F) a nonconstant flag map

• ψl is induced from ψ̄l : P1(Z/p)→ A and ψ̄l is
(̄I) injective

(N̄) not injective and nonflag
(F̄) a nonconstant flag map

• (C) ψl is constant

Definition 23. Let u ⊂ P(K) be the union of all lines through 1, on
which ψ is injective, and put

U := {xy | x, y ∈ u} ⊆ P(K).

Lemma 24. If ψ(u) contains at least two algebraically independent
elements, then U is a group.

Proof. Clearly, u and U contain 1 ∈ K×/k×. If x ∈ U then x−1 ∈ U, by
the injectivity of ψ on l(1, x−1). Furthermore,

(14) xy−1 ∈ u, for all x, y ∈ u such that ψ(x) 6= ψ(y).

Indeed, if ψ(x) 6∼ ψ(y), then ψ is injective on Π(1, x, y), by Proposi-
tion 16, and in particular on l(x, y) = y · l(1, xy−1); thus, xy−1 ∈ u.

If ψ(x) ∼ ψ(y), but are not equal in A, take z ∈ u such that ψ(x) 6∼
ψ(z). Then x/z, y/z ∈ u, as above. Since ψ(x/z) 6∼ ψ(y/z), the same
argument shows that (x/z)/(y/z) = xy−1 ∈ u, proving (14).
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To show that U is multiplicatively closed, it suffices to check that
for every x1, x2, x3 ∈ u \ {1} there exist s1, s2 ∈ u with x1x2x3 = s1s2.
Note that ψ(xixj) 6= 1 for some 1 ≤ i < j ≤ 3. (Otherwise,

ψ(x1x2) = ψ(x1x3) = ψ(x2x3) = 1,

and therefore,

ψ(x2
1) = ψ((x1x2)(x1x3)/(x2x3)) = 1,

so ψ(x1) = 1.) Then, by (14), xixj ∈ u, so we can take s1 := xixj and
s2 := xt, where {i, j, t} = {1, 2, 3}. �

Definition 25. Let ū ⊂ P(K) be the union of all lines l through 1,
such that the restriction of ψ to l is induced via an injective map

ψ̄l : P1(Z/p)→ A,

and put
Ū := {xy | x, y ∈ ū} ⊆ P(K).

Lemma 26. If ψ(ū) contains at least two algebraically independent
elements, then Ū is a group.

Proof. The proof follows the same steps as the proof of Lemma 24. �

Lemma 27. Assume P(K) contains lines of type (I) and one of the
types

(15) (N), (̄I), (N̄), or (F̄).

Then there exists a one-dimensional subfield E ⊂ L such that for all
lines l ⊂ P(K) of type (I), (N), (̄I), (N̄), or (F̄) we have

ψ(l) ⊂ E×/l̃×.

In particular, if ψ(u) contains algebraically independent elements, lines
of type (N), (̄I), (N̄), and (F̄) do not exist.

Proof. Let l = l(1, y) be a line of type (I).
If there exists another line l(1, y′) of type (I) with ψ(y) 6∼ ψ(y′), i.e.,

ψ(u) contains independent elements, then lines of the listed type cannot
exist, indeed, if l(1, x) is of types listed in (15), we apply Proposition 16
to Π = Π(1, x, y). In Case (b), the exceptional line is l(1, y) and hence
the restriction of ψ to any other line is either constant or of type (F), a
contradiction. In Case (c), all lines are either of type (I) or (F), again
a contradiction. Case (d) does not apply, since l(1, y) is not induced
from a map P2(Z/p)→ A, a contradiction.

If ψ(u) does not contain algebraically independent elements, but one
of the lines l(1, x) in (15) is such that ψ(x) 6∼ ψ(y), then we apply the
same argument to Π(1, x, y) and obtain the same contradiction. �
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Lemma 28. Assume ψ(u) contains algebraically independent elements.
Consider l := l(1, y) 6⊆ u and assume that l ∩ U consists of at least two
points 1, z′. Then l ∩ U is either l or l \ q, for some point q ∈ l.

Proof. Assume that ψl is not constant, e.g., ψ(y) 6= 1. By assumption,
there is an x with l(1, x) ⊂ u with ψ(x) 6∼ ψ(y). We apply Proposi-
tion 16 to Π := Π(1, x, y). We are not in Case (c) of this lemma. If we
are in Case (a), then ψ is constant on Π \ l(1, x), which implies that l
is of type (F). If we are in Case (b), then the exceptional point q = y,
and ψ is constant, on the complement to q, on every line through q,
thus l is of type (F).

Put z′ = t/t′, with t, t′ ∈ u. If ψ(t) 6= ψ(t′) then Equation (14)
implies that z′ ∈ u, a contradiction. Thus ψl is either constant or
contains one point y′ /∈ U. In Case (a), ψ is constant on Π \ l(1, x),
thus identically 1 on the line l. In Case (b), ψ is injective on every line
not containing the exceptional point q, in particular on l(1, t′/t′′), for
all t′′, thus t′/t′′ ∈ u, thus t′′ ∈ U. Taking t′′ ∈ l\q we obtain the claim.

Now assume that ψl is constant. We claim that l \ (l ∩ U) contains
at most one point. Assume otherwise. Note that ψ is injective on
every line l(u′, t′) ⊂ Π, with t′ ∈ Π(1, x, y) ∩ u, t′ 6= 1, and any point
u′ ∈ l∩U. Indeed, we can represent u′ = w/w′, with w,w′ ∈ u and with
ψ(w) = ψ(w′) 6∼ ψ(t′). Then t′w′/w ∈ u and l(t′w′/w, 1) ⊂ u. The
converse is also true, and (Π \ l) ⊂ u. Indeed, consider lines through u′

which are not equal to l; ψ is injective on such lines.
Now consider two families of lines: those passing through w (except

l), and those throgh w′ (again, except l). All such lines are of type
(F), with generic value 6= 1, since ψ does not take value 1 on Π \ l, by
Lemma 27. Consider lines l(w, v) and l(w′, v) from these families, with
v ∈ (Π \ l). The generic ψ-value on these lines is the same and is equal
to ψ(v). A line through u′, which does not contain v cannot be of type
(I), since it intersects lines l(w, v) and l(w′, v) in distinct points, but
taking the same value on these points, contradicting the established
fact that such lines are of type (I). �

Lemma 29. Assume P(K) contains lines of type (̄I) and there exist
lines of type (I), or (N), or (N̄). Then ψ(ū) does not contain alge-
braically independent elements.

Proof. Assume the contrary. Let l(1, x) be a line of type (I) or (N).
Then there exists a y ∈ ū such that ψ(y) 6∼ ψ(x). We apply Proposi-
tion 16 to Π = Π(1, x, y) and obtain a contradiction as in the proof of
Lemma 27.
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Let l(1, x) be of type (N̄). We claim that Π does not contain lines of
type (F). To exclude this possibility, let l = l(z, t) ∈ Π be such a line
with a generic ψ-value equal to s ∈ A.

Take points x1, x2 ∈ l(1, x) such that ψ(x1) 6= ψ(x2). This is possible
since ψ takes at least two values on l(1, x). Choose y1, y2 ∈ l(1, y) and
ψ(y1) 6= ψ(y2) and are both not equal to 1 ∈ A, and this is possible
because ψ takes at least three values on l(1, y) which is of type (̄I).

y2 q

y1

1 x1 x2

Moreover, we can assume that the lines lij := l(xi, yj) do not pass
through the distinguished point q ∈ l(z, t) (where ψ takes the non-
generic value). Thus lij := lij ∩ l(z, t) is a generic point of l(z, t), which
differs from x1, x2, y1, y2. Then

ψ(xi)

s
∼ ψ(y1)

s
∼ ψ(y2)

s
,

for both i = 1, 2. Hence

1 6= ψ(x1)

ψ(x2)
∼ ψ(y1)

ψ(y2)
6= 1.

Therefore, ψ(x) ∼ ψ(y), a contradiction.
Thus, for every l ⊂ Π(1, x, y) the restriction ψl is induced from a

map ψ̄l : P1(Z/p)→ A. Now we apply Lemma 21. In Case (a) of that
Lemma, the exceptional line is l(1, y) and of type (̄I) and hence the
restriction of ψ to any other line is either constant or of type (F̄), a
contradiction the assumption that l(1, x) is of type (N̄). Cases (b) and
(c) are excluded: ψ is not induced from an injective map, nor a flag
map on l(1, x). �

Lemma 30. Assume that the pair of lines (l(1, x), l(1, y)) is of one of
the following types

(N,N), (N, N̄), (N, F̄), (N̄, N̄).

Then ψ(x) ∼ ψ(y).

Proof. Follows from the same arguments as in Lemma 29 and Lemma 27.
�
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Lemma 31. Assume that ψ(ū) contains algebraically independent ele-
ments. Consider l := l(1, z) 6⊆ ū, and assume that l ∩ Ū consists of at
least two points 1, z′. Then ψ(z′) = 1 and l ∩ Ū is either

(1) l;
(2) an affine line, with ψ not constant on l;
(3) projectively equivalent to Z(p) ⊂ P1(Q);
(4) an affine line and ψ is constant on l.

Proof. Assume that l /∈ (C). Write z′ = x/x′ with x, x′ ∈ ū.

• If ψ(x) 6= ψ(x′) then x/x′ ∈ ū, by Equation 14, thus l ⊂ ū ⊂ Ū,
contradiction, so that ψ(z′) = 1.
• If ψ(x) = ψ(x′) 6= 1, choose a point t ∈ ū be such that ψ(t) 6∼
ψ(x′), and such that it is also algebraically independent from a
nontrivial value on l. Then t/x′ ∈ ū and the restriction of ψ to
(a shift of) l(t, x/x′) is of type (̄I). In particular, l(1, t), l(t, x/x′)
are also of type (̄I), by the same argument as in the proof of
Lemma 29.

This lemma implies that l is of type (F) or (F̄).

• l ∈ (F). In the notation of Proposition 16, ψ is of type b) on
Π(1, t, z) and the restriction of ψ to every line in Π(1, t, z), not
passing through a distinguished point q ∈ l, with ψ(q) 6= 1, is
of type (̄I), which implies that l \ q ⊂ U, i.e., we are in Case
(V), i.e., the valuation case.
• l ∈ (F̄). In this case, Π(1, t, z) does not contain lines of type (F),

because otherwise, by Proposition 16, l will also be of type (F).
Hence ψ is induced from P1(Z/p) on any line in Π(1, t, z) and
there are two independent values of ψ on Π(1, t, z) not equal to
1. Then ψ on Π(1, t, z) is induced from ψ̄ : P2(Z/p) → A, by
Lemma 21.

The map ψ̄ is injective on l(1, t′) and l(t′, z′1), where both
t′, z′1 are the images of t, z′ under the reduction map, and a flag
map on l(1, z1), where z1 is the image of z in P2(Z/p). Thus
ψ is induced from type b), and hence U ∩ l consists of y, with
ψ(y) = 1, a set projectively equivalent to Z(p) ⊂ P1(Q), and we
are in Case (P), the projection case.

Assume that l ∈ (C). Here the difficulty is that ψ(Π(1, z, t)) does
not contain algebraically independent elements and we cannot apply
Lemma 21. Note that l(t, s), for s = r/r′, r, r′ ∈ u, s ∈ l, are of type
(̄I), by the argument above.
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Then any line l(t′, u′) ⊂ Π(1, z, t), with ψ(t′) 6= ψ(u′), is of type (̄I),
since ψ takes at least three values on this line. Hence s := l(t′, u′)∩ l ∈
Ū.

On the other hand, if s′ ∈ l is not in Ū, then there are at most two
values on any line containing s′, including ψ(s′) = 1. We split all points
into subsets:

(1) ST := {x |ψ(x) 6= 1};
(2) S1 := {x ∈ Ū |ψ(x) = 1};
(3) S2 := {x /∈ Ū |ψ(x) = 1}.

Note that ST , S1 6= ∅. If S2 = ∅ then l ⊂ Ū; and Ū ∩ l satisfies the
lemma.

Assume that S2 ∩ l 6= ∅. We claim that every line in Π(1, z, t) lies
in the union of two of such subsets. Clearly, this holds for l. Let
l′ ⊂ Π(1, z, t) be a different line and put s := l ∩ l′. If s ∈ Ū, then
l(s, t) ⊂ Ū, by construction, and all points s ∈ l∩ST are in ū and those
with ψ(s) = 1 in Ū. In particular, l(s, t) ⊂ ST t S1. If s′ ∈ l is in S2,
then l(s′, x) is of type (F), (F̄) or (C), and hence ψ takes at most two
values on l(s′, x), including ψ(s′) = 1.

If s2 ∈ l(s′, x), ψ(s2) = 1, x ∈ ū, ψ(x) 6= 1, then s2 ∈ S2. Otherwise,
if s2 ∈ U, x ∈ ū, and then ψ is injective on l(s′, x) = l(s2, x), by the
argument above. Hence s2 ∈ S2. Thus l(s2, t

′), with t′ ∈ l(s, t), is
contained either in S2 t ST or S1 t S2.

Any y ∈ Π(1, z, t), with ψ(y) 6= 1, is contained in ū. Indeed, consider
l(y, y′), with ψ(y) 6= ψ(y′), y′ ∈ l(t, s), ψ(y′) 6= 1, and sy := l(y, y′) ∩
l(1, z). Then ψ(sy) = 1, hence y′/sy ∈ ū, and ψ is injective on l(y, y′).
Since y′ ∈ ū, we find that y ∈ ū and sy ∈ S1.

Thus ST ⊂ ū and any line l(y, s), with ψ(s) = 1, is either contained in
S2tST or in STtS1. This implies that any l(s, s2), with s ∈ S1, s2 ∈ S2,
is contained in S1 t S2. Note that none of the lines is contained in
one of the subsets ST , S1, S2. By Proposition 5, the decomposition
Π = ST t S1 t S2 is either

(1) a cone over the decomposition of l(t, s) into the intersection
with ST and S1, and S2 is just one point in l;

(2) or is induced from a decomposition of P2(Z/p) over the residue
of l, with S1 equal to the preimage of a point, and hence S2 ∩ l
is projectively equivalent to Z(p).

�
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7. Proof of the main theorem

We turn to the proof of Theorem 2, describing the homomorphisms

ψ : P(K)→ P(L),

preserving algebraic dependence. There are two possibilities:

(V) ψ factors through a valuation,
(P) ψ factors through a subfield,

described in detail in the Introduction.

We organize our proof as a case by case analysis, based on types of
line, introduced at the beginning of Section 6. We consider two sets of
cases as follows.

• Generic cases: ψ(u) (respectively, ψ(ū)), contains nonconstant
algebraically independent elements, i.e., there exist y1, y2 ∈
ψ(u) (respectively, ψ(ū)) such that y1 6∼ y2.
• Degenerate cases: these sets do not contain algebraically inde-

pendent elements.

In our proof we need the following technical assumption:

(AD) ψ(ū) does not contain nonconstant algebraically independent
elements.

This is satisfied when K has positive characteristic. In characteristic
zero, this assumption allows us to avoid the case of geometric valuations
which are induced from fields of positive characteristic.

Lemma 32. Assume that ψ(u) contains nonconstant algebraically de-
pendent elements and that P(K) contains lines of type (F) and possibly
also (C). Then there exists a valuation ν of K such that o×ν ⊆ U and
ψ((1 + mν)

×) = 1.

Proof. By Lemma 24, U ⊂ K×/k× is a group, the induced quotient
map K×/k× → K×/U is a nontrivial flag map, by the assumption on
the existence of lines of type (F) in P(K) and by Proposition 5 und
using Theorem 6 and Lemmas 7, 9. By Proposition 5, there is a map

o×µ → K× → Γµ,

for some valuation µ, with the property that K× → K×/U is a com-
position

K× → Γµ
rµ−→ K×/U.

Let

Γ+
µ := ν(oµ \ 0) ⊂ Γµ
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be the subsemigroup of positive elements and put

Ker(rµ)+ := Ker(rµ) ∩ Γ+
µ .

• Assume that Ker(rµ)+ = 0. Then for any nonconstant

x ∈ o×µ /(k
× ∩ o×µ ) ⊂ u, y ∈ (mµ \ 0)/(k× ∩ o×µ ),

the restriction of ψ to l(x, y) is a flag map with generic value 1 by
Proposition 16, Case (c), with y = q. Indeed, the assumption
implies that the generic value on the line l(1, y/x) is 1, since
ν(y/x) > 0. Since ν(x) = 0, the same holds for the line l(x, y).
Hence the result holds for ν = µ.
• Assume that Ker(rµ)+ 6= 0. Assume in addition that there

exists a γ+ ∈ (Γ+
µ \ Ker(rµ)+) and such that γ+ < γ′ for some

γ′ ∈ Ker(rµ)+. Consider x ∈ (u \ 1), with µ(x) = γ′, and
y ∈ o×µ /(k

× ∩ o×µ ), with µ(y) = γ+. The restriction of ψ to
l(1, y) ⊂ P(1, x, y) is a flag map with generic value 1, for the
same reason as avove. On the one hand, l := l(x, y) 6⊂ u, hence
ψl is a flag map, with generic value ψ(x). On the other hand,
the generic value of ψ on l(1, y) is 1, hence ψ(x + y) = ψ(x)
and x + y ∈ u. We have µ(y) < µ(x) and, on l(x, y), we have
µ(x+ y) = µ(y), hence ψ(x+ y) = ψ(y), a contradiction.

This implies that the elements of Ker(rµ)+ are smaller than
all elements in (Γ+

µ \ Ker(rµ)+). Thus the subgroup of Γµ gen-
erated by Ker(rµ)+ is an ordered subgroup. The homomor-
phism Γµ → Γµ/Ker(rµ)+ identifies Γµ/Ker(rµ)+ with a valua-
tion group Γν for some valuation ν of K, and ψ((1+mν)

×) = 1.

�

We can also treat all degenerate cases, i.e., ψ(u) and ψ(ū) do not
contain nonconstant algebraically independent elements.

Most degenerate case: no (I), (̄I), (N), and (N̄)-lines:

• Then ψ is a flag map on all l ⊂ P(K), hence a flag map, by
Proposition 5 and Lemma 7, note that A has no 2-torsion. Thus
there exists a valuation ν such that ψ factors through Γν , and
we are in Case (V) of Theorem 2, since ψ(o×ν ) = 1.

Degenerate case: no (I) and (̄I)-lines, but (N) or (N̄)-lines:

• If there exist (N) or (N̄)-lines then by Lemma 30, there exists a
1-dimensional subfield L1 ⊂ L such that the images of all such
lines are contained in L×1 /l

×. Consider the induced projection
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homomorphism

ψ1 : P(K)→ L×/l× → L×/L×1 .

Note that the restriction of ψ1 to any line l ∈ P(K) is a flag map,
and there exist lines on which it is a nontrivial flag map, since
the image of ψ contains at least two algebraically independent
elements. Thus there is a nontrivial valuation µ of K such that
ψ1 factors through the value group Γµ.

Degenerate case: there exist (I)-lines l and ψ(l) ⊂ L×1 /l
×, for some

1-dimensional field L1 ⊂ L.

• Let L2 be the algebraic closure of L1 in L. There may also exist
lines l ⊂ P(K) of type (N), (N̄), (̄I), or (F̄), with respect to ψ,
but ψ(l) ⊂ L×2 /l

× for all such l, by Lemma 27. Again, every
l ⊂ P(K) is either of type (C) or (F), with respect to

ψ2 : P(K)→ L×/l× → L×/L×2 ,

and there exists a nontrivial valuation µ of K such that ψ2

factors through Γµ.

Degenerate case: there are no (I)–lines but there exist (̄I)-lines whose
images are contained in L×1 /l

×, for some 1-dimensional subfield of L.

• Let L2 be its algebraic closure in L. There may exist lines of
type (N), (N̄), or (̄I), but their images are contained in L×2 /l

×.
Every l ⊂ P(K) is of type (C), (F), or (F̄), with respect to

ψ2 : P(K)→ L×/l× → L×/L×2 ,

and there exists a nontrivial valuation ν of K such that ψ2

factors through Γµ.

Thus, in all the degenerate cases the homomorphism

ψ` : K×/k× → L×/L×2 ,

is a flag map, thus arises from a nontrivial valuation µ,

1 // o×µ // K×
µ // Γµ //

r

��

1

K×
ψ` // L×/L×2

i.e., ψ` = r ◦ µ. The following lemma will show that ψ is either as in
(V) or (VP) of Theorem 2, by constructing a valuation as required,
using ψ.
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Lemma 33. There is a valuation ν of K and a surjective homomor-
phism of ordered groups

Γµ
γ−→ Γν

such that

(1) ν = γ ◦ µ : K× → Γν is a surjective map of ordered groups with
Ker(γ) ⊂ Ker(r).

(2) ψ((1 + mν)
×) = 1.

Proof. Let z ∈ oµ be such that r(µ(z)) 6= 0 and thus ψ`(z) 6= 1 ∈
L×/L×2 . Let x ∈ o×µ ⊂ Ker(ψ`). We have

µ(x+ az) = µ(x), µ(a) ≥ 0,

and r is nonconstant on l(z, x). Thus ψ is a flag map on l, and

ψ(x+ az) = ψ(x)

so that ψ(1+az/x) = 1. Note that zx also has r(µ(zx)) 6= 0 and hence
we can apply the same to zx, obtaining ψ(1 + az) = 1, for any z with
r(µ(z)) > 0.

Note that elements z with µ(z) = α generate additively the subgroup
Kα ⊂ K. Now the elements of the form 1+z with µ(1+z) = 0 generate
the multiplicative subgroup (1 +Kα)×. Indeed, consider

(1 + z)(1 + z′) = 1 + z + z′ + zz′ = (1 + z + z′)

(
1 +

zz′

1 + z + z′

)
,

where µ(z) = µ(z′) and (1 + z + z′) ∈ o×µ . Since ψ`(zz
′) 6= 1 we have

ψ

(
1 +

zz′

1 + z + z′

)
= 1,

by the same argument applied to z, z′; thus ψ ≡ 1 on (1 + Kα)×.
This implies that ψ(1 + y) = 1, even if r(µ(y)) = 0, but there is a
z, r(µ(z)) 6= 1 and µ(z) < µ(y). Consider the subset Γ+

µ , µ ≥ 0 in Γµ.

Since L×/L×2 is torsion-free,

rkQ(Ker(r)) < rkQ(Γµ).

Hence Ker(r) intersects Γ+
µ in a proper subsemigroup Ker(rµ)+ and

the subset of elements s ∈ Ker(rµ)+ with s > µ(x) for any x ∈ Γ+
µ \

Ker(rµ)+.
We are looking at a subset of elements S inside Ker(rµ)+ \ 0 such

that for each s ∈ S such that s < u for any u > 0 with r(u) 6= 0.
Note that S has to contain the smallest elements in Γ+

µ \0 if they exist.
Assume that s, s′ ∈ S, s, s′ < u, r(u) 6= 0 and s + s′ > u. Note that
s + s′ − u > 0 and s > u − s′ > 0 but r(u − s′) 6= 0 which provides
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a contradiction. Thus S is an ordered subsemigroup in Ker(rµ)+ \ 0
which generates an ordered subgroup 〈S〉 such that

K× → Γµ/〈S〉 =: Γν

is a valuation map for some valuation ν. For this valuation, Ker(ν) ⊃
(1 + mν)

×, by the computation above. �
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