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Abstract

We study the behavior of geometric Picard ranks of K3 surfaces over Q under reduction modulo
primes. We compute these ranks for reductions of smooth quartic surfaces modulo all primes
p < 216 in several representative examples and investigate the resulting statistics.

1. Introduction

Let k be a number field and X a K3 surface over k, i.e., a smooth projective simply-connected
surface with trivial canonical class, for example, a smooth quartic hypersurface in P3. Let p be
a finite place of k where X has good reduction Xp. Let X (resp. Xp) be the base change of X
(respectively, Xp) to the algebraic closure of k (respectively, of the residue field of p), and let
ρ(X) and ρ(Xp) be the ranks of the corresponding Néron-Severi groups NS(X) and NS(Xp),
i.e., the geometric Picard ranks. There is a natural specialization homomorphism

sp : NS(X)→ NS(Xp), (1.1)

which is injective (see, e.g., [vL07a, Proposition 6.2]), thus

ρ(X) ≤ ρ(Xp).

In fact, for all p of good reduction we have

ρ(X) + η(X) ≤ ρ(Xp), (1.2)

for some η(X) ≥ 0, defined by (2.2). It is known that there exist infinitely many p such that
equality occurs; furthermore, over some finite extension of k, the set of such primes has density
one [Cha11, Theorem 1]. However, very little is known about the set of primes

Πjump(X) := {p : ρ(X) + η(X) < ρ(Xp)},

where the inequality (1.2) is strict.
Information about Πjump(X) can be converted into geometric statements: if this set is infinite,

for all K3 surfaces over number fields with ρ(X) = 2, 4, then all K3 surfaces over algebraically
closed fields of characteristic zero have infinitely many rational curves, by [BHT11] and
[LL12].

There are cases, when Πjump(X) is known to be infinite. For example, assume that X is a
Kummer surface, i.e., the resolution of singularities of the quotient A/ι, where A is an abelian
surface, and ι : A→ A the standard involution ι(a) = −a. Then

ρ(X) = ρ(A) + 16.

Now assume that A ∼ C1 × C2, i.e., is isogenous to a product of two elliptic curves. Then
– ρ(X) ≥ 18,
– ρ(X) ≥ 19, if C1 ∼ C2, and
– ρ(X) = 20, if in addition, C1 has complex multiplication by E := Q(

√
−d).
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In these extreme cases, the primes in Πjump(X) can be understood as follows:
– if ρ(X) ≥ 19, then p ∈ Πjump(X) provided p is a supersingular prime for C1 (and thus C2).
By a theorem of Elkies, there are infinitely many such primes [Elk87], at least for elliptic

curves over Q. This motivates us to consider the asymptotic behavior of the proportion of
primes in Πjump(X):

γ(X,B):=
# {p ≤ B : p ∈ Πjump(X)}

# {p ≤ B}
. (1.3)

Returning to Kummer surfaces of the form X ∼ C × C/ι, when the elliptic curve C does not
have complex multiplication, so that ρ(X) = 19, the Lang-Trotter conjecture [LT76], implies

γ(X,B) ∼ c√
B
, B →∞,

for some constant c > 0. The Lang-Trotter conjecture has attracted the attention of many
experts; for a sample of results we refer to [Elk91, FM96, DP99, Bai07] and to [Kat09], in
the function field case. If C does have complex multiplication, then

γ(X,B) ∼ 1
2
, B →∞. (1.4)

Elsenhans and Jahnel conducted an extensive numerical investigation of Kummer surfaces
over Q, in particular of those with ρ(X) = 17 [EJ12]. They computed ρ(Xp), for p < 1000, for
a large sample of surfaces X with ρ(X) = 17, and observed that the proportion of such X with
ρ(Xp) > 18 is roughly 2/

√
p. In another direction, for some of the examples with ρ(X) = 18,

they were able to show that the density of Πjump(X) is at least 1/2. The precise shape of
asymptotic formulas for γ(X,B) for general Kummer surfaces X ∼ A/ι is likely to depend on
the Sato-Tate group STA of the abelian surface A, investigated in [FKRS12].

More generally, the Kuga-Satake construction (see [Del72]) relates a K3 surface X to an
abelian variety A = AX of dimension 219. Knowing this abelian variety explicitly, in particular,
its Picard group and its endomorphisms, would allow us to compute the Picard group of X, see
[HKT13, Proposition 19]. The jumping behavior of Picard ranks of K3 surfaces is therefore
related to the jumping behavior on these abelian varieties, similar to the Kummer case above,
thus should be controlled by a version of the Lang-Trotter conjecture. However, the Kuga-
Satake construction is transcendental, and we do not yet have sufficiently effective control over
A, even over its field of definition, except in degree two [HKT13, Remark 9].

In this note we report on a numerical study of the variation of Picard ranks of quartic K3
surfaces over Q, with small ρ(X). For several representative examples, we compute ρ(X) and
ρ(Xp), for all 2 < p < 216, where X has good reduction, and we calculate γ(X,B), for B < 216.

We observe two different trends. In examples where ρ(X) = 1 and η(X) = 1 we find that

γ(X,B) ∼ cX√
B
, B →∞,

for some constant cX > 0. In other words, a prime p is in Πjump(X) with probability
proportional to 1/

√
p. On our other examples, when ρ(X) = 2 (and η(X) = 0), we are lead

to believe that

lim inf
B→∞

γ(X,B) ≥ 1
2
,

i.e., the primes at which the geometric Picard number jumps has density ≥ 1/2. Our data
strongly suggests that we are not in the same situation as in (1.4), the plots in Figure 2 and
Figure 3 are not consistent with statistics for the splitting behavior of primes in quadratic
extensions of Q.
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2. Computing the Picard number of a K3 surface

In this section, we explain our approach to the computation of Picard numbers of quartic
K3 surfaces. Over a finite field, one only needs to compute the Hasse-Weil zeta function; which
may be computationally expensive, but is achievable in bounded time. Over a number field,
computing the Picard number of an algebraic surface is a hard problem. For K3 surfaces, an
effective version of the Kuga-Satake construction as in [HKT13] yields a theoretical algorithm,
with a priori bounded running time, at least for degree-two K3 surfaces. In [PTvL12, Section
8.6.] the authors provide an alternative algorithm; another algorithm, conditional on the Hodge
conjecture for X ×X, is presented in [Cha11]; these algorithms do not have a priori bounded
running times.

In practice, one starts by establishing lower and upper bounds for ρ(X). Lower bounds can
be produced by exhibiting independent divisors on X, and upper bounds can be obtained via
specialization to finite fields as in (1.1). This approach does not guarantee an answer in every
case, but sometimes the bounds agree. In some cases, one can improve the upper bound by a
careful analysis of the specialization map. For example, if the lattice structure disagrees over two
different specializations, or if some divisor class on Xp is not liftable, then the specializations
cannot be surjective. This approach has its limitations, as one cannot in general expect that
there exist places p such that ρ(Xp) ≤ ρ(X) + 1. An overview of these techniques can be found
in [Sch12, Chapter 7].

In [Cha11], Charles proved a general theorem about the jumping behavior of Picard ranks
under specialization: Let EX be the endomorphism algebra of the Hodge structure underlying
the transcendental lattice TX of X; it is known that EX is a field, which is either totally real or
a CM-field (see, e.g., [Zar83]). In the latter case, one says that X has complex multiplication.
By [Cha11, Theorem 1], there are two possibilities,

ρ(Xp) ≥

{
ρ(X) if EX is a CM-field or dimEX

(TX) is even,
ρ(X) + [EX : Q] if EX is totally real field and dimEX

(TX) is odd.
(2.1)

We define
η(X) := 0 or [EX : Q], (2.2)

depending on which case we are in.
We turn to finite fields. Let X be a smooth projective surface over Fq. The Weil conjectures

tell us that the Hasse-Weil zeta function has the form

Z(X,T ):= exp

( ∞∑
m=1

#X(Fqm)
m

tm

)
=

P1(X, t)P3(X, t)
(1− t)P2(X, t)(1− q2t)

, (2.3)

where
Pi(X, t) := det

(
1− tFri|Hi

et(X,Q`)
)
∈ Z[t]

have reciprocal roots of absolute value qi/2, and Fri are the Frobenius automorphisms. The
Artin-Tate conjecture relates the Néron-Severi group of X with P2(X, t):

Conjecture 1.
– (Tate Conjecture) ρ(X) equals the multiplicity of q as a reciprocal root of P2(X, t).
– (Artin-Tate Conjecture) Let Br(X) be the Brauer group of X and

α(X) := χ(X,OX)− 1 + dim(Pic0(X)).
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Then

lim
s→1

P2(X, q−s)
(1− q1−s)ρ(X)

=
(−1)ρ(X)−1# Br(X) · disc(NS(X))

qα(X)(# NS(X)tors)2
.

In odd characteristic, the Tate conjecture implies the Artin-Tate conjecture [Mil75, Theorem
6.1]. If X is a K3 surface both hold [Cha13, Per13, Mau12]; furthermore, # Br(X) is a perfect
square (see, e.g., [LLR05]) and

ρ(X) ≡ dim
(
Hi

et(X,Q`)
)
≡ 0 mod 2.

Thus,

disc(NS(XFq
)) = − lim

s→1

P2(X, q−s)
q(1− q1−s)ρ(X)

mod Q×2. (2.4)

Usually, one computes P2 by counting points in sufficiently many extensions of the base field.
For K3 surfaces, this requires computations in fields of size at least p10. Such computations
have been performed in [vL07b, EJ08a, EJ08b, EJ11a, EJ11b] for primes < 10. This direct
approach is computationally not feasible for larger primes. Our approach follows an idea of
Kedlaya: we extract P2 by computing the Frobenius action on p-adic cohomology (Monsky-
Washnitzer cohomology) with sufficient precision. For example, for a quartic K3 surface over
Fp, where p > 41, it suffices to know two significant p-adic digits of the coefficients of P2. This
can be achieved using the Newton identities combined with Mazur inequalities [Maz73].

The algorithmic implementation of this idea relies on techniques introduced in [AKR10]
and [Har07]. The approach by Abbott–Kedlaya–Roe [AKR10] makes primes < 20 computa-
tionally feasible, but its dependence on p is at least pdim(X)+1. We make use of refinements of
Kedlaya’s algorithm, which were introduced by Harvey [Har07]:

– rewriting the Frobenius action on Monsky-Washnitzer cohomology in terms of sparse
polynomials;

– preserving the sparseness throughout the reduction process of differentials in cohomology;
– rewriting each reduction step process as a linear map.

The time complexity is dominated by the reduction of differentials in cohomology, which
involves O(p) recurrent matrix vector multiplications in Z/Zps. For a quartic K3 surface the size
of the matrices is 220× 220; for p > 41 one can take s = 4. Moreover, if the K3 is nondegenerate
(as in [SV13]), one can reduce their size to 64× 64. In practice, we had no difficulties to a find
a change of coordinates for which the surface became nondegenerate.

Altogether, this reduces the polynomial dependence on p in [AKR10] to quasi-linear (or
to p1/2+ε using [BGS07]). The details of the algorithm will be presented in [CHK14]. Our
implementation is written in C++, using the libraries FLINT [HJP12] and NTL [Sho13].
The raw data of all experiments is available at www.cims.nyu.edu/∼costa.

3. Computations and Numerical Data

In this section, we present numerical data for five representative quartic K3 surfaces over Q
with small ρ(X). For each surface we compute ρ(X) and ρ(Xp), for all 2 < p < 216 where X
has good reduction, using the methods introduced in Section 2. This computation consumed
around 45000 hours of CPU time of the Bowery and Butinah clusters at New York University.
With this data we calculate γ(X,B) for B < 216, which we present as a plot. We find two
trends for γ(X,B):

– When ρ(X) = 1 and EX = Q we have

γ(X,B) ∼ cX/
√
B, B →∞,
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for some constant cX > 0, i.e., ρ(Xp) jumps with probability proportional to 1/
√
p.

– When ρ(X) = 2 the data leads us to believe that

lim inf
B→∞

γ(X,B) ≥ 1/2,

i.e., the primes at which the geometric Picard number jumps has density ≥ 1/2.
These trends reflect which case of equation (2.1) we are in.

In our examples, we used random homogeneous polynomials:

f1:=2x2y + 2xy2 + y3 − x2z + xyz − y2z + xz2 − 8yz2 + x2w − 9xyw + 3y2w

− 10yzw − xw2 − 9yw2 + zw2 − w3;

f2:=− 14x3 + x2y − y3 + 2x2z − 17xyz + 22y2z + xz2 − 3yz2 + 2z3 − 2x2w

− 4y2w − 27xzw + yzw − 5z2w − xw2 − yw2 + 7zw2;

g1:=− 14x2 − y2 + xz + 2yz + 2z2 + xw − yw − 2zw;

g2:=− 3x2 + 7xy + 22y2 − 5xz − z2 − 17xw − 27yw + zw − 4w2;

g3:=2xy + y2 + 2xz − yz + xw − yw + zw − w2;

g4:=− 8x2 + xy − y2 − 9yz − 9z2 + xw − 10zw + 3w2;

h:=2x4 − 8x3y − x2y2 + xy3 + y4 + 3x3z − x2yz + 2xy2z − 10y3z + x2z2 − 2xyz2

− 14y2z2 − 9xz3 − z4 + x3w + 22x2yw − 3xy2w + 2y3w + 7x2zw + xyzw − 4xz2w

− 17yz2w + z3w − 9x2w2 − xyw2 − 5xzw2 − 27yzw2 + z2w2 − yw3 − w4.

We start with examples with geometric Picard number one, produced by forcing different
lattice structures on the Néron-Severi groups on different reductions, as in [vL07b].

Example 1. Let X be the smooth quartic surface over Q defined by

wf1 + p1zf2 + p2g1g2 + p1p2h = 0,

where p1 = 4409 and p2 = 24659. Thus Xp1 contains the conic C defined by w = g1 = 0, and
Xp2 contains the line L defined by w = z = 0. Using the methods from Section 2, we find

ρ(Xp1) = 2 and disc(NS(Xp1)) = −3 mod Q×2;

ρ(Xp2) = 2 and disc(NS(Xp2)) = −1 mod Q×2.

Therefore, ρ(X) = 1. Furthermore, NS(Xp1) is generated by the hyperplane section and the
conic C, and NS(Xp2) is generated by the hyperplane section and the line L. In this example
we observe ρ(Xp) > 4 only for p = 29, where ρ(X29) = 6 and disc(NS(X29)) = −537.

Example 2. Let X be the K3 surface over Q defined by

p1(wf1 + zf2) + p2(g1g2 + g3g4) + p1p2h = 0,

with p1 = 18869 and p2 = 30047. As in the previous example, Xp2 contains a line L. Now Xp1

contains the elliptic curve C defined by g1 = g3 = 0. Nonetheless, we still have

ρ(Xp1) = 2 and disc(NS(Xp1)) = −3 mod Q×2;

ρ(Xp2) = 2 and disc(NS(Xp2)) = −1 mod Q×2.

Consequently, ρ(X) = 1, NS(Xp1) is generated by the hyperplane section and the elliptic curve
C, and NS(Xp2) is generated by the hyperplane section and the line L. As in the previous
example, ρ(Xp) > 4 for only one prime p = 7, where ρ(X7) = 6 and disc(NS(X7)) = −345.
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In both examples, η(X) = 1, EX = Q, and X does not have complex multiplication. We
present the log-log plots of γ(X,B) for the previous examples and their respective least square
fit to a power law in Figure 1. We observe that

γ(X,B) ∼ cX√
B
, B →∞,

for some constant cX > 0.

(a) Example 1 (b) Example 2

Figure 1: Log-log plots of γ and their least-square-fit to a power law in Examples 1 and 2.

Next, we present examples of K3 surfaces over Q with geometric Picard number two. We
achieve this by forcing an additional curve on X and by finding a prime p such that ρ(Xp) = 2.

Example 3. Let X be the K3 surface given by

wf1 + zf2 = 0;

it contains the line L defined by w = z = 0. For p = 23 we have ρ(Xp) = 2.

Example 4. Let X be the smooth quartic surface given by

wf1 + g1g2 = 0,

containing the conic C defined by w = g1 = 0. For p = 17 we have ρ(Xp) = 2.

Example 5. Let X be defined by

g1g2 + g3g4 = 0, (3.1)

and containing the curve C given by g1 = g3 = 0. For p = 31 we have ρ(Xp) = 2.

In Figure 2 we present plots of γ(X,B) for the previous examples. These suggest that

lim inf
B→∞

γ(X,B) ≥ 1/2.
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Figure 2: Plots of γ(X,B) for the Examples 3, 4 and 5.

For these examples we also inspected the local density of Πjump(X). For this we resort to a
moving average,

δ(X, i, j) :=
# {i− j/2 < l ≤ i+ j/2 : pl ∈ Πjump(X)}

j

where {p1, p2, p3, . . . } denotes the primes, on their natural order, at which X has good
reduction. We present δ(X, i, 250) in Figure 3. We observe that the moving average oscillates
slightly above 1/2.

Figure 3: Plots of δ(X, i, 250) for the Examples 3, 4 and 5.

While in these examples we observed ρ(Xp) > 2 more frequently, the number of primes such
that ρ(Xp) > 4 is quite small. We present those in Table 1.

Example 3

p ρ(Xp)

3 6
11 6
13 6
47 6
53 6

181 6
239 6

25087 6

Example 4

p ρ(Xp)

3 10
5 10

11 6
29 6
83 6

491 6
2777 6
3187 6

Example 5

p ρ(Xp)

3 6
17 6

347 6

Table 1: Primes p < 216 for which ρ(Xp) > 4.
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