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The rationality problem for cubic fourfolds has been studied by many
authors; see [Has16, §1] for background and references to the extensive
literature on this subject. The moduli space C of smooth cubic fourfolds
has dimension twenty. Since the 1990’s, the only cubic fourfolds known
to be rational are:

• the Pfaffian cubic fourfolds and their limits, a divisor C14 ⊂ C;
• the cubic fourfolds containing a plane P ⊂ X such that the

induced quadric surface fibration BlP (X) → P2 has an odd-
degree multisection, a countable union of codimension-two loci
∪CK ⊂ C, dense in the divisor C8 parametrizing cubic fourfolds
containing a plane.

Our main result is

Theorem 1. Let C18 ⊂ C denote the cubic fourfolds of discriminant 18.
There is a countable infinite union of codimension-two loci ∪CK ⊂ C,
dense in C18, such that the corresponding cubic fourfolds are rational.

The main idea is to show that generic cubic fourfolds in C18 ad-
mit fibrations in sextic del Pezzo surfaces over P2, and to characterize
which of these are rational over the function field of the base. The
corresponding cubic fourfolds are necessarily rational over C.

The first part of the paper introduces the cast of characters: sex-
tic del Pezzo surfaces (Section 1), fourfolds fibered in these surfaces
(Section 2), elliptic ruled surfaces of degree six and their connections
to cubic fourfolds (Section 3). In Section 4 we construct fibrations in
sextic del Pezzo surfaces from elliptic ruled surfaces. The analysis of
rationality follows in Section 5. Our approach is grounded in assump-
tions on the behavior of ‘generic’ cases; Section 6 validates these in a
concrete example. One remaining mystery is the structure of elliptic
ruled surfaces of degree six on a cubic fourfold containing such surfaces;
Section 7 sheds light on this in a beautiful special case.
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1. Sextic del Pezzo surfaces

Let S be a del Pezzo surface of degree six over a perfect field F .
Over the algebraic closure F̄ , S̄ = SF̄ is isomorphic to P2 blown up at
three non-collinear points. The lines ((−1)-curves) on S̄ consist of the
exceptional divisors and the proper transforms of lines joining pairs
of the points; these form a hexagon with dihedral symmetry D12 '
S2 × S3. Let U ⊂ S denote the complement of this hexagon, which
is defined over F . We have that Ū = UF̄ is an algebraic torus. There
exists a torus T over F , classified by the action of Gal(F̄ /F ) on the
lines, such that U is a principal homogeneous space under T with action
defined over F [Man86, Ch. 4,§8].

Proposition 2. [Man66, p. 77] If S(F ) 6= ∅ then S is rational over F .

The Galois action on the Picard group gives a representation

ρS : Gal(F̄ /F )→ S2 ×S3,

where the first factor indexes the geometric realizations of S as a blow-
up of P2 and the second factor corresponds to the conic bundle struc-
tures. Let K/F denote the quadratic étale algebra associated with first
factor and L/F a cubic étale algebra associated with the second factor.
Then we have Azumaya algebras B/K and Q/L with the following
properties:

• the Brauer-Severi variety BS(B) has dimension two over K and
we have a birational morphism

SL → BS(B)

realizing SL as the blow-up over a cycle of three points;
• BS(Q) has dimension one over L and we have a fibration

SK → BS(Q)

realizing SK as a conic fibration with two degenerate fibers;
• the corestrictions corK/F (B) and corL/F (Q) are split over F ;
• B and Q both contain a copy of the compositum KL, and thus

are split over this field.

We explain the last condition in geometric terms: BS(B) admits a
distinguished degree-three cycle and the elements of B, interpreted as
vector fields over BS(B) vanishing at this cycle, are isomorphic to KL.
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Similarly, BS(Q) admits a degree-two cycle which yields a copy of KL
in Q.

Example 3. It may happen that a del Pezzo surface S has maximal
Galois representation ρS while the Brauer classes associated with B
and Q are trivial. For example, let F = C(t) and choose a surjective
representation

ρ : Gal(F̄ /F )→ S2 ×S3

corresponding to a branched cover C → P1. The geometric automor-
phism group admits a split exact sequence [Blu10, §2]

1→ T → Aut(S̄)→ S2 ×S3 → 1.

Here T is a torus with a natural S2×S3 action via conjugation. Com-
posing ρ with the splitting, we obtain a del Pezzo surface S/C(t) of
degree six with ρS = ρ. However, the Brauer group of any complex
curve is trivial, so the Brauer classes produced above necessarily vanish.

Proposition 4. S admits a rational point over F if and only if the
Brauer classes B and Q are trivial. [Cor77]

Corollary 5. If S admits a zero-cycle of degree prime to six over F
then S(F ) 6= ∅.

Corollary 6. Let S be as above and assume that Q is trivial as an
Azumaya algebra over L. The the following are equivalent:

• S(F ) 6= ∅;
• S admits a zero cycle of degree prime to three;
• B is trivial as an Azumaya algebra over K.

2. Fibrations over surfaces

A singular del Pezzo surface is a surface S with ADE singularities
and ample anticanonical class. Those of degree six (K2

S = 6), are
classified as follows [CT88, Prop. 8.3]:

• type I: S also has one A1 singularity and is obtained by blowing
up P2 in three collinear points, and blowing down the proper
transform of the line containing them;
• type II: S has one A1 singularity and is obtained by blowing up

P2 in two infinitely near points and a third point not on the line
associated with the infinitely near points, then blowing down
the proper transform of the first exceptional divisor over the
infinitely near points;
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• type III: S has two A1 singularities and is obtained by blowing
up two infinitely near points and a third point all contained
in a line, and blowing down the proper transforms of the first
exceptional divisor over the infinitely near point and the line;
• type IV: S has an A2 singularity and is obtained by blowing up

a curvilinear subscheme of length three not contained in a line
and blowing down the first two exceptional divisors;
• type V: S has an A1 and and A2 singularity and is obtained

by blowing up a curvilinear subscheme contained in a line, and
blowing down the proper transforms of the first two exceptional
divisors and the line.

Types I and II occur in codimension one and correspond to conjugacy
classes of involutions associated with the factors of S2 × S3. Type
III occurs in codimension two and corresponds to conjugacy classes
of Klein four-groups. Type IV also occurs in codimension two and
corresponds to three cycles. Type V occurs in codimension three and
corresponds to the full group.

Definition 7. Let P be a smooth complex projective surface. A good
del Pezzo fibration consists of a smooth fourfold S and a flat projective
morphism π : S → P with following properties:

• fibers of π are singular sextic del Pezzo surfaces of type I, II,
III, or IV;
• the curve BI ⊂ P parametrizing those of type I is nonsingular;
• the curve BII ⊂ P parametrizing those of type II is nonsingular

away from BIV ⊂ P , the locus of type IV fibers;
• BIV is finite and BII has cusps along BIV ;
• BIII is finite and coincides with the intersection of BI and BII ,

which is transverse.

Remark 8. The point is that the classifying map from P is transverse
to each singular stratum of the moduli stack of singular del Pezzo
surfaces. For example, the discriminant locus is cuspidal at points with
A2 singularity. In particular, good del Pezzo fibrations are Zariski open
in the moduli space of all del Pezzo fibrations with fixed invariants.

Proposition 9. Let π : S → P be a good del Pezzo fibration. Then
Blunk’s construction yields:

• a non-singular double cover Y → P branched along BI ;
• an element η ∈ Br(Y )[3];
• a non-singular degree-three cover Z → P branched along BII ;
• an element ζ ∈ Br(Z)[2].
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Proof. As before, let K and L be the quadratic and cubic extensions of
C(P ) introduced in Section 1. Let Y and Z denote the normalizations
of P in the fields (or étale algebras) K and L respectively.

We first address the double cover. Since BI is smooth the double
cover branched along BI is also smooth. Consider the base change
πY : S ×P Y , a sextic del Pezzo fibration with singular fibers of types
I, II, III, IV and geometric generic fiber S. Let G be the Galois group
of KL over K. Let H1, H2 ∈ Pic(S)G be the classes corresponding to
the birational morphisms

β1, β2 : S → P2
K .

These specialize to Weil divisor classes in each geometric fiber of πY .
These are Cartier for fibers of types II and IV; H1 and H2 are dis-
joint from the vanishing cycles, reflecting that the resulting divisors
are disjoint from the A1 and A2 singularities. For fibers of type I, the
specializations of H1 and H2 coincide and yield smooth Weil divisors
containing the A1 singularity; their order in the local class group is
two. For fibers of type III, they contain the A2 singularity and have
order three in the local class group. In each case the resulting curves
are parametrized by P2.

We relativize this as follows: Let H → P denote the relative Hilbert
scheme parametrizing connected genus zero curves of anticanonical de-
gree three. The analysis above shows that its Stein factorization takes
the form

H → Y → P,

where the first morphism is an étale P2-bundle. Thus we obtain the
desired class η ∈ Br(Y )[3].

We turn to the triple cover: Let H′ → P denote the relative Hilbert
scheme parametrizing connected genus zero curves of anticanonical de-
gree two. These are fibers of the conic bundle fibrations

γ1, γ2, γ3 : S → P1
L.

A case-by-case analysis shows the conics in type I-IV fibers are still
parametrized by P1’s. Repeating the analysis above, the Stein factor-
ization

H′ → Z → P

consists of an étale P1-bundle followed by a triple cover ramified along
BII . The fact that BII has cusps at the points of threefold ramification
shows that Z is nonsingular. Indeed, étale locally such covers take the
form

A2 = {(r1, r2, r3) : r1 + r2 + r3 = 0} → A2/{(12)} → A2/S3
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where Z → P corresponds to the second morphism, branched over
the discriminant divisor which is cuspidal at the origin. The étale P1

bundle yields ζ ∈ Br(Z)[2], the desired Brauer class. �

Proposition 10. Let π : S → P be a good del Pezzo fibration and fix

bIV = χ(BIV ) = |BIV |
bIII = χ(BIII) = |BIII | = |BI ∩BII |
bII = χ(BII \ (BIII ∪BIV ))
bI = χ(BI \BIII),

where χ is the topological Euler characteristic. Then we have

χ(S) = 6χ(P )− bI − bII − 2bIII − 2bIV .

Proof. This follows from the stratification of the fibration by singularity
type. A smooth sextic del Pezzo surface has χ = 6. For types I and II
we have χ = 5; for types III and IV we have χ = 4. �

We specialize Proposition 10 to the case where the base is P2, using
Bezout’s Theorem and the genus formula:

Corollary 11. Let π : S → P2 be a good del Pezzo fibration; write
dI = deg(BI) and dII = deg(BII). Then we have

χ(S) = 14 + (dI − 1)(dI − 2) + (dII − 1)(dII − 2)− 3bIV .

3. Sextic elliptic ruled surfaces and cubic fourfolds

Let E be an elliptic curve and V → E be the vector bundle

V = L1 ⊕ L2,

where L1 and L2 are degree-three line bundles. Taking global sections
yields

O⊕6
E � V

and an embedding
T := P(V∨) ↪→ P5

as an elliptic ruled surface of degree six. Let h = c1(OP(V∨)(1)), which
corresponds to the restriction of the hyperplane class from P5. We may
identify Γ(OP5(1)) = Γ(E,V).

Proposition 12. [Hom80, §3] Let E be a genus one curve and T '
P(V∨) with V ' L1 ⊕ L2, where L1 and L2 are line bundles of de-
gree three. Then the resulting T ↪→ P5 realizes T as an intersection
of quadrics and cubics. The defining ideal IT has three independent
quadratic equations

Q1 = Q2 = Q3 = 0

and twenty independent cubic equations.
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From now on, assume that L1 6' L2. We will call T ⊂ P5 a generic
decomposable elliptic ruled surface of degree six.

Remark 13. In the special case where L1 ' L2, we may realize

T0 ' E × P1 ⊂ P2 × P1 ⊂ P5

as a divisor of bidegree (0, 3). In this case, the Segre threefold is the
locus cut out by the quadratic defining equations of T . We call T0 a
special decomposable elliptic surface of degree six.

We return to the generic case. There are two distinguished sections

E1, E2 ⊂ T
p→ E

corresponding to the rank-one summands. Indeed, write

E1 = h− p∗L2, E2 = h− p∗L1

which are effective degree-three divisors in T , cut out in T ⊂ P5 by
three linear equations. We may interpret Ei as the image of E under
the line bundle Li. Let Π1 and Π2 denote the planes spanned by E1

and E2. The union

Π1 ∪E1 T ∪E2 Π2

coincides with the locus cut out by the quadratic defining equations
by T . Note that this is a complete intersection with trivial dualizing
sheaf.

Conversely, a generic decomposable elliptic ruled surface T can be
obtained as a residual intersection: Given disjoint planes

Π1,Π2 ⊂ P5,

consider a generic net of quadrics in their ideal

xQ1 + yQ2 + zQ3.

Here ‘generic’ means that the residual subscheme T is smooth and the
union

{Q1 = Q2 = Q3 = 0} = Π1 ∪E1 T ∪E2 Π2

is normal crossings. We record some key properties of our construction:

Proposition 14. The Hilbert scheme of generic decomposable elliptic
ruled surfaces T ⊂ P5 or degree six is isomorphic to a dense open subset
of a Gr(3, 9)-bundle over a dense open subset of Gr(3, 6)×Gr(3, 6). In
particular, it is smooth and rational of dimension 36.

Remark 15. The Hilbert scheme of special decomposable elliptic ruled
surfaces of degree six is smooth and rational of dimension 33.
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Given a generic decomposable sextic elliptic ruled surface T ⊂ P5,
the ideal IT has two cubic generators in addition to Q1, Q2, and Q3.
The projective space of cubic fourfolds containing T is of dimension 19.

Proposition 16. The Hilbert scheme of pairs

{(T,X) : T ⊂ X},

where T is a generic decomposable sextic elliptic ruled surface and X
is a cubic fourfold, is smooth and rational of dimension 55.

Remark 17. The Hilbert scheme of pairs {(T0, X) : T0 ⊂ X} with T0

special is smooth and rational of dimension 52.

The Hilbert scheme of all cubic fourfolds is isomorphic to P55. Forget-
ting the surface T gives a morphism of 55-dimensional Hilbert schemes;
our task it to analyze its fibers.

Proposition 18. A smooth cubic fourfold containing a sextic elliptic
ruled surface contains a family of such surfaces of dimension ≥ 1.

Proof. The ruled surface T induces an embedding

E ↪→ F1(X)

into the Fano variety of lines of X, which is an irreducible holomorphic
symplectic manifold. The space of deformations of E as a subscheme
of F1(X) has dimension at least one [Ran95, Cor. 5.1]. On the other
hand, any deformations of F1(X) such that [E] ∈ H2(F1(X),Z) remains
algebraic contain deformations of E. �

Remark 19. Proposition 18 may be surprising as χ(NT/X) = 0 for
a sextic elliptic ruled surface T in a cubic fourfold X. But this is
more transparent on the holomorphic symplectic variety F1(X): while
χ(NE/F1(X)) = 0 the ‘expected’ dimension of the deformation space of
E is one.

There is a direct relation between Γ(NE/F1(X)) and Γ(NT/X): Let `
be a fiber of p : T → E and consider the exact sequence

0→ N`/T → N`/X → NT/X |`→ 0.

Let ` vary over E and apply p∗:

0→ TE → TF1(X)|E → p∗NT/X → R1p∗p
∗TE;

the last vanishes as p is a P1-bundle. Thus p∗NT/X = NE/F1(X), induc-
ing the desired isomorphism.

In Section 6, we will show that h0(NT/X) = 1 generically:
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Proposition 20. Fix an elliptic ruled surface T = P(V∨) ⊂ P5 with
V = L1 ⊕ L2, where L1 and L2 are generic line bundles of degree
three on a generic elliptic curve E. Let X be a generic cubic fourfold
containing T . Then the Hilbert scheme parametrizing deformations of
T in X is smooth of dimension one near T .

The intersection form in the cubic fourfold is [Has00, §4.1]:

h2 T
h2 3 6
T 6 18

Cubic fourfolds admitting algebraic cycles with these intersections form
an irreducible divisor C18 in the moduli space C [Has00, Th. 3.2.3].
Combining with the previous parameter counts (Proposition 16), we
obtain

Corollary 21. Consider the locus of cubic fourfolds containing a de-
composable sextic elliptic ruled surface as above. Its closure is an ir-
reducible divisor in the moduli space C, the divisor C18 parametrizing
special cubic fourfolds of discriminant 18.

4. Constructing the del Pezzo fibration

The fibrations are obtained from sextic elliptic ruled surfaces via
residuation:

Proposition 22. Let X be a generic cubic fourfold containing a decom-
posable sextic elliptic ruled surface T . For a generic pencil of quadrics
L ⊂ Γ(IT (2)), the intersection

∩`∈LQ` ∩X = T ∪DL
SL,

where SL is a projection of a del Pezzo surface of degree six and DL :=
T ∩ SL is a smooth curve of degree 12 and genus 7. Varying L, we
obtain a fibration

π : X̃ := BlT (X)→ P(Γ(IT (2))∨) ' P2.

The preimages of the curves E1, E2 ⊂ T induce trisections of π.

Proof. Consider first a generic pencil of quadric hypersurfaces {Q`}`∈L

containing disjoint planes Π1,Π2 ⊂ P5, with base locus YL. Computing
partial derivatives, we see that YL has ordinary double points

s11, s12, s13 ∈ Π1, s21, s22, s23 ∈ Π2;

see also [Kap09, 2.1]. Intersecting with a third generic quadric contain-
ing these planes, we obtain

Π1 ∪E1 T ∪E2 Π2,
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where s11, s12, s13 ∈ E1 and s21, s22, s23 ∈ E2. As before, T is a decom-
posable sextic elliptic ruled surface with distinguished sections

E1, E2 ⊂ T
p→ E

spanning Π1 and Π2 respectively.
Now suppose we intersect YL with a generic cubic hypersurface X

containing T . Let DL denote the singular locus of X ∩ YL. An appli-
cation of the Bertini Theorem shows that DL ⊂ T ; similarly, the six
singular points {sij} ∈ DL. Let SL denote the residual subscheme to T
in X ∩ YL. Under our genericity assumptions, SL and DL are smooth,
and SL and T intersect in normal crossings along DL.

The union W := T ∪DL
SL is a complete intersection of a cubic and

two quadrics, thus its dualizing sheaf equals O(1). The adjunction
formula on T allows us to read off the genus and degree of DL. We
have KT = −E1 − E2 and h = KT +DL, thus

hDL = 12, D2
L +KTDL = 12, DLEi = 3;

here h is the hyperplane class on T . Moreover, we have

O(1)|SL = ωW |SL = ωSL
(DL).

Let H denote the hyperplane class of SL. We have HKSL
= −6 which

means hyperplane sections of SL are genus one curves. It also follows
that no multiple NKSL

, N > 0, is effective, so SL is birationally ruled
over a curve of genus zero or one. Indeed, since SL has sectional genus
one it is necessarily projectively embedded as an elliptic ruled surface
or a sextic del Pezzo [AS90, Th. A].

We use the residuation relations

IT⊂W = H omW (OSL
,OW ), ISL⊂W = H omW (OT ,OW ),

and Serre duality to relate invariants of T and SL:

H1(OSL
) = ker(H2(ISL

)→ H2(OW ))

= ker(H2(H omW (OT ,OW )→ H2(OW ))

= ker(Ext2
W (OT ,OW )→ Ext2

W (OW ,OW ))

= coker(Γ(ωW )→ Γ(ωW ⊗OT )).

We have already mentioned [Hom80, §3] that T is linearly normal, thus
H1(OSL

) = 0 and SL is del Pezzo. Symmetrically,

H1(OT ) = coker(Γ(ωW )→ Γ(ωW ⊗OSL
))

is one-dimensional as T is an elliptic ruled surface. This explains why
SL fails to be linearly normal, obtained via projection from a sextic del
Pezzo surface naturally sitting in P6.
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Let Z1, Z2 ⊂ X̃ denote the preimages of E1 and E2 respectively;
the induced Zi → Ei is a P1-bundle. Let S̃L ⊂ X̃ denote the proper
transform of SL. We have

(ZiS̃L)X̃ = (DLEi)T̃ = 3

hence Zi is a trisection, as claimed. �

Definition 23. A fine cubic fourfold of discriminant 18 is one admit-
ting a fibration satisfying the conclusions of Proposition 22 for some
sextic elliptic ruled surface T . A labelling of such a cubic fourfold is a
choice of lattice 〈

h2, T
〉

=
〈
h2, S

〉
⊂ H4(X,Z)

associated with such a fibration. A cubic fourfold of discriminant 18 is
good if it is fine and the associated del Pezzo fibration is good.

Since X̃ = BlT (X) and χ(T ) = 0, we have

χ(X̃) = χ(X) = 1 + 1 + 23 + 1 + 1 = 27.

Corollary 11 yields:

Corollary 24. Let X̃ → P2 denote a fibration arising from a good
cubic fourfold of discriminant 18. Then we have

(4.1) 13 = (dI − 1)(dI − 2) + (dII − 1)(dII − 2)− 3bIII .

Proposition 25. Let X̃ → P2 be a del Pezzo fibration, as constructed
in Proposition 22. Let T → E denote the elliptic surface and ζ : Z1 →
P2 the trisection associated with E1 ⊂ T . Then the morphism ζ is
branched over the dual curve to the image of

φ : E ↪→ P2, φ∗OP2(1) = L2
1 ⊗ L−1

2 ,

a sextic curve BII with nine cusps.

Proof. As L varies in P(Γ(IT (2))∨), DL moves in a linear system on T .
As we saw in the proof of Proposition 22, DL = h+E1 +E2 meets Ei

in degree three, precisely

DL|E1 = 2[L1]− [L2].

The branch locus of ζ corresponds to elements of this linear series
tangent to φ(E), which is just the dual curve. �

Corollary 26. In equation (4.1) we have dII = 6, bIII = 9, and thus
dI = 6, so BI is a smooth plane sextic.
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5. Rationality construction

Proposition 27. Let X be a fine cubic fourfold of discriminant 18
with fibration

π : X̃ → P2

in sextic del Pezzo surfaces. Let Y → P2 denote the associated double
cover and η ∈ Br(Y )[3] the Brauer class. Then the following conditions
are equivalent:

• the generic fiber of π is rational;
• the class η = 0.

This follows immediately from Corollary 6 and Proposition 2.

Theorem 28. There exists a dense countable collection of divisors

CK ⊂ C18

parametrizing rational cubic fourfolds.

Proof. We are interested in cubic fourfolds of discriminant 18 with del
Pezzo fibration X̃ → P2 admitting an algebraic cycle of relative degree
coprime to six. Let h and S denote the hyperplane class and the class
of the fiber respectively. The description in Proposition 22 means it
suffices to find an algebraic cycle Σ with Σ · S coprime to 6; and since
we have trisections, finding Σ with Z · S coprime to 3 would suffice.
Since the integral Hodge conjecture holds for cubic fourfolds [Voi13,
Th. 1.4], we need only produce a Hodge class of this type.

For classification purposes, we may assume that the desired Hodge
class Σ is the only additional class and meets S in degree 1.

Consider positive definite rank-three overlattices

h2 S
3 6
6 18

⊂ Ka,b :=

h2 S Σ
h2 3 6 a
S 6 18 1
Σ a 1 b

with discriminant

∆ = −3 + 12a− 18a2 + 18b.

The lattice 〈h2,Σ〉∩L◦ := h2⊥ ⊂ L is even if and only if a ≡ b (mod 2).
We assume this parity condition from now on.

Nikulin’s results on embeddings of lattices [Nik79, §1.14] imply that
the embedding

〈h2, S〉 ↪→ L ' H4(X,Z)

extends to an embedding of Ka,b in L. Replacing Σ with Σ+m(3h2−S)
for a suitable m ∈ Z, we may assume that a = −1, 0, 1. Thus positive
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integers ∆ ≡ 9 (mod 12) arise as discriminants, each for precisely one
lattice, denoted K∆ from now on.

Excluding finitely many small ∆, K∆ defines a divisor

CK∆
⊂ C18.

See [Has16, §2.3] for details on which ∆ must be excluded. These
parametrize rational cubic fourfolds.

The density in the Euclidean topology follows from the Torelli The-
orem [Voi86] and [Voi07, 5.3.4]. �

Proposition 29 (Hodge-theoretic interpretation). Let X be a labelled
fine cubic fourfold of discriminant 18, Λ the Hodge structure on the
orthogonal complement of the labelling lattice. Then there exists an
embedding of polarized Hodge structures

Λ(−1) ↪→ H2
prim(Y,Z),

where (Y ′, f) is a polarized K3 surface of degree two, and Λ is an index-
three sublattice expressible as

Λ(−1) = η′
⊥
,

where η′ ∈ H2(Y,Z/3Z)/ 〈f〉 is isotropic under the intersection form
modulo 3.

This follows from Theorem 9 of [MSTVA14] and the fact that the
discriminant group of cubic fourfolds of discriminant 18 is isomorphic
to Z/3Z⊕ Z/6Z.

Remark 30. We expect that the (Y ′, η′) defined lattice-theoretically
coincides up to sign with the (Y, η) arising from the del Pezzo fibration.

6. An explicit example

The computations below were verified symbolically with MAGMA
[BCP97] and Macaulay 2 [GS].

Let P5 = Proj(F5[x0, . . . , x5]). Define quadrics

Q1 = 3x0x3 + 2x0x5 + 4x1x3 + 2x1x4 + x2x3 + x2x4 + 2x2x5;

Q2 = x0x3 + 2x0x5 + x1x3 + 3x1x5 + 2x2x4 + 3x2x5;

Q3 = 2x0x4 + x0x5 + x1x3 + 2x1x5 + 4x2x3 + 3x2x5.

One can check that the net of quadrics xQ1 + yQ2 + zQ3 contains the
disjoint planes

{x0 = x1 = x2 = 0} and {x3 = x4 = x5 = 0}.
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The sextic elliptic ruled surface T , obtained by saturating the ideal of
the net of quadrics by the defining ideals of the planes is given by

x0x4 + 4x1x4 + 3x1x5 + 4x2x3 = 0,

x0x4 + x0x5 + x1x3 + x1x4 + 4x1x5 + 3x2x5 = 0,

x0x3 + 4x0x4 + x0x5 + 4x1x4 + 4x1x5 + 2x2x4 = 0,

x3
3 + 2x3x

2
4 + x3x4x5 + 4x3x

2
5 + 4x3

4 + 4x3
5 = 0

x3
0 + 4x2

0x1 + x2
0x2 + 2x0x

2
1 + 2x0x1x2 + 4x0x

2
2 + x3

1 + 3x2
1x2 + x3

2 = 0

Note that IT (2) = 〈Q1, Q2, Q3〉.
This surface is contained in the cubic fourfold X = {f = 0}, where

f := x3
0 + 4x2

0x1 + x2
0x2 + x2

0x3 + 3x2
0x4 + 3x2

0x5 + 2x0x
2
1 + 2x0x1x2

+ 4x0x1x3 + 3x0x1x4 + 4x0x1x5 + 4x0x
2
2 + x0x2x3 + 3x0x2x4

+ 2x0x2x5 + 3x0x
2
3 + 4x0x3x5 + 4x0x

2
4 + 2x0x4x5 + x0x

2
5 + x3

1

+ 3x2
1x2 + 4x2

1x3 + x1x2x3 + 3x1x2x4 + 4x1x2x5 + 3x1x
2
3 + x1x3x4

+ 2x1x
2
4 + x1x4x5 + 2x1x

2
5 + x3

2 + 4x2
2x3 + x2

2x4 + 4x2
2x5

+ 4x2x
2
3 + 3x2x3x5 + 3x2x

2
4 + 2x2x4x5 + 4x2x

2
5 + 4x3

3 + 3x3x
2
4

+ 4x3x4x5 + x3x
2
5 + x3

4 + x3
5

A direct computation of the partial derivatives of f show that X is
smooth. The first order deformations of T as a subscheme of X are
given by

Γ(T,NT/X) = Hom(IT ,OT );

a direct computation (e.g., in Macaulay 2) gives that this is one-
dimensional.

The discriminant locus of the map X̃ := BlT (X)→ P2 = P(IT (2)∨)
is a reducible curve of degree 12, with two irreducible components:

BI : x6 + 2x4y2 + x3y3 + 4x3y2z + 2x3z3 + 4x2y4 + 4x2y2z2

+ 4x2yz3 + 4xy5 + xy4z + xy2z3 + xyz4 + 2xz5 + 4y6

+ 3y5z + y3z3 + y2z4 + 4yz5 = 0,

BII : x6 + 2x5y + 2x4y2 + x4yz + 4x3y3 + 3x3y2z + 4x3yz2 + x3z3

+ 3x2y4 + 4x2y2z2 + x2yz3 + 3x2z4 + 3xy5 + 2xy4z

+ 3xy3z2 + 3xyz4 + xz5 + y5z + 4y4z2 + 3y3z3

+ 2y2z4 + 4yz5 = 0

The curve BI is smooth, and BII has 9 cusps. Their intersection is a
reduced 0-dimensional scheme of degree 36 and is thus transverse.
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We found explicit equations over a small field of the following geo-
metric objects:

• a elliptic ruled surface T ⊂ P5 residual to a pair of disjoint
planes in a net of quadric hypersurface—the corresponding Hilbert
scheme is rational of dimension 36 (Prop. 14);
• a cubic fourfold X ⊃ T—this Hilbert scheme is rational of

dimension 55 (Prop. 16);
• a fibration in sextic del Pezzo surfaces

π : X̃ = BlT (X)→ P2.

We choose them with the following properties:

• T and X are smooth;
• the space of first order deformations of T inX is one-dimensional;
• the fibration π is good.

Since the Hilbert schemes are smooth and rational, the equations we
write down readily lift to characteristic zero. The properties we stipu-
late are open and thus hold for any such lift. Thus our computations
yield

Proposition 31. The cubic fourfolds admitting a generic decomposable
sextic elliptic surface are dense in C18. The generic cubic fourfold X
admitting one such surface T admits a one-parameter family. For the
generic (X,T ) the resulting fibration in sextic del Pezzo surfaces is
smooth.

This completes the proof of Proposition 20 and Corollary 21.

7. Visualizing one-parameter families of sextic ruled
surfaces

Remark 19 gives some insight into why sextic elliptic scrolls T ⊂ X
deform in one-parameter families on the cubic fourfold X. These can
be visualized by specializing in the moduli space. This could be used
to obtain a more geometrically motivated argument for Proposition 20.

Let T0 ' E×P1 ⊂ P5 be a special decomposable elliptic ruled surface
of degree six, introduced in Remark 13. Now let X be a smooth cubic
fourfold containing T0; the space of pairs (T0, X) is 52-dimensional and
the space of all cubic fourfolds is 55-dimensional (see Remark 17). Since
T0 has bidegree (3, 0) in P2 × P1, X also contains a divisor of bidegree
(0, 3). Generically, this consists of three disjoint planes

Π1,Π2,Π3 ⊂ P2 × P1.
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Conversely, three disjoint planes

Π1,Π2,Π3 ⊂ P5

are automatically pairwise isomorphic: projecting from one identifies
the other two. Thus we can realize them as fibers in P2 × P1. Hence
any cubic fourfold containing three disjoint planes also contains a trivial
elliptic ruled surface T0 of degree six.

The intersection form on the algebraic classes of X is

K54 =

h2 Π1 Π2 Π3

h2 3 1 1 1
Π1 1 3 0 0
Π2 1 0 3 0
Π3 1 0 0 3

.

The associated locus in moduli CK54 ⊂ C has codimension three.
Let F1(X) denote its Fano variety of lines, a holomorphic symplectic

fourfold, and α : H4(X) → H2(F1(X)) the Abel-Jacobi map; [Has16,
§1] for more details. Write g = α(h2) and Di = α(Πi), which may be
interpreted as the lines incident to Πi. The Beauville-Bogomolov form
may be written

M :=

g D1 D2 D3

g 6 2 2 2
D1 2 −2 1 1
D2 2 1 −2 1
D3 2 1 1 −2

.

The divisor g corresponds with the polarization induced from the em-
bedding F1(X) ↪→ Gr(2, 6).

We elaborate the geometry of these divisors: Projecting from Πi

gives a quadric surface bundle

BlΠi
(X)→ Pi ' P2,

inducing a morphism Di → Pi. The Stein factorization

Di → Si → P2

is an étale conic bundle followed by a double cover; Si is a degree two
K3 surface. The intersections Dij := Di ∩ Dj, i 6= j, are lines in X
incident to both Πi and Πj; this is a section of both Di → Pi and
Dj → Pj, so that Si ' Dij ' Sj. Computing in the cohomology ring
of F1(X), the intersection D123 = D1 ∩ D2 ∩ D3 is a genus one sextic
curve E ⊂ F1(X); these are lines incident to all three planes and may
be interpreted as rulings of T0 above.



CUBIC FOURFOLDS 17

We break symmetry to analyze these ruled surfaces explicitly. It
is well known (see, for example, [Has16, §1.2]) that a cubic fourfold
containing two disjoint planes is rational:

X
∼
99K P1 × P2 ' P2 × P2 ' Π2 × Π1.

The forward map blows up Π1 and Π2; the inverse blows up D12, re-
garded as a closed subset of P1 × P2. Concretely, D12 is a complete
intersection of forms of bidegree (1, 2) and (2, 1), and the inverse map
is given by forms of bidegree (2, 2) vanishing on D12.

Thus we have

Pic(D12) ⊃
f1 f2

f1 2 5
f2 5 2

,

where f1 and f2 are induced from the hyperplanes of P1 and P2. Now
X is in the closure of the Pfaffian locus [Has16, Rem. 7], over which
the variety of lines is isomorphic to the length-two Hilbert scheme of
the associated K3 surface. This specializes to a birational map

D
[2]
12

∼
99K F1(X),

whence

Pic(F1(X)) ⊃

f1 f2 δ
f1 2 5 0
f2 5 2 0
δ 0 0 −2

,

where 2δ is the class on non-reduced subschemes. Moreover, the di-
visors {D1, D2} correspond to the {f1 + 2f2 − 4δ, 2f1 + f2 − 4δ} and
g = 2(f1 + f2)− 5δ.

We return to the case where X contains three planes. The locus
D123 ⊂ D12 is an elliptic curve with degree three under each projection.
Thus we have

Pic(D12) ⊃

f1 f2 E
f1 2 5 3
f2 5 2 3
E 3 3 0

,

which has discriminant 54. Note that D3 = E − δ extends the identi-
fication of bases from the last paragraph.

Regarding E as an element of

Pic(F1(X)) ' Pic(D
[2]
12) ' Pic(D12)⊕ Zδ,
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we see
g E

g 6 6
E 6 0

h2 T0

h2 3 6
T0 6 18

.

We are using the fact that E sweeps out the ruling of T0.
Finally, consider the linear series |E| on D12, an elliptic fibration.

Where do these go under the birational parametrization

P2 × P2 ∼
99K X?

Each member Et ∈ |E| gives a decomposable elliptic ruled surface
T̃t ⊂ BlD12(P2 × P2) projecting onto Tt ⊂ X. (They need not be
products Et × P1.) The residual planes to Tt are just Π1 and Π2;
indeed, we can regard

Π1 ∪Et Tt ∪Et Π2 ⊂ X

as degenerate octic K3 surfaces in X. Deforming X so that it contains
Tt, but not Π1 or Π2, we generic cubic fourfold fourfold of discriminant
18.

It is natural to expect that the Tt we have constructed sweep out the
local deformation space of T0 ⊂ X, i.e., that h0(NTt/X) = 1. This may
be checked with a computation similar to that of Section 6.
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