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Abstract. We construct and study universal spaces for birational
invariants of algebraic varieties over algebraic closures of finite
fields.

Introduction

Let ` be a prime. Recall that in topology, there exist unique (up to
homotopy) topological spaces K(Z/`n,m) such that

• K(Z/`n,m) is homotopically trivial up to dimension m − 1, in
particular,

Hi(K(Z/`n,m),Z/`n) = 0, for 0 < i < m;

• Hm(K(Z/`n,m),Z/`n) is cyclic, with a distinguished generator
κm;
• for every topological space X and every α ∈ Hm(X,Z/`n) there

is a unique, up to homotopy, continuous map

µX,α : X → K(Z/`n,m)

such that
µ∗X,α(κm) = α.

This reduces many questions about singular cohomology to the study
of these universal spaces (see, e.g., [1, Chapter 2]). Analogous the-
ories exist for other contravariant functors, for example, topological
K-theory, or the theory of cobordisms. The study of moduli spaces in
algebraic geometry can be viewed, broadly speaking, as an incarnation
of the same idea of universal spaces.

Here we propose a similar theory for unramified cohomology, devel-
oped in connection with the study of birational properties of algebraic
varieties [4], [15]. The Bloch–Kato conjecture proved by Rost and Vo-
evodsky [30], with a patch by Weibel, combined with techniques and
results from birational anabelian geometry in [9], implies that an un-
ramified class in the cohomology of the function field K = k(X) of an
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algebraic variety X over an algebraic closure of a finite field k = F̄p,
with finite constant coefficients, is induced from the cohomology of a
finite abelian group Ga. This, together with our prior work on cen-
tralizers of elements of Galois groups of function fields [8], implies our
main result:

Theorem. Let ` and p be distinct primes, K = k(X) the function
field of an algebraic variety X of dimension ≥ 2 over k = F̄p, GK its
absolute Galois group, and αK ∈ Hi

nr(GK ,Z/`n), i ≥ 2, an unramified
class. Then there exists a finite set J of finite-dimensional k-vector
spaces Vj, j ∈ J , depending on αK, such that αK is induced, via a
rational map, from an unramified class in the cohomology of an explicit
open subset of the quotient of

P :=
∏
j∈J

P(Vj)

by a finite abelian `-group Ga, acting projectively on each factor.

Thus, the spaces P/Ga serve as universal spaces for all finite bira-
tional invariants of algebraic varieties over k = F̄p. The theorem fails
for H1

nr because all such elements are induced from abelian varieties and
H1
nr vanishes for every smooth proper separably rationally connected

variety over an algebraically closed field (see e.g., [16, Corollary 3.6]).
Actions of finite abelian groups Ga on products of projective spaces

are described by central extensions of Ga, i.e., by subspaces in ∧2(Ga).
This allows us to present unramified classes of X in terms of configu-
rations of subspaces of skew-symmetric matrices. For example, if the
unramified Brauer group of X is trivial, then all finite birational invari-
ants of X are encoded already in the combinatorics of configurations
of liftable subgroups in finite abelian quotients of the absolute Galois
group GK (see Section 1 for the definition).

The program towards the construction of universal spaces for unram-
ified cohomology was outlined in [4] and [5]. The recent proof of the
Bloch–Kato conjecture allows us to complete this program, in a more
precise and constructive form. This approach to birational invariants
leads to many new questions:

• Is there a smaller class of configurations with this universal
property?
• How does this structure interact with Sylow subgroups of GK?
• Is there an extension to cohomology with Z`-coefficients? An

equally simple description of models for `-adic invariants would
provide insights into higher-dimensional Langlands correspon-
dence.
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• What are the analogs of universal spaces for varieties over k =
Q̄? Counterexamples to our main result arise from bad reduc-
tion places, already for abelian varieties [4].

Here is the roadmap of the paper: In Section 1 we recall basic facts
about stable and unramified cohomology. In Section 3 we provide some
background on valuation theory. In Section 5 we investigate Galois
cohomology groups of function fields of higher-dimensional algebraic
varieties over k = F̄p and their images in cohomology of finite groups.
In Section 6 we introduce and study unramified cohomology of algebraic
varieties. Section 7 contains the proof of our main theorem, modulo
geometric considerations presented in Sections 8 and 9.
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and insightful comments. The first author was supported by NSF grant
DMS-1001662 and by AG Laboratory GU-HSE grant RF government
ag. 11 11.G34.31.0023. The second author was partially supported by
NSF grants 0901777 and 1160859.

1. Stable cohomology

Let G be a pro-finite group. We will write

Ga = G/[G,G] and Gc = G/[[G,G], G]

for the abelianization, respectively, the second lower central series quo-
tient of G; throughout the paper, we write [G,G] and [[G,G], G] for
topological closures of algebraic subgroups generated by the corre-
sponding commutators. We have a canonical central extension

(1.1) 1→ Z → Gc πa−→ Ga → 1.

Let M be a topological G-module and Hi(G,M) its (continuous) i-
cohomology group. These groups are contravariant with respect to G
and covariant with respect to M . In this paper, G is either a finite
group or a Galois group (see [1] for background on group cohomology
and [28] for background on Galois cohomology). We will sometimes
omit the coefficient module M from the notation.

Our goal is to investigate incarnations of Galois cohomology of func-
tion fields in cohomology of finite groups. For example, let K = k(X)
be the function field of an algebraic variety X over an algebraically
closed field k; varieties birational to X are called models of K. We
do not assume a model to be proper over k. Let GK be the absolute
Galois group of K and π̂1(X) the étale fundamental group of X, with
respect to some basepoint. The choice of a base point will not affect our
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considerations and we omit it from our notation. When we work with
GK , we take M to be either Q/Z or Z/`n, for some prime ` invertible
in k, with trivial G-action.

We have natural homomorphisms

H∗(π̂1(X))
κ∗X−→ H∗et(X)

η̃∗X−→ H∗(GK),

where the right arrow arises from the embedding of the generic point
Xη → X. We will write

ηX : GK → π̂1(X)

and

η∗X = η̃∗X ◦ κ∗X : H∗(π̂1(X))→ H∗(GK)

for the corresponding map in cohomology.
We say that a class αK ∈ H∗(GK) is defined (or represented) on a

model X of K if there exists a class αX ∈ H∗et(X) such that

αK = η̃∗X(αX).

Let G be a finite group. A continuous homomorphism

χ : π̂1(X)→ G

gives rise to homomorphisms in cohomology

H∗(G)
χ∗−→ H∗(π̂1(X))

η∗X−→ H∗(GK).

Conversely, every αK ∈ H∗(GK) arises in this way: there exist

• a model X of K,
• a continuous homomorphism χ as above,
• and a class αG ∈ H∗(G)

such that

αK = η∗X(χ∗(αG)).

This follows from the description of étale cohomology of points, see
[21]. In such situations we say that αK is defined on X and is induced
from χ.

A version of this construction arises as follows: assume that the
characteristic of k does not divide the order of G. Let V be a faithful
representation of G over k, and X an algebraic variety over k with
function field

K = k(X) ' k(V )G,

the field of invariants; we will write X = V/G and call it a quotient.
Even more generally, let Y be a quasi-projective algebraic variety over
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k with a generically free action of G, and X = Y/G the quotient. This
situation gives rise to a natural surjective continuous homomorphism

GK → G

and induced homomorphisms on cohomology

siK : Hi(G)→ Hi(GK).

The following lemma shows that we have many choices in realizing a
class αK ∈ Hi(GK):

Lemma 1.1. [4] Assume that αK ∈ Hi(GK) is represented by a class
αX ∈ Hi

et(X) on some affine irreducible model X of K and is induced
from a surjective continuous homomorphism χ : π̂1(X) → G and a
class αG ∈ Hi(G). Let V be a faithful representation of G over k and
V ◦ ⊂ V the locus where the action is free. Then, for every x ∈ X and
v ∈ V ◦ there exists a map

f = fx : X → V/G

such that

• f(x) = v and
• the restriction of αX to X◦ = f−1(V ◦/G) ⊂ X is equal to
f ∗(αG).

Proof. We follow the proof in [4]. The homomorphism χ : π̂1(X)→ G
defines a finite étale covering π : X̃ → X, by an affine variety X̃. The
ring k[X̃] is a k[G] -module. Every finite-dimensional k[G]-submodule
W ∗ ⊂ k[X̃] defines a G-equivariant map X̃ → W .

Let e ∈ k[G] be the unit element of G. For any G-orbit G · y ∈ V
there is a G-linear homomorphism

ly : k[G]→ V,

which maps the orbit G · e to G · y. Let x̃ ∈ π−1(x). Choose h ∈ k[X̃]
such that

h(x̃) = 1, h(g · x̃) = 0, g 6= e.

Then h generates a k[G]-submodule W ⊂ k[X̃] and defines a regular
G-map h : X̃ → W = k[G], with h(x̃) = e ∈ k[G]. The map f := ly ◦ h
is a regular G-map satisfying the first property.

Let X◦ = f−1(V ◦/G) ⊂ X. It is a nonempty affine subvariety. We
have a compatible diagram of G-maps

V ◦

πG
��

X̃◦oo

π0

��

⊂ X̃

π

��
V ◦/G X◦

f
oo ⊂ X
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and the maps πG and π induce the same cover π0. This implies the
second claim. �

We can achieve even more flexibility for G-maps, under a projectivity
condition on V : we say that a G-module V is projective if for every
finite-dimensional representation W of G with a G-surjection

µ : W → V

there exists a G-section

θ : V → W with µ ◦ θ = id.

This condition holds, for example, for regular representations over ar-
bitrary fields or when the order of G is invertible in k.

Now let {Sj}j∈J be a finite set of G-orbits in a generically free G-
variety Y with stabilizers Hj so that Sj ' G/Hj. Consider a faithful
representation V of G and a subset {Tj}j∈J of G-orbits in V with
stabilizers Qj, with Hj ⊂ Qj, Tj = G/Qj. Consider regular G-maps
fj : Sj → Tj, for j ∈ J . Applying the argument above to finite sets of
orbits, we obtain:

Lemma 1.2. Assume that V is a projective G-module. Then there is
a regular G-map f : Y → V such that f = fj, for all j ∈ J .

We return to our setup: X = Y/G, K = k(X), and χ : GK → G,
inducing

siK : H∗(G)→ H∗(GK).

The groups

Hi
s,K(G) := Hi(G)/Ker(siK)

are called stable cohomology groups with respect to K = k(X). Let

Ker(si) :=
⋂
K

Ker(siK),

over all function fields K = k(X) as above. In fact,

Ker(si) = Ker(sik(V/G)),

for some faithful representation V of G over k, in particular, this is
independent of the choice of V (see [7, Proposition 4.3]). The groups

Hi
s(G) := Hi(G)/Ker(si)

are called stable cohomology groups of G (with coefficients in M = Z/`n
or Q/Z); they depend on the ground field k. These define contravariant
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functors in G. For example, for a subgroup H ⊂ G we have a restriction
homomorphism

resG/H : H∗s(G)→ H∗s(H).

Furthermore:

• While usual group cohomology Hi(G) can be nontrivial for infin-
itely many i (even for cyclic groups), stable cohomology groups
Hi
s(G) vanish for i > dim(V ), where V is a faithful representa-

tion.
• We have

Hi
s(G) ⊆ Hi

s(Syl`(G))NG(Syl`(G)),

where the coefficient group M is Z/`n or Q`/Z`, NG(H) is the
normalizer of H in G, and Syl`(G) an `-Sylow subgroup of G.

The determination of the stable cohomology ring

H∗s(G,Z/`n) := ⊕iHi
s(G,Z/`n)

is a nontrivial problem, see, e.g., [6] for a computation of stable coho-
mology of alternating groups. For finite abelian groups G, we have

(1.2) H∗s(G,Z/`n) ⊂ ∧∗(H1(Zm,Z/`n)),

induced by a surjection Zm → G. For central extensions of finite groups
as in (1.1), the kernel of

π∗a : H∗s(G
a)→ H∗s(G

c)

contains the ideal I = I(Gc) generated by

R2 = R2(Gc) := Ker
(
H2
s(G

a)→ H2
s(G

c)
)
.

(see, for example, [11, Section 8]). An important role in the computa-
tion of this subring of H∗s(G

c) is played by the fan

Σ = Σ(Gc) = {σ},

the set of noncyclic liftable subgroups σ of Ga, and the complete fan

Σ̄ = Σ̄(Gc) = {σ},

consisting of all nontrivial liftable subgroups σ ⊂ Ga: a subgroup σ is
liftable if and only if the full preimage σ̃ of σ in Gc is abelian. The fan
Σ defines a subgroup R2(Σ) ⊆ H2

s(G
a) as the set of all elements which

vanish upon restriction to every σ ∈ Σ. Note that for any σ̃ and σ as
above, the natural homomorphism of cohomology groups

Hi
s(σ)→ Hi(σ̃)
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is injective; indeed, stable cohomology of any finite abelian group Ga

with any finite coefficients coindices with the image of the group coho-
mology of Ga in the group cohomology of any finite rank free abelian
group surjecting onto Ga. Using this fact, we have

R2 ⊆ R2(Σ).

Lemma 1.3. For every α ∈ I(Gc) ⊆ H∗s(G
a) and every σ ∈ Σ(Gc) the

restriction of α to σ is trivial.

Definition 1.4. Let

1→ Z → Gc → Ga → 1

be a central extension of finite groups, with Ga abelian. A ∆-pair
(I,D) of Ga is a set of subgroups

I ⊆ D ⊆ Ga

such that

• I ∈ Σ̄(Gc),
• D is noncyclic,
• for every δ ∈ D, the subgroup 〈I, δ〉 ∈ Σ̄(Gc).

This definition depends on Gc. Assume we have a commutative
diagram of central extensions

1 // Z̃

��

// G̃c

����

// G̃a

γ
����

// 1

1 // Z // Gc // Ga // 1.

Definition 1.5. A ∆-pair (Ĩ , D̃) of G̃a surjects onto a ∆-pair (I,D)
of Ga if γ(Ĩ) = I and γ(D̃) = D.

Definition 1.6. A class α ∈ Hi
s(G

a) is unramified with respect to a
∆-pair if its restriction to D is induced from D/I, i.e., there exists a
β ∈ Hi

s(D/I) such that φ(α) = ψ(β), for the natural homomorphisms
in the diagram:

H∗s(G
a)

φ // H∗s(D) H∗s(D/I)
ψoo

Recall that a cohomology class β ∈ H∗(GK) is unramified if for every
divisorial valuation ν of K the restriction of β to GKν , the Galois group
of the completion of K with respect to ν, is induced from the quotient
GKν/Iν , where Iν ⊂ GK is the corresponding inertia subgroup.
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When G is a finite group and K = k(V/G), the field of functions of
V/G for some faithful representation V of G, the stable cohomology
groups of G are naturally subgroups of the corresponding cohomol-
ogy groups of GK , and unramified stable cohomology classes are those
which are unramified when considered as classes in H∗(GK). In par-
ticular, the images of unramified classes in Ga with respect to ∆-pairs
are mapped to unramified classes in H∗(Gc), as the following lemma
shows.

Lemma 1.7. Consider a homomorphism

γ : G̃a → Ga

and a class α ∈ Hi(Ga), for i ≥ 2. Let α̃ := γ∗(α) ∈ Hi(G̃a) be the
induced class. Let (Ĩ , D̃) be a ∆-pair in G̃a. Assume that one of the
following holds:

• γ(Ĩ) = 0,
• γ(D̃) is cyclic,
• γ induces a surjection of ∆-pairs

(Ĩ , D̃)→ (I,D)

and α ∈ Hi
s(G

a) is unramified with respect to (I,D).

Then α̃ ∈ Hi
s(G̃

a) is unramified with respect to (Ĩ , D̃).

Proof. The first case is evident. In the second case, the stable coho-
mology of D̃ is trivial. Consider the third condition. By assumption,
γ induces a homomorphism D̃/Ĩ → D/I. Passing to cohomology we
get a commutative diagram

H∗s(D/I)

��

// H∗s(D)

��

H∗s(D̃/Ĩ) // H∗s(D̃),

and thus the claim. �

2. Central extensions and isoclinism

Let Ga and Z be finite abelian `-groups. Central extensions of Ga

by Z are parametrized by H2(Ga, Z); for α ∈ H2(Ga, Z) we let Gc
α be

the corresponding central extension:

(2.1) 1→ Z → Gc
α

πa−→ Ga → 1
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Fix an embedding Z ↪→ (Q/Z)r, consider the exact sequence

1→ Z → (Q/Z)r → (Q/Z)r → 1,

and the induced long exact sequence in cohomology

H1(Ga, (Q/Z)r)
δ−→ H2(Ga, Z)→ H2(Ga, (Q/Z)r).

We say that α, α̃ ∈ H2(Ga, Z) and the corresponding extensions are
isoclinic if

α− α̃ ∈ δ(H1(Ga, (Q/Z)r)).

This notion does not depend on the chosen embedding Z ↪→ (Q/Z)r

and is equivalent to the standard definition of isoclinic in the theory of
`-groups (as in [17]).

Lemma 2.1. If α, α̃ ∈ H2(Ga, Z) are isoclinic then the corresponding
extensions of Ga define the same set of ∆-pairs in Ga.

Proof. A pair of subgroups (I,D) is a ∆-pair in Ga, with respect to a
central extension Gc, if their preimages commute in Gc, i.e.,

[π−1
a (I), π−1

a (D)] = 0 in Z.

Consider the homomorphism

π∗a : H2(Ga,Q/Z)→ H2(Gc,Q/Z),

and note that Ker(π∗a) only depends on the isoclinism class of the ex-
tension. Furthermore, H2(Ga,Q/Z) is dual to ∧2(Ga). Let R ⊂ ∧2(Ga)
be the subgroup which is dual to Ker(π∗a). It remains to observe that
(I,D) is a ∆-pair for Gc if and only if π−1

a (I) ∧ π−1
a (D) intersects R

trivially; thus the notion of a ∆-pair is an invariant of the isoclinism
class of the extension. �

Lemma 2.2. If α, α̃ ∈ H2(Ga, Z) are isoclinic then there exist faithful
representations V, Ṽ of Gc

α and Gc
α̃ over k such that V/Gc

α and Ṽ /Gc
α̃

are birational.

Proof. Explicit construction: Let χ1, . . . , χr be a basis of Hom(Z, k×)
and put

V := ⊕rj=1Vj and Ṽ = ⊕rj=1Ṽj,

where

Vj = Ind
Gcα
Z (χj) and Ṽj = Ind

Gcα̃
Z (χj).

Note that the projectivizations P(Vj) := (Vj \ 0)/k× and P(Ṽj) are
canonically isomorphic as Ga-representations. The group (k×)r acts on
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V and Ṽ , and both V/Gc
α and V/Gc

α̃ are birational to(
r∏
j=1

P(Vj)

)
/Ga ×

(
r∏
j=1

k×/χj(Z)

)
.

�

Lemma 2.3. Consider a central extension of finite groups

1→ Z → Gc πa−→ Ga → 1

and let V = ⊕jVj be a faithful representation of Gc as in Lemma 2.2,
i.e., each Vj = IndG

c

Z (χj), where {χj}j∈J is a basis of Hom(Z, k×). Let
P :=

∏
j∈J P(Vj). Then:

(1) Ga acts faithfully on P.
(2) For any subgroup σ ⊂ Ga the subset of σ-fixed points Pσ ⊂ P is

nonempty if and only if σ ∈ Σ̄(Gc).
(3) Each irreducible component of Pσ is a product of projective sub-

spaces of P(Vj), corresponding to different eigenspaces of σ in
Vj, and distinct irreducible components are disjoint.

(4) Each irreducible component of Pσ is stable under the action of
Hσ ⊂ Gc, the maximal subgroup such that [Hσ, π

−1
a (σ)] = 1 in

Gc; the action of Gc/Hσ on the set of components of Pσ is free.
(5) The action of Ga on P◦ := P \ ∪σ∈Σ̄\0Pσ is free.

Proof. Since the order of Gc is coprime to the characteristic of k, every
g ⊂ Gc is semi-simple and we can decompose

Vj = ⊕iVj(λi(g)),

as a sum of eigenspaces. The subset of g-fixed points splits as a product∏
j

∐
i P(Vj(λi(g))), where the product runs over different eigenvalues

in different Vj. It follows that the subset of g-fixed points Pg ⊂ P is a
union of products of projective subspaces of P(Vj).

If σ ∈ Σ̄ then its elements can be simultaneously diagonalized. Hence
the subset of fixed points in P =

∏
j P(Vj) is a union of products of

projective subspaces, and there is a Zariski open subvariety of P on
which the action of σ is free.

Let σ := 〈g, h〉 ⊂ Ga be a subgroup such that σ /∈ Σ̄. Then the same
holds for the images of g, h in GL(Vj), for at least one j ∈ J . Thus
the commutator [g, h] ∈ GL(Vj) is a nontrivial scalar matrix, hence
they have no common eigenvectors, i.e., no common fixed points in
P(Vj). Thus if σ /∈ Σ̄ then σ has no fixed points in

∏
j P(Vj). Note that

projective subspaces corresponding to different eigenvalues of g do not
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intersect in P(Vj) and hence Pσ splits into a disjoint union of products
of projective subspaces of different P(Vj).

Assume that [h, σ̃] = 1 in Gc for some h ∈ Gc. Then 〈h, σ̃〉 has a
fixed point in each component of Pσ and h maps every component of
Pσ into itself. Thus a subgroup H ⊂ Gc, with [H, σ̃] = 1 maps every
component of Pσ into itself.

Assume that 〈h, γ〉 /∈ Σ̄, for some γ ∈ σ. Then for some j, the images
of h, γ in GL(Vj) have nonintersecting invariant subvarieties in P(Vj).
In particular, h does not preserve any component of Pσ. �

Lemma 2.4. Let K = k(X) be a function field with Galois group
GK. Given a surjection GK → Gc, onto some finite central extension
of an abelian group Ga, let P =

∏
j P(Vj) be the space constructed in

Lemma 2.3. Then there is a rational map % : X 99K P/Ga such that

• % maps the generic point of X into P◦/Ga;
• the homomorphism

sK : H∗s(G
a,Z/`n)→ H∗(GK ,Z/`n)

factors through the cohomology of P◦/Ga.

Proof. Let X◦ ⊂ X be an open affine subvariety such that π1(X◦) sur-
jects onto Gc. Let X̃◦ → X◦ be the induced unramified Gccovering.
Then k[X̃◦] decomposes into an infinite direct sum ofGc-representations.
Fix a point X̃◦ and consider its orbit. The restriction of k[X̃◦] to this
orbit defines a regular quotient Gc-representation isomorphic to k[G].
Since the order of G is coprime to p, we have a direct summand of k[X̃◦]
projecting isomorphically to k[G] under the above homomorphism.
This subspace of regular functions on X̃◦ defines a G-equivariant map
to V and hence a map X 99K V/Gc with desired properties. �

3. Basic valuation theory

Let X be a variety over k = F̄p, K = k(X) its function field, and GK

the absolute Galois group of K. A valuation of K is a homomorphism

ν : K× → Γν

onto a totally ordered abelian group Γν such that its extension to K,
via ν(0) = ∞, satisfies the nonarchimedean triangle inequality. A
divisorial valuation measures the order of a rational function along a
divisor on some model X of K. Let oν denote the valuation ring and
mν the corresponding maximal ideal. The residue field will be denoted
by Kν ; in general, it need not be finitely generated over k, see Example
9 in [29]. We write VK for the set of (equivalence classes of) valuations
of K and DVK for the subset of divisorial valuations.
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Let Z ⊂ X be an affine subset, Z = Spec(oZ), and ν ∈ VK . A
valuation ν is said to have a center on Z,

cX(ν)◦ ⊆ Z

if and only if ν(f) ≥ 0, for all f ∈ oZ ; the center is the closed subvariety
of Z corresponding to the prime ideal defined by ν(f) > 0.

For ν ∈ VK , let Dν ⊂ GK denote a decomposition group of ν and
Iν ⊂ Dν the inertia subgroup; we have GKν = Dν/Iν (see, e.g., [19,
Section 5] for the description of the inertia subgroup in terms of the
value group and the description of the Galois group of the residue field).
The pro-`-quotients of these groups will be denoted by GK , Dν , and Iν ,
respectively. We will always assume that p 6= `. The corresponding
abelianizations will be denoted by GaK ,Daν , and Iaν ; their canonical cen-
tral extensions by GcK ,DcK , and IcK . Under our assumptions, GaK is a
free abelian pro-`-group.

Lemma 3.1. For ν ∈ VK consider the commutative diagram

Dν
//

πν
��

GK

π
��

Daν δaν

// GaK ,

where πv and π are the canonical projections and δaν is the induced
homomorphism. Then δaν is injective with primitive (i.e., nondivisible)
image. In particular, δaν embeds Iaν as a primitive subgroup of Daν .

Proof. We have GaK = Hom(K×,Z`) and Daν = Hom(K×ν ,Z`). We have
exact sequences

1→ o×ν → K× → Γν → 1

and
1→ (1 + mν)

× → o×ν →K×
nu → 1.

Note that the elements of F̄p(X) with Q-independent values of ν(x)
are algebraically independent. Thus the Q-rank of Γν is ≤ n and the
Z` rank of Hom(Γν ,Z`) is also ≤ n; it is a free Zl-module of finite
rank. Taking a finitely generated subgroup S ⊂ K× of the same rank,
with an isomorphism Hom(Γν ,Z`) = Hom(S,Z`), we obtain a direct
splitting (depending on S):

Hom(K×,Z`) = Hom(Γν ,Z`)⊕ Hom(o×ν ,Z`).

The right summand contains Hom(K∗
ν ,Z`) as a primitive subgroup.

This implies that
Daν = Iaν ⊕ GaKν

,
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where Hom(Γν ,Z`) = Iaν . �

Remark 3.2. If the residue field Kν is finitely generated over k then
there is a model X of K such that the center of ν is realized by a
subvariety Xν ⊂ X.

Indeed, in this case there is a finite subset of elements fi ∈ oν which
generate K and reduce to a generating subset of Kν . The subring
k[f1, . . . , fn] defines an affine model X of K and its image B in Kν a
finitely generating subring of Kν ; hence we have an inverse embedding
of affine varieties XB ⊂ X with desired properties.

Let Σ(GcK) be the set of primitive topologically noncyclic subgroups
of GaK whose preimage in GcK is abelian. By [8, Section 6], we have:

Theorem 3.3. Assume that dim(X) ≥ 2. Then

rkZ`(σ) ≤ dim(X), for all σ ∈ Σ(GcK).

The following key result gives a valuation-theoretic interpretation of
liftable subgroups in GaK ; it is crucial for the reconstruction of function
fields in [9] and [10].

Theorem 3.4. [8, Corollary 6.4.4] Assume that dim(X) ≥ 2 and let
σ ∈ Σ(GcK). Then there exists a valuation ν ∈ VK such that Iaν is a
subgroup of σ of Z`-corank at most one and σ ⊆ Daν .

4. Liftable subgroups and their configurations

Let K = k(X) be the function field of an algebraic variety over
k = F̄p. In this section, we compare the structure of the fan Σ(GcK) with
fans in its finite quotients. Consider the canonical central extension

(4.1) 1→ ZK → GcK → GaK → 1.

Lemma 4.1. We have

ZK = [GcK ,GcK ].

Proof. This holds for function fields of curves since the corresponding
pro-`-quotients of their absolute Galois groups are free. In higher di-
mensions, GaK embedds into the product

∏
E GaE, where E ranges over

function fields of curves E ⊂ K. Under the projection to GcK → GaE,
the center of GcK maps to zero, hence the claim. �

Lemma 4.2. Consider commutative diagrams of continuous homomor-
phisms
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1 // ZK //

����

GcK //

γcK
����

GaK
γK

����

// 1

1 // Z // Gc // Ga // 1,

where Gc is finite, with fixed surjective γK and surjective γcK. Assume
that Z ⊂ Gc is a quotient of ZK such that

Ker
(
H2(Ga)→ H2(Gc)

)
= Ker

(
H2(Ga)→ H2(Gc

K)
)
,

with Q/Z-coefficients. Then Gc is unique modulo isoclinism.

Proof. Assume that Gc
1, G

c
2 are two such extensions of Ga with Z1, Z2,

respectively, and put G := Gc
1 ×Ga Gc

2. We have a natural surjection
G→ Ga and an inclusion Z1×Z2 ↪→ G. Moreover, [G,G] ⊆ Z1×Z2. By
Lemma 4.1, ZK is generated by commutators in GcK . There is natural
diagonal projection GcK → G which maps ZK onto [G,G]. The image

of GcK in G is a subgroup G̃c with G̃a � Ga and [G̃c, G̃c] = [G,G]. By
the maximality assumption, we obtain that both projections of [G,G]
into Z1 and Z2 are are isomorphisms; this implies isoclinism. �

We proceed to investigate the properties of fans under such factor-
izations. Let

γK : GaK → Ga

be a continuous surjective homomorphism onto a finite group. We
choose a maximal finite central extension Gc of Ga as in Lemma 4.2.

Corollary 4.3. Given continuous surjective homomorphisms

(4.2) GaK
γ̃K−→ G̃a γ−→ Ga,

with G̃a a finite group, there is a unique (modulo isoclinism of lower
rows) diagram of central extensions

1 // ZK //

��

GcK
γ̃cK

��

// GaK
γ̃K

��

// 1

1 // Z̃ //

��

G̃c

γc

��

// G̃a

γ

��

// 1

1 // Z // Gc // Ga // 1

with surjective γ̃cK, γc and maximal Z̃, Z.

Proof. Evident. �

We will use the following observation:
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Lemma 4.4. Let Ga be a profinite abelian group and

Ga γj−→ G̃a
j , j = 1, . . . , n,

a collection of continuous surjective homomorphisms onto finite groups.
Then there exists a continuous surjection

γ : Ga → G̃a

onto a finite group such that each γj factors through γ:

γj : Ga γ−→ G̃a → G̃a
j .

Proof. We can choose G̃a to be the image of Ga in the direct product

G̃1 × · · · × G̃n.

�

We are interested in factorizations (4.2), with finite G̃a, preserving
liftable subgroups and their configurations. Throughout we will be
working with the canonical, modulo isoclinism, diagram as in Corol-
lary 4.3, i.e., a factorization as in Equation (4.2) will canonically de-
termine Σ(G̃c) and the set of ∆-pairs in G̃a, by Lemma 2.1. Let

ΣE(Gc) := {σ ∈ Σ(Gc) |σ = γK(σK), for some σK ∈ Σ(GcK)}
be the subset of extendable subgroups.

Lemma 4.5. Given a continuous surjective homomorphism

γK : GaK → Ga

onto a finite abelian group there exists a factorization

GaK
γ̃K−→ G̃a γ−→ Ga, γK = γ ◦ γ̃K ,

with finite G̃a, such that for all σ ∈ Σ(Gc) we have: if σ is nonextend-
able then there is no σ̃ ∈ Σ(G̃c) with γ(σ̃) = σ.

Proof. First we prove the statement for one nonextendable σ. Write

(4.3) GaK = proj lim
ι∈I

Ga
ι , γιι′ : Ga

ι −→ Ga
ι′ , ι′ � ι,

where the limit is over finite continuous quotients of GaK . Assume that
for all ι, there is some σι ∈ Σ(Gc

ι) surjecting onto σ; this implies that
there exist such σι′ , for all ι′ � ι, with γιι′(σι) = σι′ .

By compactness of GaK , there exists a closed liftable σK ⊂ GaK surject-
ing onto σ. This contradicts our assumption that σ is nonextendable.
Thus there is a required factorization

GaK → G̃a γ−→ Ga.
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Let

{σ1, . . . , σn} = Σ(Gc) \ ΣE(Gc).

For each j, let

GaK −→ G̃a
j

γj−→ Ga

be the factorization constructed above. Now we apply Lemma 4.4,
combined with Corollary 4.3, and obtain factorizations of γj:

GaK → G̃a → G̃j → Ga, γ : G̃a → Ga,

Assume that there is some j for which there exists a σ̃ ∈ Σ(G̃c) sur-
jecting onto σj. Then image σ̃ in G̃j must be liftable, contradicting the
construction in the first part. �

Let

I ⊆ D ⊆ Ga.

be a ∆-pair (see Definition 1.4). Throughout, we assume that Ga arises
as a finite quotient of the Galois group GK of some function field K, in
particular, the corresponding Gc is determined as in Lemma 4.2, up to
isoclinism. We say that (I,D) is extendable if there exists a valuation
ν ∈ VK and subgroups

Ia ⊆ Iaν , Da ⊆ Daν , Ia ⊂ Da,

such that

γK(Ia) = I, γK(Da) = D.

Recall that a ∆-pair (Ĩ , D̃) is said to surject onto (I,D) if

γ(Ĩ) = I, γ(D̃) = D.

We will need the following strengthening of Lemma 4.5

Proposition 4.6. Given a continuous surjective homomorphism

GaK → Ga

onto a finite abelian group there exists a factorization

GaK → G̃a → Ga,

with finite G̃a, such that for all ∆-pairs (I,D) in Ga we have: if (I,D)
nonextendable and D is not liftable then there is no ∆-pair (Ĩ , D̃) in
G̃a surjecting onto (I,D).

Proof. As in the proof of Lemma 4.5, it suffices to establish the state-
ment for one nonextendable ∆-pair; indeed, there are only finitely many
∆-pairs in Ga and the same application of Lemma 4.4 will then estab-
lish it for all.
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Assume that there is no finite quotient of GaK with the desired prop-
erty. We start with a factorization

GaK → G̃a γ−→ Ga

such that G̃a satisfies the conclusions of Lemma 4.5, i.e., no σ ∈ Σ(Gc)\
ΣE(Gc) is the image of a σ̃ ∈ Σ(G̃c).

Let (I,D) be a nonextendable ∆-pair. If D/I is cyclic or trivial then,
in fact, D ∈ Σ(Gc) and by assumption on G̃c it is not liftable to Σ(G̃c).
Thus if a ∆-pair (Ĩ , D̃) surjects onto (I,D) then 〈Ĩ , g〉 ⊂ Σ(G̃c) surjects
onto D, for some g ∈ D̃, and hence D lifts to Σ(G̃c), contradicting
our assumption. Thus it suffices to consider ∆-pairs (I,D) with D/I
noncyclic.

By our assumption, there exists a ∆-pair (Ĩ , D̃) in G̃a surjecting
onto (I,D). Choose representatives g1, . . . , gn ∈ D \ I for nontrivial
elements of D/I and g̃j ∈ D̃ surjecting onto gj under γ. Note that for
each j,

σj := 〈gj, I〉 ∈ Σ̄(Gc), σ̃j := 〈g̃j, Ĩ〉 ∈ Σ̄(G̃c).

and that σ̃j surject onto σj. By Lemma 4.5 and our choice of G̃a, all
σj are extendable. Then

Ĩ ⊆ ∩nj=1σ̃j,

and if we replace and rename the original D̃ by

D̃ :=
n∑
j=1

σ̃j,

then (Ĩ , D̃) is a ∆-pair in G̃a surjecting onto (I,D).
Now we consider a projective system of finite continuous quotients

GaK → G̃a
ι → G̃a → Ga, γιι′ : Ga

ι −→ Ga
ι′ , ι′ � ι.

Assume that for each ι there exists a ∆-pair (Ĩι, D̃ι) in G̃a
ι surjecting

onto (I,D). Iterating the construction above, we construct, for each ι,
a collection of liftable subgroups

σ̃ι,1, . . . , σ̃ι,n

and a ∆-pair (Ĩι, D̃ι) of the form

Ĩι ⊆ ∩nj=1 σ̃ι,j, D̃ι :=
n∑
j=1

σ̃ι,j,

such that

• (Ĩι, D̃ι) surjects onto (Ĩι′ , D̃ι′), for each ι′ � ι,



UNIVERSAL SPACES 19

and in particular onto (I,D). By compactness of GaK (see Lemma 4.5),
there exist closed subgroups

σK,1, . . . , σK,n ∈ Σ(GcK);

the closed subgroups

Ia := ∩σK,j, Da := 〈σK,j〉j
of GaK surject onto I, resp. D.

Note that if a pair (I,D′) ⊂ (I,D) is non extendable then (I,D)
is also not extendable. Thus we can assume that proper sub-pairs
(I,D′) ⊂ (I,D) are extendable. In particular, any liftable subgroup in
Da is equal to 〈Ia, g〉, g /∈ Ia, for some g ∈ Da \ Ia.

By [8, Lemma 6.4.3] and [8, Corollary 6.4.4] any liftable subgroup
Lg contains a subgroup Ig of corank ≤ 1 which consists of flag elements
and the group Ig is contained in Iaν,g and Da

ν,g. If Ig = Lg, for some g,
then Ia consists of flag elements and hence by [8, Lemma 6.4.3] and [8,
Corollary 6.4.4] there is a ν such that Ig ⊂ Iaν and Da ⊂ Da

ν and hence
(I,D) is liftable, contradicting our assumption.

Thus we can assume that for any Lg the subgroup Ig has corank
exactly one. Let us show that Ig = Ia. Assume that h ∈ Ia is not a
flag map. By results mentioned above, h ⊂ Da

µh
, for some valuation µh

with the property that any commuting pair 〈h, x〉 is contained in the
image of 〈h, Iµ〉. The image of 〈h, Iµ〉 = Ha ⊂ Ga is a liftable subgroup,
but then Da ⊂ Ha and hence Da is also liftable, contradicting our
assumption on Da.

Our assumption on (I,D) implies that any closed subgroup con-
taining 〈I, δ〉, with δ ∈ D \ I, lifts to an abelian group. The theory
developed in [8] describes all pairs (g, h) of topologically independent
elements in GaK which lift to commuting pairs in GcK : they are realized as
Z`-valued maps on K×/k× = P(K), a projective space over k, with the
property that g(xy) = g(x) + g(y), for all x, y. The so-called flag maps
f are maps such that every finite-dimensional subspace Pn ⊂ P(K)
admits a flag of projective subspaces P1 ⊂ . . . ⊂ Pr = Pn so that f is
constant on Pi \ Pi−1, for all i = 2, . . . , r. A flag map defines

(1) a natural scale on K: a sequence of linear subspaces Lγ ⊂ K
over k parametrized by an ordered abelian group Γ with the
property that Lγ ⊂ Lβ if γ > β in Γ,

(2) a map ν : K× → Γ, where ν(x) = β if x ∈ Lβ and is not
contained in Lγ ⊂ Lβ.

Moreover, x · Lγ = Lγ+ν(x), i.e., the scale is invariant under multipli-
cation in K×. Thus to any multiplicative flag map f on P(K) we can
associate a nonarchimedean valuation ν of K with value group Γ. We
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have f(x) = f∗(ν(x)), where f∗ is a homomorphism Γ→ Z`. Note that
a flag map f defines a unique order, and hence the value group of the
valuation. Of course, similar homomorphisms exist for refinements of
this valuation, but the latter is defined intrinsically by the flag map f .

The main result of [8] states that for any pair of (g, h) as above there
is a basis (f, δ) of 〈g, h〉 such that f is a flag map defining (canonically!)
a valuation νf and δ belongs to the decomposition group of νf . This
holds for function fields over F̄p; a slightly more complicated version is
valid for function fields over arbitrary algebraically closed fields k. The
property of δ to be in the decomposition group of ν is also described
in terms of projective geometry of the level sets in P(K). In particu-
lar, for any such δ there is a maximal valuation ν such that δ ∈ Daν
and every σ ∈ Σ(GcK) containing δ is contained in 〈Iaν , δ〉. The above
general description of commuting pairs provides also a description of
pairs (Ia,Da) in GaK . Since by assumption I 6= D, the same holds
for Ia 6= Da in GaK and hence Da/Ia has topologically independent
elements g1, g2, since we assumed that Da is not a liftable subgroup
GaK .

Therefore, all elements in Ia are flag and hence Ia ⊆ Iaν , for some
ν, and Da ⊆ Daν . In particular, the initial pair (I,D) was extendable
which completes the proof of the proposition. �

5. Galois cohomology of function fields

In [9], [10] we proved that if k = F̄p, with p 6= `, and X is an algebraic
variety over k of dimension≥ 2 then K = k(X) is encoded, up to purely
inseparable extensions, by GcK , the second lower series quotient of GK .
Related reconstruction results have been obtained in [24], [22], [25].

The proof of the Bloch–Kato conjecture by Voevodsky, Rost, and
Weibel, substantially advanced our understanding of the relations be-
tween fields and their Galois groups, in particular, their Galois coho-
mology. Indeed, consider the diagram

GK

πc

����
��

��
��

��
π

��?
??

??
??

??
?

GcK πa
// GaK .

The following theorem relates the Bloch–Kato conjecture to statements
in Galois-cohomology, with coefficients in Z/`n (see also [12], [13], [26]).
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Theorem 5.1. [3], [11, Theorem 11] Let k = F̄p, p 6= `, and K = k(X)
be the function field of an algebraic variety of dimension ≥ 2. The
Bloch–Kato conjecture for K is equivalent to:

(1) The map

π∗ : H∗(GaK ,Z/`n)→ H∗(GK ,Z/`n)

is surjective and
(2) Ker(π∗a) = Ker(π∗).

This implies that the Galois cohomology of the pro-`- quotient GK of
the absolute Galois groupGK encodes important birational information
of X. For example, in the case above, GcK , and hence K, modulo purely-
inseparable extensions, can be recovered from the cup-products

H1(GK ,Z/`n) ∪ H1(GK ,Z/`n)→ H2(GK ,Z/`n), n ∈ N.
From now on, we will frequently omit the coefficient ring Z/`n from
notation.

The first part of the Bloch-Kato theorem says that every αK ∈
Hi(GK) is induced from a cohomology class αa ∈ Hi(Ga) of some finite
abelian quotient GK → Ga. An immediate application of this is the
following proposition:

Proposition 5.2. Let αK ∈ Hi(GK) be defined on a model X of K and
induced from a continuous surjective homomorphism χ : π̂1(X) → G
onto a finite group. Let α = αX ∈ Hi

et(X) be the class representing
αK on X. Then there exists a finite cover X = ∪jXj by Zariski open
subvarieties such that, for each j, the restriction αj := α|Xj is induced
from a continuous surjective homomorphism χj : π̂1(Xj)→ Ga onto a
finite abelian group and a class αa ∈ Hi

s(G
a) = ∧i(H1(Ga)).

Proof. We first apply the Bloch-Kato theorem to V ◦/G and find a
Zariski open subset U := U◦α of V ◦/G such that the restriction αU is
as claimed, i.e., induced from a class αa ∈ Hi

s(G
a) = ∧i(H1(Ga)), for

some homomorphism χa : Gk(V ◦/G) → Ga to a finite abelian group.
Note that this homomorphism is unramified on U .

By Lemma 1.1, for every x ∈ X there exists a map f : X → V/G
such that f(x) ⊂ U and the restriction of α to f−1(U) ⊂ X equals
f ∗(χ∗a(α

a)). The claim follows by choosing a finite cover by open sub-
varieties with these properties. �

The second part implies the following:

Corollary 5.3. Let αK ∈ Hi(GK). Assume that we are given finitely
many quotients

χj : GK → Ga
j
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onto finite abelian groups and classes

αaj ∈ Hi(Ga
j )

with χ∗j(α
a
j ) = αK, for all j. Then there exists a continuous finite

quotient GK → Gc onto a finite central extension of an abelian group
Ga such that

• χj factor through Gc, i.e., there exist surjective homomorphisms
ψj : Gc → Ga

j , for all j;

• there exists a class αc ∈ Hi(Gc) with

αc = ψ∗j (α
a
j ), for all j.

Lemma 5.4. Let X be a normal variety with function field K. Assume
that αK ∈ Hi(GK) is defined on X and induced from a homomorphism
χ : π̂1(X)→ G to a finite group G. Consider the sequence

χK : GK → π̂1(X)
χ−→ G.

Then χK(Iν) = 0, for every ν such that cX(ν)◦ ⊂ X.

Proof. An étale cover of X induces an étale cover of the generic point
of cX(ν), thus the cover is unramified in ν, i.e., χK(Iν) = 0. �

Corollary 5.5. Let αK ∈ Hi(GK). Let X be a normal projective model
of K and ∪jXj a finite cover by open subvarieties such that αK is
defined on Xj, for each j, and is induced from a class αaj ∈ Hi(Ga

j ),
via a homomorphism χj : π̂1(Xj) → Ga

j to some finite abelian group.
Then there exist a diagram

GK

πc

����
��

��
��

��
π

��?
??

??
??

??
?

Gc
πa

// Ga

where Gc is a finite `-group which is a central extension of Ga, and a
class α ∈ Hi(Ga)/I(Gc) such that α induces αK and for any extend-
able ∆-pair (I,D) ⊂ Ga α has a representative in Hi(Ga) which is
unramified with respect to (I,D).

Proof. Each αaj is unramified on all ν such that the generic point
cX(ν)◦ ⊂ Xj, by Lemma 5.4. Since αj are induced from a finite number
of finite abelian quotients Ga

j of GK there exists an abelian quotient
Ga of GK with surjections GK → Ga → Ga

i ; it follows that all classes
αj are simultaneously induced from Ga. Note that αj define the same

class already on Gc
K and hence on some finite quotient G̃c of Gc

K with
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a abelian quotient G̃a which surjects onto Ga. For each ν such that the
center of ν is in Xj, the image of Iν in Ga

j is trivial, and the restriction

of αj to the image of Dν in G̃a is induced from the image of Dν/Iν .
For any extendable ∆-pair (I,D) ⊂ Ga there exists a j and a pro-

jection G̃a → Ga
j which maps I to a trivial group. Since on the corre-

sponding central extension G̃c all αj define the same class α, we obtain

that the image of αj in Hj(G̃a)/I(G̃c) is induced from D/I, for all

extendable ∆-pairs in G̃a. �

6. Unramified cohomology

An important class of birational invariants of algebraic varieties are
unramified cohomology groups, with finite constant coefficients (see [4],
[15]). These are defined as follows: Let ν be a divisorial valuation of
K. We have a natural homomorphism

∂ν : Hi(GK)→ Hi−1(GKν ).

Classes in ker(∂ν) are called unramified with respect to ν. The unram-
ified cohomology is

Hi
nr(GK) :=

⋂
ν∈DVK

Ker(∂ν) ⊂ Hi(GK).

For i = 2 this is the unramified Brauer group which was used to provide
counterexamples to Noether’s problem, i.e., nonrational varieties of
type V/G, where V is a faithful representation of a finite group G (see
[27], [2]).

Generally, for ν ∈ VK and α ∈ Hi(GK) let

αν ∈ Hi(Dν)

be the restriction of α to the decomposition subgroup Dν ⊂ GK of ν.

Lemma 6.1. A class α is in Ker(∂ν) ⊆ Hi(GK), for ν ∈ DVK, if and
only if αν is induced from the quotient GKν = Dν/Iν. In particular,
αν is well-defined as an element in Hi(GKν ).

Proof. Since ν is divisorial, the exact sequence

1→ Iν → Dν → GKν → 1

where Iν and Dν are quotients of the inertia, respectively decomposi-
tion, subgroups, by wild inertia, admits a noncanonical splitting, i.e.,
Dν is noncanonical direct product of GKν = Dν/Iν with the corre-
sponding inertia group, which is a torsion-free central procyclic sub-
group of Dν . This follows from Lemma 3.1, using that Iν is abelian
and GaKν

is a free abelian pro-` group.
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Thus
H∗(Dν) = H∗(GKν )⊗ ∧∗H1(Iν).

We have
H1(Iν ,Z/`n) = H0(Iν ,Z/`n) = Z/`n

and
∧∗(H1(Iν ,Z/`n)) = H1(Iν ,Z/`n)⊕ H0(Iν ,Z/`n).

Thus
Hi(Dν) = Hi−1(GKν )⊗ H1(Iν)⊕ Hi(GKν )

and the differential ∂ν coincides with the projection onto the first
summand. Hence ∂ν(α) = 0 is equivalent to αν being induced from
GKν = Dν/Iν . �

Combining the considerations above we obtain the notion of unram-
ified stable cohomology

H∗s,nr(G)

of a finite group G: a stable cohomology class α ∈ Hi
s(G) is unramified

if and only if it is contained in the kernel of the composition

Hi
s(G)→ Hi(GK)

∂ν−→ Hi−1(GKν ),

for every valuation ν ∈ DVK , where K = k(V/G) for some faithful
representation of G. This does not depend on the choice of V , provided
` 6= char(k). These groups are contravariant in G and form a subring

H∗s,nr(G) ⊂ H∗s(G).

Furthermore:

• If V/G is stably rational then Hi
s,nr(G) = 0, for all i ≥ 2.

• We have

Hi
s,nr(G) ⊆ Hi

s,nr(Syl`(G))NG(Syl`(G)).

Remark 6.2. In [7], we proved that Hi
s,nr(G) = 0, i ≥ 1, for most quasi-

simple groups of Lie type. A complete result for quasi-simple groups
and i = 2 was obtained in [20].

Note that the `-Sylow-subgroups of finite simple groups often have
stably-rational fields of invariants; this provides an alternative ap-
proach to our vanishing theorem.

Lemma 6.3. Let
γK : GaK → Ga

be a continuous surjective homomorphism and αaK = γ∗K(αa) ∈ Hi(GaK),
for some αa ∈ Hi

s(G
a). If αa is unramified with respect to every ex-

tendable ∆-pair in Ga then αaK ∈ Hi
nr(GaK).
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Proof. For ν ∈ DVK , let D := γK(Daν) and I := γK(Iaν ). Then ei-
ther D is cyclic or (D, I) is an extendable ∆-pair in Ga. We have a
commutative diagram

Hi
s(G

a)

γ∗K
��

φ // Hi
s(D)

��

Hi
s(D/I)

ψoo

��
Hi(GaK) // Hi(Daν) Hi(Daν/Iaν )oo

In either case, αaK is unramified with respect to ν, by Lemma 1.7. �

7. Main theorem

Theorem 7.1. Let K = k(X) be a function field over k = F̄p of
tr degk(K) ≥ 2 and αK ∈ Hi

nr(GK), with ` 6= p and i > 1. Then there
exist a continuous homomorphism GK → G̃a onto a finite abelian `-
group, fitting into a diagram

GK

��
1 // Z̃ // G̃c // G̃a // 1

and a class α̃a ∈ Hi(G̃a) such that

(1) αK is induced from α̃a,
(2) α̃c := π∗a(α̃

a) ∈ H∗s,nr(G̃
c).

Conversely, every αK ∈ Hi(GK) induced from ∧∗(H1(G̃a)) and unram-
ified on some G̃c as above is in Hi

nr(GK).

In this section we begin the proof of Theorem 7.1, reducing it to
geometric statements addressed in Sections 8 and 9.

Fix an unramified class

αK ∈ Hi
nr(GK) ⊂ Hi(GK).

By Theorem 5.1, we have a surjection

π∗ : Hi(GaK)→ Hi(GK),

let αaK ∈ Hi(GaK) be a class such that π∗(αaK) = αK . Let

γK : GaK → Ga

be a continuous quotient onto a finite abelian `-group such that αaK is
induced from a class αa ∈ Hi

s(G
a) = ∧i(H1(Ga)). We have a diagram

of central extensions:
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1 // ZK //

��

GcK

����

// GaK
γK

����

// 1

1 // Z // Gc
πa // Ga // 1

where the lower row is uniquely defined, up to isoclinism, as in Lemma 4.2.
The group Ga might be too small, i.e., it may happen that

π∗a(α
a) /∈ Hi

s,nr(G
c).

Our goal is to pass to an intermediate finite quotient GaK → G̃a fitting
into a commutative diagram below

1 // ZK //

��

GcK

��

// GaK
γ̃K

��

// 1

1 // Z̃ //

��

G̃c

��

// G̃a

γ

��

// 1

1 // Z // Gc // Ga // 1

where the vertical arrows are surjections onto finite `-groups, and such
that αaK is induced from a class α̃a ∈ H∗(G̃a) with

π̃∗a(α̃
a) ∈ Hi

s,nr(G̃
c).

There are two possibilities:

(1) There exists a finite quotient GK → Ga such that αK is in-
duced from αa ∈ Hi

s(G
a) which is unramified with respect to

every extendable ∆-pair (I,D) in Ga. This case is treated in
Lemma 7.2.

(2) On every finite quotient, the class αa inducing αK is ramified on
some extendable ∆-pair (I,D). This possibility is eliminated
by Lemma 7.3.

Lemma 7.2. Assume that αa ∈ Hi
s(G

a) is unramified with respect to
every extendable ∆-pair (I,D) in Ga. Then there is a factorization

(7.1) GaK
γ̃K−→ G̃a γ−→ Ga, γK = γ ◦ γ̃K ,

with finite G̃a, such that

π∗a(α̃
a) ∈ Hi

s,nr(G̃
c), α̃a := γ∗(αa).
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Proof. Let G̃a be the quotient constructed in Proposition 4.6, i.e., if
(I,D) is not an extendable ∆-pair in Ga then no ∆-pair (Ĩ , D̃) surjects
onto (I,D). Thus, for each ∆-pair (Ĩ , D̃) in G̃a one of the following
holds:

• either γ(Ĩ) = 0 or γ(D̃) cyclic,
• or (γ(Ĩ), γ(D̃)) is an extendable ∆-pair in Ga.

Applying Lemma 1.7 and Lemma 6.3 to V/G̃c, we obtain that α̃a :=
γ∗(αa) is unramified with respect to (Ĩ , D̃). �

Lemma 7.3. There exists a finite quotient GK → Ga such that αa ∈
Hi(Ga) induces αK and is unramified on every extendable ∆-pair (I,D)
in Ga.

The proof of this lemma is presented in Section 8, in the case when
K admits a smooth projective model; a reduction to the smooth case
is postponed until Section 9.

8. The smooth case

LetX be a smooth projective irreducible variety over an algebraically
closed field k with function field K = k(X). By the Bloch-Ogus theo-
rem, there is an isomorphism

Hi
nr(GK) = H0

Zar(X,Hi
et(X)),

where Hi
et is an étale cohomology sheaf (see also Theorem 4.1.1 in

[14]). In particular, a class αK ∈ Hi
nr(GK) can be represented by a

finite collection of classes {αn}n∈N , with αn defined on some Zariski
open affine Xn ⊂ X, with X = ∪nXn, such that the restrictions of αn
to some common open affine subvariety X◦ ⊂ ∩nXn coincide. We will
need the following strengthening:

Lemma 8.1. Let X be a smooth variety with function field K and S =
{x1, . . . , xr} ⊂ X a finite set of points. Given a class αK ∈ Hi

nr(GK)
there exist

• a Zariski open subset US ⊂ X, containing S, and
• a class αS ∈ Hi

et(US)

such that αK and αS coincide on some dense Zariski open subset U◦S ⊂
US, i.e., for every representation of αK by {αn}n∈N as above there
exists some dense Zariski open U◦S ⊂ US, containing S, such that the
restrictions of αS and all αn to U◦S coincide.
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Proof. By the argument in [14, Theorem 4.1.1], αK has a representative
α = αX ∈ H0

Zar(X,Hi(Z/`n)). Hence, there is a covering of X by
Zariski open subsets Xn with αn representing α in Xn. Moreover,
using the refinement of the Bloch-Ogus exact sequence for semi-local
rings as in [23, Theorem 1.1], we can assume that one of the subsets
contains the finite set S. �

Fix a representation of αK ∈ Hi
nr(GK) by {αn}n∈N as above. Each

class αn ∈ Hi
et(Xn) is represented by a finite collection {Xnm} of affine

charts Xnm, with ∪Xnm = Xn and finite étale covers

ψnm : X̃nm → Xnm,

such that the restrictions αnm := αn|Xnm are induced from homomor-
phisms χnm : π̂1(Xnm) → Gnm onto finite groups. Proposition 5.2
implies that there is further refinement of the cover by affine subcovers

X = ∪jXj,

such that for each j there exist

• a finite abelian `-group Ga
j

• a surjection χK,j : GK → Ga
j , unramified over Xj, and

• a class αj ∈ Hi(Ga
j ) inducing α via χK,j.

Corollary 5.3 implies that there exists a finite quotient πc : GK → Gc

onto a central extension of an abelian group Ga such that the projec-
tions χK,j factor through Gc and the images of αj in Hi(Gc) coincide.
In particular, αK is induced from αc ∈ Hi(Gc).

We claim that αc is unramified on every pair (πc(Iν), πc(Dν)), for ν ∈
VK . Indeed, for each ν, χK,j(Iν) = 0 on at least one of the charts Xj,
thus the restriction of αj to χK,j(Dν) is induced from χK,j(Dν)/χK,j(Iν);
since αc ∈ Hi(Gc) is induced from αj, we have the same property for
αc, with respect to the pair (πc(Iν), πc(Dν)). The description of the
action in Lemma 2.3 identifies subgroups of Ga acting on products of
projective spaces with fixed points with images of inertia subgroups
of some valuations, and images of their decomposition subgroups with
subgroups preserving the corresponding components, see Lemmas 2.2
and 2.3.

The rest of the argument is similar to the proof of Lemma 7.2. Let
GK → Ga be an intermediate quotient surjecting onto each Ga

j and

GK → G̃a → Ga

the intermediate finite quotient constructed in Proposition 4.6. In par-
ticular, the projection of every ∆-pair in G̃a to Ga

j is either of the
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form (πa,j(Iν), πa,j(Dν)), for some ν ∈ VK , or cyclic. Let G̃c be a cen-
tral extension as in Corollary 4.3, surjecting onto Gc. We have classes
α̃aj ∈ Hi(G̃a), induced by αaj constructed above, and mapping to the

same class α̃c ∈ Hi(G̃c).
We claim that α̃c ∈ Hi

s,nr(G̃
c). Indeed, for every ∆-pair (Ĩ , D̃) in G̃a

either D̃ projects to a cyclic group in Ga or it is extendable, i.e., image
of some (Iν , Dν). In the first case, all elements α̃j are unramified on

(Ĩ , D̃). In the second case, at least one of the α̃j is unramified on it.

9. Reduction to the smooth case

In absense of resolution of singularities in positive characteristic, we
reduce to the smooth case via the de Jong-Gabber alterations theorem
(see [18]): The Galois group GK contains a closed subgroup GK̃ of
finite index, coprime to `, such that

• The function field K̃ corresponding to GK̃ admits a smooth
proper model, i.e., there exists a generically finite morphism of
proper varieties

ρ : X̃ → X,

of degree |GK/GK̃ | with X̃ smooth and K̃ = k(X̃).

Let αK ∈ Hn
nr(GK) be an unramified class. Its restriction αK̃ to a

class in Hn(GK̃) is also unramified. By results in Section 8, there exists
a surjection

(9.1) GK̃ → G̃c

onto a finite abelian `-group such that αK̃ is unduced from a class in

α̃c ∈ Hn
s,nr(G̃

c).

Lemma 9.1. There exists a diagram

GK̃

��

// G̃

��

π̃c // // G̃c

GK
// G

where the vertical arrows are injections, with image of index coprime
to `, G̃ and G are finite groups, and αK is induced from an element
αG ∈ Hn

nr(G). In particular, Syl`(G) ' Syl`(G̃).

Proof. Fix a finite continuous quotient GK → G′ such that αK is in-
duced from some αG′ ∈ Hi(G′). Note that for every intermediate quo-
tient

GK → G→ G′
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there exists an αG ∈ Hi(G) inducing αK . It suffices to find a sufficiently
large G such that the sujection (9.1) factors through a subgroup of G.
This is a standard fact in Galois theory.

Since α̃c ∈ Hi
s,nr(G

c) its image α̃ ∈ Hi(G̃) is also unramified. Since

the index (G : G̃) is coprime to `, and since the unramified α̃ is induced
from an element αG ∈ Hi(G), αG is also unramified, as claimed. �

At this stage, we cannot yet guarantee that G is a central extension
of an abelian group, nor that it is an `-group. However, we know that

tr(resGK/GK̃ (αK)) = αK ∈ Hi
nr(GK),

modulo multiplication by an element in (Z/`n)×.
We need the following version of resolution of singularities in positive

characteristic:

Theorem 9.2. [18] Let G be a finite `-group and Y a smooth variety
over a perfect field with a generically free action of G. Then there exists
a G-variety Ỹ with a proper G-equivariant birational map Ỹ → Y such
that Ỹ /G is smooth.

We are very grateful to D. Abramovich for providing the reference
and indicating the main steps of the proof in [18]:

• Theorem VIII.1.1 gives an equivariant modification Y ′ of Y with
a regular log structure on Y ′ such that the action is very tame,
i.e., the stabilizers in G of points in Y ′ are abelian and act as
subgroups of tori in toroidal charts of the log structure Y ′.
• By Theorem VI.3.2, the quotient Y ′/G of a log regular variety

by a very tame action is log regular.
• By Theorem VIII.3.4.9, which is a step in Theorem VIII.1.1, a

log regular variety has a resolution of singularities.

We return to the proof of Theorem 7.1. Start with a suitable faithful
representation V of G, and thus of Syl`(G) = Syl`(G̃), and construct a
diagram

V̄
πY //

πG
��

Y = Ỹ /Syl`(G)

V̄ /G

where Y = Ỹ /Syl`(G) is the smooth projective variety from Theo-
rem 9.2, and πY is a Syl`(G)-equivariant map from a G-equivariant
projective closure of V . Let L = k(Y ) be the function field of Y .
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Given a class αL ∈ Hi
nr(GL) we have a covering of Y = ∪nYn by affine

Zariski open subsets and a finite set of classes {αn} representing αL,
as considered in Section 8.

Pick a point v ∈ V̄ . The image S := πY (G · b) of its G-orbit is a
finite set of points. By Lemma 8.1, there exist a dense Zariski open
subset US and a class αS ∈ Hi

et(US) coinciding with αL on some dense
Zariski open subset U◦S ⊂ US. Its preimage

Ū◦S := π−1
Y (U◦S) ⊂ V̄

is a dense Zariski open subset containing G · v. Put

Ūv := ∩g∈G g(Ū◦S) ⊂ V̄ ,

it is a G-stable dense Zariski open subvariety containing v. Its image
πG(Ūv) ⊂ V̄ /G is a Zariski open subset containing πG(G ·v). Note that
πv : Ūv/Syl`(G)→ US is a birational morphism to an open subset and
π∗v(αS) is well-defined in étale cohomology of Ūv/Syl`(G). It follows
that the trace

trπG(π∗v(αS)) ∈ Hi
et(Ūv/G)

is well-defined and coincides with (G : Syl`(G)) ·αS at the generic point
of V̄ /G.

Thus we have a covering of V̄ /G by Zariski open subsets of the form
Ūv/G, v ∈ V̄ , with cohomology classes representing αK on each chart.
There exists a finite subcovering by Ūv/G with extensions of αS to each
Ūv/G. We can now apply Proposition 5.2 to produce a finite subcover
such that on each chart, the class is induced from homomorphisms onto
finite abelian groups, and proceed as in Section 8.
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