INTEGRAL POINTS OF BOUNDED HEIGHT ON
COMPACTIFICATIONS OF SEMI-SIMPLE GROUPS
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ABSTRACT. We study the asymptotic distribution of integral points
of bounded height on partial bi-equivariant compactifications of semi-
simple groups of adjoint type.
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1. INTRODUCTION

In this paper, we study the asymptotic distribution of S-integral points
of bounded height on partial bi-equivariant compactifications of semi-simple
groups of adjoint type. Our approach combines the spectral techniques
developed in [19] in the context of integral points with more recent results
in [5], [4], and [6].

Throughout, G is a split semi-simple group of adjoint type of rank larger
than one over a number field F' and X the wonderful compactification of
G. The boundary X \ G is a strict normal crossings divisor Uye4Do whose
set of irreducible components A is in bijection with the set A = A(G, T) of
simple roots of G, with respect to a fixed maximal split torus T of G. Each
A C A corresponds to the boundary stratum D4 := NgeaD,. A rational
character A € X*(T) gives rise to a line bundle Ly on X, the classes of such
line bundles span the Picard group Pic(X) of X, after tensoring with Q (see
[19, Section 5]). In [19] we defined a height pairing

H: X*(T)e x G(A) — C
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whose restriction to A x G(F') is a a standard Weil height function on X with
respect to Ly. The height function is left- and right invariant with respect
to the action of a maximal compact subgroup K = [, K, C G(A) of the
adelic points of G. We established an asymptotic formula for the number

N(B,) = #{y € G(F) | H(\,7) < B}, B — oo,

for all A corresponding to big line bundles on X, i.e., all classes in the interior
of the effective cone in Pic(X)g.

From now on we fix a divisor D C X \ G and let Ap be the set of o such
that D = Ugea,Da. Let S be a finite set of places of F' containing the
archimedean places. We introduce the set-theoretic characteristic function
0 = dp g of the set of (D, S)-integral points on X as follows: For v ¢ S, let

dy: G(Fy) — {0,1}

be given by
1 a(ty) =1,YVa € Ap;
du(gv) = { (t) P

0 otherwise,

where
gy = kytokl,  with  t, € T(E,), ky, k) € K.
For v € S, we put d, = 1 and write

0= H6U.

A point v € G(F') C G(A) is called (D, S)-integral if §(y) is equal to 1. This
definition agrees with the usual definition of S-integral points on a model of
X \ D over the integers. The corresponding counting functions are given by

Ns.p(B,\) = #{(D,S) —integral v € G(F) | H(\,v) < B}.
Our main result is Theorem 6.4 which shows that
Nsp(A, B) = ¢- B*log(B)""'(1 + 0(1)), B — oo,

with an explicit bound on the error term. The constants a, b, and ¢ involve
arithmetic, geometric, and combinatorial information about the data X, D,
A, and S. Our Theorem 6.4 can be considered as an interpolation between
results on rational points in [19] and [11] and on integral points on G in
[13], [12]. It is consistent with a generalization of the conjecture of Batyrev-
Manin and Peyre to the framework of integral points proposed in [5], [4],
and [6].

As in [19] our method is based on the spectral analysis of the height zeta
function, modified to count (D, S)-integral points. We prove that the main
poles of the height zeta function arise from the contribution of unramified
one-dimensional automorphic representations of G(A), the set of which is
denoted by X(G).
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In rank one, i.e., for G = PGL(2), the spectral theory and the height
integrals have been completely worked out in [18]. The wonderful compact-
ification of PGL(2) is the projective space P3, with a unique irreducible
boundary component which is a smooth split quadric, and the distribution
of (D, S)-integral points is an interesting classical problem.

The study of S-integral points on algebraic varieties has a rich history,
going back at least as far as Siegel’s work on algebraic curves. More recently
the distribution of integral points on affine homogeneous varieties has been
studied in several papers, e.g., in [9, 3, 15], as well as in [10] where ergodic-
theoretic methods are employed. Ergodic-theoretic methods are also used in
[2] to treat fairly general homogeneous varieties. Our method, in technique
and spirit, is quite close to [4, 6]. An introduction to integral points for
pairs (X, D) can be found [14]. For background concerning the geometry
of wonderful compactifications, see [7]. Arithmetic properties of these vari-
eties, in connection with counting of rational points of bounded height, are
discussed in [19].

The paper is organized as follows. In Section 3 we review the theory of
height functions from the group-theoretic perspective and study local and
global height integrals. Section 4 is devoted to the regularization of adelic
height integrals. Section 5 contains our main theorem and its proof.

Acknowledgments. We are grateful to Wee-Teck Gan for helpful re-
marks. The first author was partially supported by NSF grant DMS-0701753.
The second author was partially supported by NSF grants DMS-0739380 and
0901777.

2. BASIC NOTATION

For X an algebraic variety over a field F' we write X (F') for the set of
F-rational points of X. We denote by Pic(X) the Picard group of X and
by Aesr(X) C Pic(X)Rr the (closed) cone of effective divisors on X. We often
identify line bundles, divisors and their classes in Pic(X).

From now on, we let F' be a number field, Val(F') the set its places, and
Soo the set of archimedean places. For v € Val(F), let F,, be the completion
of F' with respect to v, w, a uniformizer at v, and ¢ = ¢, the order of
the residue field. For any finite set of places S (containing S.,) we denote
by og the ring of S-integers of F'. We denote by A the ring of adeles, by
Ag = H;¢S F, and by Ay = Ag_. All Haar measures dg, will be normalized

as in [1]; we put dgg = H%és dg, and dg =[], dgs.

We fix a connected split semi-simple group G of adjoint type over F' or
rank r > 2. Let T be a maximal split torus of G and B C G a Borel subgroup
containing T. We also let A = A(G,T) be the set of simple roots for (G, T),
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with respect to B, and p half the sum of positive roots. We have
2p = Z Ko,
aEA
for some constants k., > 1. We set
P {zeR|z>1} ifv| oo,
v {w,"|n e N} ifvtoo,

and

(1) T(F)" ={aeT(F,)|a(a) € F, for each oo € ®*}.
We have the following Cartan decomposition:

(2) G(F,) = K, T(F,)"K,.

3. HEIGHTS AND HEIGHT INTEGRALS

We identify the set A = {D,} of boundary components with A = A(G, T).
The height pairing
Pic(X)c x G(A) - C
is given by
S g) = HH’U(S>9U)> where S gv H |Oé tv “,
v acA
for s = (Sa)aca, and
9="(90)0 € G(A)  with g, = kytok}, kv, k, € Ky, t, € T(F,)T,

(see Section 6 of [19]). We will also use

Hs(s.9) = T Ho(s.0)

vgS

We have

—Kx =Y (ka+1)Da,
acA
see [19, Proposition 5.2]. For € € R, let

Te={s | R(saq) > ka +1+¢, forall a}

and
D—{s| R(sa) >ka+1+e, foralagApl.

The following theorem has been proved in [19, Sections 6.6 and 6.7].
Theorem 3.1. Let

jv(s) ::/ Hv(s’gv)_l dgy.
G(Fy)

(1) Forwv ¢ S the integral J,(s) is a holomorphic function fors € T_;.
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(2) For v € Se and O in the universal enveloping algebra the integral
Foals) = [ 0H(5,9.)") g,
G(F)

s holomorphic fors € T_1.

Moreover, for all € > 0 and 0, there exist constants Cy(€) and Cy(0,€) such
that

|Tu(8)] < Cule)  and |Tpoa(s)| < Cy(0,€), forall seT_qqe.

The following result generalizes the computations in [19, Sections 6 and
7] to the (D, S)-integral context.

Theorem 3.2. Let x = ®/ Xy be a one-dimensional unramified automorphic
representation of G(A), and S and D as in Section 1. For each v € S here
exists a function f,, holomorphic and uniformly bounded in T_1_g, for some
d > 0, such that

/G(F ) Hv(sagv)_IXv dg, = H Lv(sa — Ray Xv © d) : fv(S),

acA
where Ly, is the local factor of the Hecke L-function.
Moreover, there exists a function fs, which depends only on (sa)ag¢A
is holomorphic in T_Dl/z, uniformly bounded in T_Dl/2+€, for any e > 0, and
such that

Js,0(s;X) :Z/G(A )5s(g)Hs(S,g)*1x(g) dg =[] L(sa—Fa»x0@)- fsx(s).
S agAp

Proof. The first claim follows from [5, Proposition 4.1.2], see also [19, The-
orem 6.9].
To prove the second claim, let

(3) Js,p(8,x) = vaSXv
vé¢S
where
(4) jv(57Xv) = / 6v(gv)Hv(s7gv)71Xv(gv) dgy.
G(Fv)

Since G is of adjoint type, the collection of elements {c(w,)}aca forms a
basis for the semi-group T,(F,)". For a = (aq)aca We set

(5) to(a) = [ (@)™ € T(F)".
acA
Using the bi-K-invariance we may write the local integrals as

(6) To(8,x0) = 3 Su(to(@))gy & xu(to(@))vol (Kuty(a)Ky),

acN"
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where

(s,a) = Z Sl

acA

By [19, Lemma 6.11], there exists a constant C, independent of v, such that
for all t,(a) € T(F,)", one has

(7) vol(Kyty(a)Ky) < 05 (te(a)) (1 + C) ,

Qv
where
0 (ts(@)) == |p(tu(a))[2 = .

We may rewrite Equation (6) as

(5,%0) = Y 8u(to(@))g, S22 x, (t()) + by(s),

aeN”

where

= uto(a))a, >V xu(tu(a)) (vol (Kutu(a)Ky) — dg(tu(a))).

aeN"
Observe that

®
> dultu(@Nay TV v(t@) = T] (3 xulalmn) gy o)

aeNr ag¢Ap aa=0

1
= H . —(sa—FkKa)

agAp 1 — xv(&(@y))qw

The corresponding Euler product, over v ¢ S, is a product of partial L-
functions, as in the statement of the theorem.
Let 0 = (R(sq))a- In the definition b,, we may assume a # 0. Since for

each v ¢ S,
{a!a#o}— U{a;aa#O},

acA
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we have
Db <D0 D7 Bultu(@)ay | (vol (Kuto(a)K,) - 6B<tv<a>>>‘
vgS vgS @ aa#0
<Y @t Y Y @ Vs(t(a)
v¢S ad Ap aa#0
_ -1 - —(Ca—Ka)ata . —(op—rgp)ag
=Yt Y (S ) I (X e )
vgS afAp aa=1 Bg;ioz) ag=0
—(0a—ka)
_ -1 Qv
B qu Z 1— —(og—Kg)
vgS agAp HﬁgAD( Qv )
_3
< Z qu 2 < o0.
ag Ap v¢S
Note that fors € 7 _Dl 2t the estimates are uniform and the corresponding
function fgs, is holomorphic in ’Tfi Jote O

4. INFINITE-DIMENSIONAL REPRESENTATIONS

Let m = ®! m, be an infinite-dimensional automorphic representation of
G(A) and ¢, the normalized spherical function associated to m,. Since
G is split, the representation 7, is infinite-dimensional, for all v (see [19,
Proposition 4.4]). We need uniform upper bounds for ¢.,. We will use the
following special case of a result of Hee Oh [16, Theorem 1.1].

Proposition 4.1. Assume that the rank r of G is at least two. Then for
each a € A and g, = kytyk], we have

lo a(ty e Y
(9) lpu(go)] < |a(ty)| 712 (( 8q, la(t )|)q(:]+ 11) + (g + 1)) |

Corollary 4.2. Assume that the rank r of G is at least two. Then for each
a € A we have

_1
o, (G (ww))] < 240 *.
Moreover, for all € > 0 there is a constant Ce > 0 such that for g, = kyt,kl,
we have

|om, (90)] < Ce T leu(to)| "2,

a€A

Proof. Equation (9) implies that for all € > 0,

| om, (g0)] < Cela)|a(ty)] 7217,

for some constant C,(«). Multiplying these inequalities over all & € A and
taking rth root gives the result. ([l
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Set
(10) To(smy) = / 80(90)Ho(5,90) " 0r (90) dgo.
G(Fy)

Note that for v ¢ S this integral depends only on (sa)aga,,-
Theorem 4.3. The infinite product

(11) Js,p(s,m) == vasm)
vgS

is holomorphic for s € ’Z:Dl/zr. Moreover, for all € > 0 and all compacts

Kc1TP there exists a constant C(e, K), independent of 7, such that

|jS7D(S,7T)| < C(€¢K)

—1/2r+e¢

foralls € K.

Proof. Using bi-K-invariance, as in the proof of Theorem 3.2, we obtain
jv S 7Tv Z 6 >907rv( U(a))VOI(KUtU(a)KU)'
acN"

Again, J,(s, m,) only depends on s, with a ¢ Ap. Using the estimates from
Corollary 4.2 and Equation (7) we conclude that to establish the convergence
of the Euler product it suffices to bound

—(XCaga, (Sa—Kat1/2r—€)aa)
DD a4 ,
v¢S (aa)

where the inner sum is over nonzero vectors (aq) € NAAD | O

Now we consider integrals of the form

To(8, ¢r,) i= / Hv(sagv)_1907ru(gv) dgy,
G(Fy)

forveS.

Theorem 4.4. (1) For allv ¢ Soo the integral Jy(s, vy) is holomorphic
fOT’ S € 771,1/27..
(2) For v € Sx and O in the universal enveloping algebra the integral

Too(s:on,) = / O(H, (. 90) " om (9) g

G(F)

is holomorphic for s € T_1_y ;.
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Proof. We verify the non-archimedean statement; the other argument is
similar. Let o be the vector consisting of the real parts of the components
of s. Fix € > 0. The local height integral is majorized by

> Hyo, ) eu(t)|0s(t)

teT(Fy)*

< [I > Hole a(wy)) " ay V2 b))
acA 1=0

— H iqv—(oa—ﬁa—l—l/Qr—e)l‘

acA =0

The result is now immediate. O

Corollary 4.5. In the non-archimedean situation, for each € > 0 there is a
constant Cy(e€), such that |7y(s, or,)| < Cy(e) for all s € T_1_yjor1c. In the
archimedean situation, for all € > 0 and all O as above, there is a constant

Cy(0,€) such that |Ty.0(s, pr,)| < Cy(0,€) for all's € T_i_1 jap e

Corollary 4.6. Let ¢ be an automorphic form in the space of an automor-
phic representation ™ which is right invariant under the maximal compact
subgroup K. Set fors € Tso

(12 Tsple.0):= [ dslo)H(s.0) plods.

Then Js,p(s,¢) has an analytic continuation to a function which is holo-
morphic on T_D1/2 NT_1_1/2-- Let A be the Laplacian as in the proof of
[1, Lemma 4.1], and suppose ¢ is an eigenfunction for A. Define A(¢) by
A-p=A(p)-¢. Then for each integer k > 0, all € > 0, and every compact
subset K ¢ TE N T_1_1/2r4¢, there exists a constant C' = C(e, K, k),

—1/2r+e€
independent of v, such that
(13) |Ts,n(s,¢)] < CA(p) Flp(e)],
foralls € K.

5. HEIGHT ZETA FUNCTION

The main tool in the study of distribution properties of (S, D)-integral
points is the height zeta function, defined by

Zop(s.g) = Y dsp(vg)H(s,vg9) ™"
vEG(F)

Proposition 5.1. The series defining Zs p(s,g) converges absolutely to a
holomorphic function for s € Tso. In its region of convergence

Zs.p(s,9) € CT(G(F)\G(A)).
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and all of its group derivatives are in L2. Moreover, in this domain, we have
a spectral expansion
(14)

/ / 8sp(g)H(s,9)"" | D Blg,0)E(g9) | dgdr,

6% P EBp(m)x

in the notations of [19, Section 3].

Proof. Identical to the proof of [19, Proposition 8.2]; it suffices to observe
that Zgp is a subsum of the series defining the height zeta function for
rational points considered in [19]. O

Let X = X(G) be the set of unramified automorphic characters of G, i.e.,
continuous homomorphisms G(A) — S!, invariant under G(F) and K on
both sides. We specialize to g = e, the identity in G(A), and obtain

Zs(s) = Zs,p(s,¢) Z / 85,0(9)H (s, 9) "' x(g)dg + S°(5),

and S”(s) is the subsum in Equation 14 corresponding to infinite dimensional
representations (restricted to g = e).

We use this expansion to determine the analytic behavior of the height
zeta function. The innermost sum in the definition of S°(s) is uniformly
convergent for ¢’ in compact sets, see the first half of the proof of Lemma
4.4 of [1]. Therefore, we may interchange the innermost summation with
the integral over G(A) and find that S°(s) equals

Zb”(lA)/H(M) 2 E(e’d))/Gm)ES’D(Q/)H(S’Q/)_Ide’ dr.

XE%,P ¢€BP(7T)X

Theorem 5.2. The function S° admits an analytic continuation to a func-
tion which is holomorphic on T—D1/2r NT_1_1/2,, where T is the rank of G.

Proof. By assumption, the height function is invariant under right and left
translation by the maximal compact subgroup K. By [19, Corollary 4.1], we
have

1) Se= Y s ol X Ee o B ) an

XEX,P PEBp (1) x

where Js p(s, E(¢,-)) is as in Corollary 4.6. Let K C T2 212 e NT_1_1/2r+e
with € > 0, be a compact subset. By Corollary 4.6, for s € K and all k the
expression

b 1
Zn(A)/H(M) S |E(e, )| - |Ts.p(s, B, )| | dr

XEX,P $EBp () x
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is bounded by

C(e,K,k)an;A)/H(M) Z AG) M E(e, )P | dn,

x€X,P P€eBp(
where A(¢) is eigenvalue of the Laplacian A as in Corollary 4.6. The con-
vergence of the last expression follows from [19, Proposition 3.5]. O

Corollary 5.3. The height zeta function Zsp(s) = Zs,p(s,e) is holomor-
phic for R(s) € —(Kx + D) + Aer(X)°.

6. THE LEADING POLE

We now establish the analog of Manin’s conjecture in the context of in-
tegral points, proposed and proved in special cases in [5], [4], [6]. For

A= oo € Agr(X)°,

acA

the interior of the effective cone of X, set
Ka Ko + 1>

(16) a(A) = max (ofrelja‘é) ra’of{é/l}; "

Let
AN) = A\, D)

be the set of «, for which the maximum is achieved and r(\) = #A(A) its
cardinality. Put

Ap(A) = AN NAp, d(N\) =#Ap(N).

Theorem 5.2 implies that Zg p(sA) has no pole for R(s) > a(\) and that
possible contributions to the right most poles come from one-dimensional
automorphic characters.

Recall that given an automorphic character x of G(A) and an o € A(G, T)
we can define a Hecke character &,(x) of Gy, (A) by

a(X) = x 0.
Then if x = &)y, we have {,(x) = ®&nv(Xv) With
§aw(Xv) = Xv 0 @.

We are only interested in those automorphic y which satisfy
(1) ., #s0@H N0 X dg #0

for some s in the domain of absolute convergence. This implies that y
is right, and in this case also left, invariant under the maximal compact
subgroup K of G(A), i.e., x € X(G).

Definition 6.1. Let X5 p \(G) C X(G) be the collection of all characters
X = ®/ Xy such that
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e for all € A(N) \ Ap(A) and all v ¢ S, we have &, »(xv) = 1;
e for all « € Ap(\), and v € S, we have &, (xv) = 1.

Remark 6.2. If D = () and A = —Kx then Xgp (G) = 1, the trivial char-
acter, for any S [19, Proposition 8.6]. If D = Uu,e4 is the whole boundary
and S = Sy then Xg p A(G) is dual to the class group of G, i.e., the quotient

cl(G) == G(A)/G(F)K ] 6(7)
v|oo
This class group is trivial for groups of type Fg, Fy, and Gs, as the adjoint
groups are also simply-connected, and these have class number 1.

Example 6.3. If y is an unramified character of a split semi-simple group
over a number field of class number one, then x = 1; this follows from [11,
Lemma 4.7], and Corollary 2 on page 486 of [17].

This may fail when the class number of F'is not equal to one. E.g., let F' be
a field with class number two, and let E be the Hilbert class field of F'. Then
E/F is an unramified quadratic extension. Let wg /F be the corresponding
quadratic character of Aj. Consider the automorphic character of PGL(2)
given by wg/p o det. Then this automorphic character is unramified and
trivial at the archimedean places. Such characters will contribute to the
leading pole of Zg p.

‘We have shown that
(18)  ZsplN = 3 / 85,0(a)H(s).9)"'X(g) dg + (s).
xeX

with f holomorphic for §R(s) > a(\) — 0, for some § > 0. Theorem 3.2
combined with basic properties of Hecke L-functions shows that for y €
X (G) the integral

| Bsnlo)Hs(sx o) xla) dg
G(A)
admits a regularization of the shape
H Ls(sAa—Fa,&alX H H Ly(sAa—FKas &aw(Xv)) Ay (8),

a€AM\Ap(N) veS a€Ap(N)

with h, and h,, holomorphic for (s) > a(\) — 6, for some § > 0. It follows
that only x € XspA(G) contribute to the leading term at s = a(A). By
Poisson summation formula, we can rewrite this contribution as

Rspa@ [ ssnlo) s ds
G(A)KQTA
where
G(‘&)KerA = mXEXS’DA(G)Ker(X>
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is the intersection of the kernels of automorphic characters.

Theorem 6.4. The number of (S, D)-integral point of bounded height with
respect to \ is asymptotic to

¢- B*V1og(B)*M~1(1 4+ 0(1)), B — 0,

where
b(A) =7(A) —d(A) + Y _d(\)
vES
and
1 _
(19) ¢ = ORI |Xs,pA(G)] ./G(A)Kefx ds,0(9)H (51, 9)"" dg > 0.

Proof. We adopt the proof in [19, Theorem 9.2], combining it with a Taube-
rian theorem as in [5, Theorem A.15]. It suffices to establish that the limit

lim (s — a(\))*™) / 55.0(g)H(s), )  dg > 0.
5—)(1()\) (A)KerA

Note that there exists a finite set of 7; € G(F') such that
G(A) = U 7;G(A)Fer

and that the local and global integrals over each of these cosets are compa-
rable, upto a constant. In particular, it suffices to establish that

lim (s — a(A)*® / 55.0(g)H(sh, g) " dg > 0,
G(A)

s—a(N)
which follows from Theorem 3.2 and the definitions. |
We now specialize to the case when A = —(Kx + D), the log-anticanonical

line bundle. The first condition in Definition 6.1 implies that if x € X5 p A(G)
and o ¢ Ap then &, (xv) = 1 for all v. Combining with the second condi-
tion, we see that £, (xy) =1 for all @ € A and all v € S. In particular, for
X € X5.p(G) the integrals

/ ds,0(9)H (X, 9) "' x(9) dg
G(A)
do not depend on x and equal
/ ds.p(g)H(s\, g)"tdg- H H,(s\, g,) ' dg,
G(As) it el02H)

We can now describe the constant ¢ appearing in (19) in terms of Tamagawa-
type constants. First, we recall some notation. By [8], the boundary strata
of X \ G are in bijection with subsets A C A, i.e., there is a unique stratum

ZA = NacaDq.

For split G, each such stratum Z4 contains Fj-adic points.
In the terminology of [5, Section 3|, at each place v, the analytic Clemens
polytope C3" (D) of D has a unique face of maximal dimension, it corresponds
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to Za, (Fy). Put d := dim(C3" (D)) +1; we have d = #Ap, the codimension
of the stratum Z4,, (see also [5, Section 5.3.2]). In this situation, for each
v € S, there is a distinguished v-adic measure 7,"** on D(F,) considered in
[5, Section 4]. It is supported on Z 4, (F;) and the corresponding volumes
are given by

T(D(Fy)) = H N lim (s — 1)¢ /G(F ) Hy(s), g,) "t dgs,.

K s—1
acAp @

Furthermore, there is an adelic measure on the integral adeles on U := X'\ D,
which in our case takes the form:

i 1 . — _
om s = T[ - tm(s-17 [ Ss(o)Hs(sM9.) " do
agAp ¥ 5 G(As)
It follows that
1 in max
(20) €= W | Xs,0,A(G)] 'T(%(,D)(U(AS) ‘) - H T (D(F)),

vES

where

bi=(r—d)+>» d.

vES

Formula (20) interpolates between Peyre’s Tamagawa-type constant for lead-
ing terms in asymptotics of rational points and the “concentration of count-
ing measures to the Satake boundary” for asymptotics for integral points on
G, established in [13].
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