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1. Introduction

For last fifteen years, numerous authors have studied the birational
geometry of projective irreducible holomorphic symplectic varieties X,
seeking to relate extremal contractions X → X ′ to properties of the
Hodge structures on H2(X,Z) and H2(X,Z), regarded as lattices under
the Beauville-Bogomolov form. Significant contributions have been
made by Huybrechts, Markman, O’Grady, Verbitsky, and many others
[Huy99], [Mar08], [O’G99], [Ver13], see also [Huy11].

The introduction of Bridgeland stability conditions by Bayer and
Macr̀ı provided a conceptual framework for understanding birational
contractions and their centers [BM14a, BM14b]. In particular, one
obtains a transparent classification of extremal birational contractions,
up to the action of monodromy, for varieties of K3 type [BHT13].

Here we elaborate the Bayer-Macr̀ı machinery through concrete ex-
amples and applications. We start by stating the key theorem and
organizing the resulting extremal rays in lattice-theoretic terms; see
Sections 2 and 3. We describe exceptional loci in small-dimensional
cases in Sections 4 and 5. Finding concrete examples for each ray in
the classification can be computationally involved; we provide a general
mechanism for writing down Hilbert schemes with prescribed contrac-
tions in Section 6. Then we turn to applications. Section 7 addresses a
question of Oguiso and Huybrechts-Sarti on automorphisms of Hilbert
schemes. Finally, we show that the ample cone of a polarized vari-
ety (X, h) of K3 type cannot be read off from the Hodge structure on
H2(X,Z) in Section 8; this resolves a question of Huybrechts.
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2. Recollection of general theorems

Let X be deformation equivalent to the Hilbert scheme of length-n
subschemes of a K3 surface. Markman [Mar11, Cor. 9.5] describes an

extension of lattices H2(X,Z) ⊂ Λ̃ and weight-two Hodge structures

H2(X,C) ⊂ Λ̃C characterized as follows:

• the orthogonal complement of H2(X,Z) in Λ̃ has rank one, and
is generated by a primitive vector of square 2n− 2;

• as a lattice Λ̃ ' U4 ⊕ (−E8)
2 where U is the hyperbolic lat-

tice and E8 is the positive definite lattice associated with the
corresponding Dynkin diagram;
• there is a natural extension of the monodromy action onH2(X,Z)

to Λ̃; the induced action on Λ̃/H2(X,Z) is encoded by a char-
acter cov (see [Mar08, Sec. 4.1]);
• we have the following Torelli-type statement: X1 and X2 are

birational if and only if there is Hodge isometry

Λ̃1 ' Λ̃2

taking H2(X1,Z) isomorphically to H2(X2,Z);
• if X is a moduli space Mv(S) of sheaves over a K3 surface S

with Mukai vector v then there is an isomorphism from Λ̃ to
the Mukai lattice of S taking H2(X,Z) to v⊥.

Generally, we use v to denote a primitive generator for the orthogonal

complement of H2(X,Z) in Λ̃. Note that v2 = (v, v) = 2n− 2. When
X 'Mv(S) we may take the Mukai vector v as the generator.

Example 1. Suppose that X = S[n] for a K3 surface S so that

Λ̃ = U ⊕H2(S,Z)

with v in the first summand. Then we can write

H2(S[n],Z) = Zδ ⊕H2(S,Z)

where δ generates v⊥ ⊂ U and satisfies (δ, δ) = −2(n− 1).

There is a canonical homomorphism

θ∨ : Λ̃� H2(X,Z)

which restricts to an inclusion

H2(X,Z) ⊂ H2(X,Z)

of finite index. By extension, it induces a Q-valued Beauville-Bogomolov
form on H2(X,Z).
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Example 2. Retaining the notation of Example 1: Let δ∨ ∈ H2(X,Z)
be the class orthogonal to H2(S,Z) such that δ · δ∨ = −1. We have
θ∨(δ) = 2(n− 1)δ∨.

Assume X is projective. Let H2(X)alg ⊂ H2(X,Z) and Λ̃alg ⊂ Λ̃
denote the algebraic classes, i.e., the integral classes of type (1, 1). The
Beauville-Bogomolov form on H2(X)alg has signature (1, ρ(X) − 1),
where ρ(X) = dim(H2

alg(X)). The Mori cone of X is defined as the
closed cone in H2(X,R)alg containing the classes of algebraic curves
in X. The positive cone (or more accurately, non-negative cone) in
H2(X,R)alg is the closure of the connected component of the cone

{D ∈ H2(X,R)alg : D2 > 0}
containing an ample class. The dual of the positive cone in H2(X,R)alg
is the positive cone.

Theorem 3. [BHT13] Let (X, h) be a polarized holomorphic symplec-
tic manifold as above. The Mori cone in H2(X,R)alg is generated by
classes in the positive cone and the images under θ∨ of the following:

(2.1) {a ∈ Λ̃alg : a2 ≥ −2, |(a, v)| ≤ v2/2, (h, a) > 0}.

3. Formal remarks on Theorem 3

(1) For a as enumerated in (2.1) write R := θ∨(a) ∈ H2(X,Z). Re-
call that (R,R) < 0 and R is extremal in the cone described in
Theorem 3 if and only if R generates the extremal ray of the bi-
rational contraction X → X ′ associated with the corresponding
wall [BM14a, §5,12].

(2) As discussed in [BM14a, Th. 12.1], the walls in Theorem 3 also
admit a natural one-to-one correspondence with

(3.1) {â ∈ Λ̃alg : â2 ≥ −2, 0 ≤ (â, v) ≤ v2/2, (h, â) > 0 if (â, v) = 0}.
Indeed, in cases of (2.1) where (a, v) < 0 we take â = −a. From
now on, we utilize these representatives of the walls.

(3) The saturation H of the lattice 〈v, a〉 is the fundamental invari-
ant of each case. Observe that H has signature (1, 1) if and
only if (R,R) < 0. It is possible for H ⊃ 〈v, a〉; however, in
small dimensions we can express H = 〈v, a′〉 for some other a′

satisfying the conditions in (2.1).
(4) Suppose H has signature (1, 1). Since h is a polarization on X,

we have
(h, h) > 0, (h, v) = 0

and 〈h, a, v〉 is a lattice of signature (2, 1).
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(5) H has signature (1, 1) if and only if

(a, a) (v, v) < (a, v)2 .

This is automatic if (a, a) = −2, or (a, a) = 0 and (a, v) 6= 0.
Since (a, v) ≤ (v, v) /2 we necessarily have

(3.2) (a, a) < (v, v) /4,

and

(3.3) (v − a, v − a) ≥ (a, a) ≥ −2.

Moreover, we also find

(3.4) (a, v − a) ≥ 1.

If (a, a) < 0 this follows from (a, v) ≥ 0. If (a, a) = 0 we deduce
(a, v − a) ≥ 0 but equality would violate our assumption on the
signature of H. If (a, a) > 0 then

(a, v) >
√

(a, a) (v, v) > 2 (a, a) .

Moreover, equality holds in (3.4) precisely when (a, a) = 0 and
(v, a) = 1.

We shall rely on these observations in Section 5 to streamline our enu-
meration of cases.

4. Description of the exceptional loci

We describe the exceptional loci E of extremal contractions X → X ′

mentioned in Section 3, up to birational equivalence. Our analysis
follows [BM14a, BM14b] provided X = Mv(T ) for some K3 surface T ,
or a moduli space of twisted sheaves over X. We expect this is valid
generally, however. Indeed, generically this follows formally from the
monodromy classification of extremal rays of [BHT13].

For each H of signature (1, 1) as in Section 3, choose a such that
〈v, a〉Q = HQ and (a, v) ≥ 0. We use bounds (3.2), (3.3), and (3.4)
freely.

Let Ma denote the moduli space of stable objects of type a and Mv−a
the moduli space of stable objects of type v − a. We only care about
these up to birational equivalence so we need not specify the precise
stability condition. A typical element of E corresponds to an extension

0→ A→ E → B → 0

whereA ∈Ma,B ∈Mv−a, and E represents an element of P(Ext1(B,A)).
(Generally, one has exact triangles rather than extensions but our goal
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here is only to sketch representative examples for each monodromy
orbit.) These have expected dimension

dim(Ma) + dim(Mv−a) + dim(Ext1(B,A)))− 1 = (v, v)− (a, v − a) + 3

which equals

dim(X) + 1− (a, v − a) ,

i.e., the expected codimension of E is

(a, v − a)− 1 ≥ 0.

When there is strict equality the geometry can be encapsulated by the
diagram:

P(a,v−a)−1 −→ E −→ Mv(T )
↓

Ma(T )×Mv−a(T )

The case (a, v − a) = 1 requires additional explanation; this is the
‘Hilbert-Chow’ case of [BM14b, §10], [BM14a, §5]: For concreteness,
take X = Mv(T ) with Mukai vector v = (1, 0, 1− n), where dim(X) =
2n; set a = (0, 0,−1) so that v − a = (1, 0, 2− n). Thus

Mv(T ) = T [n], Mv−a(T ) = T [n−1],

and Ma(T ) parametrizes shifted point sheaves Op[−1]. Given distinct
p1, . . . , pn ∈ T , the natural inclusion of ideal sheaves gives an exact
sequence

0→ Ip1,...,pn → Ip1,...,pn−1 → Ip1,...,pn−1 |pn ' Opn → 0

and thus an exact triangle

Opn [−1]→ Ip1,...,pn → Ip1,...,pn−1 .

This reflects the fact that the vector space

Hom(Ip1,...,pn−1 ,Opn) = Ext1(Ip1,...,pn−1 ,Opn [−1]) ' C.

Now suppose that pn−1 = pn; then

Hom(Ip1,...,pn−1 ,Opn−1) = Tpn−1 ' C2

which means that E is birationally a P1-bundle over

∆ = {(Σ, p) : p ∈ Σ} ⊂ T [n−1] × T 'Mv−a(T )×Ma(T ).
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5. Enumeration of rays

In this section, for each monodromy orbit of extremal rays we de-
scribe the geometry of the exceptional locus of the associated contrac-
tion. This completes the analysis started in [HT10b] by employing the
recent work of Bayer and Macr̀ı [BM14a, BM14b]. We organize the
information first by dimension (or equivalently, by (v, v)) and then by
the magnitude of (v, a). Such explicit descriptions have been used in
connection with the following problems:

• constructing explicit Azumaya algebras realizing transcenden-
tal Brauer-Manin obstructions to weak approximation and the
Hasse principle [HVAV11, HVA13];
• modular constructions of isogenies between K3 surfaces and in-

terpretation of moduli spaces of K3 surface with level structure
[MSTVA14];
• explicit descriptions of derived equivalences among K3 surfaces

and perhaps varieties of K3 type;
• analysis of birational and biregular automorphisms of holomor-

phic symplectic varieties, see e.g. [HT10a, BCNWS14].

For example, when we have an exceptional divisor of the form

Pr−1 → E
↓

S ×M

where S is a K3 surface and M is holomorphic symplectic (perhaps
a point!), we may interpret M as a parameter space of Brauer-Severi
varieties over S. These naturally defined families can be quite useful
for arithmetic applications.

In the tabulation below S and S ′ are K3 surfaces; we use S[m] as
short-hand for the deformation equivalence class of the Hilbert scheme.

5.1. (v, v) = 2. This case has been explored in [HT09].

(a, a) (a, v) (v − a, v − a) Interpretation
−2 0 0 P1-bundle over S
−2 1 -2 P2

0 1 0 P1-bundle over S

5.2. (v, v) = 4. .
The case of Lagrangian P3’s, where (a, a) = −2 and (a, v) = 2, was

examined in [HHT12].
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(a, a) (a, v) (v − a, v − a) Interpretation
−2 0 2 P1-bundle over S[2]

−2 1 0 P2-bundle over S
−2 2 -2 P3

0 1 2 P1-bundle over S × S
0 2 0 P1-bundle over S × S ′,

S and S ′ are isogenous

The last entry was omitted in [HT10b, Table H3] but was included in
the general conjecture proposed in that paper. We sketch the geometry
in this case: Suppose

X = Mv(T ), v = (r,Nh, s), N 6= 0

for some K3 surface (T, h); we assume that a = (r′, N ′h, s′). Express

H2(X,Z) = v⊥ ⊂ Λ̃ ' U ⊕H2(T,Z)

so there is a saturated embedding of the primitive cohomology

H2(T,Z)◦ = h⊥ ↪→ H2(X,Z).

The factors of the center of X → X ′ are S = Ma(T ) and S ′ = Mv−a(T ),
which have cohomology groups

H2(Ma(T ),Z) = a⊥/Za, H2(Mv−a(T ),Z) = (v − a)⊥/Z(v − a).

We also have embeddings

H2(T,Z)◦ ↪→ H2(S,Z), H2(T,Z)◦ ↪→ H2(S ′,Z),

that fail to be saturated in some cases.

5.3. (v, v) = 6.

(a, a) (a, v) (v − a, v − a) Interpretation
−2 0 4 P1-bundle over S[3]

−2 1 2 P2-bundle over S[2]

−2 2 0 P3-bundle over S
−2 3 -2 P4

0 1 4 P1-bundle over S × S[2]

0 2 2 P1-bundle over S ′ × S[2]

S, S ′ are isogenous
0 3 0 P2-bundle over S × S ′

S, S ′ are isogenous

The last entry was also omitted in [HT10b, Table H4] but included
in the general conjecture. The geometry is similar to example in Sec-
tion 5.2.
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5.4. (v, v) = 8.

(a, a) (a, v) (v − a, v − a) Interpretation
−2 0 6 P1-bundle over S[4]

−2 1 4 P2-bundle over S[3]

−2 2 2 P3-bundle over S[2]

−2 3 0 P4-bundle over S
−2 4 -2 P5

0 1 6 P1-bundle over S × S[3]

0 2 4 P1-bundle over S ′ × S[3]

S, S ′ are isogenous
0 3 2 P2-bundle over S ′ × S[2]

S, S ′ are isogenous
0 4 0 P3-bundle over S × S ′

S, S ′ are isogeneous

5.5. Higher dimensional data. For later applications, we enumer-
ate possible discriminants of the lattice 〈v, a〉. Note that this lattice
need not be saturated in the Mukai lattice, so each row below may
correspond to multiple cases:

5.6. (v, v) = 10.

(a, a) (a, v) Discriminant
−2 b = 0, 1, 2, 3, 4, 5 −24− b2
0 b = 0, 1, 2, 3, 4, 5 −b2
2 b = 5 24− b2

5.7. (v, v) = 12.

(a, a) (a, v) Discriminant
−2 b = 0, 1, 2, 3, 4, 5, 6 −24− b2
0 b = 0, 1, 2, 3, 4, 5, 6 −b2
2 b = 5, 6 24− b2

5.8. Characterizing Lagrangian Pn’s. Smoothly embedded rational
curves in a K3 surface

` := P1 ⊂ S

are characterized as (−2)-curves (`, `) = −2. Suppose that X is defor-
mation equivalent to S[n] and we have a smoothly embedded

Pn ⊂ X
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with ` ⊂ Pn a line. For n = 2, 3 we showed in [HT09, HHT12] that
these are unique up to monodromy and satisfy

(`, `) = −n+ 3

2
.

For n = 4 Bakker and Jorza [BJ14] computed

(`, `) = −7

2
.

Furthermore, Bakker [Bak13, Cor. 23] has offered sufficient conditions
to guarantee that Lagrangian planes form a single monodromy orbit.
Previously [HT10b, Thesis 1.1], we suggested that the intersection the-
oretic properties of these classes should govern the cone of effective
curves. Markman, Bayer and Macr̀ı offered counterexamples to our
original formulation [HT10b, Conj. 1.2] in [BM14b, §10].

Our purpose here is to illustrate that there may be multiple orbits
of Lagrangian projective spaces under the monodromy action. For all
n, the lattice

v a
v 2(n− 1) (n− 1)
a n− 1 −2

gives rise to a Lagrangian projective space with

R = [`] = ±θ∨(a).

We show that there is a second orbit when n = 15. Our analysis
follows [BM14a, §14]. Let H denote the lattice

H =
v a′

v 28 14
a′ 14 6

which has discriminant −28. The lattice

v a
v 28 14
a 14 −2

can be realized as an index three sublattice of H via a = 3a′ − v.
The associated contraction X → X ′ has reducible exceptional locus,

with one component isomorphic to P15 and the other of codimension
(a′, v − a′) = 7.



10 BRENDAN HASSETT AND YURI TSCHINKEL

6. Orbits and extremal rays

We fix a primitive vector v ∈ Λ̃ such that v⊥ = H2(X,Z), as in
Section 2. Write

(6.1) (v, v) a− (a, v) v = M%

where M > 0 and % ∈ v⊥ is primitive. The divisibility dv(%) is defined
as the positive integer such that(

%,H2(X,Z)
)

= dv(%)Z,

so that R = %/dv(%) represents (via duality) a class in H2(X,Z) and an
element of the discriminant group d(H2(X,Z)) = H2(X,Z)/H2(X,Z).

Note that a projects to a negative class in v⊥ if and only if

(a, a) (v, v) < (a, v)2 ,

i.e., the lattice 〈a, v〉 has signature (1, 1). The autoduality of the pos-
itive cone and the fact that nef divisors have non-negative Beauville-
Bogomolov squares imply that the Mori cone contains the positive cone.
Thus we may restrict our attention to % with (%, %) < 0.

We exhibit representatives of these orbits in the special case where
X = S[n]; we use Example 2 and write δ∨ = 1

2n−2δ so that

d(H2(S[n],Z)) = (Z/2(n− 1)Z) · δ∨.

Our objective is to write down explicit examples where they arise from
extremal rational curves:

Theorem 4. Retain the notation introduced above and assume that
R2 < 0. Then there exists a K3 surface S with Pic(S) ' Zf that admits
an extremal rational curve P1 ⊂ S[n] such that R≥0[P1] is equivalent to
R≥0R under the action of the monodromy group.

In particular, the cone of effective curves of S[n] is generated by δ∨

and [P1].
We will develop several lemmas to prove this theorem. A direct

computation (cf. [BM14a, Prop. 12.6]) gives:

Lemma 5. Retain the notation introduced above and assume that

(v, v) = 2(n− 1), | (a, v) | ≤ v2/2, and a2 ≥ −2.

Then we have

(ρ, ρ) > −2(n− 1)2(n+ 3), (R,R) > −(n+ 3)/2.
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Markman [Mar11, Lemma 9.2] shows that the image Gn of the mon-
odromy representation consists of the orientation-preserving automor-
phisms of the lattice H2(X,Z) acting via ±1 on d(H2(X,Z)). In par-
ticular, d(H2(X,Z)) has a distinguished generator ±δ∨, determined up
to sign. We consider orbits of primitive vectors % ∈ H2(X,Z) = v⊥

under the action of automorphisms of H2(X,Z) acting trivially on
d(H2(X,Z)). A classical result of Eichler [Eic74] (see also [GHS10,
Lemma 3.5]) shows that there is a unique orbit of primitive elements
%′ ∈ H2(X,Z) such that

(6.2) (%′, %′) = (%, %) , %′/dv(%′) = %/dv(%) ∈ d(H2(X,Z)).

The same holds true even if we restrict to the subgroup preserving
orientations. LetG+

n ⊂ Gn denotes the orientation preserving elements;
for this group, the second part of (6.2) may be relaxed to

%′/dv(%′) = ±%/dv(%) ∈ d(H2(X,Z)).

Lemma 6. Each G+
n -orbit of primitive vectors in H2(X,Z) has a rep-

resentative of the form

(6.3) % = sf − tδ, gcd(s, t) = 1, s, t > 0, s|2(n− 1),

where f ∈ H2(S,Z) is primitive with f 2 = 2d > 0. Here dv(%) = s,
R = %/s, and [R] = −2t(n− 1)/s ∈ d(H2(X,Z)).

This is quite standard—see the first paragraph of the proof of [GHS10,
Prop. 3.6] for the argument via Eichler’s criterion.

Lemma 7. Fix a constant C and the orbit of a primitive vector % ∈
H2(S[n],Z) with C ≤ %2 < 0 and dv(%) = s. Then there exists an even
integer 2d > 0 and a representation (6.3) such that for every

%0 = σf − τδ, σ, τ > 0

with C ≤ %20 < 0 we have t/s > τ/σ.

Proof. First, let µ < s be a positive integer such that t+ µ is divisible
by s. If we express t/s as a continued fraction

t/s = [a0, a1, . . . , ar]

then [a1, . . . , ar] depends only on µ/s and a0 = bt/sc. We regard
a1, . . . , ar as fixed and a0 as varying.

If the representation (6.3) is to hold we must have

%2 = 2ds2 − 2(n− 1)t2
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which implies

d = (n− 1)

(
t

s

)2

+
%2

2s2

=
2(n− 1)t2 + %2

2s2
.

If the fraction is an integer for some t it is an integer for an arithmetic
sequence of t’s. Thus there are solutions for t� 0, and we may assume
d is large.

Now suppose that τj/σj = [a0, . . . , aj] for some j < r. We estimate

d

n− 1
−
(
τj
σj

)2

=

(
t

s

)2

+
%2

2(n− 1)s2
−
(
τj
σj

)2

using the continued fraction expressions. Substituting yields

(a0 +
1

[a1, . . . , ar]
)2 +

%2

2(n− 1)s2
− (a0 +

1

[a1, . . . , aj]
)2

and cancelling the a20 terms gives

2a0(
1

[a1, . . . , ar]
− 1

[a1, . . . , aj]
)+(

1

[a1, . . . , ar]
− 1

[a1, . . . , aj]
)2+

%2

2(n− 1)s2
.

This can be made arbitrarily large in absolute value if a0 � 0. There-
fore, for j < r we conclude

2dσ2
j − 2(n− 1)τ 2j 6∈ [C, 0).

Suppose we have σ and τ as specified above in the assumption of the
Lemma. It follows that

C

2(n− 1)σ2
<

d

n− 1
−
( τ
σ

)2
< 0;

dividing both sides by
√
d/(n− 1) + τ

σ
, which we may assume is larger

than |C|
(n−1) , we obtain

1

2σ2
> |
√
d/(n− 1)− τ

σ
|.

It follows (see [HW60, Thm. 184], for example) that τ/σ is necessarily

a continued fraction approximation for
√
d/(n− 1), say, τr′/σr′ . Given

a representation (6.3) we may assume that t/s is a continued fraction
approximation as well.

Let τj/σj = [a0, . . . , aj] denote the sequence of continued fraction

approximations of
√
d/(n− 1), starting from

τ0 = b
√
d/(n− 1)c, σ0 = 1.
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Note that

τ2w−2/σ2w−2 < τ2w/σ2w <
√
d/(n− 1) < τ2w+1/σ2w+1 < τ2w−1/σ2w−1

for each w ∈ N, thus

2dσ2
j − 2(n− 1)τ 2j < 0

precisely when j is odd. Our estimate above shows that r′ > r whence

τ/σ = τr′/σr′ < τr/σr = t/s,

which is what we seek to prove. �

Proof. We complete the proof of Theorem 4.
Lemma 5 shows that each %0 ∈ H2(S[n],Z) associated with a negative

extremal rays satisfies

C = −2(n+ 3)(n− 1)2 ≤ %20 < 0.

Lemma 6 allows us to assume %0 is equivalent under the monodromy ac-
tion to one of the lattice vectors satisfying the hypotheses of Lemma 7.

Take S to be a K3 surface with Pic(S) = Zf and f 2 = 2d; thus we
have Pic(S[n]) = Zf ⊕ Zδ. The cone of effective curves of S[n] has two
generators, one necessarily δ∨. We choose d via Lemma 7. We know
from [BM14a, Thm. 12.2] that the generator of Q≥0% ∩H2(S

[n],Z), is
effective with some multiple generated by a rational curve P1 ⊂ S[n].
However, Lemma 7 ensures that all the other %0 ∈ Pic(S[n]) satisfying

C ≤ %20 < 0, (%0, f) > 0,

are contained in the cone spanned by δ∨ and %. Thus our rational curve
is necessarily extremal. �

7. Automorphisms on Hilbert schemes not coming from K3
surfaces

Oguiso-Sarti-Huybrechts asked whether S[n], n ≥ 3 can admit auto-
morphisms not arising from automorphisms of S. Beauville give exam-
ples for n = 2, e.g., the secant line involution for generic quartic sur-
faces; recently, a systematic analysis has been offered in [BCNWS14].
A related question of Oguiso is to exhibit automorphisms of S[n] to
arising from automorphisms of any K3 surface T with T [n] ' S[n] (see
Question 6.7 in his ICM talk [Ogu14]).

Proposition 8. There exists a polarized K3 surface (S, h) such that
S[3] admits an automorphism α not arising from S. Moreover, there
exists no K3 surface T with T [3] ' S[3] explaining α.
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For simplicity we will restrict to those with Pic(S) = Zh with h2 = d.
We have

Pic(S[3]) = Zh⊕ Zδ,

with 2δ the class of the non-reduced subschemes. Recall that

(h, h) = d, (h, δ) = 0, (δ, δ) = −4.

Lemma 9. Suppose there exists an element g ∈ Pic(S[3]) such that

(g, g) = 2 and g.R > 0

for each generator R of the cone of effective curves of S[3]. Then S[3]

admits an involution associated with reflection in g:

D 7→ −D + (D, g)g.

Proof. This follows from the Torelli Theorem, as the reflection is a
monodromy operator in the sense of Markman. �

Example 10. Let d = 6. Given three points on a degree six K3
surface, the plane they span meets the K3 surface three additional
points, yielding an involution S[3] 99K S[3].

However, this breaks down along triples of collinear points, which are
generally parametrized by maximal isotropic subspaces of the (unique
smooth) quadric hypersurface containing X. These are parametrized by
a P3 ⊂ S[3]. Here we have g = h − δ and the offending R is Poincaré
dual to a multiple of 2h− 3δ. The class of the line in P3 is h− (3/2)δ,
interpreting H2(S

[3],Z) as a finite extension of H2(S[3],Z).
Returning to arbitrary d, we apply the ampleness criterion to find

the extremal curves. One is proportional to δ. The second generator is
given by R = ah−bδ, with (a, b) non-negative relatively prime integers
satisfying one of the following:

(1) da2 − 4b2 = −2
(2) da2 − 4b2 = −4, with a divisible by 4
(3) da2 − 4b2 = −4, with a divisible by 2 but not 4
(4) da2 − 4b2 = −12, with a divisible by 2 but not 4
(5) da2 − 4b2 = −36, with a divisible by 4

The smallest example is d = 114 and g = 3h − 16δ. To check the
ampleness criterion, the first step is to write down all the (a, b) where
114a2 − 4b2 is ‘small’ using the continued fraction expansion

√
114/2 = [5; 2, 1, 20, 1, 2, 10],
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which gives the following

a b 114a2 − 4b2

1 5 14
2 11 −28
3 16 2

62 331 −28
65 347 14

127 678 −30
192 1025 −4

The class R = 192h − 1025δ is the second extremal generator; note it
satisfies R.g = 64 > 0 which means that g is ample on S[3].

Now −36 is not ‘small’ for 114a2 − 4b2 so we need to analyze this
case separately. However, the equation

114a2 − 4b2 = −36

only has solutions when a and b are both divisible by three.

8. Ambiguity in the ample cone

The following addresses a question raised by Huybrechts:

Theorem 11. There exist polarized manifolds of K3 type (X, g) and
(Y, h) admitting an isomorphism of Hodge structures

φ : H2(X,Z)→ H2(Y,Z), φ(g) = h

not preserving ample cones.

This contradicts our oft-made speculation that the Hodge structure
determines the ample cone; we also need to keep track of the Markman
extension data.

We first explain the idea: Let Λn denote the lattice isomorphic to
H2(X,Z) where X is deformation equivalent to S[n] where S is a K3
surface. Given an isomorphism X ' S[n] we have a natural embedding

Λn ↪→ Λ̃. Let d(Λn) denote the discriminant group with the associated
(Q/2Z)-valued quadratic form. There is a natural homomorphism

Aut(Λn)→ Aut(d(Λn))

which is surjective by Nikulin’s theory of lattices. The automorphisms

of Λn extending to automorphisms of Λ̃ are those acting via ±1 on
d(Λn) [Mar11, §9].

We choose n such that Aut(d(Λn)) ) {±1}, exhibit an α ∈ Aut(Λn)
not mapping to ±1, and show that α fails to preserve the ample cone
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by verifying that its dual

α∗ : Λ∗n → Λ∗n

fails to preserve the extremal rays identified by Bayer-Macr̀ı.
We start by fixing notation: Consider

Λn ⊂ Λ̃ ' U ⊕H2(S,Z) ' U4 ⊕ (−E8)
2

realized as the orthogonal complement of a vector v ∈ U ' H2(S,Z)⊥.
Let e1, f1 denote a basis for this U satisfying

(e1, e1) = (f1, f1) = 0, (e1, f1) = 1;

let e2, f2 denote a basis for one of the hyperbolic summands U ⊂
H2(S,Z). We may assume v = e1 + nf1 and write δ = e1 − nf1.
Since Λ∗n ' H2(X,Z) the classification of extremal rays is expressed
via monodromy orbits of vectors R ∈ H2(X,Z). The pre-image of ZR
in Λ̃ is a rank-two lattice

H ⊂ Λ̃, v, a ∈ Λ̃,

where a is as described in Theorem 3.
The first step is to give an n such that the group

(Z/2(n− 1)Z)∗

admits an element ᾱ 6= ±1 such that

ᾱ2 ≡ 1 (mod 4(n− 1)).

We choose n = 7 and ᾱ = 5.
Next, we exhibit an α ∈ Aut(Λ7) mapping to ᾱ. These exist by

Nikulin’s general theory, but we offer a concrete example of such an
automorphism. Then we may take

α(δ) = 5δ + 12(e2 + f2), α(e2) = δ + 2e2 + 3f2, α(f2) = δ + 3e2 + 2f2

and acting as the identity on the other summands.
The third step is to find an extremal ray that fails to be sent to an

extremal ray under α∗. We are free to pick any representative in the
orbit under the monodromy. Consider then the lattice

H1 :=
v a

v 12 5
a 5 −2

with
a = 5f1 + e2 − f2.

Consider the element
a′ = v − 5a ∈ Λ7;
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the relevant ray R is a generator of

Qa′ ∩ Λ∗7 ⊂ Λ7 ⊗Q.
Explicitly

a′ = 5δ − 12e2 + 12f2

and

α(a′) = 25δ + 72e2 + 48f2 = 25e1 − 150f1 + 72e2 + 48f2.

Let H2 denote the saturated lattice containing α(a′) and v. Note that
α(a′)− v is divisible by 12; write

b =
α(a′)− v

12
= 2e1 − 13f1 + 6e2 + 4f2.

In particular, 〈v, b〉 ⊂ Λ̃ is saturated. Thus we find:

H2 =
v b

v 12 −1
b −1 −4

We put H1 and H2 in reduced form:

H1 '
(

0 7
7 −2

)
, H2 '

(
0 7
7 −4

)
which are inequivalent lattices of discriminant −49. We refer the reader
to the Section 5.7: there is a unique lattice that appears of discriminant
−49, i.e., the one associated with H1. Thus H2 is not associated with
an extremal ray R′.

To recapitulate: Suppose we started with an X such that the vec-
tor a yields an extremal ray R. We apply the automorphism α to
H2(X,Z) to get a new Hodge structure, equipped with an embedding

into Λ̃; surjectivity of Torelli [Huy99] guarantees the existence of an-
other hyperkähler manifold Y with this Hodge structure and a com-

patible embedding H2(Y,Z) ⊂ Λ̃. However, the class R′ ∈ H2(Y,Z)
corresponding to R is not in the monodromy orbit of any extremal ray.

To exhibit a concrete projective example of this type, we could carry
out an analysis along the lines of Theorem 4 in Section 6. There we
showed that each monodromy orbit of extremal rays R arises as from
an extremal rational curve

P1 ⊂ S[n] ' X

where (S,A) is a polarized K3 surface, perhaps of very large degree.
The approach was to show that the only vectors in Pic(X) with ‘small’
norm are δ and %, a positive integer multiple of R.
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What happens when we apply the construction above to such an
X ' S[n]? The isomorphism

α : H2(X,Z)
∼→ H2(Y,Z)

implies Pic(Y ) ' Pic(X) as lattices, so their small vectors coincide.
Furthermore, we may choose Y ' T [n] where (T,B) is a polarized K3
surface isogenous to (S,A), i.e., we have isomorphisms of polarized
integral Hodge structures

H2(S,Z) ⊃ A⊥ ' B⊥ ⊂ H2(T,Z).

Moreover, we may assume that δX is taken to δY , i.e., the extremal
curve class δ∨

S[n] maps to δ∨
T [n] . Consequently, there exists an ample

divisor on S[n]—for instance, g := NA− δS[n] for N � 0—that goes to
an ample divisor h = α(g) on T [n].

Let % ∈ Pic(X) denote the class arising as a positive multiple of the
extremal ray; note that % = ±a′ in the notation above. Now α(%) does
not correspond to an effective class, so the second extremal ray on Y
corresponds to a subsequent vector of ‘small’ norm, i.e.,

α∗(cone of effective curves on X) ( cone of effective curves on Y .
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