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ABSTRACT. We study effective versions of unlikely intersections of
images of torsion points of elliptic curves on the projective line.

To Nigel Hitchin, with admiration.

INTRODUCTION

Let k be a field of characteristic # 2 and k/k an algebraic closure of
k. Let E be an elliptic curve over k, presented as a double cover

n:FE — P!

ramified in 4 points, and EJoo] C E(k) the set of its torsion points. In
[1] we proved:

Theorem 1. If E1, E, are nonisomorphic elliptic curves over Q, then
1 (E1[o0]) N ma( E2[o0])
is finite.
Here, we explore effective versions of this theorem, specifically, the

size and structure of such intersections (see [5] for an extensive study
of related problems). We expect the following universal bound:

Conjecture 2 (Effective Finiteness—-EFC-1). There exists a constant
c¢ > 0 such that for every pair of nonisomorphic elliptic curves Fy, Fs
over C we have

7T1(E1[OO]) N WQ(EQ[OO]) < cC.

We say that two subsets of the projective line
S={s1,....s,}, S :={s),...,s,} CcPk)

are projectively equivalent, and write S ~ S, if there is a v € PGLy(k)
such that (modulo permutation of the indices) s; = y(s}), for all i.
Let E be an elliptic curve over k, e € E the identity, and

E - FE

€T — —X
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the standard involution. The corresponding quotient map
:E— E/i=P
is ramified in the image of the 2-torsion points of E(k). Conversely, for
r = {ry,ry,r3,74} C PY(K),
the double cover
B, — P

with ramification in 7 defines an elliptic curve; given another such 7”,
the curves E, and E, are isomorphic (over k) if and only if r ~ 7/, in
particular, the image of 2-torsion determines the elliptic curve, up to
isomorphism. B

Let E,.[n] C E,(k) be the set of elements of order ezactly n, for n € N.
The behavior of torsion points of other small orders is also simple:

WT(ET[?’D ~ {17 §37 <327 00}7
where (3 is a nontrivial third root of 1, and

(B, [4]) ~ {0,1,—1,4, —i, 00}

In particular, up to projective equivalence, these are independent of E.,.

However, for all n > 5, the sets m,.(F,[n]), modulo PGLy(k), do depend
on F,, and it is tempting to inquire into the nature of this dependence.
In this note, we study m,.(E,[n]), for varying curves E, and varying
n. Our goal is to establish effective and uniform finiteness results for
intersections
7. (E.[n]) N7 (E[n]), n,n" €N,
for elliptic curves E,., E,/, defined over k. We formulate several conjec-
tures in this direction and provide evidence for them.
The next step is to ask: given elliptic curves E,, E.» over k, when is

r C m (B [00])?
We modify this question as follows: Which minimal subsets L C P'(k)
have the property
rc L = m(E[oco]) C L?
The sets L carry involutions, obtained from the translation action of
the 2-torsion points of E on E, which descends, via 7, to an action on

P! and defines an embedding of Z/2®7Z/2 — PGLy(k). It is conjugated
to the standard embedding of Z/2 & Z/2, generated by involutions

z——z and z+—1/z,

acting on L. This observation is crucial for the discussion in Section 4,
where we prove that, modulo projectivities, L := L \ {oo} are fields.
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1. GENERALITIES

Let j : &€ — P! be the standard universal elliptic curve, with j the
j-invariant morphism. Consider the diagram

Ey, — P,
C C
E——=P

]

Pl ]P)l
assigning to each fiber E\ := j~!(\) the quotient Py = 7(E)) ~ P!, by
the involution ¢ : x — —z on F). (This is well-defined even for singular
fibers of j.)

Note that P — P! is a PGLy-torsor. Taking fiberwise n-symmetric
product:

Py — Sym"(P))
we have associated PGLy-torsors
Jn : Pn = Sym™(P) — P
Taking PGLs-invariants, we have a canonical projection
Sym"(Py) — Mon(Py) ~ Mo,

to the moduli space of n-points on P!. The associated PGLs-torsor is
trivial; fixing a trivialization we obtain a morphism

Hn - Pn - Mo,n

For every N € N, we have the modular curve X (N) — P!, parametriz-
ing pairs of elliptic curves together with N-torsion subgroups. The in-
volution ¢ induces an involution on every X (N), we have the induced
quotient

X(N) —=Y(N):=X(N)/¢.

Since the family j : €& — P! has maximal monodromy SLy(Z), the
curves X (N) and Y () are irreducible. We have a natural embedding
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Y(N) — P. Put
Y =U NGNY(N )

and consider

Sym"(Y) — P, — Mo,,.
Note that Sym"(Y) is a union of infinitely many irreducible curves,
each corresponding to an orbit of the action of the monodromy group
PGLy(Z) on the generic fiber of the restriction of j, to Sym"(Y).
Let Y, C Sym"(Y) be an irreducible component corresponding to
a PGLy(Z)-orbit w (for the monodromy action, as above). We now

formulate conjectures about p,,, for small n, which guide our approach
to the study of images of torsion points.

Conjecture 3. The map

M41Y4,w—>m0,4:P1
18 finite surjective, for all but finitely many w.
Conjecture 4. The map

(14, 7) + Yo — Moy x P!
1s a rational embedding, for all but finitely many w.
Conjecture 5. The map
Hs - Y5,w - Mo,z»

15 a rational embedding, for all but finitely many w. Moreover, if for
some distinct orbits w and w' the corresponding images ji5(Ys,,) and
ws(Ys ) are curves, then they are different.

Conjecture 6. The map
He - Yé,w - MO,G

1s a rational embedding, for all but finitely many w. Moreover, if
te(Ys) is a curve then there exist at most finitely many w' such that

o 16(Ys. ) is a curve and
o 116(Yow) N ps(Your) # 0
2. EXAMPLES AND EVIDENCE
We now discuss examples and evidence for Conjectures in Section 1.

Example 7. We have
o 1y (Sym*(Y(2)) =~ Mo, = P,
e 14(Sym*(Y(3)) is a point in Mo 4.
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Consider Sym*(Y (4)). Note that m(E[4]) = {0,1,—1,4,—i, 00} is an
orbit of the symmetric group &4, acting on P'. The pairs

(0,00), (1,—1), (i, —1)

are pairs of stable points for 3 even involutions in &4, and the action of
G, is transitive on pairs and inside each pair. There are two different
G4-orbits of 4-tuples: either the orbit contains two pairs of vertices
such as (0,00),(1,—1), or a pair and two points from different pairs
(0,00), (1,7). Thus Sym*(Y(4)) has two components which project to
different points modulo PGLsy; therefore, there exist exceptional orbits
w such that py(Ys,) is a point.

Lemma 8. If (14(Ys,) is a point then all cross ratios of 4-tuples of
points parametrized by Y, are constant.

Proof. The map 4 can be viewed as a composition
(P)* = (Z/2® Z/2)\(P')"/PGLy = P} — &5\Py.
Thus we have a diagram
(P! — (Z/2 & Z/2)\(P')* /PGLy

| e

S,\(PH* S, \ (P /PGL,

Note that any irreducible Y, , lifts to a union of connected components
Yiwi C(Z)2® Z/2)\Y*, where cross-ratio is well defined. Thus if py
is a rational function of cross-ratio on any four-tuple of points and if
(4 is constant then the cross-ratio is also constant. U

Proposition 9. There exist orbits w such that
gt Y;l,w - Pl
1S surjective.

Proof. The singular fiber £, := j~!(00) is an irreducible rational curve
with one node p,. The group scheme Ug,& [d], whose generic fiber is
isomorphic to Z/n @ Z/n, specializes to {C:} C G, = € \ Poo- Let
Exo[n] be the specialization of £[n]; then

o Eoln] C{G},

e there exists a subgroup scheme W,, ~ Z/n C Z/n ® Z/n in the
group scheme of points killed by n, specializing to £, while
the complemenary branches specialize to poo.

Taking the quotient by ¢, we find that ((Z/n®Z/n)\Z/n)/. specializes
to 0 in the fiber P! and all other points specialize to subset in (Z/n)/t;
the limit depends on the selected direction of specialization.
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Assume that we have distinct points {z1, 29, 23, 24} C w(E|n]), for a
smooth fiber E of £, such that

21,20 € W/t and  z3,24 & W, /0.

The 21, 2z can be specialized to different nonzero points in &€, /¢, and
23, z4 will specialize to 0.

Assume that py is constant, i.e., the cross-ratio is constant. Since
23, 24 will specialize to 0, the cross-ratio equals 1. Then

(21 — 23) (22 — 24) = (22 — 23)(21 — 24),
and
21(23 — 24) = 20(23 — 24).

Near the special fiber, 23 # z4, thus z; = 2z, contradiction. Thus on
orbits of this type, 4 is not constant, hence surjective. 0

3. GEOMETRIC APPROACH TO EFFECTIVE FINITENESS

Let £ := E,, E' := E,. be elliptic curves. Consider the diagram
C——ExFE

.

A—P! x P!
where C C E x E' be the fiberwise product over the diagonal A C
P! x PL. If r # 1/ then C has genus > 2. By Raynaud’s theorem [4],
C(k) N Efoo] x E'[o0]

is finite, since it is the preimage of 7(E[oc]) N7 (E'[o0]) C A, the latter
set is also finite. This finiteness argument appeared in [1].

Consider the curves C' occurring in this construction. We have a
diagram

C—2-F

E/
where 0,0’ are involutions with fixed points ¢y, and ¢}, ¢, respec-
tively. Assume that
rnr’ ={0,1,00}.

Then the product involution oo’ on C' C E x E’ has fixed points in the
6 preimages of the points {0,1,00} C Ap C P! x P! (diagonally), i.e.,
is the hyperelliptic involution. Thus there is an action of Z/2®7Z/2 on
C, induced by the covering maps 7 and «’. The curve C C A= Ex E’
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has self-intersection C? = 8 since it is a double cover of both E and E’
and its class is equal to 2(E + E').

o If the genus g(C') = 2 (three such points) then the image of C'
in its Jacobian J(C') has self-intersection 2. Consider the map

v:J(C)—» A=ExFE.

and let n be its degree. The preimage v—'(C) C J(C) has
self-intersection 8n. On the other hand, its homology class is
equal to n translations of C, hence has self-intersection 2n?
thus n = 4. Moreover, ker(v) = Z/2 ® Z/2, generated by
the pairwise differences of preimages of points {0, 1, 00}. Thus,
J(C) is 4-isogenous to A := E x E’ and v(C) is singular, with
nodes exactly at the preimages of {0,1,00} C Ap:. Consider
a point ¢ € C' C J(C) and assume that v(c) has order m with
respect to 0 € A. Then ¢ has order m or 2m in J(C), with
respect to 0 € J(C). Hence the corresponding curve Y (m) C
P! x P! (viewed as a moduli space of pairs E, E’) is given as
an intersection of genus 2 curves containing a point of order m
or 2m, respectively. This is a locus in the moduli space My of
genus 2 curves.

o If g(C) = 3 (two such points) then there are three quotients
of C' which are elliptic curves Fy, Fs, F5, with involutions o; €
Z7.]2 & 7.2 fixing 4 points on E; which are invariant under the
hyperelliptic involution given by complement to ;. The kernel
of

VlJ(C)HE]XEk

contains E;, for 4,7, k € {1,2,3}.

o If g(C') = 4 then Cis C/o; = E;,i = 1,2 and C/oy09 = '
where g(C") = 2 and there are exactly two ramification points
on C'.

o If g(C) = 5 then C/oy09 = C' is a hyperelliptic curve of genus
3 and the covering is an unramified double cover.

Remark 10. Assume that there is b € P! and a subset S C C(k) such
that S+bC C C E x E’. Then

#S<8=C2=CN(C+b);

hence we have at most 8 points ¢; € P! such that for z-coordinates
c;+1b = ¢;+2b, where the summation +; corresponds to the summation
on the first curve and +, on the second.
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Remark 11. The construction can be extended to products of more
than two elliptic curves. We may consider

W::ﬁm:A::HEiHP::H]P’g.
i=1

The ramification divisor of 7 : A — P is a union of products of pro-
jective lines. Let A = P! C P be the diagonal, there exists canonical
identifications §; : P} ~ A. If p € A is contained in §;(m;( E;[oc])), for
all 7, then the preimage of p in A is contained in the preimage of the
diagonal. This is a curve of genus at least 2, provided there exist E;, E;
with 7; # r;. Then the set of such p is finite. In particular, if £ is
defined over a number field k£ and p is defined over a proper subfield,
then p is also in the image torsion points of v(E), where v is a Galois
conjugation. Hence, the existence of torsion points with z-coordinate
in a smaller field has a geometric implication.

We expect the following version of Conjecture 2:

Conjecture 12 (Effective Finiteness-EFC-1I). There exists a constant
¢ > 0 such that for every elliptic curve E,. over a number field and every

v € PGL2(Q) with v(r) # r we have
o (Buloc]) (17 (B [oc]) < c.

4. FIELDS GENERATED BY ELLIPTIC DIVISION

In this section, we explore properties of subsets of P'(k) generated
by images of torsion points, following closely [1]. For

ro={ry,ro,r3, 74} C Pl(E),

a set, of four distinct points, let E, be the corresponding elliptic curve
defined in the Introduction. Let

L, c P'(k)

be the smallesg subset such that for every E,, with ' C I:,, we have
WT/(ETI [OO]) Q Lr.
Theorem 13. [1] Let k be a number field. For every a € k\{0, £1, +i},
and
(1) r=r1.:={a,—a,at, —a"'} C P'(k)
the set

L, := L, \{oco}
15 a field.
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At first glance, it is rather surprising that such a simple and nat-
ural construction, inspired by comparisons of z-coordinates of torsion
points of elliptic curves, produces a field. The conceptual reason for
this is the rather peculiar structure of 4-torsion points of elliptic curves:
translations by 2-torsion points yields, upon projection to P!, two stan-
dard commuting involutions on P!(k), which allow to define addition
and multiplication on L,.

We may inquire about arithmetic and geometric properties of the
fields L,. For a € k we let k(a) C k denote the smallest subfield
containing a. We have:

e For every a € k, the field L, is a Galois extension of Q(a).

e For every k of characteristic zero, L, contains Q%, the maximal
abelian extension of Q.

e The field L, where ( is a primitive root of order 8, is contained
in any field L,. Indeed, the corresponding elliptic curve E has
ramification subset

{¢,¢%,¢,¢7)
which is projectively equivalent to {1,—1,i,—i} C w(E[4]).
Since m(E[4]) projectively does not depend on the curve E,
we obtain that L¢ C L, for all a. The same holds for L, where
E, is isomorphic to Ej3 (elliptic curve with an automorphism of
order 3).

e The field L, is contained in a field obtained as an iteration of Ga-
lois extensions with Galois groups either abelian or PGLy(F,),
for various prime powers q. Is L, equal to such an extension?
As soon as the absolute Galois group is not equal to a group of
this type, e.g., for a number field k, we have

L, C k.

e Let a,a’ € Q be algebraic numbers such that Q(a) = Q(d').
Then L, = L. Varying a € QQ, we obtain a supply of interest-
ing infinite extensions L,/Q.

The rest of this section is devoted to the proof of Theorem 13.
Proof. Let 7o := {0,00,1,—1} and put L := L,, \ {co}. Let
=, E, — P!
be the elliptic curve with ramification in r,. Since
{0,00,£1} C w(E,, [4)),
we have L C L, for all a. We first show that L is a field.



10 FEDOR BOGOMOLOV, HANG FU, AND YURI TSCHINKEL

Step 1. L\{0} is a multiplicative group. Indeed, for any b € L\{0},
we have

ro :=1{0,1,—1,00} =b""-{0,b,—b,00} =: 7,
and hence
L,=b-L,=b-L.
Since b=, —b~! € L we also have {0,1,—1,00} C b- L. Thus L C bL.
Similarly, L C b~!- L or b- L C L, which implies L = bL. Thus for any
a,b € L we have ab € L, and since the same holds for ab™t, b # 0, we
obtain L\ {0} C k*.

Step 2. Let
Auty = {y € PGLy(k) |v(L) C L}

be the subgroup preserving L. It is nontrivial, since it contains L\ {0}
as a multiplicative subgroup, together with the involution x — z~!.
Consider
Tir— (z—1)/(x+1).

It is an involution with 7;(c0) = 1,7;(0) = —1 and hence 7, is coming
from r:={0,1,—1,00}. Thus it maps L into L and vy, € Auty,

Consider any pair of distinct elements {b,c} C L: it can be trans-
formed into {0, 1} by an element from Auty. If b # 0,00 then, divid-
ing on b, we obtain {1,c¢/b} and v1({1,¢/b}) = {0,1}. If b = 0 and
¢ # oo then, dividing on ¢, we obtain {0,1}. If b = 0,¢ = oo then
71 ({0,00}) = {—1, 1} and we reduce to the first case.

Step 3. L is closed under addition. We show that v : v — x + 1
is contained in Auty: by Step 2, there exists a g € Aut; which maps
{—1,00} to {0,00} and hence {—1,0,00} to {0,b, 00}, for some b €
L\ {0}. Then b~'g € Aut; maps {—1,0,00} to {0,1,00} and hence
b~'g(z) = v(x) = x+1. Thus for any a € L we have a+b = b(a/b+1) €
L, which shows that L is an abelian group.

Now let us turn to the general L,.

Step 4. Note that L C L, and that L, is closed under taking square
roots. Indeed for any a € L and E, with r := {0,1,a,00}, we have
Vva € m,.(E,[4]) and hence v/a € L,. Furthermore, for any a,b € L, we
have vab € L,. Indeed, consider the curve E, with r = {0,a,b, c0}.
Then Vab € 7(E,[4]), since the involution z — ab/z is contained in
the subgroup Z/2 @ Z/2 corresponding to the two-torsion on E,, its
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invariant points are in m,(E,[4]). Iterating, we obtain that

1

N/ by by, € Ea\{oo} for all b, € za\{oo}

Step 5. For all b € L,,c € L we have vVb+c¢ € L,. Indeed, for
¢ € L we know that there is a solution d € L of the quadratic equation
d?> + d+ ¢ = 0. Consider the curve E, for 7 := {o0,b,d,d + 1}. Then

d+Vb—den(E.[4])
and hence d = vb—d € L,. Thus

VWVb—d+d(Vo—d—d)=Vh—@ —d=Vb+tce L,

Step. 6. Let P, € L[z] be a monic polynomial of degree m and let
b € L,. Then there is an N(m) € N such that

N Pr(d) € L.

Indeed, we have
P.b) =cmn+blcm1+blcmot-)-).

The statement holds for m = 1 by Step 4. Assume that it holds for
m —1. Then ¢t +b(cmo+---) = d*""™ ™" for some d € L,. We can
then write

P™(b) = ¢y + bd*"" 7Y,
by taking t = /b and Uy, = V" V/C,, we obtain

Pm<b) = H(t + Clum>7

where t € L,, un, € L and (' runs through the roots of unity of order
4N(m—1)'

By Steps 4 and 5, we obtain that 474V(™=D_th root of P, (b) is
contained in L,, thus the result holds for N(m) = 4V(m=1)

Step 7. Let b € L, be any algebraic element over L. Then the
field L(b) is a finite extension of L and there is an n € N such that any
x € L(b) can be represented as a monic polynomial of b with coefficients
in L of degree < n. For such n we define a power 4" such “V/x € L,,
but then any element in L(b) is in L,.

O
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Remark 14. In the proof we have only used points in w(E[4]). There-
fore, for any subset D C N containing 4 we can define L, p, as the
smallest subset containing all 7(F[n]) for all n € D and all elliptic
curves obtained as double covers with ramification in L, p. It will also
be a field.

For example, if D = {3,4} then L, p is exactly the closure of L,
under abelian degree 2 and 3 extensions, since PGLy(Fy) = &3 and
PGLy(F3) = &4 and both groups are solvable with abelian quotients
of exponent 3, 2.

On (Sym*(P'(Q)) \ A)/PGLy(Q) we can define a directed graph
structure DGS, postulating that
ry, = {217 2924 %3, Z4} — Tw = {w17 Wy, W3, w4}

if there is an elliptic curve E’ isogeneous to FE,, such that r, is pro-
jectively equivalent to a subset in w(E’[oc]). Any path in the graph is
equivalent to a path contained in (Sym*(P'(L(E)))\ A)/PGLy(Q), for
some FE. The graph contains cycles, periodic orbits, and preperiodic
orbits, i.e., paths which at some moment end in periodic orbits.

Question 15. Consider the field Ly = L,, for o = {0,1, —1,00}. Does
(Sym*(P'(L(E))) \ A)/PGLy(L(E))

consist of one cycle in DGS? Note that any path beginning from r
extends to a cycle (in many different ways) since rq is PGLgy-equivalent
to a four-tuple of points of order 4 on any elliptic curve.

Remark 16. In Step 7, we have used algebraicity of L,/L, and we do
not know how to extend the proof to geometric fields. What are the
properties of L, in geometric situations, when a is transcendental over

k?

We have seen in the proof that the field L, is closed under extensions
of degree 2. We also have:

Lemma 17. For any b € L,, we have V/b € L,.
Proof. Consider a curve E, with r := {b,v/b, —V/b,00}. Its 3-division

polynomial takes the form:
f3(x) = 32 — 4ba® — 6ba” + 12b%2 — 4b° — b°.

We can represent it as a product: 3 []._, (z — x;), where the set {z;} C
L, is equal w(E,[3]). The corresponding cubic resolvent

re(x) == H(x — (@iz; + zpay)),
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where (i, 7), (k,1) is any splitting into pairs of indices among 1,2, 3, 4.
In terms of b, we have

re(z) = o* + 202” + 4b%x /3 + 8b° /3 — 128b* /27 + 64b° /27.

Since the set {z;} is projectively equivalent to {0, 1, (3, (3}, we can see
that the cubic polynomial above has the form C(z® + B), for some
constants C, B. It can be checked that

re(2b(2x — 1)/3) = (4b/3)3(2® + (b — 1)?).

After a projective map in PGLs(L,) we can transform the the elements
z;x; + xpr; into —/ (b — 1)2. Hence —{/(b—1)? € L,, for any b € L,;
since L, is a field closed under 2-extensions we obtain the claim. [

This raises a natural
Question 18. Is L, is closed under taking roots of arbitrary degree?

If we add G,, to the set of allowed elliptic curves then the answer
is affirmative. However, there may exist a purely elliptic substitute for
obtaining roots of prescribed order.

Corollary 19. If the j(E) € L, then any set {b,—b, b=, —b~1} with
ps((b, =007, —b71)) = j§(E) is contained in L,. Note that such b are
solutions of a cubic equation. Thus L, depends only on the curve E
and we will write L(E).

It is also easy to see that L(F) = L(E') if E and E’ are isogenous.

5. INTERSECTIONS
In this section we present further results concerning intersections
1 (Ex[oc]) N o (E[oc])

for different elliptic curves E7, F5 and provide evidence for the Effective
Finiteness Conjecture 2.

Proposition 20. Assume that
(2) Wl(El[ZH) :WZ(E2[4D = {Ovla_Li —i,OO}
and that

#{m (E1[3]) N ma(Es[3])} > 2.
Then vy = re and Ey = E».
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Proof. By our assumption (2), E; are given by the equation
y? = ot —ta? + 1.
With a; defined by
ri = {a;, —a;, 0, —a; '},
we have
t;=a; +a; >
We assume that 7;(e;) = a;. In this case, points 7m;(E;[3]) ¢ Q C P!
are the roots of
(3) o+ 2az® — (2/a)r — 1 =0
or, equivalently,
22%a* + (2* — 1)a — 2z.
Ifx,y € ma, (Eq, [3]) NTa, (Fa,[3]), where 2 # y and a; # as, then a; and
ay are the roots of 2z3a% + (2* — 1)a — 2 and of 2y%a® + (y* — 1)a — 2y,
that means that their coefficients are proportional
20 at—1 2
28 yt—-1 =2y

Then, on the one hand, 23/y®> = x/y implies > = y*, and hence
x = —y, by our assumption that x # y. On the other hand,

v/y=-1=@"-1/(y' - 1) =1,

a contradiction. O

Given any = € Q we obtain a; = a;(z), i = 1,2, which satisfy (3).
Then the resulting elliptic curves E; satisfy (2) and we have

#{mi(E1[3]) Nma(ER[3])} = 1.
unless
(z* =124 162* =2 + 142 +1=0 or a*=-T+4V3
Moreover,
(4) #{Tar (Eay [00]) M Ty (Egy[00]) } = 6 + 4n > 10,

where 6 is the number of images of common points of order 4 (from
Equation 2) and 4 stands for the size of (Z/2 & Z/2)-orbit of a point
in P'. However, it may happen that the inequality in (4) is strict.
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Ezample 21. Consider the polynomial f5(z,a) defined in [2, Theorem
18]). Its roots are exactly m,(F,[5]). It has degree 12 with respect to
x and 6 with respect to a. The polynomial f3(x,a) has degree 2 with
respect to a and generically has exactly two solutions a;(z), as(z), for
any given z. We want also f5(v,a;(z)) = 0 for some v and z. This is
equivalent to f5(v,a) being divisible by f3(z,a), as polynomials in a.
Writing division with remainder

fs(v,a) = g(a)f3(z,a) + C(v, 2)a + C'(v, 2)

for some explicit polynomials C, and C’, which have to vanish. This
condition is gives an explicit polynomial in u, which is divisible by a
high power of u and (u — 1). Excluding the trivial solutions u = 0, 1,
and substituting ¢t = u* we obtain the equation

32u%* + 1369u%° + 18812 + 906461 + 18812u® + 1369u* + 32
= 32t% 4+ 1369t + 18812t* + 90646t> + 18812t + 1369t + 32

1 1 1
= 3 {32 <t3 + t—3) + 1369 <t2 + ﬁ) + 18812 (t + ¥> + 90646]

Since t # 0, we have

1\? 1\? 1
- 32 (t+¥> + 1369 (t+¥> 1+ 18716 (t+;)+87908

= 3213 + 1369r% + 187167 + 87908
=: f(r)

Computing the discriminant of this cubic polynomial, we find that it
has no multiple roots. Its solutions give rise to pairs u, v such that for
ai = ai(u), as := as(u) we have

fs(v,a;) = f3(u,a;) =0
and hence
#{ar (B, [00]) N Ty (B, [00]) } = 14.
The symmetry of the above equation reduced the problem to a cu-
bic equation with coefficients in Q, followed by a quadratic equation.

The roots can be expressed in closed form and hence we get explicit
description for the 24 roots wu.

The same scheme can be applied to points of higher order. Indeed we
have a polynomial f,(u, z) = 0 which has increasing degree with respect
to u, and the existence of a pair u, v such that f,(v,z) = 0 is divisible
by f3(u,x) depend on the divisibilty of f,(v,x) by f3(u,z). Using long
division we obtain two polynomials Cp,(u,v) and C,(u,v) so that
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their common zeroes (u,v) correspond to pairs (u,v) with f5(u,z) =0
and f,(v, z) = 0 simulaneously.

Ezample 22. Applying this scheme to points of order 3 and 7 (or 3 and
11, 3 and 13, 3 and 17) we obtain that the corresponding resultant has
roots of multiplicity three which implies the existence of three points
v for a given u with f3(u,x) =0 and f7(v,x) = 0 and hence

{1 (Er[00]) N ma(Bafoc])} = 6+ 16 = 22.

Since we have every reason to expect polynomials Cp,(u,v) and
C1n(u,v) to have increasing number of intersection points with the
growth of n we are led to the following conjecture:

Conjecture 23. There is an infinite dense subset of points a € P!
such that

To(Ea[00]) N7y (Egy[o0]) > 14
with
Ta(Ea[3]) N ey (Eay[3]) # 0.
Note that in all such cases the fields L, = L,,. Numerical evidence

suggests that the conjectured inequality may even hold with 22 instead
of 14.

6. GENERAL WEIERSTRASS FAMILIES

The family of elliptic curves considered in Section 5 is the most
promising for obtaining large intersections of torsion points. In this
section, we consider other families where the intersections tend to be
smaller, following [2].

We consider elliptic curves E, with the same

Ta(eq) = 00 € P
These are given by their Weierstrass form
(5) y* = 2 + agr® + aux + ag.

Using formulas in, e.g., [3, III, Section 2], we write down (modified)
division polynomials f, ,, whose zeroes are exactly m,(E,[n]):

_ r_s t,dn)—(r+2s+3t)
foa(@) = § Crsi(n)asajage ,
0<r,s,t,r+2s+3t<d(n)

where d(n) and the coefficients ¢, s¢(n) can be expressed via totient
functions Jg(n), with d(n) = Jy(n)/2, if n > 2, and d(2) = 3 (see [2]).
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Lemma 24. Let Ey, Ey be elliptic curves in generalized Weierstrass
form (5) such that, for some n > 1 we have

m(E1[n]) = m2(Ez[n]).

Then E; ~ FEs.
Proof. The statement is trivial for n = 2. For n > 2, we have d(n) > 4,
the comparison of division polynomials implies that the terms

ahajal, 7T+2s5+3t<3
must be equal. For

(r,s,t) =(0,0,1),(0,1,0),(1,0,0)
we find equality of coefficients a; for both curves. O
Often, already the existence of nontrivial intersections

(6) m1(Er[n]) N ma(Ea[n]) = 1

leads to the isomorphism of curves E;, F5. For example, if both curves
are defined over a number field k& and the action of the absolute Galois
group Gy, on 71 (FE[n]) and 7(Ey[n]) is transitive then (6) implies that
FE, ~ E5. For many, but not all, n € N, the equality of totient functions
Jo(n) = Jy(m), for some m € N, implies n = m.

Ezample 25. There exist many tuples (m,n) for which

Jo(m) = Jo(n) and  Jy(m) # Ji(n).
For example,

Jo(5) = Jo(6)  but  Ji(5) =4, Ji(6)=2.
We also have
J2(35) = J5(40) = J5(42), while J;(35) = 24, J;(40) = 16, J;(42) = 12.
On the other hand, we have
Jo(15) = J5(16) =192  and  J;(15) = J1(16) = 8.

These results indicate a relation of our question to Serre’s conjecture.
He considered the action of the Galois group on torsion points of an
elliptic curve E defined over a number field k. If E does not have
complex multiplication, then the image of the absolute Galois group
G, is an open subgroup of GLQ(Z), i.e., of finite index.

Conjecture 26 (Serre). For any number field k there exists a constant
c = c(k) such that for every non-CM elliptic curve E over k the index

of the image of the Galois group Gy, in GLQ(Z) s smaller than c.
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In particular, for £ = Q he conjectured that for primes ¢ > 37 the
image of Gy, surjects onto PGLy(Z,). Thus, modulo Serre’s conjecture,
our conjecture holds for curves defined over Q.

Proposition 27. Assume that
m(Er[n]) = m2(E2lm]), n#m.

Then k(E[n]) contains Q((q), where d = lem(m,n), the least common
multiple of m,n.

Proof. By Serre, we have

Q(¢n) CE(E[n]) and  Q((n) C k(E[m])
as subfields of index at most 2. O

Corollary 28. Assume that k does not contain roots of 1 of order
divisible by n,m. Then k(E[n]), k(E(m)) contain a cyclotomic subfield
of index at most 2.

This provides a strong restriction on intersections of images of torsion
points for elliptic curves over Q, or over more general number fields k
with this property. This yields a restriction on fields k(F[n]), since
(n,m) > 4, for all (n,m) with Jy(n) = Jo(m).
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