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ABSTRACT. We construct and study universal spaces for birational
invariants of algebraic varieties over algebraic closures of finite

fields.

INTRODUCTION

Let ¢ be a prime. Recall that in topology, there exist unique (up to
homotopy) topological spaces K(Z/¢", m) such that
e K(Z/¢", m) is homotopically trivial up to dimension m — 1, in
particular,

H' (K(Z/(",m),Z/¢") =0, for 0<i<m;
e H™(K(Z/t",m),Z/") is cyclic, with a distinguished generator

Fom;
e for every topological space X and every o € H™(X,Z/{") there
is a unique, up to homotopy, continuous map
pxa @ X — K(Z/", m)
such that
,“;(,a(“m) = Q.

This reduces many questions about singular cohomology to the study
of these universal spaces (see, e.g., [1, Chapter 2]). Analogous the-
ories exist for other contravariant functors, for example, topological
K-theory, or the theory of cobordisms. The study of moduli spaces in
algebraic geometry can be viewed, broadly speaking, as an incarnation
of the same idea of universal spaces.

Here we propose a similar theory for unramified cohomology, devel-
oped in connection with the study of birational properties of algebraic
varieties [4], [15]. The Bloch-Kato conjecture proved by Rost and Vo-
evodsky [30], with a patch by Weibel, combined with techniques and
results from birational anabelian geometry in [9], implies that an un-
ramified class in the cohomology of the function field K = k(X)) of an
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algebraic variety X over an algebraic closure of a finite field k = F,,
with finite constant coefficients, is induced from the cohomology of a
finite abelian group G*. This, together with our prior work on cen-
tralizers of elements of Galois groups of function fields [8], implies our
main result:

Theorem. Let ¢ and p be distinct primes, K = k(X) the function
field of an algebraic variety X of dimension > 2 over k = F,, Gy its
absolute Galois group, and ax € H' (Gy,Z/(™),i > 2, an unramified
class. Then there exists a finite set J of finite-dimensional k-vector
spaces Vi, j € J, depending on ok, such that oy is induced, via a
rational map, from an unramified class in the cohomology of an explicit
open subset of the quotient of

Pi= [[P()
jeJ

by a finite abelian £-group G*, acting projectively on each factor.

Thus, the spaces P/G® serve as universal spaces for all finite bira-
tional invariants of algebraic varieties over k = F,. The theorem fails
for H because all such elements are induced from abelian varieties and
H!  vanishes for every smooth proper separably rationally connected
variety over an algebraically closed field (see e.g., [16, Corollary 3.6]).

Actions of finite abelian groups G* on products of projective spaces
are described by central extensions of G%, i.e., by subspaces in A%(G?).
This allows us to present unramified classes of X in terms of configu-
rations of subspaces of skew-symmetric matrices. For example, if the
unramified Brauer group of X is trivial, then all finite birational invari-
ants of X are encoded already in the combinatorics of configurations
of liftable subgroups in finite abelian quotients of the absolute Galois
group G (see Section 1 for the definition).

The program towards the construction of universal spaces for unram-
ified cohomology was outlined in [4] and [5]. The recent proof of the
Bloch—Kato conjecture allows us to complete this program, in a more
precise and constructive form. This approach to birational invariants
leads to many new questions:

e Is there a smaller class of configurations with this universal
property?

e How does this structure interact with Sylow subgroups of Gg?

e [s there an extension to cohomology with Z,-coefficients? An
equally simple description of models for ¢-adic invariants would
provide insights into higher-dimensional Langlands correspon-
dence.
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e What are the analogs of universal spaces for varieties over k =
Q? Counterexamples to our main result arise from bad reduc-
tion places, already for abelian varieties [4].

Here is the roadmap of the paper: In Section 1 we recall basic facts
about stable and unramified cohomology. In Section 3 we provide some
background on valuation theory. In Section 5 we investigate Galois
cohomology groups of function fields of higher-dimensional algebraic
varieties over k = F, and their images in cohomology of finite groups.
In Section 6 we introduce and study unramified cohomology of algebraic
varieties. Section 7 contains the proof of our main theorem, modulo
geometric considerations presented in Sections 8 and 9.
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and insightful comments. The first author was supported by NSF grant
DMS-1001662 and by AG Laboratory GU-HSE grant RF government
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NSF grants 0901777 and 1160859.

1. STABLE COHOMOLOGY

Let G be a pro-finite group. We will write
G*=G/|G,G] and G°=G/[|G,G|,G]

for the abelianization, respectively, the second lower central series quo-
tient of G; throughout the paper, we write [G,G] and [|G, G], G| for
topological closures of algebraic subgroups generated by the corre-
sponding commutators. We have a canonical central extension

(1.1) 1— 7 -G "% G"— 1.

Let M be a topological G-module and H*(G, M) its (continuous) i-
cohomology group. These groups are contravariant with respect to G
and covariant with respect to M. In this paper, G is either a finite
group or a Galois group (see [1] for background on group cohomology
and [28] for background on Galois cohomology). We will sometimes
omit the coefficient module M from the notation.

Our goal is to investigate incarnations of Galois cohomology of func-
tion fields in cohomology of finite groups. For example, let K = k(X)
be the function field of an algebraic variety X over an algebraically
closed field k; varieties birational to X are called models of K. We
do not assume a model to be proper over k. Let G be the absolute
Galois group of K and 7(X) the étale fundamental group of X, with
respect to some basepoint. The choice of a base point will not affect our
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considerations and we omit it from our notation. When we work with
Gk, we take M to be either Q/Z or Z /", for some prime ¢ invertible
in k, with trivial G-action.

We have natural homomorphisms

H' (71(X)) 5 Hy,(X) 5 H' (G,
where the right arrow arises from the embedding of the generic point
X, — X. We will write
nx : G — m(X)
and
Nx =1 o Ky « H'(1(X)) — H(Gk)
for the corresponding map in cohomology.

We say that a class ax € H*(Gk) is defined (or represented) on a
model X of K if there exists a class ax € H?,(X) such that

ag = fx(ax).
Let GG be a finite group. A continuous homomorphism
x:m(X)—G
gives rise to homomorphisms in cohomology
H'(G) 25 H' (1 (X)) 2 H' ().
Conversely, every ay € H*(G ) arises in this way: there exist

e a model X of K,

e a continuous homomorphism y as above,
e and a class ag € H*(G)
such that
ag = 1x(x*(ag))-
This follows from the description of étale cohomology of points, see
[21]. In such situations we say that ay is defined on X and is induced
from .

A version of this construction arises as follows: assume that the
characteristic of & does not divide the order of G. Let V be a faithful
representation of G over k, and X an algebraic variety over k with
function field

K =k(X) ~ k(V)Y,

the field of invariants; we will write X = V/G and call it a quotient.
Even more generally, let Y be a quasi-projective algebraic variety over
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k with a generically free action of G, and X = Y/G the quotient. This
situation gives rise to a natural surjective continuous homomorphism

GK — G
and induced homomorphisms on cohomology
st H(G) — H'(Gg).

The following lemma shows that we have many choices in realizing a
class ax € H(Gg):

Lemma 1.1. [4] Assume that ayx € H'(Gg) is represented by a class
ax € H ,(X) on some affine irreducible model X of K and is induced
from a surjective continuous homomorphism x : m(X) — G and a
class ag € H(G). Let V be a faithful representation of G over k and

Ve C V the locus where the action is free. Then, for every x € X and
v € V° there exists a map
f=f:X-V/G

such that

o f(x)=wv and

e the restriction of ax to X° = f~YV°/G) C X is equal to

f*<Oég).
Proof. We follow the proof in [4]. The homomorphism y : 7 (X) — G
defines a finite étale covering 7 : X — X, by an affine variety X. The
ring k[X] is a k[G] -module. Every finite-dimensional k[G]-submodule
W* C k[X] defines a G-equivariant map X — .
Let e € k[G] be the unit element of G. For any G-orbit G-y € V

there is a G-linear homomorphism

l, : k[G] =V,

which maps the orbit G - e to G -y. Let & € 7~ '(z). Choose h € k[X]
such that

Then h generates a k[G]-submodule W C k[X] and defines a regular
G-map h: X — W = k[G], with k(&) = e € k[G]. The map f :=1,0h
is a regular G-map satisfying the first property.

Let X° = f~}(V°/G) C X. It is a nonempty affine subvariety. We
have a compatible diagram of G-maps

Ve<——Xo° C

VO/G<TXO -

S

-~
3

>
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and the maps mg and 7 induce the same cover my. This implies the
second claim. O

We can achieve even more flexibility for G-maps, under a projectivity
condition on V: we say that a G-module V is projective if for every
finite-dimensional representation W of G with a G-surjection

w:W -V
there exists a G-section

0:V —-W with pof=id.

This condition holds, for example, for regular representations over ar-
bitrary fields or when the order of GG is invertible in k.

Now let {S;};es be a finite set of G-orbits in a generically free G-
variety Y with stabilizers H; so that S; ~ G/H;. Consider a faithful
representation V' of G and a subset {7}};c; of G-orbits in V with
stabilizers Q);, with H; C @, T; = G/Q;. Consider regular G-maps
fj8; = Ty, for j € J. Applying the argument above to finite sets of
orbits, we obtain:

Lemma 1.2. Assume that V is a projective G-module. Then there is
a reqular G-map f:Y — V such that f = f;, for all j € J.

We return to our setup: X = Y/G, K = k(X), and x : Gg — G,
inducing
st H(G) — H*(Gg).
The groups
H, x(G) == H'(G)/Ker(sk)
are called stable cohomology groups with respect to K = k(X). Let

Ker(s') := (] Ker(s}),

over all function fields K = k(X) as above. In fact,
Ker(s') = Ker(sya));

for some faithful representation V' of G over k, in particular, this is
independent of the choice of V' (see [7, Proposition 4.3]). The groups

HZS(G) = H'(GQ) /Ker(s")

are called stable cohomology groups of G (with coefficients in M = Z /"
or Q/Z); they depend on the ground field k. These define contravariant
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functors in GG. For example, for a subgroup H C G we have a restriction
homomorphism

resq/p : Hi(G) — HL(H).
Furthermore:

e While usual group cohomology H*(G) can be nontrivial for infin-
itely many i (even for cyclic groups), stable cohomology groups
H'(G) vanish for ¢ > dim(V'), where V is a faithful representa-
tion.

e We have

H(G) C Hi (Syl,(G))Ne (@)

where the coefficient group M is Z/(™ or Q;/Zs, No(H) is the
normalizer of H in G, and Syl,(G) an ¢-Sylow subgroup of G.

The determination of the stable cohomology ring
HY(G,Z/") .= @;H (G, Z /")

is a nontrivial problem, see, e.g., [6] for a computation of stable coho-
mology of alternating groups. For finite abelian groups G, we have

(1.2) H(G,Z/0™) c AF(HY(Z™, Z./)0)),

induced by a surjection Z™ — G. For central extensions of finite groups
as in (1.1), the kernel of

m, + Hi(G) — HY(G")
contains the ideal I = I(G°) generated by
R? = R*(G°) := Ker (HZ(G*) — H(G")) .

(see, for example, [11, Section 8]). An important role in the computa-
tion of this subring of H:(G¢) is played by the fan

£ = 2(69) = {o},
the set of noncyclic liftable subgroups o of G, and the complete fan

Y =3(G) = {o},

consisting of all nontrivial liftable subgroups ¢ C G%: a subgroup o is
liftable if and only if the full preimage o of o in G° is abelian. The fan
Y defines a subgroup R*(X) C H2(G?) as the set of all elements which
vanish upon restriction to every o € ¥. Note that for any ¢ and o as
above, the natural homomorphism of cohomology groups

Hi(0) — H(5)
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is injective; indeed, stable cohomology of any finite abelian group G*
with any finite coefficients coindices with the image of the group coho-
mology of G* in the group cohomology of any finite rank free abelian
group surjecting onto G*. Using this fact, we have

R? C R*(%).

Lemma 1.3. For every a € I[(G°) C HX(G?) and every o € X(G°) the
restriction of a to o is trivial.

Definition 1.4. Let
1—-7 -G —-G*"—=1

be a central extension of finite groups, with G® abelian. A A-pair
(I, D) of G* is a set of subgroups
ICDCG”
such that
o [ € 2(G°),
e D is noncyclic, -
e for every 6 € D, the subgroup (I, ) € X(G°).

This definition depends on G¢. Assume we have a commutative
diagram of central extensions

-7 G Go 1
L4
1 Z G¢ G* 1.

Definition 1.5. A A-pair (I, D) of G* surjects onto a A-pair (I, D)
of G*if y(I) = I and v(D) = D.

Definition 1.6. A class a € H{(G?) is unramified with respect to a
A-pair if its restriction to D is induced from D/I, i.e., there exists a
f € H.(D/I) such that ¢(a) = ¥(3), for the natural homomorphisms
in the diagram:

H:(G") —2 H1(D) < H:(D/T)

Recall that a cohomology class § € H*(G ) is unramified if for every
divisorial valuation v of K the restriction of 3 to G, , the Galois group
of the completion of K with respect to v, is induced from the quotient
Gk, /I, where I,, C G is the corresponding inertia subgroup.
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When G is a finite group and K = k(V/G), the field of functions of
V/G for some faithful representation V' of G, the stable cohomology
groups of G are naturally subgroups of the corresponding cohomol-
ogy groups of G, and unramified stable cohomology classes are those
which are unramified when considered as classes in H*(G). In par-
ticular, the images of unramified classes in G* with respect to A-pairs
are mapped to unramified classes in H*(G), as the following lemma
shows.

Lemma 1.7. Consider a homomorphism
v:GY— G°

and a class a € H'(G), fori > 2. Let & := v*(a) € HY(G*) be the
induced class. Let (I,D) be a A-pair in G*. Assume that one of the
following holds:

e v(I) =0,

e v(D) is cyclic,
e v induces a surjection of A-pairs

(1.D) — (1,D)
and o € H.(G") is unramified with respect to (I, D).
Then & € HL(G) is unramified with respect to (I, D).

Proof. The first case is evident. In the second case, the stable coho-
mology of D is trivial. Consider the third condition. By assumption,
~ induces a homomorphism D / I > D /1. Passing to cohomology we
get a commutative diagram

H;(D/I) — H3(D)
H;(D/I) —=H;(D),
and thus the claim. O

2. CENTRAL EXTENSIONS AND ISOCLINISM

Let G* and Z be finite abelian ¢-groups. Central extensions of G
by Z are parametrized by H?(G?, Z); for o € H?(G", Z) we let G be
the corresponding central extension:

(2.1) 1—7—G "G — 1
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Fix an embedding Z — (Q/Z)", consider the exact sequence
12— (Q/Z) — (Q/Z) — 1,

and the induced long exact sequence in cohomology

H'(G",(Q/2)") -~ B} (G", Z) — H¥(G", (Q/Z)").
We say that a,a € H?(G% Z) and the corresponding extensions are
1soclinic if

a—a € i(HY(G",(Q/Z)")).

This notion does not depend on the chosen embedding Z — (Q/Z)"

and is equivalent to the standard definition of isoclinic in the theory of
(-groups (as in [17]).

Lemma 2.1. If a,a € H3(G*, Z) are isoclinic then the corresponding
extensions of G* define the same set of A-pairs in G*.

Proof. A pair of subgroups (I, D) is a A-pair in G*, with respect to a
central extension G¢, if their preimages commute in G¢, i.e.,

(7.2 (1),7;'(D)]=0 in Z.

»a

Consider the homomorphism
' HY(G, Q/7Z) — H*(G*,Q/Z),

and note that Ker(7¥) only depends on the isoclinism class of the ex-
tension. Furthermore, H*(G*, Q/Z) is dual to A?(G?). Let R C A*(G?)
be the subgroup which is dual to Ker(7?). It remains to observe that
(I,D) is a A-pair for G¢ if and only if 7, '(I) A 7w, *(D) intersects R
trivially; thus the notion of a A-pair is an invariant of the isoclinism
class of the extension. U

Lemma 2.2. I[fo, & € H%(G*, Z) are isoclinic then there exist faithful
representations V,V of G¢ and G& over k such that V/GS, and V |GS
are birational.

Proof. Explicit construction: Let xi,..., X, be a basis of Hom(Z, k™)
and put
Vi=0¢'_,V; and V= @;zlf/j,
where
as - as
V; =Ind;*(x;) and V; =Ind,*(x;).
Note that the projectivizations P(V;) := (V; \ 0)/k* and P(V}) are

canonically isomorphic as G®-representations. The group (k*)" acts on
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V and V, and both V/G¢, and V/GY are birational to

<H E”(Vj)) /G* X (H k:X/Xj(Z)> .

Lemma 2.3. Consider a central extension of finite groups
1 -2 -GG —1

and let V.= @®;Vj} be a faithful representation of G as in Lemma 2.2,
i.e., each V; = Ind§ (x;), where {x;}jecs is a basis of Hom(Z, k*). Let
P:=T1I;c;P(Vj). Then:

(1) G acts faithfully on P.

(2) For any subgroup o C G* the subset of o-fized points P7 C P is
nonempty if and only if o € X(G°).

(3) Each irreducible component of P7 is a product of projective sub-
spaces of P(V;), corresponding to different eigenspaces of o in
Vi, and distinct irreducible components are disjoint.

(4) Each irreducible component of P is stable under the action of
H, C G¢, the mazimal subgroup such that [Hy, ;' (c)] = 1 in
G°; the action of G°/H, on the set of components of P7 is free.

(5) The action of G* on P° := P\ U,e5\P? is free.

Proof. Since the order of G¢ is coprime to the characteristic of k, every
g C G° is semi-simple and we can decompose

Vi = @:Vi(hi(9)),

as a sum of eigenspaces. The subset of g-fixed points splits as a product
[1; [T, P(V;(Ai(g))), where the product runs over different eigenvalues
in different V;. It follows that the subset of g-fixed points PY C P is a
union of products of projective subspaces of P(V;).

If o € 3 then its elements can be simultaneously diagonalized. Hence
the subset of fixed points in P = [[;P(V}) is a union of products of
projective subspaces, and there is a Zariski open subvariety of P on
which the action of o is free.

Let o := (g,h) C G* be a subgroup such that o ¢ . Then the same
holds for the images of g, h in GL(Vj), for at least one j € J. Thus
the commutator [g,h] € GL(V;) is a nontrivial scalar matrix, hence
they have no common eigenvectors, i.e., no common fixed points in
P(V;). Thus if o ¢ 3 then o has no fixed points in [I; P(V;). Note that
projective subspaces corresponding to different eigenvalues of g do not
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intersect in P(V;) and hence P splits into a disjoint union of products
of projective subspaces of different P(V}).

Assume that [h,6] = 1 in G° for some h € G°. Then (h,5) has a
fixed point in each component of P? and h maps every component of
P? into itself. Thus a subgroup H C G¢, with [H,5] = 1 maps every
component of P? into itself.

Assume that (h,~) ¢ X, for some v € 0. Then for some j, the images
of h,v in GL(V;) have nonintersecting invariant subvarieties in P(V}).
In particular, A does not preserve any component of P?. 0

Lemma 2.4. Let K = k(X) be a function field with Galois group
Gk. Gwen a surjection G — G, onto some finite central extension
of an abelian group G*, let P = Hj P(V;) be the space constructed in
Lemma 2.3. Then there is a rational map o : X --+ P/G* such that

e 0 maps the generic point of X into P°/G*;

e the homomorphism

sk HI(GY,Z/0") — H (G, Z/l™)
factors through the cohomology of P°/G®.

Proof. Let X° C X be an open affine subvariety such that m(X°) sur-
jects onto G¢. Let X° — X° be the induced unramified G¢covering.
Then k[X°] decomposes into an infinite direct sum of G¢-representations.
Fix a point X° and consider its orbit. The restriction of k[X°] to this
orbit defines a regular quotient Grepresentation isomorphic to k[G].
Since the order of GG is coprime to p, we have a direct summand of /{:[X' °]
projecting isomorphically to k[G] under the above homomorphism.
This subspace of regular functions on X° defines a G-equivariant map

to V and hence a map X --» V/G° with desired properties. U

3. BASIC VALUATION THEORY

Let X be a variety over k = F,, K = k(X) its function field, and G
the absolute Galois group of K. A valuation of K is a homomorphism

v:K*—=T,
onto a totally ordered abelian group I', such that its extension to K,
via v(0) = oo, satisfies the nonarchimedean triangle inequality. A

divisorial valuation measures the order of a rational function along a
divisor on some model X of K. Let 0, denote the valuation ring and
m,, the corresponding maximal ideal. The residue field will be denoted
by K ,; in general, it need not be finitely generated over k, see Example
9 in [29]. We write Vk for the set of (equivalence classes of) valuations
of K and DVy for the subset of divisorial valuations.
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Let Z C X be an affine subset, Z = Spec(oz), and v € V. A
valuation v is said to have a center on 7,

Cx(V)o g Z

if and only if v(f) > 0, for all f € 0y; the center is the closed subvariety
of Z corresponding to the prime ideal defined by v(f) > 0.

For v € Vg, let D, C Gk denote a decomposition group of v and
I, C D, the inertia subgroup; we have Gg, = D, /I, (see, e.g., [19,
Section 5] for the description of the inertia subgroup in terms of the
value group and the description of the Galois group of the residue field).
The pro-¢-quotients of these groups will be denoted by Gk, D,, and Z,,,
respectively. We will always assume that p # ¢. The corresponding
abelianizations will be denoted by G, D%, and Z¢; their canonical cen-
tral extensions by G, D%, and ZIf. Under our assumptions, G is a
free abelian pro-¢-group.

Lemma 3.1. For v € Vi consider the commutative diagram

DV*)GK

Dy G,

where m, and 7 are the canonical projections and 0% is the induced
homomorphism. Then 62 is injective with primitive (i.e., nondivisible)
image. In particular, o3 embeds I¢ as a primitive subgroup of De.

Proof. We have G = Hom(K*,Z,) and D¢ = Hom(K*,Z,). We have
exact sequences
l—o, - K*—-T,—1

and

l1-(14+m,)" -0 - K, — 1.
Note that the elements of F,(X) with Q-independent values of v(x)
are algebraically independent. Thus the Q-rank of I', is < n and the
Zy rank of Hom(I',,Z,) is also < n; it is a free Z;-module of finite
rank. Taking a finitely generated subgroup S C K* of the same rank,
with an isomorphism Hom(T',,Z,) = Hom(S,Z,), we obtain a direct
splitting (depending on S):

Hom(K*, Z¢) = Hom(T,, Z;) & Hom (o), Zy).

The right summand contains Hom(K,Z,) as a primitive subgroup.
This implies that

D, =1, ® 9k,
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where Hom(I',, Zy) = Z2. O

Remark 3.2. If the residue field K, is finitely generated over k then
there is a model X of K such that the center of v is realized by a
subvariety X, C X.

Indeed, in this case there is a finite subset of elements f; € 0, which
generate K and reduce to a generating subset of K,. The subring
k[fi,..., fn] defines an affine model X of K and its image B in K, a
finitely generating subring of K, ; hence we have an inverse embedding
of affine varieties Xp C X with desired properties.

Let X(G%) be the set of primitive topologically noncyclic subgroups
of G% whose preimage in Gf, is abelian. By [8, Section 6], we have:

Theorem 3.3. Assume that dim(X) > 2. Then
rkz, (0) < dim(X), forall o€ 3(G%).

The following key result gives a valuation-theoretic interpretation of
liftable subgroups in G¥%; it is crucial for the reconstruction of function
fields in [9] and [10].

Theorem 3.4. [8, Corollary 6.4.4] Assume that dim(X) > 2 and let
o € X(GS). Then there exists a valuation v € Vi such that I® is a
subgroup of o of Zg-corank at most one and o C D.

4. LIFTABLE SUBGROUPS AND THEIR CONFIGURATIONS

Let K = k(X) be the function field of an algebraic variety over
k =IF,. In this section, we compare the structure of the fan ¥(G§) with
fans in its finite quotients. Consider the canonical central extension

(4.1) 1— Zxk —G% — G — 1.
Lemma 4.1. We have
Zr =[Gk, G%l-

Proof. This holds for function fields of curves since the corresponding
pro-{-quotients of their absolute Galois groups are free. In higher di-
mensions, Gf embedds into the product [[; G%, where E ranges over
function fields of curves £ C K. Under the projection to G, — G,
the center of G§ maps to zero, hence the claim. O

Lemma 4.2. Consider commutative diagrams of continuous homomor-
phisms
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1 Zr % Ok 1
bk
1 YA G¢ Ge 1,

where G¢ is finite, with fived surjective vk and surjective v§,. Assume
that Z C G° is a quotient of Zxk such that

Ker (H*(G*) — H*(G*)) = Ker (H*(G") — H*(GY%)) ,
with Q/Z-coefficients. Then G is unique modulo isoclinism.

Proof. Assume that G, G§ are two such extensions of G* with Z;, Zs,
respectively, and put G := G Xg« GG5. We have a natural surjection
G — G* and an inclusion Z; x Zy < G. Moreover, |G, G] C Z1x Z,. By
Lemma 4.1, Zf is generated by commutators in Gf,. There is natural
diagonal projection Gf. — G which maps Zx onto [G,G]. The image
of G¢ in G is a subgroup G¢ with G* - G* and [G*, G°] = [G, G]. By
the maximality assumption, we obtain that both projections of [G, G|
into Z; and Z, are are isomorphisms; this implies isoclinism. O

We proceed to investigate the properties of fans under such factor-
izations. Let
VK Gk — G°
be a continuous surjective homomorphism onto a finite group. We
choose a maximal finite central extension G¢ of G* as in Lemma 4.2.

Corollary 4.3. Given continuous surjective homomorphisms
(4.2) G 5 Go 1 e,

with G a finite group, there is a unique (modulo isoclinism of lower
rows) diagram of central extensions

1 Zk g% G% 1
i J{W% l:YK

| 7 G o 1
I L

1 Z G*¢ G* 1

with surjective 35, v¢ and maximal Z, Z.
Proof. Evident. O

We will use the following observation:
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Lemma 4.4. Let G* be a profinite abelian group and
g G j=1,...n,

a collection of continuous surjective homomorphisms onto finite groups.
Then there exists a continuous surjection

N NG
onto a finite group such that each v; factors through ~:

%-;QGLG”IHG?.
Proof. We can choose G* to be the image of G* in the direct product
Gy x - x G,
O

We are interested in factorizations (4.2), with finite G*, preserving
liftable subgroups and their configurations. Throughout we will be
working with the canonical, modulo isoclinism, diagram as in Corol-
lary 4.3, i.e., a factorization as in Equation (4.2) will canonically de-
termine X(G) and the set of A-pairs in G, by Lemma 2.1. Let

Yp(G%):={0 € X(G°) |0 =vk(ok), forsome ok € X(G%)}
be the subset of extendable subgroups.
Lemma 4.5. Given a continuous surjective homomorphism

VK G — G
onto a finite abelian group there exists a factorization
gy K, Ge 2, e, VK =7 ° VK,

with finite G*, such that for allo € Y(G°) we have: if o is nonextend-
able then there is no 6 € 3X(G°) with v(¢) = o.
Proof. First we prove the statement for one nonextendable . Write

(4.3) Gf = projlim G¢, Y G — G, <,
el

where the limit is over finite continuous quotients of Gf. Assume that
for all ¢, there is some o, € ¥(G¢) surjecting onto o; this implies that
there exist such o, for all /' < ¢, with v,/(0,) = o,.

By compactness of G, there exists a closed liftable o C G surject-
ing onto ¢. This contradicts our assumption that o is nonextendable.
Thus there is a required factorization

Ge — G* L G-
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Let
{o1,..., 00} = 2(G) \ Ze(G°).
For each j, let
Gy — G¢ 5 G
be the factorization constructed above. Now we apply Lemma 4.4,
combined with Corollary 4.3, and obtain factorizations of ;:
Gy — G — G — G, v G — G,

Assume that there is some j for which there exists a & € %(G¢) sur-
jecting onto o;. Then image ¢ in G; must be liftable, contradicting the
construction in the first part. U

Let
1 CDCG-

be a A-pair (see Definition 1.4). Throughout, we assume that G* arises
as a finite quotient of the Galois group Gx of some function field K, in
particular, the corresponding G° is determined as in Lemma 4.2, up to
isoclinism. We say that (I, D) is extendable if there exists a valuation
v € Vi and subgroups

cz;, D*CD} I*C D"
such that

k(') =1, yk(D*)=D.

Recall that a A-pair (I, D) is said to surject onto (I, D) if

y(I)=1, ~+(D)=D.
We will need the following strengthening of Lemma 4.5

Proposition 4.6. Given a continuous surjective homomorphism
Gy — G
onto a finite abelian group there exists a factorization
Ox — G* — G°,

with finite G*, such that for all A-pairs (1, D) in G* we have: if (I, D)
nonextendable and D 1is not liftable then there is no A-pair (I,D) in
G surjecting onto (I, D).

Proof. As in the proof of Lemma 4.5, it suffices to establish the state-
ment for one nonextendable A-pair; indeed, there are only finitely many
A-pairs in G* and the same application of Lemma 4.4 will then estab-
lish it for all.
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Assume that there is no finite quotient of G§ with the desired prop-
erty. We start with a factorization

Gi — G* 1 Ge
such that G satisfies the conclusions of Lemma 4.5, i.e., no o € %(G¢)\
Y p(Ge) is the image of a & € L(G°).

Let (I, D) be a nonextendable A-pair. If D /I is cyclic or trivial then,
in fact, D € %(G°) and by assumption on G€ it is not liftable to X(G¢).
Thus if a A-pair (1, D) surjects onto (I, D) then (I, g) C %(G°) surjects
onto D, for some g € D, and hence D lifts to E(@C), contradicting
our assumption. Thus it suffices to consider A-pairs (I, D) with D/I
noncyclic.

By our assumption, there exists a A-pair (I, D) in G surjecting
onto (I, D). Choose representatives gi,...,g, € D \ I for nontrivial

elements of D/I and §; € D surjecting onto g; under . Note that for
each 7,

O'j = <g],]> € 2<Gc>, 5']‘ = <§J,]~> S i(éc)
and that o; surject onto ¢;. By Lemma 4.5 and our choice of Ge, all
o; are extendable. Then

and if we replace and rename the original D by
D = Z &j,
j=1

then (I, D) is a A-pair in G surjecting onto (I, D).
Now we consider a projective system of finite continuous quotients

Gl — G =G =G oy GC— G <

Assume that for each ¢ there exists a A-pair (fb, DL) in éf surjecting
onto (I, D). Iterating the construction above, we construct, for each ¢,
a collection of liftable subgroups

5-L717 s 75L7n
and a A-pair (I,, D,) of the form

n
~ n ~ ~ L -
IL g ﬂjzl JL,j? DL - E O‘Mj?
j=1

such that
e (I,,D,) surjects onto (I, D,), for each ¢/ < t,



UNIVERSAL SPACES 19

and in particular onto (I, D). By compactness of G} (see Lemma 4.5),
there exist closed subgroups

Ok Ok € 5(G%);
the closed subgroups
I%:=Nok,;, D":=(0k;);

of Gj surject onto I, resp. D.

Note that if a pair (I,D") C (I, D) is non extendable then (I, D)
is also not extendable. Thus we can assume that proper sub-pairs
(I,D") C (I, D) are extendable. In particular, any liftable subgroup in
D% is equal to (1%, g), g ¢ I%, for some g € D*\ I

By [8, Lemma 6.4.3] and [8, Corollary 6.4.4] any liftable subgroup
L, contains a subgroup I, of corank < 1 which consists of flag elements
and the group I, is Contalned in I} and Dy . It I, = L, for some g,
then I* consists of flag elements and hence by 8, Lemma 6.4.3] and [8,
Corollary 6.4.4] there is a v such that I, C I¢ and D* C D¢ and hence
(I, D) is liftable, contradicting our assumption.

Thus we can assume that for any L, the subgroup I, has corank
exactly one. Let us show that I, = I*. Assume that h € I is not a
flag map. By results mentioned above, h C D} , for some valuation gy,
with the property that any commuting pair (h,z) is contained in the
image of (h, I,,). The image of (h,,) = H* C G*is a liftable subgroup,
but then D* C H* and hence D® is also liftable, contradicting our
assumption on D?.

Our assumption on (I, D) implies that any closed subgroup con-
taining (I, d), with 6 € D\ I, lifts to an abelian group. The theory
developed in [8] describes all pairs (g, h) of topologically independent
elements in G§ which lift to commuting pairs in G§.: they are realized as
Zy-valued maps on K* /k* = P(K), a projective space over k, with the
property that g(zy) = g(x) + g(y), for all z,y. The so-called flag maps
f are maps such that every finite-dimensional subspace P" C P(K)
admits a flag of projective subspaces P; C ... C P, = P" so that f is
constant on P; \ P;_q, for all i = 2,... r. A flag map defines

(1) a natural scale on K: a sequence of linear subspaces L, C K
over k parametrized by an ordered abelian group I' with the
property that L, C Lgif vy > 8in I,

(2) amap v : K* — I, where v(z) = fif x € Lg and is not
contained in L, C Lg.

Moreover, © - Ly, = Ly4,(y), 1.e., the scale is invariant under multipli-
cation in K*. Thus to any multiplicative flag map f on P(K) we can
associate a nonarchimedean valuation v of K with value group I'. We
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have f(z) = f.(v(x)), where f, is a homomorphism I' — Z,. Note that
a flag map f defines a unique order, and hence the value group of the
valuation. Of course, similar homomorphisms exist for refinements of
this valuation, but the latter is defined intrinsically by the flag map f.

The main result of [8] states that for any pair of (g, h) as above there
is a basis (f,0) of (g, h) such that f is a flag map defining (canonically!)
a valuation vy and § belongs to the decomposition group of v¢. This
holds for function fields over F,; a slightly more complicated version is
valid for function fields over arbitrary algebraically closed fields k. The
property of § to be in the decomposition group of v is also described
in terms of projective geometry of the level sets in P(K). In particu-
lar, for any such ¢ there is a maximal valuation v such that 6 € Dg
and every o € ¥(G¢ ) containing ¢ is contained in (Z% 6). The above
general description of commuting pairs provides also a description of
pairs (Z*,D?) in G¢%. Since by assumption I # D, the same holds
for 7% # D® in G% and hence D*/I® has topologically independent
elements g1, g2, since we assumed that D* is not a liftable subgroup
gs..

Therefore, all elements in Z¢ are flag and hence Z¢ C 7¢, for some
v, and D* C D2, In particular, the initial pair (I, D) was extendable
which completes the proof of the proposition. O

5. GALOIS COHOMOLOGY OF FUNCTION FIELDS

In [9], [10] we proved that if k = [F,,, with p # ¢, and X is an algebraic
variety over k of dimension > 2 then K = k(X)) is encoded, up to purely
inseparable extensions, by G, the second lower series quotient of G.
Related reconstruction results have been obtained in [24], [22], [25].

The proof of the Bloch—Kato conjecture by Voevodsky, Rost, and
Weibel, substantially advanced our understanding of the relations be-
tween fields and their Galois groups, in particular, their Galois coho-
mology. Indeed, consider the diagram

Gk

Y 92

Ta

The following theorem relates the Bloch—Kato conjecture to statements
in Galois-cohomology, with coefficients in Z/¢" (see also [12], [13], [26]).
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Theorem 5.1. [3], [11, Theorem 11] Let k =F,, p # ¢, and K = k(X)
be the function field of an algebraic variety of dimension > 2. The
Bloch—Kato conjecture for K is equivalent to:

(1) The map
7 H(Gy,Z/0") — H(Gk,Z/07)

15 surjective and
(2) Ker(r}) = Ker(7").

This implies that the Galois cohomology of the pro-/- quotient G of
the absolute Galois group G g encodes important birational information
of X. For example, in the case above, G, and hence K, modulo purely-
inseparable extensions, can be recovered from the cup-products

HY (G, Z/0") UHY (G, Z/0") — H* (G, Z/E™), n € N.

From now on, we will frequently omit the coefficient ring Z/¢" from
notation.

The first part of the Bloch-Kato theorem says that every ay €
H'(Gk) is induced from a cohomology class o € H*(G*) of some finite
abelian quotient Gx — G® An immediate application of this is the
following proposition:

Proposition 5.2. Let ax € H(Gf) be defined on a model X of K and
induced from a continuous surjective homomorphism x : 71(X) — G
onto a finite group. Let o = ax € H',(X) be the class representing
ag on X. Then there exists a finite cover X = U,;X; by Zariski open
subvarieties such that, for each j, the restriction o; = alx, is induced

from a continuous surjective homomorphism x; : 71(X;) — G* onto a
finite abelian group and a class o € HY(G*) = A'/(HY(G?)).

Proof. We first apply the Bloch-Kato theorem to V°/G and find a
Zariski open subset U := UZ of V°/G such that the restriction ay is
as claimed, i.e., induced from a class a® € H{(G*) = AY(H'(G?)), for
some homomorphism x, : Giesq) — G® to a finite abelian group.
Note that this homomorphism is unramified on U.

By Lemma 1.1, for every x € X there exists a map f: X — V/G
such that f(z) C U and the restriction of a to f~'(U) C X equals
F*(xi(a®)). The claim follows by choosing a finite cover by open sub-
varieties with these properties. U

The second part implies the following;:

Corollary 5.3. Let ax € H(Gg). Assume that we are given finitely
many quotients
Xj: G — G
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onto finite abelian groups and classes
aj € HI(G;L)
with X;(a?) = ag, for all j. Then there exists a continuous finite

quotient G — G¢ onto a finite central extension of an abelian group
G* such that

e x; factor through G°, i.e., there exist surjective homomorphisms
Y GC— Gy, for all j;

e there exists a class a° € H'(G®) with
af = ¢i(af),  forall .

Lemma 5.4. Let X be a normal variety with function field K. Assume
that ax € H(Gg) is defined on X and induced from a homomorphism
X : T (X) — G to a finite group G. Consider the sequence

Xk : G — 1 (X) =5 G.
Then xk(1,) =0, for every v such that cx(v)° C X.

Proof. An étale cover of X induces an étale cover of the generic point
of cx(v), thus the cover is unramified in v, i.e., xx(I,) = 0. O

Corollary 5.5. Let ax € H(Gg). Let X be a normal projective model
of K and U;X; a finite cover by open subvarieties such that ag is
defined on Xj, for each j, and is induced from a class of € Hi(G?),
via a homomorphism x; : 71(X;) — G§ to some finite abelian group.
Then there exist a diagram

Gk
GC p— Ga

where G is a finite {-group which is a central extension of G*, and a
class a« € H(G*)/1(G) such that o induces ax and for any extend-
able A-pair (I, D) C G* « has a representative in H'(G®) which is
unramified with respect to (I, D).

Proof. Each «f is unramified on all v such that the generic point
cx(v)° C Xj, by Lemma 5.4. Since ; are induced from a finite number
of finite abelian quotients G§ of Gk there exists an abelian quotient
G® of Gi with surjections Gx — G* — GY; it follows that all classes
«; are simultaneously induced from G“. Note that a; define the same
class already on G and hence on some finite quotient G° of G with
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a abelian quotient G* which surjects onto G®. For each v such that the
center of v is in Xj, the image of I, in Gf is trivial, and the restriction

of a; to the image of D, in G is induced from the image of D, /I,.
For any extendable A-pair (I, D) C G there exists a j and a pro-
jection G* — G which maps I to a trivial group. Since on the corre-
sponding central extension G¢ all a; define the same class «, we obtain
that the image of a; in H/(G®)/I(G¢) is induced from D/I, for all
extendable A-pairs in G°. O

6. UNRAMIFIED COHOMOLOGY

An important class of birational invariants of algebraic varieties are
unramified cohomology groups, with finite constant coefficients (see [4],
[15]). These are defined as follows: Let v be a divisorial valuation of
K. We have a natural homomorphism

81, : H1<GK> — Hiil(GKu).

Classes in ker(9,) are called unramified with respect to v. The unram-
ifted cohomology is

H,,(Gk) = () Ker(d,) C H(Gx).
veDVgk
For + = 2 this is the unramified Brauer group which was used to provide

counterexamples to Noether’s problem, i.e., nonrational varieties of
type V/G, where V is a faithful representation of a finite group G (see

[27], [2])-

Generally, for v € Vi and a € H'(Gx) let
o, € H(D,)
be the restriction of a to the decomposition subgroup D, C G of v.
Lemma 6.1. A class « is in Ker(9,) C H(Gg), for v € DVx, if and

only if o, is induced from the quotient Gg, = D,/I,. In particular,
, is well-defined as an element in H(Gk,)).

Proof. Since v is divisorial, the exact sequence
l1—1,—-D,—Gkg,—1

where I, and D, are quotients of the inertia, respectively decomposi-
tion, subgroups, by wild inertia, admits a noncanonical splitting, i.e.,
D, is noncanonical direct product of Gg, = D, /I, with the corre-
sponding inertia group, which is a torsion-free central procyclic sub-
group of D,. This follows from Lemma 3.1, using that [, is abelian
and Gg  is a free abelian pro-£ group.
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Thus
H*(D,) = H*(Gk,) ® N"H'(L,).
We have
HY(1,,z/0") = H°(1,,Z/0") = 7./ ("
and
A (HY1,,Z/0) = H'(1,,Z/0") @ HO(1,,, Z./0™).
Thus

H'(D,) = H"(Gk,) ® H'(,) ® H'(Gk,)
and the differential 0, coincides with the projection onto the first

summand. Hence 0,(«) = 0 is equivalent to «a, being induced from

Gr, =D,/I,. O

Combining the considerations above we obtain the notion of unram-
ified stable cohomology
H ., (G)
of a finite group G: a stable cohomology class o € H:(G) is unramified
if and only if it is contained in the kernel of the composition

H!(G) — H{(Gx) 2 H" (G, ),

for every valuation v € DVyg, where K = k(V/G) for some faithful
representation of G. This does not depend on the choice of V', provided
¢ # char(k). These groups are contravariant in G and form a subring

, (G) C HY(G).

s,nr
Furthermore:

e If V/G is stably rational then H,, .(G) =0, for all i > 2.
e We have

H., (G)CH

s,nr s,nr

(Sylg(G))NG(Sylf(G)).
Remark 6.2. In [7], we proved that H' _(G) =0, 7 > 1, for most quasi-

simple groups of Lie type. A complejce result for quasi-simple groups
and ¢ = 2 was obtained in [20].

Note that the ¢-Sylow-subgroups of finite simple groups often have
stably-rational fields of invariants; this provides an alternative ap-

proach to our vanishing theorem.

Lemma 6.3. Let
it G — G
be a continuous surjective homomorphism and a% = Vi (a®) € H(G%),

for some o € HL(G®). If a* is unramified with respect to every ez-
tendable A-pair in G* then o € H!, (G%).
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Proof. For v € DVg, let D := v(D?) and I := yx(Z¢). Then ei-
ther D is cyclic or (D, ) is an extendable A-pair in G*. We have a
commutative diagram

Hi(G*) —2~ Hi(D) <—— Hi(D/I)

W |

H'(G%) — H'(Dy) <— H'(D}/1})
In either case, af is unramified with respect to v, by Lemma 1.7. [

7. MAIN THEOREM

Theorem 7.1. Let K = k(X) be a function field over k = F, of
trdeg,(K) > 2 and ax € H., (Gk), with { # p and i > 1. Then there
exist a continuous homomorphism G — G® onto a finite abelian (-
group, fitting into a diagram

G

1 Z G
and a class &* € H(G*) such that
(1) ak is induced from &%,
(2) & =7 (a%) € HE,,(G).

s,nr

c Ga 1

Conversely, every ax € H(Gx) induced from A*(HY(G*)) and unram-
ified on some G¢ as above is in H (G).

In this section we begin the proof of Theorem 7.1, reducing it to
geometric statements addressed in Sections 8 and 9.

Fix an unramified class
ax € H. (Gk) C H(Gk).
By Theorem 5.1, we have a surjection
™ H(G%) — H (Gk),
let a4 € H(G%) be a class such that 7*(a%) = ag. Let
K Gk — G°

be a continuous quotient onto a finite abelian ¢-group such that o is
induced from a class o € H,(G*) = A'(H'(G*)). We have a diagram
of central extensions:



26 FEDOR BOGOMOLOV AND YURI TSCHINKEL

1 Zx G% Ok 1
I
1 A Ge —2> qo 1

where the lower row is uniquely defined, up to isoclinism, as in Lemma 4.2.

The group G* might be too small, i.e., it may happen that
mo(a®) ¢ Hy . (G).

s,nr

Our goal is to pass to an intermediate finite quotient G§ — G fitting
into a commutative diagram below

1 O% O% 1
|
G 1

|

lw

Zy
1 Z G
1 Z G¢ G* 1

where the vertical arrows are surjections onto finite £-groups, and such
that a4 is induced from a class @* € H*(G*) with

75 a%) e HY  (G°).

s,nr

There are two possibilities:

(1) There exists a finite quotient Gx — G® such that ak is in-
duced from o® € H!(G*) which is unramified with respect to
every extendable A-pair (I, D) in G° This case is treated in
Lemma 7.2.

(2) On every finite quotient, the class a® inducing a is ramified on
some extendable A-pair (I, D). This possibility is eliminated
by Lemma 7.3.

Lemma 7.2. Assume that o* € H.(G?) is unramified with respect to
every extendable A-pair (I, D) in G*. Then there is a factorization

(7.1) Gi 15 Gr 5 GOk =707k,
with finite G*, such that
i@ e HY, (G9),  a®:=~*(a%).

s,nr



UNIVERSAL SPACES 27

Proof. Let G* be the quotient constructed in Proposition 4.6, i.e., if
(£, D) is not an extendable A-pair in G* then no A-pair (I, D) surjects
onto (I, D). Thus, for each A-pair (I, D) in G one of the following
holds:

e cither (/) = 0 or 7(D) cyelic,
e or (y(I),v(D)) is an extendable A-pair in G°.

Applying Lemma 1.7 and Lemma 6.3~t0~V/ GC, we obtain that a® :=
v*(a®) is unramified with respect to (I, D). O

Lemma 7.3. There exists a finite quotient G — G such that a* €
HY(G") induces ax and is unramified on every extendable A-pair (I, D)
in G°.

The proof of this lemma is presented in Section 8, in the case when
K admits a smooth projective model; a reduction to the smooth case
is postponed until Section 9.

8. THE SMOOTH CASE

Let X be a smooth projective irreducible variety over an algebraically
closed field k& with function field K = k(X). By the Bloch-Ogus theo-
rem, there is an isomorphism

H;T(GK> = H%ar(X> Hét(‘)())?

where H!, is an étale cohomology sheaf (see also Theorem 4.1.1 in
[14]). In particular, a class ax € H! (Gg) can be represented by a
finite collection of classes {a, tnen, With «,, defined on some Zariski
open affine X,, C X, with X = U,X,,, such that the restrictions of «,,
to some common open affine subvariety X° C N, X,, coincide. We will
need the following strengthening:

Lemma 8.1. Let X be a smooth variety with function field K and S =
{z1,...,2.} C X a finite set of points. Given a class ax € H', (Gr)
there exist

e a Zariski open subset Us C X, containing S, and
e a class ag € H.,(Us)

such that o and ag coincide on some dense Zariski open subset Ug C
Us, i.e., for every representation of ay by {a,}nen as above there
exists some dense Zariski open Ug C Ug, containing S, such that the
restrictions of ag and all o, to Ug coincide.
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Proof. By the argument in [14, Theorem 4.1.1], ax has a representative
a = ax € HY, (X, HY(Z/(")). Hence, there is a covering of X by
Zariski open subsets X, with «, representing « in X,. Moreover,
using the refinement of the Bloch-Ogus exact sequence for semi-local
rings as in [23, Theorem 1.1], we can assume that one of the subsets
contains the finite set S. U

Fix a representation of ax € Hj, (Gx) by {an}nen as above. Each
class a, € H%,(X,,) is represented by a finite collection {X,,,} of affine
charts X,,,,, with UX,,,,, = X,, and finite étale covers

such that the restrictions a,,, := a,|x,, are induced from homomor-
phisms Xpm : T1(Xum) — Gum onto finite groups. Proposition 5.2
implies that there is further refinement of the cover by affine subcovers

X =U;Xj,
such that for each j there exist

e a finite abelian ¢-group GY

e a surjection xg; : Gx — GY, unramified over X, and

e aclass a; € Hl(Gj) inducing « via xx ;.
Corollary 5.3 implies that there exists a finite quotient 7, : Gx — G°
onto a central extension of an abelian group G* such that the projec-
tions X ; factor through G° and the images of «; in H/(G*) coincide.
In particular, ax is induced from o¢ € HY(G°).

We claim that a¢ is unramified on every pair (7.(1,), 7.(D,)), for v €
Vi. Indeed, for each v, xx j(I,) = 0 on at least one of the charts X,
thus the restriction of a; to xx ;(D, ) is induced from x ;(D,)/ Xk ;(1,);
since a¢ € HY(G®) is induced from «;, we have the same property for
af, with respect to the pair (7.(l,),7.(D,)). The description of the
action in Lemma 2.3 identifies subgroups of G* acting on products of
projective spaces with fixed points with images of inertia subgroups
of some valuations, and images of their decomposition subgroups with
subgroups preserving the corresponding components, see Lemmas 2.2
and 2.3.

The rest of the argument is similar to the proof of Lemma 7.2. Let
Gk — G* be an intermediate quotient surjecting onto each G and

Gx — G* — G°

the intermediate finite quotient constructed in Proposition 4.6. In par-
ticular, the projection of every A-pair in G* to Gf is either of the
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form (7, ;(1,), ma j(D,)), for some v € Vi, or cyclic. Let G* be a cen-
tral extension as in Corollary 4.3, surjecting onto G¢. We have classes
aj € Hi(é“), induced by «f constructed above, and mapping to the
same class a° € H'(G®).
We claim that a¢ € H! , (G¢). Indeed, for every A-pair (I, D) in G°
either D projects to a cyclic group in G* or it is extendable, i.e., image
of some ([,,D,). In the first case, all elements @&; are unramified on

(I, D). In the second case, at least one of the d; is unramified on it.

9. REDUCTION TO THE SMOOTH CASE

In absense of resolution of singularities in positive characteristic, we
reduce to the smooth case via the de Jong-Gabber alterations theorem
(see [18]): The Galois group G contains a closed subgroup Gz of
finite index, coprime to ¢, such that

e The function field K corresponding to Gz admits a smooth
proper model, i.e., there exists a generically finite morphism of
proper varieties

p: X = X,
of degree |G /G | with X smooth and K = k(X).
Let ax € H!'.(Gk) be an unramified class. Its restriction oz to a
class in H"(G ;) is also unramified. By results in Section 8, there exists
a surjection

(9.1) Gp — G°

onto a finite abelian ¢-group such that az is unduced from a class in

ace Hr, (GO).

s,nr

Lemma 9.1. There exists a diagram

Gr— (% e

|

Gk —G

where the vertical arrows are injections, with image of index coprime
to £, G and G are finite groups, and oy is induced from an element
ag € H (G). In particular, Syl,(G) ~ Syl,(G).
Proof. Fix a finite continuous quotient Gx — G’ such that ay is in-
duced from some ag € H(G'). Note that for every intermediate quo-
tient

Gk - G—G
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there exists an ag € H'(G) inducing ag. It suffices to find a sufficiently
large GG such that the sujection (9.1) factors through a subgroup of G.
This is a standard fact in Galois theory.

Since a° € H ,,
the index (G : G) is coprime to £, and since the unramified & is induced
from an element ag € HY(G), ag is also unramified, as claimed. O

(G°) its image & € H(G) is also unramified. Since

At this stage, we cannot yet guarantee that G is a central extension
of an abelian group, nor that it is an /-group. However, we know that

tr(reSGK/Gf((aK» =ag € H:LT‘(GK)7

modulo multiplication by an element in (Z/™)*.
We need the following version of resolution of singularities in positive
characteristic:

Theorem 9.2. [18] Let G be a finite {-group and Y a smooth variety
over a perfect field with a generically free action of G. Then there exists
a G-variety Y with a proper G-equivariant birational map Y — Y such
that Y /G is smooth.

We are very grateful to D. Abramovich for providing the reference
and indicating the main steps of the proof in [18]:

e Theorem VIII.1.1 gives an equivariant modification Y’ of Y with
a regular log structure on Y’ such that the action is very tame,
i.e., the stabilizers in G of points in Y’ are abelian and act as
subgroups of tori in toroidal charts of the log structure Y.

e By Theorem VI.3.2, the quotient Y'/G of a log regular variety
by a very tame action is log regular.

e By Theorem VIIL.3.4.9, which is a step in Theorem VIII.1.1, a
log regular variety has a resolution of singularities.

We return to the proof of Theorem 7.1. Start with a suitable faithful

representation V' of G, and thus of Syl,(G) = Syl,(G), and construct a
diagram

VY =Y /Syl,(G)

mi
V/G
where Y = Y/Syl,(G) is the smooth projective variety from Theo-

rem 9.2, and 7y is a Syl,(G)-equivariant map from a G-equivariant
projective closure of V. Let L = k(Y) be the function field of Y.
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Given a class ay, € H (G) we have a covering of Y = U, Y;, by affine
Zariski open subsets and a finite set of classes {a,,} representing ay,
as considered in Section 8.

Pick a point v € V. The image S := 7y (G - b) of its G-orbit is a
finite set of points. By Lemma 8.1, there exist a dense Zariski open
subset Usg and a class ag € H%,(Us) coinciding with a;, on some dense
Zariski open subset Ug C Ug. Its preimage

Ug:=m, (U CV
is a dense Zariski open subset containing G - v. Put
Uy = Ngec g(U3) C V,

it is a G-stable dense Zariski open subvariety containing v. Its image
7¢(U,) C V/G is a Zariski open subset containing 7 (G -v). Note that
7, : Uy /Syl (G) — Ug is a birational morphism to an open subset and
7*(ag) is well-defined in étale cohomology of U,/Syl,(G). It follows
that the trace

g (5 (s)) € Hy (U/G)

is well-defined and coincides with (G : Syl,(G))-ag at the generic point
of V/G.

Thus we have a covering of V /G by Zariski open subsets of the form
U,/G, v € V, with cohomology classes representing ax on each chart.
There exists a finite subcovering by U, /G with extensions of ag to each
U,/G. We can now apply Proposition 5.2 to produce a finite subcover
such that on each chart, the class is induced from homomorphisms onto
finite abelian groups, and proceed as in Section 8.
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