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Abstract. We study effective versions of unlikely intersections of
images of torsion points of elliptic curves on the projective line.

To Nigel Hitchin, with admiration.

Introduction

Let k be a field of characteristic 6= 2 and k̄/k an algebraic closure of
k. Let E be an elliptic curve over k, presented as a double cover

π : E → P1,

ramified in 4 points, and E[∞] ⊂ E(k̄) the set of its torsion points. In
[1] we proved:

Theorem 1. If E1, E2 are nonisomorphic elliptic curves over Q̄, then

π1(E1[∞]) ∩ π2(E2[∞])

is finite.

Here, we explore effective versions of this theorem, specifically, the
size and structure of such intersections (see [5] for an extensive study
of related problems). We expect the following universal bound:

Conjecture 2 (Effective Finiteness–EFC-I). There exists a constant
c > 0 such that for every pair of nonisomorphic elliptic curves E1, E2

over C we have
π1(E1[∞]) ∩ π2(E2[∞]) < c.

We say that two subsets of the projective line

S = {s1, . . . , sn}, S ′ := {s′1, . . . , s′n} ⊂ P1(k̄)

are projectively equivalent, and write S ∼ S ′, if there is a γ ∈ PGL2(k̄)
such that (modulo permutation of the indices) si = γ(s′i), for all i.

Let E be an elliptic curve over k, e ∈ E the identity, and

E
ι−→ E

x 7→ −x
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the standard involution. The corresponding quotient map

π : E → E/ι = P1

is ramified in the image of the 2-torsion points of E(k̄). Conversely, for

r := {r1, r2, r3, r4} ⊂ P1(k̄),

the double cover
πr : Er → P1

with ramification in r defines an elliptic curve; given another such r′,
the curves Er and Er′ are isomorphic (over k̄) if and only if r ∼ r′, in
particular, the image of 2-torsion determines the elliptic curve, up to
isomorphism.

Let Er[n] ⊂ Er(k̄) be the set of elements of order exactly n, for n ∈ N.
The behavior of torsion points of other small orders is also simple:

πr(Er[3]) ∼ {1, ζ3, ζ2
3 ,∞},

where ζ3 is a nontrivial third root of 1, and

πr(Er[4]) ∼ {0, 1,−1, i,−i,∞}.
In particular, up to projective equivalence, these are independent of Er.
However, for all n ≥ 5, the sets πr(Er[n]), modulo PGL2(k̄), do depend
on Er, and it is tempting to inquire into the nature of this dependence.

In this note, we study πr(Er[n]), for varying curves Er and varying
n. Our goal is to establish effective and uniform finiteness results for
intersections

πr(Er[n]) ∩ πr′(Er′ [n′]), n, n′ ∈ N,
for elliptic curves Er, Er′ , defined over k. We formulate several conjec-
tures in this direction and provide evidence for them.

The next step is to ask: given elliptic curves Er, Er′ over k̄, when is

r ⊂ πr′(Er′ [∞])?

We modify this question as follows: Which minimal subsets L̃ ⊂ P1(k̄)
have the property

r ⊂ L̃ ⇒ πr(Er[∞]) ⊆ L̃?

The sets L̃ carry involutions, obtained from the translation action of
the 2-torsion points of E on E, which descends, via π, to an action on
P1 and defines an embedding of Z/2⊕Z/2 ↪→ PGL2(k̄). It is conjugated
to the standard embedding of Z/2⊕ Z/2, generated by involutions

z 7→ −z and z 7→ 1/z,

acting on L̃. This observation is crucial for the discussion in Section 4,
where we prove that, modulo projectivities, L := L̃ \ {∞} are fields.
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1. Generalities

Let j : E → P1 be the standard universal elliptic curve, with j the
j-invariant morphism. Consider the diagram

Eλ
ι //

⊂
Pλ

⊂

E ι //

j
��

P
j

��
P1 P1

assigning to each fiber Eλ := j−1(λ) the quotient Pλ = π(Eλ) ' P1, by
the involution ι : x 7→ −x on Eλ. (This is well-defined even for singular
fibers of j.)

Note that P → P1 is a PGL2-torsor. Taking fiberwise n-symmetric
product:

Pλ 7→ Symn(Pλ)

we have associated PGL2-torsors

jn : Pn = Symn(P)→ P1.

Taking PGL2-invariants, we have a canonical projection

Symn(Pλ)→M0,n(Pλ) 'M0,n,

to the moduli space of n-points on P1. The associated PGL2-torsor is
trivial; fixing a trivialization we obtain a morphism

µn : Pn →M0,n

For everyN ∈ N, we have the modular curveX(N)→ P1, parametriz-
ing pairs of elliptic curves together with N -torsion subgroups. The in-
volution ι induces an involution on every X(N), we have the induced
quotient

X(N)→ Y (N) := X(N)/ι.

Since the family j : E → P1 has maximal monodromy SL2(Z), the
curves X(N) and Y (N) are irreducible. We have a natural embedding
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Y (N) ↪→ P . Put

Y := ∪N∈NY (N)

and consider

Symn(Y ) ↪→ Pn →M0,n.

Note that Symn(Y ) is a union of infinitely many irreducible curves,
each corresponding to an orbit of the action of the monodromy group
PGL2(Z) on the generic fiber of the restriction of jn to Symn(Y ).
Let Yn,ω ⊂ Symn(Y ) be an irreducible component corresponding to
a PGL2(Z)-orbit ω (for the monodromy action, as above). We now
formulate conjectures about µn, for small n, which guide our approach
to the study of images of torsion points.

Conjecture 3. The map

µ4 : Y4,ω →M0,4 = P1

is finite surjective, for all but finitely many ω.

Conjecture 4. The map

(µ4, j) : Y4,ω →M0,4 × P1

is a rational embedding, for all but finitely many ω.

Conjecture 5. The map

µ5 : Y5,ω →M0,5

is a rational embedding, for all but finitely many ω. Moreover, if for
some distinct orbits ω and ω′ the corresponding images µ5(Y5,ω) and
µ5(Y5,ω′) are curves, then they are different.

Conjecture 6. The map

µ6 : Y6,ω →M0,6

is a rational embedding, for all but finitely many ω. Moreover, if
µ6(Y6,ω) is a curve then there exist at most finitely many ω′ such that

• µ6(Y6,ω′) is a curve and
• µ6(Y6,ω) ∩ µ6(Y6,ω′) 6= ∅.

2. Examples and evidence

We now discuss examples and evidence for Conjectures in Section 1.

Example 7. We have

• µ4(Sym4(Y (2)) 'M0,4 = P1,
• µ4(Sym4(Y (3)) is a point in M0,4.
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Consider Sym4(Y (4)). Note that π(E[4]) = {0, 1,−1, i,−i,∞} is an
orbit of the symmetric group S4, acting on P1. The pairs

(0,∞), (1,−1), (i,−i)
are pairs of stable points for 3 even involutions in S4, and the action of
S4 is transitive on pairs and inside each pair. There are two different
S4-orbits of 4-tuples: either the orbit contains two pairs of vertices
such as (0,∞), (1,−1), or a pair and two points from different pairs
(0,∞), (1, i). Thus Sym4(Y (4)) has two components which project to
different points modulo PGL2; therefore, there exist exceptional orbits
ω such that µ4(Y4,ω) is a point.

Lemma 8. If µ4(Y4,ω) is a point then all cross ratios of 4-tuples of
points parametrized by Y4,ω are constant.

Proof. The map µ4 can be viewed as a composition

(P1)4 cr−→ (Z/2⊕ Z/2)\(P1)4/PGL2 = P1
1 → S3\P1

1.

Thus we have a diagram

(P1)4 cr //

��

(Z/2⊕ Z/2)\(P1)4/PGL2

S3

��
S4\(P1)4 // S4\(P1)4/PGL2

Note that any irreducible Y4,ω lifts to a union of connected components
Y4,ω,i ⊂ (Z/2 ⊕ Z/2)\Y 4, where cross-ratio is well defined. Thus if µ4

is a rational function of cross-ratio on any four-tuple of points and if
µ4 is constant then the cross-ratio is also constant. �

Proposition 9. There exist orbits ω such that

µ4 : Y4,ω → P1

is surjective.

Proof. The singular fiber E∞ := j−1(∞) is an irreducible rational curve
with one node p∞. The group scheme ∪d|nE [d], whose generic fiber is
isomorphic to Z/n ⊕ Z/n, specializes to {ζ in} ⊂ Gm = E∞ \ p∞. Let
E∞[n] be the specialization of E [n]; then

• E∞[n] ⊂ {ζ in},
• there exists a subgroup scheme Wn ' Z/n ⊂ Z/n⊕Z/n in the

group scheme of points killed by n, specializing to E∞, while
the complemenary branches specialize to p∞.

Taking the quotient by ι, we find that ((Z/n⊕Z/n)\Z/n)/ι specializes
to 0 in the fiber P1

∞ and all other points specialize to subset in (Z/n)/ι;
the limit depends on the selected direction of specialization.
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Assume that we have distinct points {z1, z2, z3, z4} ⊂ π(E[n]), for a
smooth fiber E of E , such that

z1, z2 ∈ Wn/ι and z3, z4 /∈ Wn/ι.

The z1, z2 can be specialized to different nonzero points in E∞/ι, and
z3, z4 will specialize to 0.

Assume that µ4 is constant, i.e., the cross-ratio is constant. Since
z3, z4 will specialize to 0, the cross-ratio equals 1. Then

(z1 − z3)(z2 − z4) = (z2 − z3)(z1 − z4),

and

z1(z3 − z4) = z2(z3 − z4).

Near the special fiber, z3 6= z4, thus z1 = z2, contradiction. Thus on
orbits of this type, µ4 is not constant, hence surjective. �

3. Geometric approach to effective finiteness

Let E := Er, E
′ := Er′ be elliptic curves. Consider the diagram

C

��

// E × E ′

��
∆ // P1 × P1

where C ⊂ E × E ′ be the fiberwise product over the diagonal ∆ ⊂
P1 × P1. If r 6= r′ then C has genus ≥ 2. By Raynaud’s theorem [4],

C(k̄) ∩ E[∞]× E ′[∞]

is finite, since it is the preimage of π(E[∞])∩π(E ′[∞]) ⊂ ∆, the latter
set is also finite. This finiteness argument appeared in [1].

Consider the curves C occurring in this construction. We have a
diagram

C

σ′

��

σ // E

E ′

where σ, σ′ are involutions with fixed points c1, c2 and c′1, c
′
2, respec-

tively. Assume that

r ∩ r′ = {0, 1,∞}.
Then the product involution σσ′ on C ⊂ E×E ′ has fixed points in the
6 preimages of the points {0, 1,∞} ⊂ ∆P1 ⊂ P1 × P1 (diagonally), i.e.,
is the hyperelliptic involution. Thus there is an action of Z/2⊕Z/2 on
C, induced by the covering maps π and π′. The curve C ⊂ A = E×E ′
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has self-intersection C2 = 8 since it is a double cover of both E and E ′

and its class is equal to 2(E + E ′).

• If the genus g(C) = 2 (three such points) then the image of C
in its Jacobian J(C) has self-intersection 2. Consider the map

ν : J(C)→ A = E × E ′.

and let n be its degree. The preimage ν−1(C) ⊂ J(C) has
self-intersection 8n. On the other hand, its homology class is
equal to n translations of C, hence has self-intersection 2n2,
thus n = 4. Moreover, ker(ν) = Z/2 ⊕ Z/2, generated by
the pairwise differences of preimages of points {0, 1,∞}. Thus,
J(C) is 4-isogenous to A := E × E ′ and ν(C) is singular, with
nodes exactly at the preimages of {0, 1,∞} ⊂ ∆P1 . Consider
a point c ∈ C ⊂ J(C) and assume that ν(c) has order m with
respect to 0 ∈ A. Then c has order m or 2m in J(C), with
respect to 0 ∈ J(C). Hence the corresponding curve Y (m) ⊂
P1 × P1 (viewed as a moduli space of pairs E,E ′) is given as
an intersection of genus 2 curves containing a point of order m
or 2m, respectively. This is a locus in the moduli space M2 of
genus 2 curves.
• If g(C) = 3 (two such points) then there are three quotients

of C which are elliptic curves E1, E2, E3, with involutions σi ∈
Z/2⊕ Z/2 fixing 4 points on Ei which are invariant under the
hyperelliptic involution given by complement to σj. The kernel
of

νi : J(C)→ Ej × Ek
contains Ei, for i, j, k ∈ {1, 2, 3}.
• If g(C) = 4 then C is C/σi = Ei, i = 1, 2 and C/σ1σ2 = C ′

where g(C ′) = 2 and there are exactly two ramification points
on C ′.
• If g(C) = 5 then C/σ1σ2 = C ′ is a hyperelliptic curve of genus

3 and the covering is an unramified double cover.

Remark 10. Assume that there is b ∈ P1 and a subset S ⊂ C(k̄) such
that S + b ⊂ C ⊂ E × E ′. Then

#S ≤ 8 = C2 = C ∩ (C + b);

hence we have at most 8 points ci ∈ P1 such that for x-coordinates
ci+1b = ci+2b, where the summation +1 corresponds to the summation
on the first curve and +2 on the second.
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Remark 11. The construction can be extended to products of more
than two elliptic curves. We may consider

π :=
r∏
i=1

πi : A :=
∏

Ei → P :=
∏

P1
i .

The ramification divisor of π : A → P is a union of products of pro-
jective lines. Let ∆ = P1 ⊂ P be the diagonal, there exists canonical
identifications δi : P1

i ' ∆. If p ∈ ∆ is contained in δi(πi(Ei[∞])), for
all i, then the preimage of p in A is contained in the preimage of the
diagonal. This is a curve of genus at least 2, provided there exist Ei, Ej
with ri 6= rj. Then the set of such p is finite. In particular, if E is
defined over a number field k and p is defined over a proper subfield,
then p is also in the image torsion points of γ(E), where γ is a Galois
conjugation. Hence, the existence of torsion points with x-coordinate
in a smaller field has a geometric implication.

We expect the following version of Conjecture 2:

Conjecture 12 (Effective Finiteness–EFC-II). There exists a constant
c > 0 such that for every elliptic curve Er over a number field and every
γ ∈ PGL2(Q̄) with γ(r) 6= r we have

πr(Er[∞]) ∩ πγ(Eγ[∞]) < c.

4. Fields generated by elliptic division

In this section, we explore properties of subsets of P1(k̄) generated
by images of torsion points, following closely [1]. For

r := {r1, r2, r3, r4} ⊂ P1(k̄),

a set of four distinct points, let Er be the corresponding elliptic curve
defined in the Introduction. Let

L̃r ⊂ P1(k̄)

be the smallest subset such that for every Er′ with r′ ⊆ L̃r we have
πr′(Er′ [∞]) ⊆ L̃r.

Theorem 13. [1] Let k be a number field. For every a ∈ k\{0,±1,±i},
and

(1) r = ra := {a,−a, a−1,−a−1} ⊂ P1(k)

the set

La := L̃ra\{∞}
is a field.
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At first glance, it is rather surprising that such a simple and nat-
ural construction, inspired by comparisons of x-coordinates of torsion
points of elliptic curves, produces a field. The conceptual reason for
this is the rather peculiar structure of 4-torsion points of elliptic curves:
translations by 2-torsion points yields, upon projection to P1, two stan-
dard commuting involutions on P1(k̄), which allow to define addition
and multiplication on La.

We may inquire about arithmetic and geometric properties of the
fields La. For a ∈ k̄ we let k(a) ⊆ k̄ denote the smallest subfield
containing a. We have:

• For every a ∈ k̄, the field La is a Galois extension of Q(a).
• For every k of characteristic zero, La contains Qab, the maximal

abelian extension of Q.
• The field Lζ , where ζ is a primitive root of order 8, is contained

in any field La. Indeed, the corresponding elliptic curve E has
ramification subset

{ζ, ζ3, ζ5, ζ7},
which is projectively equivalent to {1,−1, i,−i} ⊂ π(E[4]).
Since π(E[4]) projectively does not depend on the curve E,
we obtain that Lζ ⊂ La, for all a. The same holds for La where
Ea is isomorphic to E3 (elliptic curve with an automorphism of
order 3).
• The field La is contained in a field obtained as an iteration of Ga-

lois extensions with Galois groups either abelian or PGL2(Fq),
for various prime powers q. Is La equal to such an extension?
As soon as the absolute Galois group is not equal to a group of
this type, e.g., for a number field k, we have

La ( k̄.

• Let a, a′ ∈ Q̄ be algebraic numbers such that Q(a) = Q(a′).
Then La = La′ . Varying a ∈ Q̄, we obtain a supply of interest-
ing infinite extensions La/Q.

The rest of this section is devoted to the proof of Theorem 13.

Proof. Let r0 := {0,∞, 1,−1} and put L := L̃r0 \ {∞}. Let

π = πra : Era → P1

be the elliptic curve with ramification in ra. Since

{0,∞,±1} ⊆ π(Era [4]),

we have L ⊆ La, for all a. We first show that L is a field.
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Step 1. L\{0} is a multiplicative group. Indeed, for any b ∈ L\{0},
we have

r0 := {0, 1,−1,∞} = b−1 · {0, b,−b,∞} =: rb

and hence

Lrb = b · Lr0 = b · L.
Since b−1,−b−1 ∈ L we also have {0, 1,−1,∞} ⊂ b · L. Thus L ⊆ bL.
Similarly, L ⊆ b−1 ·L or b ·L ⊆ L, which implies L = bL. Thus for any
a, b ∈ L we have ab ∈ L, and since the same holds for ab−1, b 6= 0, we
obtain L \ {0} ⊆ k̄×.

Step 2. Let

AutL := {γ ∈ PGL2(k̄) | γ(L̃) ⊆ L̃}

be the subgroup preserving L̃. It is nontrivial, since it contains L \ {0}
as a multiplicative subgroup, together with the involution x 7→ x−1.
Consider

γ1 : x 7→ (x− 1)/(x+ 1).

It is an involution with γ1(∞) = 1, γ1(0) = −1 and hence γ1 is coming
from r := {0, 1,−1,∞}. Thus it maps L into L and γ1 ∈ AutL

Consider any pair of distinct elements {b, c} ⊂ L: it can be trans-
formed into {0, 1} by an element from AutL. If b 6= 0,∞ then, divid-
ing on b, we obtain {1, c/b} and γ1({1, c/b}) = {0, 1}. If b = 0 and
c 6= ∞ then, dividing on c, we obtain {0, 1}. If b = 0, c = ∞ then
γ1({0,∞}) = {−1, 1} and we reduce to the first case.

Step 3. L is closed under addition. We show that γ : x 7→ x + 1
is contained in AutL: by Step 2, there exists a g ∈ AutL which maps
{−1,∞} to {0,∞} and hence {−1, 0,∞} to {0, b,∞}, for some b ∈
L \ {0}. Then b−1g ∈ AutL maps {−1, 0,∞} to {0, 1,∞} and hence
b−1g(x) = γ(x) = x+1. Thus for any a ∈ L we have a+b = b(a/b+1) ∈
L, which shows that L is an abelian group.

Now let us turn to the general La.

Step 4. Note that L ⊂ La and that La is closed under taking square
roots. Indeed for any a ∈ L and Er with r := {0, 1, a,∞}, we have√
a ∈ πr(Er[4]) and hence

√
a ∈ La. Furthermore, for any a, b ∈ La we

have
√
ab ∈ La. Indeed, consider the curve Er with r = {0, a, b,∞}.

Then
√
ab ∈ π(Er[4]), since the involution z → ab/z is contained in

the subgroup Z/2 ⊕ Z/2 corresponding to the two-torsion on Er, its
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invariant points are in πr(Er[4]). Iterating, we obtain that

2m−1
√
b1 · · · bm ∈ L̃a \ {∞} for all bi ∈ L̃a \ {∞}

Step 5. For all b ∈ La, c ∈ L we have
√
b+ c ∈ La. Indeed, for

c ∈ L we know that there is a solution d ∈ L of the quadratic equation
d2 + d+ c = 0. Consider the curve Er for r := {∞, b, d, d+ 1}. Then

d±
√
b− d ∈ π(Er[4])

and hence d±
√
b− d ∈ La. Thus√

(
√
b− d+ d)(

√
b− d− d) =

√
b− d2 − d =

√
b+ c ∈ La.

Step. 6. Let Pm ∈ L[x] be a monic polynomial of degree m and let
b ∈ La. Then there is an N(m) ∈ N such that

4N(m)
√
Pm(b) ∈ La.

Indeed, we have

Pm(b) = cm + b(cm−1 + b(cm−2 + · · · ) · · · ).

The statement holds for m = 1 by Step 4. Assume that it holds for
m− 1. Then cm−1 + b(cm−2 + · · · ) = d4N(m−1)

for some d ∈ La. We can
then write

Pm(b) = cm + bd4N(m−1)

,

by taking t = 4N(m−1)√
b and um = 4N(m−1)√cm we obtain

Pm(b) =
∏

(t+ ζ ium),

where t ∈ La, um ∈ L and ζ i runs through the roots of unity of order
4N(m−1).

By Steps 4 and 5, we obtain that 4m4N(m−1)-th root of Pm(b) is
contained in La, thus the result holds for N(m) = 4N(m−1)

Step 7. Let b ∈ La be any algebraic element over L. Then the
field L(b) is a finite extension of L and there is an n ∈ N such that any
x ∈ L(b) can be represented as a monic polynomial of b with coefficients
in L of degree ≤ n. For such n we define a power 4N such 4N

√
x ∈ La,

but then any element in L(b) is in La.
�
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Remark 14. In the proof we have only used points in π(E[4]). There-
fore, for any subset D ⊂ N containing 4 we can define La,D, as the
smallest subset containing all π(E[n]) for all n ∈ D and all elliptic
curves obtained as double covers with ramification in La,D. It will also
be a field.

For example, if D = {3, 4} then La,D is exactly the closure of La
under abelian degree 2 and 3 extensions, since PGL2(F2) = S3 and
PGL2(F3) = S4 and both groups are solvable with abelian quotients
of exponent 3, 2.

On (Sym4(P1(Q̄)) \ ∆)/PGL2(Q̄) we can define a directed graph
structure DGS, postulating that

rz = {z1, z2, z3, z4} → rw = {w1, w2, w3, w4}
if there is an elliptic curve E ′ isogeneous to Erz such that rw is pro-
jectively equivalent to a subset in π(E ′[∞]). Any path in the graph is
equivalent to a path contained in (Sym4(P1(L(E))) \∆)/PGL2(Q̄), for
some E. The graph contains cycles, periodic orbits, and preperiodic
orbits, i.e., paths which at some moment end in periodic orbits.

Question 15. Consider the field L0 = Lr0 for r0 = {0, 1,−1,∞}. Does

(Sym4(P1(L(E))) \∆)/PGL2(L(E))

consist of one cycle in DGS? Note that any path beginning from r0
extends to a cycle (in many different ways) since r0 is PGL2-equivalent
to a four-tuple of points of order 4 on any elliptic curve.

Remark 16. In Step 7, we have used algebraicity of La/L, and we do
not know how to extend the proof to geometric fields. What are the
properties of La in geometric situations, when a is transcendental over
k?

We have seen in the proof that the field La is closed under extensions
of degree 2. We also have:

Lemma 17. For any b ∈ La, we have 3
√
b ∈ La.

Proof. Consider a curve Er with r := {b,
√
b,−
√
b,∞}. Its 3-division

polynomial takes the form:

f3(x) = 3x4 − 4bx3 − 6bx2 + 12b2x− 4b3 − b2.

We can represent it as a product: 3
∏4

i=1(x−xi), where the set {xi} ⊂
La is equal π(Er[3]). The corresponding cubic resolvent

rc(x) :=
∏

(x− (xixj + xkxl)),
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where (i, j), (k, l) is any splitting into pairs of indices among 1, 2, 3, 4.
In terms of b, we have

rc(x) = x3 + 2bx2 + 4b2x/3 + 8b3/3− 128b4/27 + 64b5/27.

Since the set {xi} is projectively equivalent to {0, 1, ζ3, ζ2
3}, we can see

that the cubic polynomial above has the form C(x3 + B), for some
constants C,B. It can be checked that

rc(2b(2x− 1)/3) = (4b/3)3(x3 + (b− 1)2).

After a projective map in PGL2(La) we can transform the the elements

xixj + xkxl into − 3
√

(b− 1)2. Hence − 3
√

(b− 1)2 ∈ La, for any b ∈ La;
since La is a field closed under 2-extensions we obtain the claim. �

This raises a natural

Question 18. Is La is closed under taking roots of arbitrary degree?

If we add Gm to the set of allowed elliptic curves then the answer
is affirmative. However, there may exist a purely elliptic substitute for
obtaining roots of prescribed order.

Corollary 19. If the j(E) ∈ La then any set {b,−b, b−1,−b−1} with
µ4((b,−b, b−1,−b−1)) = j(E) is contained in La. Note that such b are
solutions of a cubic equation. Thus La depends only on the curve E
and we will write L(E).

It is also easy to see that L(E) = L(E ′) if E and E ′ are isogenous.

5. Intersections

In this section we present further results concerning intersections

π1(E1[∞]) ∩ π2(E2[∞])

for different elliptic curves E1, E2 and provide evidence for the Effective
Finiteness Conjecture 2.

Proposition 20. Assume that

(2) π1(E1[4]) = π2(E2[4]) = {0, 1,−1, i,−i,∞}

and that

#{π1(E1[3]) ∩ π2(E2[3])} ≥ 2.

Then r1 = r2 and E1 = E2.
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Proof. By our assumption (2), Ei are given by the equation

y2 = x4 − tix2 + 1.

With ai defined by

ri = {ai,−ai, a−1
i ,−a−1

i },

we have

ti = a2
i + a−2

i .

We assume that πi(ei) = ai. In this case, points πi(Ei[3]) ⊂ Q̄ ⊂ P1

are the roots of

(3) x4 + 2ax3 − (2/a)x− 1 = 0

or, equivalently,

2x3a2 + (x4 − 1)a− 2x.

If x, y ∈ πa1(Ea1 [3])∩πa2(Ea2 [3]), where x 6= y and a1 6= a2, then a1 and
a2 are the roots of 2x3a2 + (x4− 1)a− 2x and of 2y3a2 + (y4− 1)a− 2y,
that means that their coefficients are proportional

2x3

2y3
=
x4 − 1

y4 − 1
=
−2x

−2y
.

Then, on the one hand, x3/y3 = x/y implies x2 = y2, and hence
x = −y, by our assumption that x 6= y. On the other hand,

x/y = −1 = (x4 − 1)/(y4 − 1) = 1,

a contradiction. �

Given any x ∈ Q̄ we obtain ai = ai(x), i = 1, 2, which satisfy (3).
Then the resulting elliptic curves Ei satisfy (2) and we have

#{π1(E1[3]) ∩ π2(E2[3])} = 1.

unless

(x4 − 1)2 + 16x4 = x8 + 14x4 + 1 = 0 or x4 = −7± 4
√

3.

Moreover,

(4) #{πa1(Ea1 [∞]) ∩ πa2(Ea2 [∞])} = 6 + 4n ≥ 10,

where 6 is the number of images of common points of order 4 (from
Equation 2) and 4 stands for the size of (Z/2 ⊕ Z/2)-orbit of a point
in P1. However, it may happen that the inequality in (4) is strict.
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Example 21. Consider the polynomial f5(x, a) defined in [2, Theorem
18]). Its roots are exactly πa(Ea[5]). It has degree 12 with respect to
x and 6 with respect to a. The polynomial f3(x, a) has degree 2 with
respect to a and generically has exactly two solutions a1(z), a2(z), for
any given z. We want also f5(v, ai(z)) = 0 for some v and z. This is
equivalent to f5(v, a) being divisible by f3(z, a), as polynomials in a.
Writing division with remainder

f5(v, a) = g(a)f3(z, a) + C(v, z)a+ C ′(v, z)

for some explicit polynomials C, and C ′, which have to vanish. This
condition is gives an explicit polynomial in u, which is divisible by a
high power of u and (u − 1). Excluding the trivial solutions u = 0, 1,
and substituting t = u4 we obtain the equation

32u24 + 1369u20 + 18812u16 + 90646u12 + 18812u8 + 1369u4 + 32

= 32t6 + 1369t5 + 18812t4 + 90646t3 + 18812t2 + 1369t+ 32

= t3
[
32

(
t3 +

1

t3

)
+ 1369

(
t2 +

1

t2

)
+ 18812

(
t+

1

t

)
+ 90646

]
Since t 6= 0, we have

= 32

(
t+

1

t

)3

+ 1369

(
t+

1

t

)2

+ 18716

(
t+

1

t

)
+ 87908

= 32r3 + 1369r2 + 18716r + 87908

=: f(r)

Computing the discriminant of this cubic polynomial, we find that it
has no multiple roots. Its solutions give rise to pairs u, v such that for
a1 := a1(u), a2 := a2(u) we have

f5(v, ai) = f3(u, ai) = 0

and hence

#{πa1(Ea1 [∞]) ∩ πa2(Ea2 [∞])} ≥ 14.

The symmetry of the above equation reduced the problem to a cu-
bic equation with coefficients in Q, followed by a quadratic equation.
The roots can be expressed in closed form and hence we get explicit
description for the 24 roots u.

The same scheme can be applied to points of higher order. Indeed we
have a polynomial fn(u, x) = 0 which has increasing degree with respect
to u, and the existence of a pair u, v such that fn(v, x) = 0 is divisible
by f3(u, x) depend on the divisibilty of fn(v, x) by f3(u, x). Using long
division we obtain two polynomials C0,n(u, v) and C1,n(u, v) so that
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their common zeroes (u, v) correspond to pairs (u, v) with f3(u, x) = 0
and fn(v, x) = 0 simulaneously.

Example 22. Applying this scheme to points of order 3 and 7 (or 3 and
11, 3 and 13, 3 and 17) we obtain that the corresponding resultant has
roots of multiplicity three which implies the existence of three points
v for a given u with f3(u, x) = 0 and f7(v, x) = 0 and hence

#{π1(E1[∞]) ∩ π2(E2[∞])} ≥ 6 + 16 = 22.

Since we have every reason to expect polynomials C0,n(u, v) and
C1,n(u, v) to have increasing number of intersection points with the
growth of n we are led to the following conjecture:

Conjecture 23. There is an infinite dense subset of points a ∈ P1

such that

πa(Ea[∞]) ∩ πa2(Ea2 [∞]) ≥ 14

with

πa(Ea[3]) ∩ πa2(Ea2 [3]) 6= 0.

Note that in all such cases the fields La = La2 . Numerical evidence
suggests that the conjectured inequality may even hold with 22 instead
of 14.

6. General Weierstrass families

The family of elliptic curves considered in Section 5 is the most
promising for obtaining large intersections of torsion points. In this
section, we consider other families where the intersections tend to be
smaller, following [2].

We consider elliptic curves Ea with the same

πa(ea) =∞ ∈ P1.

These are given by their Weierstrass form

(5) y2 = x3 + a2x
2 + a4x+ a6.

Using formulas in, e.g., [3, III, Section 2], we write down (modified)
division polynomials fn,a, whose zeroes are exactly πa(Ea[n]):

fn,a(x) =
∑

0≤r,s,t,r+2s+3t≤d(n)

cr,s,t(n)ar2a
s
4a
t
6x

d(n)−(r+2s+3t),

where d(n) and the coefficients cr,s,t(n) can be expressed via totient
functions Jk(n), with d(n) = J2(n)/2, if n > 2, and d(2) = 3 (see [2]).
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Lemma 24. Let E1, E2 be elliptic curves in generalized Weierstrass
form (5) such that, for some n > 1 we have

π1(E1[n]) = π2(E2[n]).

Then E1 ' E2.

Proof. The statement is trivial for n = 2. For n > 2, we have d(n) ≥ 4,
the comparison of division polynomials implies that the terms

ar2a
s
4a
t
6, r + 2s+ 3t ≤ 3

must be equal. For

(r, s, t) = (0, 0, 1), (0, 1, 0), (1, 0, 0)

we find equality of coefficients ai for both curves. �

Often, already the existence of nontrivial intersections

(6) π1(E1[n]) ∩ π2(E2[n]) ≥ 1

leads to the isomorphism of curves E1, E2. For example, if both curves
are defined over a number field k and the action of the absolute Galois
group Gk on π1(E1[n]) and π(E2[n]) is transitive then (6) implies that
E1 ' E2. For many, but not all, n ∈ N, the equality of totient functions
J2(n) = J2(m), for some m ∈ N, implies n = m.

Example 25. There exist many tuples (m,n) for which

J2(m) = J2(n) and J1(m) 6= J1(n).

For example,

J2(5) = J2(6) but J1(5) = 4, J1(6) = 2.

We also have

J2(35) = J2(40) = J2(42), while J1(35) = 24, J1(40) = 16, J1(42) = 12.

On the other hand, we have

J2(15) = J2(16) = 192 and J1(15) = J1(16) = 8.

These results indicate a relation of our question to Serre’s conjecture.
He considered the action of the Galois group on torsion points of an
elliptic curve E defined over a number field k. If E does not have
complex multiplication, then the image of the absolute Galois group
Gk is an open subgroup of GL2(Ẑ), i.e., of finite index.

Conjecture 26 (Serre). For any number field k there exists a constant
c = c(k) such that for every non-CM elliptic curve E over k the index

of the image of the Galois group Gk in GL2(Ẑ) is smaller than c.
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In particular, for k = Q he conjectured that for primes ` ≥ 37 the
image of Gk surjects onto PGL2(Z`). Thus, modulo Serre’s conjecture,
our conjecture holds for curves defined over Q.

Proposition 27. Assume that

π1(E1[n]) = π2(E2[m]), n 6= m.

Then k(E[n]) contains Q(ζd), where d = lcm(m,n), the least common
multiple of m,n.

Proof. By Serre, we have

Q(ζn) ⊂ k(E[n]) and Q(ζm) ⊂ k(E[m])

as subfields of index at most 2. �

Corollary 28. Assume that k does not contain roots of 1 of order
divisible by n,m. Then k(E[n]), k(E(m)) contain a cyclotomic subfield
of index at most 2.

This provides a strong restriction on intersections of images of torsion
points for elliptic curves over Q, or over more general number fields k
with this property. This yields a restriction on fields k(E[n]), since
(n,m) > 4, for all (n,m) with J2(n) = J2(m).
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