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ABSTRACT. We prove an asymptotic formula for the number of rational points of
bounded height on projective equivariant compactifications of H\G, where H is
a connected simple algebraic group embedded diagonally into G := H™.

INTRODUCTION

Let X C P™ be a smooth projective variety over a number field F. Fix a height
function
(1) H: P*(F)—R.
and consider the counting function
NX,T):={x € X(F)|H(z) <T}.

Manin’s conjecture [9] and its refinements by Batyrev—Manin [1], Peyre [17], and
Batyrev—Tschinkel [3] predict precise asymptotic formulas for N(X°, T') as T—o0,
where X° C X is an appropriate Zariski open subset of an algebraic variety with
sufficiently positive anticanonical class. These formulas involve geometric invariants
of X:

e the Picard group Pic(X) of X;
e the anticanonical class — Ky € Pic(X);
e the cone of pseudo-effective divisors Aeg(X)r C Pic(X)g,

and they depend on an adelic metrization £ = (L, ||-|,) of the polarization L giving
rise to the embedding X C P™, i.e., on a choice of the height function in (1). Given
these, one introduces the invariants:
a(L),b(L), and (L)
so that the number of F-rational points on X° of L-height bounded by T is, con-
jecturally, given by
c(£)

a(L)(b(L) — 1)!

see, e.g., [3] for precise definitions of the constants.

(2)  N(X°,L,T)= T og(T)* =1 (1 4 0(1)), T—o0,
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These conjectures have stimulated intense research; see [20], [16], [5], [6] for sur-
veys of the current state of this subject. Of particular importance are equivariant
compactifications of algebraic groups and their homogeneous spaces. In all equi-
variant cases considered previously, it was essential that X admits an action, with a
dense orbit, of a solvable algebraic group. For example, the paper [19] proves Manin’s
conjecture for equivariant compactifications of the symmetric space G\(G x G), a
spherical variety. In this paper, we establish these conjectures for a new class of
varieties, which includes nonspherical varieties.

Theorem 1. Let H be a connected simple algebraic group defined over a number
field F', G := H"™ its n-fold product. Let X be a smooth projective G-equivariant
compactification of X° := H\G, where H acts on the left diagonally. Assume that
the boundary X \ X° is a divisor with strict normal crossings. Then X satisfies
Manin’s conjecture and its refinements, i.e., (2) holds for L = —Kx.

This generalizes the case n = 2 treated in [19] and [10] to arbitrary n. The proof
presented here also works, with minor modifications, for semi-simple groups H.
Compactifications of the homogeneous space H\ H™ have played an important role in
work of L. Lafforgue on the Langlands’ conjecture over function fields of curves over
finite fields (see, e.g., Chapter 3 in [13]). The geometry of these compactifications
is surprisingly rich.

Our proof combines ergodic-theoretic methods developed in [11] with geometric
integration techniques developed in [7] and [8]; in particular, it uses neither the
theory of height zeta functions nor spectral theory on adelic spaces. On the other
hand, it does not allow to establish effective error terms as in the n = 2 case in [19].

Organisation of the paper. In Sections 1 and 2 we discuss geometric and
analytic background and, in particular, establish meromorphic continuation of Igusa-
type integrals (Theorem 2.4) that implies an asymptotic formula for volumes of
height balls. In Section 3, we give a classification of intermediate subgroups M with
H Cc M C H"™. This result is used in Section 4 where we establish the multiple
mixing property for the adelic spaces using measure-rigidity techniques. Finally,
our main result is deduced from multiple mixing in Section 5.
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Brendan Hassett for useful comments and suggestions. We are especially grateful to
the referee who carefully read the paper and made a number of valuable suggestions;
they are incorporated below. The first author was supported by EPSRC, ERC, and
RCUK. The second authors was supported by NSF grant 0701753. The third author
was partially supported by NSF grants DMS-0739380, 0901777, and 1160859.
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1. GEOMETRIC BACKGROUND

Let F' be an algebraically closed field of characteristic zero, G a connected semi-
simple algebraic group defined over F' and H C G a connected closed subgroup.
Let X be a projective equivariant compactification of X° := H\G. Throughout we
assume that X is smooth and that the boundary

UaeaDo = X\ X°

is a divisor with normal crossings. If H is a parabolic subgroup, then there is no
boundary, i.e., A is empty, and H\G is a generalized flag variety. Distribution of
rational points of bounded height on flag varieties was studied in [9].

We will assume that

e A is not empty,
e X° is affine (this holds, e.g., when H is reductive),
e the groups of algebraic characters of G and H are trivial.

Recall that a 1-parameter subgroup of GG is a homomorphism ¢ : G,,—G.

Lemma 1.1. Let X be a smooth projective G-equivariant compactification of H\G.
Then for every boundary divisor D,, there exists a 1-parameter subgroup &, : G,,—G
such that a sufficiently general point of D, is in the limit of &,.

Proof. The proof of Theorem 4.2 in [4] can be adapted to our geometric situation
as follows. Fix a G-stable closed subset Z C U,D,, e.g., a boundary stratum D,,.
Assume that for all maximal tori 7 C G the intersection Z Ng-T = 0, i.e., the
closures of all maximal tori of G in H C T are disjoint from Z. Then Z and T
are T-stable disjoint subsets of X and there is a T-invariant regular function on X
vanishing at Z and taking value 1 at 7. Applying the compactness argument as in
[4] we get a contradiction. It remains to exhibit a 1-parameter subgroup in the toric
variety T whose closure contains some point z € Z.

If D, is pointwise fixed by G, we can choose Z to be any point in D,, e.g., any
sufficiently general point. Otherwise, we can use the G-action along D, to move the
1-parameter subgroup so that the corresponding limit point is inside D,,. O]

We will identify line bundles and divisors with their classes.

Proposition 1.2. Let G be a connected reductive group, H C G a closed connected
reductive subgroup, and X a smooth projective G-equivariant compactification of
X° = H\G. Assume that G and H have no nontrivial algebraic characters. Then

(1) the classes of irreducible boundary components D, span the Picard group
Pic(X)q and the pseudo-effective cone Aeg(X) C Pic(X)g;
(2) the class of the anticanonical line bundle is given by

~Kx =) KaDa,
acA
where all Ko, > 1.
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Proof. Fix a polarization L of X and let X C P" be the corresponding projective
embedding. After taking a suitable multiple, we may assume that L is G-linearized,
i.e., the action of G on X extends to an action on the ambient P" (by [14, Corollary
1.6]). Let D be an effective divisor such that the generic point of D is in H\G. There
exists a 1-parameter subgroup moving the generic point of D. After specializing D,
at least one of the irreducible components of the limit is supported in the boundary.
We can now apply induction on the L-degree of the remaining components, if any, to
conclude that D is equivalent to an effective divisor with support in the boundary.

On the other hand, the only invertible functions on H\G are constants, by as-
sumption and Rosenlicht’s theorem. It follows that there are no relations between
classes of the boundary components.

For the second claim, see, e.g., [12, Section 6]. 0]

Let L be a big line bundle on X. We define
a(L) :=1inf{t € Q : t[L] + [Kx] € Aet(X)},
b(L) := the maximal codimension of the face containing a(L)L + K.

These invariants depend on the chosen compactification X. By Proposition 1.2, we
have
L= XD Ao €Qu,
acA
so that the corresponding invariants are given by

(3) a(L) := max I;—Z
and
(4) b(L) == #{a € Ala(L) = i—z .

Remark 1.3. The invariants a(L) and b(L) may be computed even if X is not

smooth. Consider an equivariant resolution of singularities X — X, and let L be the
pullback of L to X. Put

a(L) :=a(L), b(L) :=b(L).

A basic result is that this does not depend on the chosen resolution (see, e.g., [12,
Section 2].

The following proposition has been established in [12]:

Proposition 1.4. Let M C G be a closed connected subgroup containing H and let
Y be the closure of H\M in X. Then

(a(=Kxl|y), b(=Kxl|y)) < (a(=Kx),b(=Kx)),

wn the lexicographic ordering.
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Remark 1.5. This fails in the non-equivariant context, see [2] for a counterexample
and [3] for a discussion of this “saturation” phenomenon.

2. HEIGHTS AND HEIGHT INTEGRALS

Let F' be a number field, A its ring of adeles, and A the subring of finite adeles.
Let v be a place of F' and F, the corresponding completion; for nonarchimedian v
we let 0, denote the ring of v-integers and m, its maximal ideal.

Let X be a projective variety over ', U C X a Zariski open subset with boundary

UQGAD(X:X\U

being a normal crossings divisor. Here D, are F-irreducible components, which
could be reducible over an algebraic closure F of F. For each o one can endow
the line bundle O(D,,) with an adelic metric which allows to define local and global
heights (see, e.g., Section 2.3 of [8]):

(5) HDa,v . U(Fv)—ﬂR>0, HDa = H HDa,v'

We recall the construction: Let €2 C X be a chart such that in 2 the divisor D,
is given by the vanishing of the function x,. For almost all places v of F, and
Uy, € Q(F,), vo(uy,) # 0, the local height is given by

Hp, . () = [za(uy)], "

At all other places, the height differs from “the distance to the boundary” function
by a globally bounded function.
The heights in (5) give rise to an adelic height system

BCAXUA) 5 C
(X2 80 Das (uy)) = Hanv Hp.,o ()

which restricts to a Weil height, for u € U(F) and (s,) € Z*. See Section 2 of [8] for
more details on the construction. The geometric framework developed in Section 4
of [8] allows to establish analytic properties of local and global integrals of the form

(6) / Hy(s, 1)L d7,. / H(s,u)"" dr,
U(Fy) U(A)

where 7, and 7 are certain Tamagawa measures defined in Section 2 of [8]. Propo-
sition 4.1.2 and Proposition 4.3.5 of [8] provide meromorphic continuations for in-
tegrals in (6).

We will apply this theory in the setup of Section 1. Let G be a connected semi-
simple algebraic group over F' with trivial characters, H a closed connected reductive
subgroup, and X a smooth projective G-equivariant compactification of the affine
variety X° := H\G with boundary

UaEADa =X \ G,
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which we assumed to be a divisor with strict normal crossings. The divisors D, can
be equipped with an adelic metrization which defines local and global heights on
X°(A). Furthermore, G-equivariance implies that for all but finitely many v, the
local height functions H, are right-invariant under G(o,) (see, e.g., Section 3 in [7]).
The local and global measures d7, and dr coincide with suitably normalized Haar
measures dz, and dz on X°(A) = (H\G)(A).

Lemma 2.1 (Well-roundedness of adelic height balls). Let L be a class in the in-
terior of the cone of effective divisors and H the associated height. Then the corre-
sponding height balls

Br={x € X°(A) : Hz) < T}
are well-rounded, i.e.,

. . VOI(B,{T) — VOI(BK—1T)
lim 1
e e vol(Br)

=0.

Proof. This is a corollary of the main theorem of [8], which establishes analytic
properties of the height integrals of the form

/ H(s,z) ' dz.
°(A)

The main pole comes from the Euler product defined by the adelic integral. We only
need to show that the local integrals are holomorphic for R(s) in a neighborhood of
the shifted cone Aeg(X) + Kx € Pic(X)g. This is immediate if the metrization is
smooth. In this case Proposition 4.3.5 of [8] shows that

/ H(s,z) 'dx = HCFa(sa—/{a+1)-<I>(s),
°(4A) acA
where ® is a function holomorphic and bounded in vertical strips in the tube domain
R(sa) > Ko — €, for some € > 0.

Then we restrict to the line sL and apply a Tauberian theorem. Since the Euler
product is regularized by Dedekind zeta functions, which satisfy standard convexity
bounds in vertical strips, a suitable Tauberian theorem gives an expansion

vol(Br) = e T P(log(1)) + O(T"9)),

where P is a monic polynomial of degree b(L) — 1 and the implied constants and ¢
are explicit.

The general case follows from the smooth case: for any constant ¢ > 1 there exists
a smooth metrization such that the corresponding height function H’ satisfies

c'H <H<cH.
Thus for any 7" > 0, we have
Bl-ip € Br C Bly
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so that

, vol(Byr) — vol(Be-17) _ .. vol(B.,.r) — vol(B!_1, 1)

1 <1 . L

1mj§up vol(Br) - 1mj§up vol(B!_.}) ’
which can be made arbitrarily small by taking cx close enough to 1. This implies
that the height balls are well-rounded. 0

Lemma 2.2. Let G be a connected semi-simple algebraic group defined over a field
F and H a closed subgroup. Let X° = H\G and assume that the map of sets

(7) HY(F, H) — H'(F,G)
15 1njective. Then
X°(F) = HIF\G(F).
Proof. See, e.g., [18, Chapter 1, Section 5.4]. O

Corollary 2.3. Let H be a connected simple algebraic group defined over a field F,
acting diagonally on G := H™ Then
X°(F) = H(F)\G(F).

In particular, if F' is a number field, and F, its completion with respect to a place
v, then

(8) X°(F) = HIE)\G(F,)  and  X°(A) = H(A)\G(A)
Proof. The map
H'(F, H) — H'(F,G)
is injective, since G = H™ and the map is the diagonal one. 0

The following theorem generalizes Theorem 7.1 of [19].

Theorem 2.4. Let G be a connected semi-simple algebraic group and H C G a
closed subgroup, defined over a number field F', satisfying the vanishing condition
(7) for F and all of its completions. Let X be a smooth projective equivariant
compactification of X° = H\G with normal crossing boundary Uye 4D, and

H:C" x X°(A)=C

an adelic height system.

For each automorphic character x : G(A)—S', trivial on H(A), there exist a
subset A(x) C A and a function ®,,, holomorphic and bounded in vertical strips for
R(sa) > ka — €, for some € > 0, such that for s = (s,) in this domain one has

/ H(s,z) 'x(z) dz = H Cr(Sa — Ko+ 1) H L(Sa — Ka + 1, x 0 &a) - Py (),
Xo(h) )

a€A(x) ag A(x

where L are Hecke L-functions. Moreover, A(x) = A if and only if x is trivial.
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Proof. Using Corollary 2.3, we rewrite the integral as

H/ H, (s, 7,) ' Xo(,) dz,.
S JHENGE)

For simplicity, we assume that the boundary divisors D, are geometrically irre-
ducible, otherwise, we need to work with Galois orbits as in [19]. We can ignore
finitely many places, as they do not affect the poles of the Euler product (see, e.g.,
Section 4 of [8]). At the remaining places, local integrals are computed in local
analytic charts €14 ,, labeled by boundary strata

DS = Da\UaoaDy, Dys:=NacaDa,
with A C A. Observe that,

e on charts with |A| > 2 we can replace y by 1, these terms will not contribute
to the leading poles of the Euler product (see, e.g., Section 9 of [7]);

Using the G(o0,)-invariance of the local height functions, for almost all v, we may
write the local height integrals as follows:

o )+ Y [ Hls ) () dp + BT,
H(D’U)\G(O’U) CYG.A Qa v
where ET is the error term, which for R(s,) > k. —¢, for all @ € A and some ¢ > 0,

can be bounded by
1

ET:l_—i-(S’

for some 6 = d(¢) > 0. Here g, is the order of the residue field at v and dy, is an
appropriately normalized local Tamagawa measure.
To compute the local integrals on the charts €1, ,, we may assume that we are

given rational functions x, € F(X)* and Zariski open charts U, C X over F' such
that in U, the divisor D, is given by the vanishing of x,. Let

o G —G

be a 1-parameter subgroup as in Lemma 1.1 so that the generic point of D, is the
limit of &,(t), for +—0, so that we may write, étale locally, U, = Z, x Al, with
G,, = A'. (A different choice of 1-parameter subgroups will not affect the poles
of the local integrals below and thus the poles of the Euler product.) Expressing a
G € H(E)\G(F,) N Quw as gy = (24, ty), with ¢, # 0, we have

xa(gv) = uv(zva tv) ' tva
where wu,(2,,t,) € 0 is a unit, for almost all v. On the other hand, we have

a(ty) = (zaw(tn), to).
Ta(8alty))

ty—0 tv

Thus

- wa,v<zv)a
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where w, ,(2,) € 0, is a unit.
Each automorphic character

X : G(A)—S!
and each 1-parameter subgroup &, give rise to a Hecke character
Xa =X 0 &t Gr(F)\G,n(A)—S.
In the chart Q,, and for ¢, = t,,—0 we have:

Ho (8, (20, 10)) ™ X0 (20 t0)) = 10" 7 Xaw(to),

for almost all v. The local integrals (9) take the form

, 1
Sa—HKatiMa,v .
1+ / It dty - s + T,

acA Y M
where
e dt, a normalized Haar measure on o,;
e the local character is given by

Xaw(ty) = |tv|im“’“, for some M4, € R.

(See the computations on p. 444 of [7].) We obtain

— 1 3
/ HU(57 xﬁu) 1X,U<,'L'v) dl‘v = 1 + <Z m) + O(qv (1—‘,—6))’
H(F,)\G(Fy) ,

acA 1Y

for some 0 > 0, provided R(s, — ko + 1) > €, for some € > 0. The corresponding
Euler product is regularized by

H L(Sa — Ka + 1, Xa)-

acA

It remains to observe that if y : G(A)—S! is an automorphic character such that
Xo = 1, for all @ € A, then x = 1. This is analogous to [19, Proposition 8.6]. O

3. INTERMEDIATE SUBGROUPS

Let H be a connected almost simple algebraic group defined over an algebraically
closed field of characteristic zero and Z(H) its center. For n € N, let H" be the n-
fold product of H and A,, = H — H" the diagonal. The symmetric group &,, acts
on H™ by permution of the coordinates. We call subgroups M, N of H™ permutation
equal if there is a 0 € &,, such that M = o(N). The following proposition is used
in the proof of the multiple mixing property in Section 4.
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Proposition 3.1. Let H be a connected simple algebraic group and M a connected
algebraic group such that

A, CMCH"
Then there exist nq,...,ng € N such that Zle n; = n and M s permutation equal
to

Ay X XA,

The remainder of this section is devoted to a proof of Proposition 3.1. The main
step is the following version of Goursat’s lemma:

Lemma 3.2. Let z, = (z1,...,x,) € H" be such that for all i and j # i, we have
v, v, ¢ Z(H). Let L, C H" be the smallest subgroup containing

J
L, = {(6x07 ... 00,6 ) |6 € H}.
Then L, = H".

Proof. We assume that Z(H) = 1 and proceed by induction on r. Note that I'y is
nontrivial and that it is closed under conjugation so that the closed subgroup of H
generated by I'y is normal. Since H is simple, L1 = H.

For r > 1. Let L, be the subgroup corresponding to z, := (z1,...,,), we assume
that L, = H". Clearly, L, is the projection of L, onto the first r entries. Applying
the case r = 1, we deduce that the projection of L,,; onto the last entry is equal
to H. Suppose that there is an element h € H" such that for two distinct elements
u,v € H, we have (h,u) € L,y; and (h,v) € L,y1. Then (e,,uv™') € L,;;, where
e, denotes the vector in H" consisting of identity elements in every entry. Again by
the case when r = 1, we see that {e.} x H C L,,;. Since the projection onto the
first r coordinates is surjective, L,y 3 = H" X H = H|[r + 1], as required. It remains
to rule out the case when for every h € H" there is a unique u := u(h) such that
(h,u(h)) € L,1. It follows from the uniqueness that the map ¢ : h — u(h) is a
homomorphism H" — H, and

Lysr = {(hoo(h) | h € H'Y.

Moreover, ¢ is surjective. By construction, if (h, p(h)) € L,.1, then for any § € H,
we have
(6,h61,0p(h)6™1) € Ly,
where ¢, denotes the vector in H" with ¢ in every entry. It follows from uniqueness
that
o(6,15,) = o).

Hence, 6 '¢(,) commutes with ¢(h) for every h € H". Since ¢ is surjective, we see
that ¢(0,) = ¢ for every § € H.

Set y = (z12,}4,...) = (v, €), by definition of ¢, one has z,,; = p(z1,...,2,),
hence p(y') = e. Consequently, (y',e) € L,41. Moreover, y' € H" satisfies the
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condition of the lemma, so that L, contains L, x {e}. Since the last projection is
surjective, this implies L,,; = H" L.
O

Definition 3.3. Let » < n be integers. An admissible embedding of H" in H" is a
morphism ¢ : H"™—H" of the form

gO(hl, . .,hr) = (hh? .. -;hin>7

for some integers iy, ...,i, € {1,...,r}. Up to permutation of coordinates on H",
it is of the form

H W — A, x---xA, CH"
(hl,...,hr) — (zll,...,hyhg,...,hg,...,hr,...,h),

r
o

ni no ny
with >°.n; = n. An admissible subgroup of H™ is the image of an admissible

embedding.

Definition 3.4. Given r < n, we say an element x € H" is of rank < r,if x € «(H")
for some admissible embedding . We say z is of rank 7o, written r(z) = ro, if r is
the smallest number r such that z is of rank < r.

It is clear that for every x € H™, r(z) < n. Note that if x € H" and € A,, then
r(z-9)=r(x), forxe H"

Proof of Proposition 3.1. A reformulation of the statement of the proposition is that
if M is a connected subgroup of H™ satisfying

A, CMcCH",

then M is admissible. Since the isogeny 7 : H" — H", where H = H/Z(H), defines
a bijection between a closed connected subgroup of H" and H", it is sufficient to
prove the claim assuming that Z(H) = 1.

Let r = maxgen r(x), and let z be an element of M which realizes this maximum.
As A,, C M, we may assume that no entry of z is equal to identity. After rearranging
the coordinates, if necessary, we may assume that

&Z(zla"'7$17x27"'7$27"' ax’l“v"'ax'/’)EAnl X"'XATLT
where 332-93]-_1 =# e for i # j. Then since A,, C M, it follows from Lemma 3.2 that
N:=A, x---xA, CM.

To prove the proposition it suffices to establish that N = M. Indeed, if M were
larger than N, multiplying a generic element of N by an element of M\ N we would
get an element 2’ with r(z') > r(z), a contradiction. O
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4. MULTIPLE MIXING

Let H be a connected semi-simple algebraic group defined over a number field F.
The aim of this section is to prove the multiple mixing property for the adelic homo-
geneous space H(F)\H(A). However, when the group H is not simply connected,
L2(H(F)\H(A)) contains nontrivial characters, and the multiple mixing property
holds only on a subset Yy C Y := H(F)\H(A), which we now introduce. Let
7+ H — H be the universal cover of H and W a compact subgroup of H (A) such
that W N H(Ay) is open in H(Ay). We set

(10) Hy = H(F)r(H(A))W.

By [11], Corollary 4.10, Hy, is a normal closed co-abelian subgroup of finite index
in H(A). We consider the homogeneous space

equipped with the normalised Haar measure dy. Let C.(Yy)" denote the space of
continuous compactly supported and W-invariant functions on Yy .
The following theorem is an adelic version of the multiple mixing of S. Mozes [15].

Theorem 4.1 (multiple mixing). Let H be a connected simple group over F and
{0 en © Hw[r] = Hw x -+ x Hy
a sequence such that for all i # j,
lim (b)) 70" = 0o in Hy.

n—oo

Then for all f1,..., f, € C.(Yu)V, we have

) AN ) dy = (/waldy)--(/mfrdy).

The proof of Theorem 4.1 is based on an interpretion of integrals in (11) as a
sequence of probability measures supported on Yy, x --- Yy and on an analysis of
their limit behaviour using the theory of unipotent flows on adelic spaces developed
in [11]. The main technical tools are a partial case of Theorem 1.7 of [11] combined
with the description of intermediate subgroups from Section 3.

For g € G(A) and a measure v on G(F)\G(A), let g - v be the push-forward of v
via the right multiplication by g¢.

Theorem 4.2 ([11], Theorem 1.7). Let G be a connected semi-simple algebraic group
defined over a number field F', H a connected semi-simple subgroup defined over F,
and V' a compact subgroup of G(A) such that V-0 G(Ayf) is open in G(Ays). Let
vp, be the unique L(A)-invariant probability measure supported on G(F)m(L(A)) C
G(F)\Gyv, and let g™ be a sequence in G(F)n(G(A)) C Gy. Then
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(1) If the centralizer of L in G is anisotropic over F', then the sequence of mea-
sures {g"™ - vy} is precompact in the weak® topology.

(2) Suppose that a probability measure u on G(F)\Gvy is a limit of the sequence
{g"™ - vr} in the weak* topology. Then there ewist a connected algebraic
subgroup M of G over F and sequences {6} C G(F), {{™} c n(L(A))
such that

o SWL(§M)~L c M,

o 5MIMgm 5 g e 1(G(A)),
and the limit measure p can be described as follows: there is a normal sub-
group My C M(A) of finite index, containing M(F)x(M(A)), such that for
all f € C.(G(F)\Gy)",

/ fdu:/ fd(g-va),
G(F\Gy GF)\Gv

where vy, denotes the unique invariant probability measure supported on

G(F)My, Cc G(F)\Gy.

Proof of Theorem 4.1. We apply Theorem 4.2 to the groups
G=H"=Hx---xH,
L=A,={(h,...,h)|h € H},
V=Wx---xW

Since H(F)m(H(A)) is a normal subgroup of Hy, (see [11], Section 4) and W is
compact, the normalized Haar measure on Yy, can be written as

(12) fdy = / fuw) dvy(u)dw, f € Co(Yw),
Yoy Yoy x W

where vy is the unique H (A)-invariant probability measure on H(F)x(H(A)) C Yiy,
and dw is the probability invariant measure on W. Therefore,

fu(@d™) - fo (b)) de = / Fr(uwwb™) - fo(uwb™) dvg (u)dw.
Yw Y xW

If we show that for every fixed w € W, we have

Jim . Fi(wwdb(™) - - fr(uwwb™) dvy (u) = (/YW f dy) (/YW fr dy) ,

then the theorem would follow from the Lebesgue dominated convergence theorem.
We write wb™ = s w™ for s € H(F)r(H(A)) and w™ € W. Since the

%

functions f; are assumed to be W-invariant,

Filuwb{™) - fo(uwbM) dvg (u) = [ fi(ust™) - fr(us™) dvg (u).

Yw Yw
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Since W is compact, we have

(13) (s) s = wl™ - () B - ()7 0o

? J

for all 7 £ j. We set
s = (s, 5M) € GF)m(G(A)).
Then

fl(usgn)) . fr(qua”)) dvg(u) = / (L@ ®f) d(s(”) vp).

Y G(FN\Gv

Now it remains to determine the limit points of the sequence of measures s™ - vy,
in the weak® topology. We first note that the centraliser of L in G is equal to
Z(H) x --- x Z(H). Hence, by Theorem 4.2(1), the sequence of measures s™ - v,
is precompact. Let u be a probability measure on G(F')\Gy which is a limit point
of this sequence. The measure p is described by in Theorem 4.2(2). In particular,
we obtain that there exist a connected algebraic subgroup M of G and a sequence
6 € G(F) such that
LC (™)™ c @
From the classification of intermediate subgroups in Proposition 3.1, we deduce that
M = 6N, ()71

where N, is an admissible subgroup (in the sense of Definition 3.3).

We claim that M = G. Indeed, suppose that M C (. Since the number of
admissible subgroups is finite, we may assume, after passing to a subsequence, that
N, = N C G is independent of n. Then there exist indices ¢ # j such that for the
corresponding projection map 7;; : G — H x H, we have 7;;(N) = A, where A
denotes the diagonal subgroup in H x H. Let § = 6V and ¢ = §~16(. Since

5(1)]\[(5(1))*1 — 5(n)N(5(n))*1>

we obtain
and

This implies that
Zp 1= (0-("))_10](.”) € Z(H).

7

By Theorem 4.2(2), we also know that there exist (" € m(L(A)) such that the
sequence 6™ s converges. Then the sequence o™ s(™ converges too, and in
particular,

(oI 5() 1 (o 5
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) and z, € Z(H), we obtain

converges. Since lgn) =1

D)) s
(m))=14(m),

(n);(n) [(n)\=1/ _(n);(n) .(n)y _ ( ()\=1/7(n)\=1/ _(n)\—1 _(n);(n) _(n)
(0 ;s:) (Uj lj S; )=(s; ) ;") (o) 0; lj S5

(
(

Since 2, runs over the finite set Z(H), it follows that (sl(-n))_lsg»n) converges, which
is a contradiction. This proves that M = G.
By the last statement of Theorem 4.2, there is a finite index subgroup M, C

M(A) = G(A), containing G(F)n(G(A)), and g € 7(G(A)) such that for all f €

C(G(\Gv)Y,
[ rau= | rdige)
G(F)\Gv G(F\Gv

Since G(F)m(G(A)) is a normal coabelian subgroup of Gy (see [11], Section 4), M,
is also normal coabelian. As in (12), the normalised Haar measure dz on G(F)\Gy
is given by

/ fdz = / f(uv) dvy, (u)dv,  f € CU(G(F)\Gv),
G(F)\Gv G(F)\Gy XV

where dv is the normalised Haar measure on V. For f € C.(G(F)\Gy)", using that
My is coabelian, we obtain

[ooga= F(uvg) dvagy (u)dv
G(F\Gv G(F)\MoxV

— / f(ugv) dvyy, (u)do
G(F)\MoxV

= / fd(g ’ VMO)'
G(F\Gv

This proves that every limit point of the sequence ¢(™ - v, is a probability measure
which is equal to dz on C.(G(F)\Gy )" which completes the proof of Theorem 4.1.
O

5. COUNTING RATIONAL POINTS

Let H be a connected simple algebraic group defined over a number field F,
G = H", and X be a smooth projective equivariant compactification of X° := H\G,
where H is embedded diagonally. Let L be a line bundle on X such that its class is
in the interior of the cone of effective divisors Aeg(X). By Proposition 1.2, Aeg(X)
is freely spanned by the classes of boundary components D, of X \ X° and we can
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write
L= XDa Ao>0.
acA
Let
=H;: X°(F)—=R
be a height corresponding to a smooth metrization of L as in Section 2 (or in Section
2.1 of [8]).

The height function H is invariant under a compact open subgroup V' of G(Ay),
and we may assume that V = W x ... x W for a compact open subgroup W of
H(Ay). We define the subgroups Gy C G(A) and Hy C H(A) as in (10). The
homogeneous space

XV = Hw\GV
naturally embeds into X°(A) as an open subset, and by Corollary 2.3,
X°(A) ~ HA\G(A).

We equip X°(A) with the Tamagawa measures dz, defined as in Section 2 of [8]. The
regularization of the measure as in [8] requires vanishing of cohomology H* (X, Ox),
for ¢ = 1,2, which follows in our case by general vanishing arguments, as —Kx is
big; it is also evident from the explicit volume computation in Lemma 2.1.

Define the height balls in Xy by

Br = BT,L = {ZE € Xy | HL<J]> < T}
Lemma 5.1. Assume that the line bundle L is in the interior of the effective cone.
Then
vol(Br) = ¢(£) - T*) log(T)* (1 4 0(1))  as T—oo0,
with ¢(L) > 0 and a(L),b(L) as in (2).

Proof. Using a standard Tauberian argument (see, for instance, [8]), it suffices to
show that

Z(s) = /Xv H(z)™* dz

has an isolated pole at a(L) of order b(L) and that it admits a meromorphic con-
tinuation to R(s) > a(L) — ¢, for some € > 0. We recall (see [11], Section 4) that
Gy is a normal closed coabelian subgroup of G(A). Let X be the set of characters
of G(A) invariant under H(A) and Gy. By the finite abelian Fourier analysis, for
g € G(A), we have

o g ¢ H(A)Gv;
ZX(Q) a {[G(A) : H(A)Gy| g€ H(A)GYy.

xXE€X
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Thus,

2s) = [G(A) : H(A)Gy] Z/H(A)\G(A) H(@)"x(w) dz.

XEX

To finish the proof we just need to establish the meromorphic continuation of

/ H(xz)*x(z)dz.
H(A\G(A)

This is the content of Theorem 2.4. O

Definition 5.2. Let X be an equivariant compactification of X° = H\G and H' C
G any closed proper subgroup containing the diagonal, i.e., H C H'. Let X' C X
be the induced equivariant compactification of H’. A line bundle L on X is called
balanced with respect to H' if

(a(L]x),b(L]x)) < (a(L),b(L)),
in the lexicographic ordering. It is called if this property holds for every such H' C G.

Remark 5.3. This property fails in simple examples: X = P3 x P? considered as
an equivariant compactification of G¢, or G¢, or PGLy x PGLy, with L = (A1, \2)
and )\1 7£ )\2.

Lemma 5.4. Assume that the line bundle L is balanced. Then, for every smooth
adelic metrization of L, every compact subset K of Hy and i # j, one has

vol(By N {z;'z; € K})
vol(Br)

Proof. Let M C G = H™ be the subgroup defined by x; = x;. Lemma 2.1 implies
that, for T'—o00, one has

vol(By) = T log(T)D=1(1 4 0(1))
vol(Br N{z;'z; =1}) = ¢ TV E) 1og(T)*MLI=1(1 4 0(1)),

—0 asT — 0.

(14)

where Y is the induced equivariant compactification of

Yo :=(H\M)C (H\G)=X°CX
and

a(L),b(L), resp. a(Lly),b(Lly)

are the geometric invariants defined in Section 1. When L is balanced, Equation 14
follows, by definition.

Let K C G(A) be a compact subset. Consider translates My of M by k € K.
The asymptotic of

vol(By N {z;'z; = k})
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is determined by analytic properties of the height integral

Is.b)= [ | Hish = T] / L Pl

where Y° = H\M and dy, dy, are suitably normalized Haar measures. Note that
the adelic function

k — H(s, yk),
is continuous, with H,(s, y,k,) = Hy (s, y,) for all but finitely many v. Specialize the
integral I(s, k) to s = sL. We know that each local integral

/ H,(sL, yvkv)’l dy,
Yo (Fy)

is holomorphic for (s) > a(L|y) — €, for some € > 0, and that the Euler product
I(sL, k) has an isolated pole at s = a := a(L|y) of order b := b(L|y). When L is
balanced, Equation 14 holds for translates Mj,.
Moreover, the function
ki (s—a)’-I(sL,k)

uniformly continuous and nonvanishing, for (s) > a — ¢, since only finitely many v
are affected and the local integrals vary uniformly continuously with k. We conclude
that

s»—)/ I(sL,k)dk
K

has an isolated pole at s = a of order b. It follows that, for T— o0,
vol(By A {2, € K}) = / vol(Br 1 {a 'y = k}) dk = ¢ T log(T)""(1 + o(1)),
K

with some constant ¢ = ¢(L£) > 0. O

Remark 5.5. If the height function is not balanced, the proper subvariety defined
by

{z;'z; = constant}
contributes a positive proportion of rational points to the asymptotic. This is an
example of the saturation phenomenon observed in [3], cf. Remark 1.5.

As a corollary of Theorem 4.1 we obtain an equidistribution on the space Z, =
G(F)\Gy. We denote by dy and dz the normalised Haar measures supported on
Yiw = H(F)\Hw and Zy = G(F)\Gy respectively. Let dz denote the restriction of
the Tamagawa measure on Xy,. We consider Yy, as a subspace of Zy embedded in
Zy diagonally.

Corollary 5.6. If the line bundle L is balanced, then for every f € C.(Zy),

1

, 1
Tl_r)rgo vol(Br) /BT ( Yw fye) dx) dy = Zv fdz.
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Proof. By the Stone-Weierstrass theorem, it suffices to consider functions of the
form f=fi®- - ® f, with f; € C.(Yi). In this case,

I(z):= [ flyz)dy= [ filyz1)--- fr(yz,)dy.

YW Yw
Since By is invariant under V=W x --- x W,

/Bf(sc)d:cz/B y flyz)--- frlyz,) dy dz,

where f;(y) = [, fi(yw) dw, where dw denotes the normalised Haar measure on W.
Hence, we may assume that f;’s are W-invariant.
Given a compact subset K of Hy,, we set

Bryx ={v € Br|z;'z; ¢ K, Vi#j}.

By Theorem 4.1, for every € > 0, there exists a compact subset K of Hy, such that
for all z = (21,...,2,) € Brk, we have

- ([ gn) ([ )] <
and

(15) /BT’K I(z) dz = vol(Br.x) (/YW fi dy) e (/YW fr dy) + O(evol(Br)).
Also,

(16) /B @)z = OBy \ Br).

Since the line bundle is balanced, it follows from Lemma 5.4 that

VOI(BT \ BT,K)
VOI(BT>

Hence, combining (15) and (16), we deduce that

—0 asT — .

1
lim su —/ I:de—(/ d)(/ Td)’ge
WS | B Sy, (x) . fidy ” frdy
for every € > 0, which proves the corollary. O

From Corollary 5.6, we deduce:

Theorem 5.7. Let H be a connected simple algebraic group over F', G = H™, and
X a G-equivariant compactification of X° = H\G. Let Hy C H(A) be the normal
subgroup of finite index defined in (10). Let L be a balanced line bundle on X. Then

|X°(F) N Br| = vol(H(F)\Hw)"™" - vol(Br)(1 + o(1))
= cvol(H(F)\Hw)"™" - T* (log T)*M~1(1 + 0(1)), as T — oo,
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where ¢ = (L) is as in Lemma 5.1.

Proof. Let dh be the Tamagawa measure on H (A) restricted to Hy,. Then the Haar
measure dg on GGy can be written as

fdg = / ( f(hx) dh) dz, f € C(Gy).
Gy Xy Hw
Take k > 1, and let U be a symmetric neighborhood of identity in Gy such that
(17) Br-UC Byr forall T.
Let f € C.(Gy) be a nonnegative function with supp(f) C U and va fdg=1. Put

= > 'y
YEG(F)
Then, for every xz € Xy,

18 dy =
(18) . flyz) dy VOl HENE) 2 i

. (37 ha) .

If v € By and v 'ha € U, then v € haU; using (17) we have v € By, since By
consists of cosets of Hy and h € Hy,. Hence, (18) implies that

19 ollH(F)\H) [ ( [ s dy) da

= / v thz) dhdx
HW><B _1T

yeH F)\G(F

< > f(y"g)dg

YEH(P\G(F)NBr * 7V
=[H(F)\G(F) N Br|
If v € Br and v 'hx € U, then x € h™'yU; using (17) we have x € B,r. Now (18)
implies that

(20) |[H(F)\G(F) N Br| = > f(v‘ g9)dg

YEH(F)\G(F)NBr

= / v 'hx) dhdz
HwXXV

~YEH(F \G F)NBr

< ) / f(vhz) dhdz
yEH(F)\G(F) ¥ WX Brr

=vol(H (F \HW f(yx dy) dz.
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By Lemma 5.1,

T—o0 VOI(BT)

Combining (19) with Corollary 5.6, we obtain

_—af

. |H(F\G(F)N Byl
it === 5

o 0) (s ([ ) )

=k~ Dvol(H(F)\Hy) | fdz

Zy

L) VOI(H(F)\HW) _ li_a(L) VOl(H(F)\Hw)l_T.

vol(G(F)\GYy)

Similarly, it follows from (20) that

sy [HENNGU) 0 By

< k*Ovol(H(F)\Hy ).
T VOl(BT) SR VO( ( )\ W)

Since these estimates hold for all k > 1, we conclude that

|H(F)\G(F) N By| = vol(H(F)\Hy )" "vol(Br)(1 + o(1))

as T — oo. Since X°(F) = H(F)\G(F) by Corollary 2.3, this proves the first part
of the theorem. The second part follows from Lemma 5.1. U

Theorem 1 follows by applying Proposition 1.4, which insures that the anticanon-
ical line bundle — K x is balanced.

1]
2]

3]
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