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ABSTRACT. We determine the Mori cone of holomorphic symplectic varieties
deformation equivalent to the punctual Hilbert scheme on a K3 surface. Our
description is given in terms of Markman’s extended Hodge lattice.

INTRODUCTION

Let X be an irreducible holomorphic symplectic manifold. Let (,) denote the
Beauville-Bogomolov form on H?(X,Z); we may embed H?(X,Z) in Hy(X,Z) via
this form. Fix a polarization h on X; by a fundamental result of Huybrechts
[Huy99], X is projective if it admits a divisor class H with (H, H) > 0. It is expected
that finer birational properties of X are also encoded by the Beauville-Bogomolov
form and the Hodge structure on H?(X), along with appropriate extension data.
In particular, natural cones appearing in the minimal model program—the moving
cone, the nef cone, the pseudo-effective cone—should have a description in terms
of this form.

Now assume X is deformation equivalent to the punctual Hilbert scheme S of
a K3 surface S. Recall that

(1) H*(SM. 7)) = H*(S,Z) ®1 Z6, (6,6) = —2(n— 1)

where the restriction of the Beauville-Bogomolov form to the first factor is just the
intersection form on S, and 24 is the class of the locus of non-reduced subschemes.
Recall that for K3 surfaces S, the cone of (pseudo-)effective divisors is the closed
cone generated by

{D € Pic(S) : (D, D) > —2,(D, h) > 0}

The first attempt to extend this to higher dimensions was [HT01]. Further work on
moving cones was presented in [HT09, Mar13], which built on Markman’s analysis of
monodromy groups. The characterization of extremal rays arising from Lagrangian
projective spaces P" — X has been addressed in [HT09, HHT12] and [BJ11].
The paper [HT10] proposed a general framework describing all types of extremal
rays; however, Markman found counterexamples in dimensions > 10, presented in
[BM12].

The formalism of Bridgeland stability conditions [Bri07, Bri08] has led to break-
throughs in the birational geometry of moduli spaces of sheaves on surfaces. The
case of punctual Hilbert schemes of P? and del Pezzo surfaces was investigated by
Arcara, Bertram, Coskun, and Huizenga [ABCH13, Huil2, BC13, CH13]. The
effective cone on (P?)" has a beautiful and complex structure as n increases,
which only becomes transparent in the language of stability conditions. Bayer
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and Macri resolved the case of punctual Hilbert schemes and more general moduli
spaces of sheaves on K3 surfaces [BM12, BM13|. Abelian surfaces, whose moduli
spaces of sheaves include generalized Kummer varieties, have been studied as well
[YY12, Yos12].

In this note, we extend the results obtained for moduli spaces of sheaves over K3
surfaces to all holomorphic symplectic manifolds arising as deformations of punctual
Hilbert schemes of K3 surfaces. Our principal result is Theorem 1 below.

Acknowledgments: The first author was supported by NSF grant 1101377; the
second author was supported by NSF grants 0901645, 0968349, and 1148609; the
third author was supported by NSF grants 0968318 and 1160859. We are grate-
ful to Emanuele Macri for helpful conversations, to Eyal Markman for construc-
tive criticism and correspondence, and to Claire Voisin for helpful comments on
deformation-theoretic arguments in a draft of this paper. The first author would
also like to thank Giovanni Mongardi for discussions and a preliminary version of
[Mon13].

1. STATEMENT OF RESULTS

Let X be deformation equivalent to the Hilbert scheme of length-n subschemes
of a K3 surface. Markman [Mar11, Cor. 9.5] describes an extension of lattices

H*(X,Z) C A
and weight-two Hodge structures

H?*(X,C) C A¢
characterized as follows:

e the orthogonal complement of H?(X,Z) in A has rank one, and is generated
by a primitive vector of square 2n — 2;

e as a lattice _

A ~ U4 S5 (*E8)2
where U is the hyperbolic lattice and Eg is the positive definite lattice
associated with the corresponding Dynkin diagram;

e there is a natural extension of the monodromy action on H?(X,Z) to A; the
induced action on A/H%(X,Z) is encoded by a character cov (see [Mar08,
Sec. 4.1));

e we have the following Torelli-type statement: X; and Xs are birational if
and only if there is Hodge isometry

Kl ~ Kg
taking H?(X1,Z) isomorphically to H?(Xs,Z);

e if X is a moduli space M, (S) of sheaves over a K3 surface S with Mukai
vector v then there is an isomorphism from A to the Mukai lattice of S
taking H%(X,Z) to vt.

Generally, we use v to denote a primitive generator for the orthogonal complement
of H2(X,Z) in A. Note that v? = (v,v) = 2n — 2. When X ~ M,(S) we may take
the Mukai vector v as the generator.

There is a canonical homomorphism

0V : A — Hy(X,7)
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which restricts to an inclusion
H?*(X,7) C Hy(X,7Z)

of finite index. By extension, it induces a Q-valued Beauville-Bogomolov form on
Hy(X,Z).

Assume X is projective. Let H2(X)ay C H*(X,Z) and Ayy C A denote the
algebraic classes, i.e., the integral classes of type (1,1). The Beauville-Bogomolov
form on H?(X)a, has signature (1, p(X) — 1), where p(X) = dim(H2,,(X)). The
Mori cone of X is defined as the closed cone in Hs(X,R),;, containing the classes
of algebraic curves in X. The positive cone (or more accurately, non-negative cone)
in H%(X,R)q4, is the closure of the connected component of the cone

{D € H*(X,R)y, : D* > 0}

containing an ample class. The dual of the positive cone in H?(X,R)y, is the
positive cone.

Theorem 1. Let (X, h) be a polarized holomorphic symplectic manifold as above.
The Mori cone in Ha(X,R)ag is generated by classes in the positive cone and the
images under 0V of the following:

{a € Nayy : a*> > =2,|(a,v)| < v%/2,(h,a) > 0}.

This generalizes [BM13, Theorem 12.2], which treated the case of moduli spaces
of sheaves on K3 surfaces. As another application of our methods, we can bound
the length of extremal rays of the Mori cone with respect to Beauville-Bogomolov
pairing:

Proposition 2. Let X be a projective holomorphic symplectic manifold as above.
Then any extremal ray of its Mori cone contains an effective curve class R with

3
(RR)> -2
2
The value 7"7"'3 had been conjectured in [HT10]. Proposition 2 has been ob-
tained independently by Mongardi [Mon13]. His proof is based on Twistor defor-
mations, and also applies to non-projective manifolds.

2. DEFORMING EXTREMAL RATIONAL CURVES

In this section, we consider general irreducible holomorphic symplectic manifolds,
not necessarily of K3 type. Recall the definition of a parallel transport operator
¢ : H*(X,Z) — H?*(X',Z) between manifolds of a fixed deformation type: there is a
smooth proper family X — B over a connected analytic space, points b, b’ € B with
Xy ~ X and Xy ~ X', and a continuous path v : [0,1] — B,~(0) = b,~v(1) =V,
such that parallel transport along v induces ¢.

Proposition 3. Let X be a projective holomorphic symplectic variety and R the
class of an extremal rational curve P! C X with (R, R) < 0. Suppose that X' is
deformation equivalent to X and ¢ : H*(X,Z) — H?*(X',Z) is a parallel transport
operator for a family ™ : X — B such that R remains algebraic. If R’ :== ¢(R) €
Hy(X',Z) a4 then a multiple of R’ is effective and represented by a cycle of rational
curves.
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Proof. Fix a proper holomorphic family 7 : X — B over a connected complex
curve B with X = m~1(bg). We claim that R deforms to rational curves in fibers
Xyr = = 1(b") for b near by.

Let w denote the holomorphic symplectic form on X, f: X — Y the birational
contraction associated with R, FE an irreducible component of the exceptional locus
of f, Z its image in Y, and F a generic fiber of E — X. Let f: P! — F be a
generic free rational curve of minimal degree in F. Then the normal bundle of
¢ := f(P') C X was determined completely in [CMSB02]; we briefly review the key
points:

e w restricts to zero on F' [Kal06, Lemma 2.7];

e the smooth locus of Z is symplectic with two-form pulling back to w|FE
[Kal06, Thm. 2.5] [Nam01, Prop. 1.6];

e the dimension r of F equals the codimension of E [Wie03, Thm. 1.2];

e by bend-and-break, the pull-back f*7g of the tangent bundle of E has
only one summand of the form O(2), all others being of the form O(k) for
k € {0,1} [CMSB02, Theorem 2.8].

Using standard exact sequences for normal bundles, and the fact that f*7; is
trivial, one can then show (cf. [CMSB02, Lemma 9.4])

Niyx = Opi (~2) © Opi (1)~ @ 05" © O (1),

The crucial point is that hl(Ng/X) = 1. Thus we may apply [Ran95, Cor. 3.2] to
deduce that the deformation space of £ in X has dimension 2n —2; [Ran95, Cor. 3.3]
then implies that ¢ persists in deformations of X for which R remains algebraic.
This proves our claim.

Ezample. The extremality assumption is essential, as shown by an example sug-
gested by Voisin: Let S be a K3 surface arising as a double cover of P! x P! branched
over a curve of bidegree (4,4) and X = Sl We may regard P! x P! € X as a
Lagrangian surface. Consider a smooth curve C' C P! x P! C X of bidegree (1,1).
The curve C' persists only in the codimension-two subspace of the deformation space
of X where P! x P! deforms (see [Voi92]); note that Neyx =~ Op1(2) & Op1 (—2)2.

We return to the proof of Proposition 3. For arbitrary fibers &), suppose a
parallel-transport operator takes R to R in the lattice A’ associated with X}. Then
an application of Remmert’s Proper Mapping theorem [Rem57, Satz 23] implies
there exists a cycle of rational curves in A} that is a specialization of R. (This
should be applied to a suitable Hilbert scheme/Douady space parametrizing curves
in the fibers of fixed degree.) In particular, R” is in the Mori cone.

To apply this reasoning, we need to construct an appropriate chain of families
joining X and X

Lemma 4. There exists a smooth proper family @ : XT — BT over a connected
analytic space with finitely many components, points b, b’ € Bt with X;r ~ X and
Xl ~ X', and a section

p: BT - R?*w.Z
of type (1,1), such that p(b) = R and p(b') = R'.

Proof. This proof is essentially the same as the argument for Proposition 5.12 of
[Mar13]. We summarize the key points.
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Let 99 denote the moduli space of marked holomorphic symplectic manifolds of
K3 type [Huy99, Sec. 1]. Essentially, this is obtained by gluing together all the local
Kuranishi spaces of the relevant manifolds. It is non-Hausdorff. Let 9t° denote a
connected component of 9 containing X equipped with a suitable marking.

Consider the subspace 9%, such that R is type (1,1) and (k,R) > 0 for some
Kahler class, which may vary from point to point of the moduli space. This coincides
with an open subset of the preimage of the hyperplane R+ under the period map
P [Marl3, Claim 5.9]. Furthermore, for general periods 7—those for which R is
the unique integral class of type (1,1)—the preimage P~!(7) consists of a single
marked manifold [Mar13, Cor. 5.10]. The proof of this in [Marl3] only requires
that (R,R) < 0. (The Torelli Theorem implies two manifolds share the same
period point only if they are bimeromorphic [Marll, Th. 1.2], but if R is the only
algebraic class, the only other bimeromorphic model would not admit a Kéahler class
&' with (x', R) > 0.) Finally, 93, is path-connected by [Mar13, Cor. 5.11].

Choose a path « : [0,1] — 9% joining X and X’ equipped with suitable mark-
ings, taking R and R’ to the distinguished element R in the reference lattice. Cover
the image with a finite number of small connected neighborhoods U; admitting
Kuranishi families. We claim there exists an analytic space B

7([0,1]) ¢ BT c UL, Us

with a universal family. Indeed, we choose BT to be an open neighborhood of
v([0,1]) admitting a deformation retract onto the path, but small enough so it is
contained in the union of the U;’s. The topological triviality of BT means there is
no obstruction to gluing local families. Applying the proper mapping theorem as
above, we conclude that each fiber over B contains a cycle of rational curves with
class R. (]

]

3. SPECIALIZING EXTREMAL RAYS

We continue to address the case of general irreducible holomorphic symplectic
varieties.

Proposition 5. Let X be a projective holomorphic symplectic manifold. Let R C
X denote an extremal rational curve with R?> < 0. Consider a projective family
7 : X — B over a connected curve B with m=1(b) ~ X and [R] remaining algebraic
in the fibers of . Then the specialization of R in 7~ 1(by) is extremal for all but
finitely many by € B.

The results of Ran and Voisin mentioned above imply that R deforms to nearby
fibers of m. Note that rank(Hs(Xp, Z)a14) typically jumps for infinitely many b—the
Proposition asserts most of these do not affect whether R is extremal in the cone
of curves.

We require two lemmas. The first one is an a priori (but not effective) version
of Proposition 2.

Recall that a quasi-polarization g of X is a primitive Cartier divisor on X that
is nef and big. Each multiple Ng, N > 0 has vanishing higher cohomology by
Kawamata-Viehweg vanishing; some multiple is globally generated by Kawamata
basepoint freeness.
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Let 7 denote a deformation equivalence class of quasi-polarized irreducible holo-
morphic symplectic manifolds (X, g). Write H?(Z) and Hy(Z) to denote the coho-
mology and homology lattices of an unspecified manifold of type 7.

Lemma 6. Let 7 denote a deformation equivalence class of quasi-polarized irre-
ducible holomorphic symplectic manifolds (X,g). Up to the action on Hy(Z) of
polarization-preserving monodromies, there are only finitely many classes of ex-
tremal rays of the Mori cones occurring in the deformation class T. In particu-
lar, there exists a constant cr such that, for every X € T and every primitive
R € gt C Ho(X,Z) generating an extremal ray in the cone of effective curves of
X,
(R,R) > cr.

Proof. We let I'y C Aut (H 2 (Z)) be the image of the monodromy group preserving
g. Assume there exists a sequence (Rj, X;);j=1,2,.. where R; is extremal on X},
(Rj,g9) = 0, and the I'g-orbits of all R;, considered as elements in Hy(Z), are
disjoint. We will proceed to obtain a contradiction to the openness of the subset of
g-polarized varieties in the moduli space of quasi-polarized varieties:

By the Cone Theorem (see [HT09]) we may assume that some multiple n;R;,n; €
N, is the class of an extremal rational curve in X;. Consider the sequence of rank-
two saturated sublattices

Hj = Zg +ZRJ C HQ(Z)a (g,RJ) = Oa

where R; is one of the rays enumerated above. Local Torelli, surjectivity of the
period map [Huy99, Sec. 8] and Proposition 3 imply there exist codimension-one
families of manifolds X; in 7 satisfying:
. HQ(Xj,Z)alg D Zg+ ZRj;
e RR; is effective, and g is nef but not ample.
Some further geometric observations:
o A general deformation of (X}, g) yields a polarized holomorphic symplectic
variety (Z, g) that is a deformation of Z;.
e There exists a universal constant dz such that drg is basepoint free and
birational onto its image for any variety in 7 [Kol93].

We now use the global Torelli theorem for quasi-polarized varieties. Let Py . denote
the period domain of the lattice g*. Since I, is of finite index in the group Aut(g*)
of lattice automorphisms, the quotient P . /T’y has a natural algebraic structure as
a quasi-projective variety by Baily-Borel.

Consider the irreducible component H of the Hilbert scheme containing the de-
formed (Z, g), and the dense open subset U C H parametrizing the smooth such va-
rieties. The period map U — P, /T, is algebraic (see [GHS10], proof of Thm. 1.5).
The period map from the moduli space to P,. /Ty identifies pairs (X, g) and (X', g)
if and only if there is a birational morphism X --» X’ preserving g, see [Ver09,
Cor. 1.25]; in particular, the image of U is disjoint from the divisor of (g, R;)-lattice
polarized varieties.

This is a contradiction, as the image of a dominant algebraic morphism cannot
omit a countably infinite collection of divisors. (I

Remark. We would like a stronger version of Lemma 6, with 7 a deformation-
equivalence class of irreducible holomorphic symplectic manifolds, without specify-
ing a quasi-polarization. This is available where the monodromy action on H?(X, Z)
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is sufficiently large, e.g., for X deformation equivalent to S} where S is a K3 sur-
face.
Given an extremal ray R and a positive integer d, there exists a vector

g€ R C H¥(X,7Z)
satisfying
(2) (9,9) =2d, (9,H*(X,Z)) =Z.
Indeed, using (1) we may write
H*(X,Z)) ~ (-Es)®?* @ U @ (—2(n — 1)).

Markman’s characterization of the monodromy group [Marl1, Lemma 9.2] and clas-
sical results of Eichler (cf. [GHS10, Lemma 3.5]) allow us to choose the isomorphism
such that R lies in the last two summands. Thus we may take g to be any primitive
vector of length 2d in the remaining summands.

Moreover, by [GHS10, Cor. 3.7] (or a second application of the quoted results of
Markman and Eichler) there is an irreducible moduli space of polarized holomorphic
symplectic manifolds (X, g) where g satisfies (2). Thus each monodromy orbit of ex-
tremal rays arises at the boundary of this moduli space. More precisely, Markman’s
analysis of monodromy reflections [Marll, Sec. 1.2] and Huybrechts’ interpretation
of the moving cone via the birational Kéhler cone [HT09, Huy03] implies there
exists a quasi-polarized (X, g) with (g, R) = 0, where R is the specialization of our
extremal ray.

Proof of Proposition 5. Let X be a very general fiber of 7. The Mori cone of X
near R is locally polyhedral; see [HT09, Cor. 18] for a discussion of this in the
context of the Cone Theorem and the Log Minimal Model program. It follows that
R™ is a supporting hyperplane of a facet of the nef cone; let ¢ be an integral divisor
in this facet. Then g is semiample by Kawamata basepoint freenesss and satisfies
(g,R) = 0. The locus U C B over which g remains semiample is Zariski dense,
with finite complement.

Now consider the Baily-Borel quotient P, . /I'y parametrizing polarized weight
two-Hodge structures on H?(X, L) prim = g+ up to the action of the monodromy
group I'y preserving g. By Lemma 6, it admits finitely many divisors corresponding
to Hodge structures such that there exists a R’ € Hy(X,Z)q, with R’ possibly
generating an extremal ray, and (R’, g) = 0.

For our family 7 : X — B, there are finitely many such divisors not identically
containing the image of B under the period mapping, which cut out finitely many
points on B. This allows us to control fibers X,,,u € U, in which R fails to be
extremal: In these cases, we may express

R=Y ciRi, ¢ €Qs
i=1
where the R; are extremal in X, and satisfy (g, R;) = 0. O

4. PROOF OF THEOREM 1
Note that a projects to a negative class in v+ if and only if

(a,a) (v,v) < (a,v)*.
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The autoduality of the positive cone and the fact that nef divisors have non-negative
Beauville-Bogomolov squares imply that the Mori cone contains the positive cone.
Thus we restrict our attention to negative classes.

We first claim the enumerated elements are all in the Mori cone. This follows
from [BM13, Thm. 12.2] in the case where X ~ M, (S). Moreover, the proof of
Proposition 12.6 of this paper shows there exist examples of moduli spaces and
stability conditions where 6V (a) is the class of a contractible smooth rational curve
R. Typically, the contraction entails identifying all extensions of two stable objects
of equal slope.

Markman [Marll, Lemma 9.2] shows that the image of the monodromy represen-
tation consists of the orientation-preserving automorphisms of the lattice H?(X,Z)
acting via +1 on the discriminant group H?(X,Z)*/H?(X,Z). A classical result of
Eichler [Eic74] (see also [GHS10, Lemma 3.5]) shows that there is a unique orbit in

A of elements a’ such that
(3) (a',v) = (a,v),(d',ad') = (a,a),

and the divisibility of ¢’ and a in A are equal. By definition, the divisibility of a
non-zero vector A € A is the largest d € N such that \/d € A.

Suppose X' is arbitrary and o’ € Hy(X',Z)q4 a class with the same numerical
properties as a (see (3) above). It follows there exists a parallel transport operator

¢: H*(X,Z) — H*(X',Z)

taking a to a’. Proposition 3 guarantees that 6V (a’) remains effective.

Second, we address the reverse inclusion, i.e., that our list of extremal rays is
complete. The key ingredient is the next Proposition, which implies that extremal
rays of general X share the same numerical properties as extremal rays of moduli
spaces of sheaves over K3 surfaces.

Proposition 7. Let (X, h) be a holomorphic symplectic manifold of K3 type. Let
R C X denote an extremal rational curve with R? < 0. Then there exists a con-
nected curve B, points b,by € B, and a projective family m: X — B satisfying the
following:

(b)) ~ X;

the class [R] remains algebraic in the fibers of m;

the specialization of R in 7~ (bg) is extremal for all but finitely many by €
B;

7Y (by) =~ M,(S), the moduli space of sheaves on a K3 surface with Mukai
vector v, for infinitely many by € B.

Proof. Everything except the last assertion follows from Proposition 5. Markman-
Mehotra [MM12, Th. 1.1] showed that the locus where the fibers are isomorphic to
Hilbert schemes is dense.

Here is another approach: Let § € H?(X,Z) be a primitive vector such that
(6,6) = —2(n — 1) and (6, H*(X,Z)) = 2(n — 1)Z; 25 ‘looks like’ the divisor
parametrizing non-reduced subschemes of a Hilbert scheme. (Precisely, these are in
the same orbit under the monodromy group.) Using the period description for the
moduli space, we choose X’ with period in {h,«a,d}t. It follows that the Hodge
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structure on H?(X',Z) is isomorphic to that on some Hilbert scheme of a K3 sur-
face. Indeed, §* is isomorphic to the middle cohomology of a K3 surface. Let S be
that K3 surface—it exists by surjectivity of Torelli—so we obtain an isomorphism
of Hodge structures

H*(X,Z) ~ H*(M,(S),Z), v=(1,0,1—n).

The Torelli Theorem [Ver09, Huy11] (see [Mar11, Cor. 9.8]) implies that the special-
ization (X', h,a) is birational to M, (S) for a suitable Mukai vector v. Theorem 1.2
of [BM13] asserts that all projective birational models of M, (S) may be interpreted
as moduli spaces of sheaves (or objects in the derived category) on a K3 surface
satisfying a suitable Bridgeland stability condition. O

This finishes the proof of Theorem 1.

Proof of Proposition 2. We will reduce the statement to the case of moduli spaces
of sheaves on K3 surfaces, which is [BM13, Proposition 12.6]. Consider the family
m : X — B constructed in in Proposition 7, and let by € B be such that A}, is a
moduli space of sheaves on a K3 surface with [R] extremal. Let Ry be the rational

curve on Xy, in the ray [R] with (Ro, Ro) > —™£3 given by [BM13, Proposition

12.6]. The curve Ry is a minimal free curve in a generic fibre of the exceptional locus
over B (see [BM13, Section 14]); therefore, the deformation argument in Proposition
3 applies directly to Ry (rather than a multiple) and implies the conclusion. O
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