RATIONAL POINTS ON K3 SURFACES AND
DERIVED EQUIVALENCE

BRENDAN HASSETT AND YURI TSCHINKEL

The geometry of vector bundles and derived categories on complex
K3 surfaces has developed rapidly since Mukai’s seminal work [Muk87].
Many foundational questions have been answered,

e the existence of vector bundles and twisted sheaves with pre-
scribed invariants;

e geometric interpretations of isogenies between K3 surfaces [Orl97,
Cal00];

e the global Torelli theorem for holomorphic symplectic manifolds
[Ver13, Huy12b];

e the analysis of stability conditions and its implications for bi-
rational geometry of moduli spaces of vector bundles and more
general objects in the derived category [BMT14, BM13, Bri07].

Given the precision and power of these results, it is natural to seek
arithmetic applications of this circle of ideas. Questions about zero cy-
cles on K3 surfaces have attracted the attention of Beilinson, Beauville-
Voisin [BV04], and Huybrechts [Huy12a].

Our focus in this note is on rational points over non-closed fields of
arithmetic interest. We seek to relate the notion of derived equivalence
to arithmetic problems over various fields. Our guiding questions are:

Question 1. Let X and Y be K3 surfaces, derived equivalent over a
field F'. Does the existence/density of rational points of X imply the
same for Y7

Given a € Br(X), let (X, ) denote the twisted K3 surface associated
with a: If P — X is an étale projective bundle representing «, of
relative dimension 7 — 1, then (X, a) = [P/ SL,].

Question 2. Suppose that (X, «) and (Y, 3) are derived equivalent
over F'. Does the existence of a rational point on the former imply the
same for the latter?
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Note that an F-rational point of (X, «) corresponds to an x € X (F')
such that a|z =0 € Br(F).

We shall consider these questions for F' finite, p-adic, real, and local
with algebraically-closed residue field. These will serve as a foundation
for studying how the geometry of K3 surfaces interacts with Diophan-
tine questions over local and global fields. We first review general
properties of derived equivalence over arbitrary base fields. We then
offer examples which illuminate some of the challenges in applying de-
rived category techniques. The case of finite and real fields is presented
first—here the picture is well developed. Local fields of equicharacter-
istic zero are also fairly well understood, at least for K3 surfaces with
semistable or other mild reduction. The analogous questions in mixed
characteristic remain largely open, but comparison with the geometric
case suggests a number of avenues for future investigation.

Acknowledgments: We are grateful to Jean-Louis Colliot-Thélene,
Daniel Huybrechts, Anthony Vérilly-Alvarado, Sho Tanimoto, Olivier
Wittenberg, and Letao Zhang for helpful conversations. The first au-
thor was supported by NSF grants 0901645, 0968349, and 1148609; the
second author was supported by NSF grants 0968318 and 1160859. We
are grateful to the American Institute of Mathematics for sponsoring
workshops where these ideas were explored.

1. GENERALITIES ON DERIVED EQUIVALENCE FOR K3 SURFACES

1.1. Definitions. Let X and Y denote K3 surfaces over a field F'. Let
p and ¢ be the projections from X x Y to X and Y respectively.

Definition 3. Let £ € DX x Y) be an element of the bounded
derived category, which may be represented by a perfect complex. The
Fourier-Mukai transform is defined

de: D'(X) — DY)
F = q(E@p'F),

where push-forward and tensor product are the derived operations.
Consider the Mukai lattice of X
H(X) = H(X,Z) := H(X,Z)(-1) ® H*(X,Z) ® H'(X, Z)(1),

where we apply Tate-twists to get a Hodge structure/Galois module
of weight two. Let (,) denote the natural nondegenerate pairing on
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H (X). There is an induced homomorphism on the level of cohomology
[LO, Sect. 2]:
¢ HX) — H(Y)

n = q*(Ch(g) Up*f\/TdXXy).
Observe that ¢¢ is also defined on Hodge structures, de Rham coho-
mologies, and ¢-adic cohomologies—and these are all compatible. Note
that

¢g ch(F) = ch(Pg(F)).
Definition 4. X and Y are derived equivalent if there exists an object
£ € D’(X x Y) such that

e : D'(X) — Db(Y)
is an equivalence of triangulated categories.
1.2. Characterizations over the complex numbers.

Theorem 5. [Orl97, §3] Let X and Y be K3 surfaces over C, with
transcendental cohomology groups

T(X) :=Pic(X)* c H*(X,Z), T(Y):=Pic(Y)* c H*Y,Z).
The following are equivalent

e there exists an isomorphism of Hodge-structures T(X) ~T(Y);

e X and Y are derived equivalent;

e Y is isomorphic to a moduli space of stable vector bundles over
X, admitting a universal family € — X XY, i.e., Y = M,(X)
for a Mukai vector v such that there exists a Mukai vector w
with (v, w) = 1.

See [Orl97, §3.8] for discussion of the third condition. This has been
extended to arbitrary fields as follows:

Theorem 6. [LO, Th. 1.1] Let X and Y be K3 surfaces over an al-
gebraically closed field F of characteristic # 2. Then the second and
third statements are equivalent.

1.3. Descending derived equivalence.

Lemma 7. Let X and Y be K3 surfaces projective over a field F' of
characteristic zero. Let v and w be primitive Mukai vectors, invariant
under the Galois group Gal(F/F), such that there exists an isomor-
phism

L My(X) = My(Y)
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inducing
o HA (M (Y), Zy) —— H*(M(X), Zy),
compatible with Galois actions. Then
My (X) ~ M,(Y)

over F'.

Proof. Consider the scheme Isom(M,(X), M, (Y)) parametrizing iso-
morphisms from M,(X) to M,(Y); since M,(X) and M, (Y) are de-
fined over F', this scheme is defined over F. Since we are work-
ing in characteristic zero and K3 surfaces have no infinitesimal au-
tomorphisms, Galois-fixed points of Isom (M, (X), M,(Y)) correspond
to morphisms between the moduli spaces defined over F'.

The Torelli theorem implies that the automorphism group of a K3
surface has a faithful representation in its second cohomology. This
holds true for manifolds of K3 type as well—see [Marl0, Prop. 1.9]
as well as previous work of Beauville and Kaledin-Verbitsky. Moduli
spaces with primitive Mukai vectors are of K3 type, so our assumption
on the Galois invariance of ¢* implies that ¢ is defined over F. 0

1.4. Cycle-theoretic invariants of derived equivalence.

Proposition 8. Let X and Y be derived equivalent K3 surfaces over
a field F of characteristic # 2. Then Pic(X) and Pic(Y) are stably
isomorphic as Gal(F/F)-modules, and Br(X)[n] ~ Br(Y)[n] provided
n 1s not divisible by the characteristic.

Even over C, this result does not extend to higher dimensional vari-
eties [Add13].

Proof. The statement on the Picard groups follows from the Chow re-
alization of the Fourier-Mukai transform—see [LO, §2.7] for discussion.
The étale realization

¢ : Elét(X7 Mn) - ~ét()/7 Mn)

gives the equality of Brauer groups, after modding out by the images
of the cycle class maps. 0

Recall that the index ind(X) of a smooth projective variety X over a
field F' is the greatest common divisor of the degrees of field extensions
F'/F over which X (F") # (.
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Lemma 9. If (S,h) is a smooth projective surface over F then
ind(S) = gcd{ce(E) : E vector bundle on S}
= ged{ex(E) : E € D*9)}.
Proof. Consider the ‘decomposible index’
inddec(S) := ged{D; - Dy : Dy, Dy very ample divisors on S}
which is equal to
ged{D; - Dy : Dy, Dy divisors on S},

because for any divisor D the divisor D+ Nk is very ample for N > 0.
All three quantities above divide inddec(S), so we work modulo this
quantity.

Given a bounded complex of vector bundles

E={F.,—FE 11— - —E,}

we may define the Chern character
ch(E) =) (~1) ch(E})
J
in Chow groups with Q coefficients. This yields definitions of the rank

and first Chern class of E as alternating sums of the ranks and deter-
minants of the terms, respectively. We then may take

e2(E) =Y (=1)c2(E;) (mod inddec(S));
J
this is well defined, because for an exact complex of locally free sheaves
the alternating sum of the second Chern classes is trivial modulo prod-
ucts of first Chern classes. This makes sense even with integer coeffi-
cients.

By this analysis, the second and third quantities agree. Given a
reduced zero-dimensional subscheme Z C S we have a resolution

0—-F —F | —>05—>0;—0
with £_, and E_; vector bundles. This implies that
ged{ca(E) : E vector bundle on S}|ind(S).

Conversely, given a vector bundle E there exists a twist £ ® Og(Nh)
that is globally generated and

c2(E ® Og(Nh)) = co(F) (mod inddec(S5)).
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Thus there exists a zero-cycle Z with degree co(E ® Og(Nh)) and
ind(95)| ged{c2(E) : E vector bundle on S}.

Proposition 10. If X is a K3 surface over a field F' then
ind(X)| ged{24, D1 - Dy where Dy, Dy are divisors on X }.

This follows from Lemma 9 and the fact that co(Tx) = 24. Beauville-
Voisin [BV04] and Huybrechts [Huy10] have studied the corresponding
subgroup of CHy(Xp).

Proposition 11. Let X and Y be derived equivalent K3 surfaces over
a field F. Then ind(X) = ind(Y).
Proof. Using Lemma 7, express Y = M, (X) for v = (r,ah, s) where h
is a polarization on X and a?h? = 2rs. Theorem 6 implies there exists
a Mukai vector w = (1, bg, s') € H"(X,Z) with
(v,w) =abg-h—rs —sr' =1.

Thus we have

(r,s) = (1) (mod g-h).

Consider the Fourier-Mukai functor
®: D*(X) — D*(Y)
and the induced homomorphism ¢ on the Mukai lattice. Note that
gb(v) = (07 0, 1)

reflecting the fact that a point on Y corresponds to a sheaf on X with
Mukai vector v.

Suppose that Y has a rational point over a field of degree n over F
let Z C Y denote the corresponding subscheme of length n. Applying
@~ to Oy gives an element of the derived category with Mukai vector
(nr,nah,ns) and

1 (271(0z))?
2

which equals n(nrs+r — s). Following the proof of Lemma 9, we com-
pute

e2(7(0z)) = — Xx(®7(Oz)) + 2rank(2(Oz))

c(®1(O0z)) (mod inddec(X)).
First suppose that r and s have different parity, so that

ged(nrs +1 — s,2rs) = ged(nrs + 1 — s,18).
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Then we have
(nrs+1 —s,1s) = (r—s,rs) = (r,s)> = (1) (mod g - h).
If they have the same parity then g - h must be odd and
(nrs+r—s,2rs) = (nrs+r—s,rs) (mod g-h)

and repeating the argument above gives the desired conclusion. Thus
we find

c(®HOz)) =n  (mod inddec(X)),
whence ind(X)|n. Varying over all degrees n, we find
ind(X)|ind(Y)
and the Proposition follows. O

A spherical object on a K3 surface X/F is an element S € D(X)
with
Ext’(S,S) = Ext*(S,S) = F, Ext'(S5,5)=0, i#0,2.
These satisfy the following

o (v(5),v(8)) = -2

e rigid simple vector bundles are spherical;

e cach spherical object S on X is defined over a finite extension
F’/F [Huyl0, 5.4]; )

e over C, each v = (r,D,s) € H(X,Z)N H"! with (v,v) = =2
arises from a spherical object, which may be taken to be a rigid
vector bundle E if r > 0 [Kul89];

e under the same assumptions, for each polarization h on X there
is a unique h-slope stable vector bundle E with v(E) = v
[Huy12a, 5.1.iii].

The last result raises the question of whether spherical objects are
defined over the ground field:

Question 12. Let X be a K3 surface over a field F'. Suppose that

S is a spherical object on X such that ¢;(S) € Pic(Xp) is a divisor
defined over X. When does S come from an object S on X7

Kuleshov [Kul89, Kul90] gives a partial description of how to gener-
ate all exceptional bundles on K3 surfaces of Picard rank one through
‘restructuring’ operations and ‘dragons’. It would be worthwhile to

analyze which of these operations could be defined over the ground
field.
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Example 13. We give an example of a K3 surface X over a field F
with
Pic(X) = Pic(Xz) = Zh
and a rigid sheaf E over X that fails to descend to F.
Choose (X, h) to be a degree fourteen K3 surface defined over R with

X (R) = ). This may be constructed as follows: Fix a smooth conic C
and quadric threefold ) with

CcQcP', QR)=0.

Let X’ denote a complete intersection of ) with a cubic containing C
we have X'(R) = () and X’ admits a lattice polarization

g C
gl|6 2
cl2 -2

Write h = 2g — C' so that (X', h) is a degree 14 K3 surface containing
a conic. Let X be a small deformation of X’ with Pic(X¢) = Zh.

The K3 surface X is Pfaffian if and only if it admits a vector bundle
E with v(F) = (2,h,4) corresponding to the classifying morphism
X — Gr(2,6). However, note that

co(E)=5

which would mean that ind(X) = 1. On the other hand, if X(R) = ()
then ind(X) = 2.

2. EXAMPLES OF DERIVED EQUIVALENCE

2.1. Elliptic fibrations.

Proposition 14. Let F' be algebraically closed of characteristic zero.
Let ¢ : X — P! be an elliptic K3 surface with Jacobian fibration
J(X) — P Let a € Br(J(X)) denote the Brauer class associated
with [X] in the Tate-Shafarevich group of J(X) — P'. Then X is
deriwved equivalent to the pair (J(X), a).

This follows from the proof of Caldararu’s conjecture; see [HS06, 1.vi]
as well as [Cal00, 4.4.1] for the fundamental identification between the
twisting data and the Tate-Shafarevich group.

Proposition 15. Let F' be of characteristic zero. Let X and 'Y be K3
surfaces which are derived equivalent over F. Then X 1is elliptic over
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F af and only if Y is elliptic over F'. Moreover, they admit a common
Jacobian elliptic K3 surface J — P! such that

Pic(X/P') =Y, Pic*(Y/P") = X,
as principal homogeneous spaces over J — P, for suitable d,e € Z.

Proof. Let J — P! denote the Jacobian of X — P! over F. Over an
algebraically closed field this follows from Proposition 14: Y gives rise
to a twisted structure over J — P! which may be interpreted as an
element of the Tate-Shafarevich group. The fact that the images of

Br(X),Br(Y) in Br(J) coincide means that [X] and [Y] generate the
same subgroup in this group. This gives the identifications
Pic!(X/P') =Y, Pic’(Y/P) = X.

We know that J — P! descends to J — P! over F, e.g., as the rel-
ative Jacobian of X — P!. There is a corresponding fibration I — P!
for Y which is derived equivalent to J. However, [HLOY04, Cor. 2.7.3]
implies that an elliptic K3 surface with section is unique up to isomor-
phism in its derived equivalence class, over F. Lemma 7 implies that

J and [ are in fact isomorphic over F’; the same reasoning shows that
the identifications descend to F'. U

Corollary 16. Let X and Y be elliptic K3 surfaces derived equivalent
over a field F of characteristic zero. If X(F) # () then Y(F) # (. The

same holds for Zariski density of rational points.

The identifications given in Proposition 15 imply that X dominates
Y over F', and vice versa.

2.2. Rank one K3 surfaces. We recall the general picture:

Proposition 17. [Ogu02, Prop. 1.10] Let X/C be a K3 surface with
Pic(X) = Zh, where h* = 2n. Then the number m of isomorphism
classes of K3 surfaces Y derived equivalent to X is given by

m=2"""1" where 7(n) = number of prime factors of n.
Example 18. The first case where there are multiple isomorphism

classes is degree twelve. Let (X,h) be such a K3 surface and Y =
Ma,5,3)(X) the moduli space of stable vector bundles £ — X with

tk(E) =2, c¢(E)=h, x(E)=2+3=5,
whence ¢y(E) = 5. Note that if Y(F) # 0 then X admits an effective

zero-cycle of degree five and therefore a zero-cycle of degree one. In-
deed, if £ — X is a vector bundle corresponding to [E] € Y (F) then
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a generic o € I'(X, F) vanishes at five points on X. As we vary o, we
get a four-parameter family of such cycles. Moreover, the cycle h? has
degree twelve, relatively prime to five.

Is X(F) # () when Y (F) # (7

2.3. Rank two K3 surfaces. Exhibiting pairs of non-isomorphic de-
rived equivalent complex K3 surfaces of rank two is a problem on
quadratic forms [HLOYO04, §3]. Suppose that Pic(X¢) = IIx and
Pic(Y¢) = Iy and X and Y are derived equivalent. Orlov’s Theo-
rem implies T(X) ~ T(Y) which means that [Ix and IIy have iso-
morphic discriminant groups/p-adic invariants. Thus we have to ex-
hibit p-adically equivalent rank-two even indefinite lattices that are
not equivalent over Z.

Example 19. We are grateful to Sho Tanimoto and Letao Zhang for
assistance with this example. Consider the lattices

c f D g
y=C|2 13 TIly= D|8 15
fl13 12 g |15 10

which both have discriminant 145. Note that [1x represents —2
(2f — C)? = (25C — 2f)* = =2

but that IIy fails to represent —2.
Let X be a K3 surface over F' with split Picard group Ilx over a
field F'. We assume that C' and f are ample. The moduli space

Y = Macypi0)(X)
has Picard group

12C (C+ f)/2
2C 8 15 ~Il,
(C+£)/2| 15 10
while M5 p2)(Y) has Picard group
| D/2 29
D2 2 15 ~Ily
29 | 15 40

and is isomorphic to X.
These surfaces have the following properties:

e X and Y admit decomposable zero cycles of degree one over F;
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e X(F) # : the rational points arise from the smooth rational
curves with classes 2f — C and 25C — 2f, both of which admit
zero-cycles of odd degree and thus are ~ P! over F;

e Y(F') is dense for some finite extension F’'/F, due to the fact
that | Aut(Ye)| = oo.

We do not know whether

e X (F") is dense for any finite extension F’/F;
o Y(F)#10.

3. FINITE AND REAL FIELDS
The /(-adic interpretation of the Fourier-Mukai transform yields

Theorem 20. [LO] Let X and Y be K3 surfaces derived equivalent
over a finite field F'. Then for each finite extension F'/F we have

(X (FI)| = [(Y(F')].

We have a similarly complete picture over the real numbers. We
review results of Nikulin [Nik79, §3] [Nik08, §2] on real K3 surfaces.

Let X be a K3 surface over R, X¢ the corresponding complex K3
surface, and ¢ the action of the anti-holomorphic involution (complex
conjugation) of X¢ on H?*(X¢,Z). Let AL C H?(Xc,Z) denote the
eigenlattices where ¢ acts via +1. If D is a divisor on X defined over
R then

¢([D]) = =D;

the sign reflects the fact that complex conjugation reverses the sign
of (1,1) forms. In Galois-theoretic terms, the cycle class of a divisor
lives naturally H?(X¢,Z(1)) and twisting by —1 accounts for the sign
change. Let A, denote the eigenlattices of the Mukai lattice; note
that A_ contains the degree zero and four summands. Again, the sign
change reflects the fact that these are twisted in the Mukai lattice.

We introduce the key invariants: Let r denote the rank of A_. The
discriminant groups of A4 are two-elementary groups of order 2¢ where
a is a non-negative integer. Note that A, have discriminant groups of
the same order. Finally, we set

5 0if (A\,¢(N)) =0 (mod 2) for each X € A
7)1 otherwise.

Note that 4 can be computed via the Mukai lattice
55 = 0 iff (\,¢()\)) =0 (mod 2) for each X € A,
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as the degree zero and four summands always give even intersections.
We observe the following:

Proposition 21. Let X and Y be K3 surfaces over R, derived equiv-
alent over R. Then

(r(X), a(X), 04 x) = (r(Y),a(Y), 0p,v)-

Proof. The derived equivalence induces an isomorphism

H(X¢,Z2) ~ H(Ye, Z)

compatible with the conjugation actions. Since (r,a,ds) can be read
off from the Mukai lattice, the equality follows. O

The topological type of a real K3 surface is governed by these invari-
ants. Let X, denote a compact orientable surface of genus g.

Proposition 22. [Nik79, Th. 3.10.6] [Nik08, 2.2] Let X be a real K3

surface with invariants (r,a, ). Then the manifold X(R) is orientable

and

0 if (r,a,d,) = (10,10, 0)

TUT,  if (r,a,8,) = (10,8,0)

T, U (Ty)*  otherwise, where
g=(22—-r—a)/2,k=(r—a)/2

X(R) =

Corollary 23. Let X and Y be K3 surfaces defined and derived equiv-
alent over R. Then X(R) and Y (R) are diffeomorphic. In particular,
X (R) # 0 if and only if Y (R) # 0.

The last statement also follows from Proposition 11: A variety over
R has a real point if and only if its index is one. (This was pointed out
to us by Colliot-Thélene.)

Example 24. Let X and Y be derived equivalent K3 surfaces, defined
over R; assume they have Picard rank one. Then Y = M, (X) for some
isotropic Mukai vector v = (r, f,s) € H(X(C),Z) with (r,s) = 1. For
a vector bundle E of this type note that

c(E) = c1(E)?*/2 +rx(Ox) — X(E) = rs + 1 — s,

which is odd as r and s are not both even. Then a global section of
gives an odd-degree cycle on X over R, hence an R-point.
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4. GEOMETRIC CASE: LOCAL FIELDS WITH COMPLEX RESIDUE
FIELD

4.1. Monodromy and models of K3 surfaces. We assume that
F = C((t)) with valuation ring R = C[[t]]; let A = Spec(R) and
A° = Spec(F).

Let X be a K3 surface over F. Let T € Aut(H?*(Xc,Z)) denote its
monodromy, which satisfies

(T°—1)! =0

for some e, f € N. We take e and f minimal with this property.
The semistable reduction theorem [KKMSD73] implies there exists
an integer n > 1 such that after basechange to

Ry = Cl[t2]], F» = C((t2)), 3 =1,
there exists a flat proper
Ty : Xy — Ay = Spec(Ry)

such that

e the generic fiber is the basechange of X to Fb;
e the central fiber 7, '(0) is a reduced normal crossings divisor.

We call this a semistable model for X. It is well-known that semistable
reductions have unipotent monodromy so e|n.

By work of Kulikov and Persson-Pinkham [Kul77, PP81], there exists
a semistable modification of A%

w:/’?—>A2

with trivial canonical class, i.e., there exists a birational map ¢ : Xy --»
X that is an isomorphism away from the central fibers. We call this
a Kulikov model for X. Furthermore, the structure of the central fiber
/'Fo can be described in more detail:

Type I X, is a K3 surface and f=1
Type I1 ./'?0 is a chain of surfaces glued along elliptic curves, with rational
surfaces at the end points and elliptic ruled surfaces in between;
here f = 2.
Type 111 /i;o is a union of rational surfaces and f = 3.

We will say more about the Type III case: It determines a combina-
torial triangulation of the sphere with vertices indexed by irreducible
components, edges indexed by double curves, and ‘triangles’ indexed
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by triple points [Mor84]. We analyze this combinatorial structure of
i’vo in terms of the integer m.

Let 2?0 = U, V; denote the irreducible components, ‘N/Z their normal-
izations, and D;; C f/z the double curves over V; N'Vj.

Definition 25. )?0 is in minus-one form if for each double curve D;; we
have (D;ﬁ)vi = —1if Dj; is a smooth component of Dy; and (Dj;)y, = 1
if D;; is nodal.

Miranda-Morrison [MM83] have shown that after elementary trans-
formation of X , we may assume that X is in minus-one form.
The following are equivalent [Fri83, §3],[FS85, 0.5,7.1]:
e the logarithm of the monodromy is m times a primitive matrix;
° /i;o admits a ‘special u,, action’, i.e., acting trivially on the sets
of components, double/triple points, and Picard groups of the
irreducible components;
° /\?0 admits ‘special m-bands of hexagons’, i.e., the triangula-
tion coming from the components of /'FO arises as a degree m
refinement of another triangulation.

In other words, Xj ‘looks like’ it is obtained from applying semistable
reduction to the degree m basechange of a Kulikov model. Its central
fiber X can readily be described [Fri83, 4.1]—its triangulation is the
one with refinement equal to the triangulation of Xj, and its compo-
nents are contractions of the corresponding components of Aj.

For Type II we can do something similar [FS85, 0.3]. After elemen-
tary modifications, we may assume the elliptic surfaces are minimal.
Then following are equivalent:

e the logarithm of the monodromy is m times a primitive matrix;

o Xy =VyUg...UgV,, is a chain of m + 1 surfaces glued along
copies of an elliptic curve E, where V;, and V,, are rational and
Vi, ..., Vi1 are minimal surfaces ruled over F.

Again )?0 ‘looks like’ it is obtained from applying semistable reduction
to another Kulikov model with central fiber X; =V, Ug V.

There are refined Kulikov models taking into account polarizations:
Let (X, g) be a polarized K3 surface over F' of degree 2d. Shepherd-
Barron [SB83] has shown there exists a Kulikov model @ : X — A,
with the following properties:

e there exists a specialization of g to a nef Cartier divisor on the
central fiber )?0;



RATIONAL POINTS ON K3 SURFACES AND DERIVED EQUIVALENCE 15

e ¢ is semi-ample relative to As, inducing

X la z
AN /
Ay

where )?0 — Z is birational and Z; has rational double points,
normal crossings, or singularities with local equations

xy = 2t = 0.

These will be called quasi-polarized Kulikov models and their central
fibers admissible degenerations of degree 2d.

Recall the construction in sections five and six of [FS85]: Let D
denote the period domain for degree 2d K3 surfaces and I' the corre-
sponding arithmetic group—the orientation-preserving automorphisms
of the cohomology lattice H?(X, Z) fixing g. Fix an admissible degener-
ation (Yo, g) of degree 2d and its image (2o, h), with deformation spaces
Def (Yo, g) — Def(Z, h); the morphism arises because g is semiample
over the deformation space. Let

M\Dy, DT\D

denote the partial toroidal compactification parametrizing limiting mixed
Hodge structures with monodromy weight filtration given by a nilpo-
tent Ny, associated with )y (see [FS85, p.27]). We do keep track of
the stack structure. Given a holomorphic mapping

fA{t:0<|t| <1} = T\D,

that is locally liftable (lifting locally to D), with unipotent monodromy
[-conjugate to Ny,, then f extends to

filt<1}—TD.
The period map extends to an étale morphism [FS85, 5.3.5,6.2]
Def (Y, g) — T\D.
Thus the partial compactification admits a (local) universal family.

Proposition 26. The smallest positive integer n for which we have
a Kulikov model equals the smallest positive integer e such that T is
unipotent.
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Proof. 1t suffices to show that a Kulikov model exists provided the
monodromy is unipotent. Suppose we have unipotent monodromy over
Ry = Spec(C[[t1]]), t{ = t, and semistable reduction

Xy — Spec(Ry), Ry = Spec(Cl[t2]]). 15 = 1.

Let X — Spec(R;) denote a Kulikov model, obtained after applying
elementary transofrmations as specified above. Write

mN = log(T¢) = (T° — I) — %(T@ —I)?

where m € N and N is primitive (cf.[FS85, 1.2] for the Type III case).

Let 2?6 be the candidate for the ‘replacement’ Kulikov model, i.e.,
the central fiber of the Kulikov model we expect to find

X' — Spec(Ry).

In the Type I case .556 = /'E) by Torelli, so we focus on the Type II and
IIT cases.

Lemma 27. Suppose that )?0 admits a degree 2d semiample divisor g.
Then X} admits one as well, denoted by g'.

Proof. For Type II, let L; denote the class of a ruling in Vj, for j =
1,...,m — 1. Consider the collection of nonnegative numbers

(91, 9m=1), 95 =9 L.

We claim there exist integers ayg, . .., a,,_1 such that

Os(g+acVo+ ...+ am-1Vi1)
remains nef but intersects each L; trivially. Note that

VielLivy=1,i=0,....m—=2, V.- L1 =1i=2....m

and also

L;-Vi==-2i=1,...,m—1.
Thus to intersect L; trivially we need

g9; —2a;+a;_1+a =0, j=1...,m—2,

and g1 — 201+ apym_o = 0if j = m—1. We first choose ao, ..., a,_1
so that

(a2‘/2+"'+a/m—lvm—l)'Lj:_gj’ j:2,m_1,
necessarily we have as, ..., a,,_1 > 0, whence

(aaVa+ -+ am-1Vin—1) - L1 > 0.
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Now we choose ap < 0 so that ag + g1 + a; = 0. It follows that
g+aVo+...4+ apm_1V,—_1 is nef: By construction, it meets Ly, ..., L,,
trivially, and it is nef on V; and V,, because the conductor curves on
those surfaces are themselves nef. Indeed, they are irreducible curves
with self-intersection zero.

For Type III, we rely on Proposition 4.2 of [Fri83|, which gives an
analogous process for modifying the coefficients of h so that it is trivial
or a sum of fibers on the special bands of hexagons. However, Fried-
man’s result does not indicate whether the resulting line bundle is nef.

This can be achieved after birational modifications of the total space
[SB83, Th. 1]. O

We can apply the Friedman-Scattone compactification construction
to both (Xp, g) and (Aj, ¢'), with N = Ng, and mN = Ng. Thus we
obtain two compactifications

D, , — I\Dy D>T\D,

both with universal families of degree 2d K3 surfaces and admissible
degenerations.

To construct X' — Spec(R;) we use the diagram

Spec(Ry) — I'\D, y
| !
Spec(R;) \D,.
The liftability criterion for mappings to the toriodal compactifications
gives an arrow
Spec(Ry) — I'\Dy,
making the diagram commute. The induced universal family on this
space induces a family
X' — Spec(R,),

agreeing with our original family for ¢; # 0 by the Torelli Theorem.
This is the desired model. 0

4.2. Applications.

Corollary 28. Suppose that X and Y are derived equivalent K3 sur-
faces over = C((t)). If X admits a Kulikov model then' Y admits a
Kulikov model with central fiber diffeomorphic to that of X. In partic-
ular, both X(F) and Y (F) are nonempty.
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Orlov’s Theorem implies they have the same (unipotent!) mon-
odromy so Proposition 26 applies. The last assertion follows from
Hensel’s Lemma.

Proposition 29. Suppose that X and Y are derived equivalent K3
surfaces over F'= C((t)). Then the following conditions are equivalent:

e X (equivalently, Y ) has monodromy acting via an element of a
product of Weyl groups;

e X and Y admit models with central fiber consisting of a K3
surface with ADE singularities.

Thus both X (F') and Y (F') are nonempty.

Proof. We elaborate on the first condition: Let T" denote the mon-
odromy of X. Then there exist vanishing cycles 71, ...,7s for X such
that each 72 = —2, (71, ...,7,) is negative definite, and T is a product
of reflections associated with the ~;. If g is any polarization on X then
the v; are orthogonal to g. Thus the Fourier-Mukai transform restricts
to an isomorphism on the sublattice generated by the ~;. In particular,
the monodromy of Y admits the same interpretation as a product of
reflections.

Let L denote the smallest saturated sublattice of H?(X,Z) contain-
ing 71, ...,7s—the classification of Dynkin diagrams implies it is a
direct sum of lattices of ADE type. Let M denote the corresponding
lattice in H*(Y,Z), which is isomorphic to L.

After a basechange

Spec(R;) — Spec(R), t{ =t

where e is the order of T', the Torelli Theorem gives smooth (Type I
Kulikov) models
X1, Y1 — Spec(Ry)

with central fibers having ADE configurations of type M, consisting of
smooth rational curves. Blowing these down yield models

&}, Y1 — Spec(Ry)
which descend to
X,Y — Spec(R),

i.e., ADE models of X and Y.
An application of Hensel’s Lemma gives that X (F), Y (F) # 0. O
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5. SEMISTABLE MODELS OVER p-ADIC FIELDS

Let F be a p-adic field with ring of integers R. A K3 surface X over
I has good reduction if there exists a smooth proper algebraic space
X — Spec(R) with generic fiber X. It has ADFE reduction if the central
fiber has just rational double points.

We start with the case of good reduction, which follows from Theo-
rem 6 and Hensel’s Lemma:

Corollary 30. Let X andY be K3 surfaces over F', with good reduction
and derived equivalent over F. Then X (F) # () if and only if Y (F') # 0.

We can extend this as follows:

Proposition 31. Assume that the residue characteristic p > 7. Let
X and Y be K38 surfaces over F, with ADE reduction and derived
equivalent over F. Then X(F) # 0 if and only if Y (F) # 0.

Proof. Let k be the finite residue field, X', ) — Spec(R) proper models
of X and Y, Ay and )y denote the resulting reductions, and AN,’O and 5)0
their minimal resolutions over k. Applying Artin’s version of Brieskorn
simultaneous resolution [Art74, Th. 2], there exists a finite extension

Spec(R;) — Spec(R)
and proper models

X — X X spec(r) Spec(R') — Spec(R'),
37 - y ><Spec(R) SpeC(R/) - SpeC(R/)a

in the category of algebraic spaces, with central fibers Xy and .
The Fourier-Mukai transform specializes to give an isomorphism

¢ H2 (X, Qp) — H2 (Do, Qp).

Note that since X, ) are not projective over Spec(R'), there is not an
evident interpretation of this as a derived equivalence over Spec(R').
(See [BMO02] for such interpretations for K3 fibrations over complex
curves.) Furthermore v is far from unique, as we may compose with
reflections arising from exceptional curves in either Xy — X or Yy —
Vo associated with vanishing cycles of X or ).

Let L (resp. M) denote the lattice of vanishing cycles in H?(X, Q)
(resp. H%(Y,Qy)), with orthogonal complement L* (resp.M*). The
isomorphism v does induce a canonical isomorphism

Lt~ Mt
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compatible with Galois actions. As in the proof of Proposition 29,
the lattices L and M are isomorphic once we fix an interpretation via
vanishing cycles of our models.

Our assumption on p guarantee that the classification and deforma-
tions of rational double points over k£ coincides with the classification
in characteristic 0 [Art77]. Choose new regular models for X and Y

X" V" — Spec(R)

whose central fibers X and )}/ are obtained from X, and ) by blowing
down the (—2)-curves classes associated with L and M respectively. Let
X, C &) and Y, C )| denote the smooth loci, i.e., the complements
of the rational curves associated with L and M respectively.

We claim that 1) induces an isomorphism on compactly supported
cohomology

Hg,ét(‘fov Qf) = Hc2,ét(j)07 @5)7
compatible with Galois actions. Indeed, these may be identified with
L+ and M+, respectively. The Weil conjectures yield then that

RAGIEANAD]
and Hensel’s Lemma implies our claim. O

Question 32. Is admitting a model with good or ADE reduction a
derived invariant?

Y. Matsumoto [Mat] has recently shown that having potentially good
reduction is governed by whether HZ (X, Q) is unramified, under some
technical hypotheses. This condition depends only on the ¢-adic coho-
mology and thus depends only on the derived equivalence class. Propo-
sition 29 suggests a monodromy characterization of ADE reduction in
the mixed characteristic case.
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