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ABSTRACT. We survey recent developments in the Birational An-
abelian Geometry program aimed at the reconstruction of function
fields of algebraic varieties over algebraically closed fields from pieces
of their absolute Galois groups.
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The essence of Galois theory is to lose information, by passing from

a field k, an algebraic structure with two compatible operations, to a

(profinite) group, its absolute Galois group Gy or some of its quotients.
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The original goal of testing solvability in radicals of polynomial equations
in one variable over the rationals was superseded by the study of deeper
connections between the arithmetic in k, its ring of integers, and its
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completions with respect to various valuations on the one hand, and
(continuous) representations of G on the other hand. The discovered
structures turned out to be extremely rich, and the effort led to the
development of deep and fruitful theories: class field theory (the study of
abelian extensions of k) and its nonabelian generalizations, the Langlands
program. In fact, techniques from class field theory (Brauer groups)
allowed one to deduce that Galois groups of global fields encode the
field:

Theorem 1 (Neukirch-Uchida [39], [60]). Let K and L be number fields
or function fields of curves over finite fields with isomorphic Galois groups

GKSOIV/K ~ GLSOIV/L
of their maximal solvable extensions. Then
L~K.

In another, more geometric direction, Galois theory was subsumed in
the theory of the étale fundamental group. Let X be an algebraic variety
over a field k. Fix an algebraic closure k/k and let K = k(X) be the
function field of X. We have an associated exact sequence

(Tx) 1 — m(Xp) —»m(X) 25 G —1

of étale fundamental groups, exhibiting an action of the Galois group of
the ground field k on the geometric fundamental group m (Xj). Similarly,
we have an exact sequence of Galois groups

(V) 1—>G,;(X)—>GKpr—K>Gk—>1.

Each k-rational point on X gives rise to a section of pry and pry.

When X is a smooth projective curve of genus g > 2, its geometric
fundamental group m1(X}) is a profinite group in 2g generators subject
to one relation. Over fields of characteristic zero, these groups depend
only on g but not on the curve. However, the sequence (Uy) gives rise
to a plethora of representations of G and the resulting configuration is
so strongly rigid! that it is natural to expect that it encodes much of the
geometry and arithmetic of X over k.

For example, let k& be a finite field and X an abelian variety over k
of dimension g. Then G} is the procyclic group Z, generated by the
Frobenius, which acts on the Tate module

Tu(X) =} o(X5) =~ L%,

Lqusserordentlich stark”, as Grothendieck puts it in [29)]
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where 7{ ,(Xy) is the (-adic quotient of the abelianization 7{(Xp) of the
étale fundamental group. By a theorem of Tate [59], the characteristic
polynomial of the Frobenius determines X, up to isogeny. Moreover, if
X and Y are abelian varieties over £ then

HomGk (Tg(X), Tg(Y)) ~ Homk (X, Y) X Z@.

Similarly, if k£ is a number field and X,Y abelian varieties over k then
Homg, (7%(X), 73(Y)) =~ Homy(X,Y) ® Z,

by a theorem of Faltings [26].

With these results at hand, Grothendieck conjectured in [29] that there
is a certain class of anabelian varieties, defined over a field k& (which is
finitely generated over its prime field), which are characterized by their
fundamental groups. Main candidates are hyperbolic curves and varieties
which can be successively fibered by hyperbolic curves. There are three
related conjectures:

Isom: An anabelian variety X is determined by (W), i.e., by the profi-
nite group m;(X) together with the action of Gy.

Hom: If X and Y are anabelian, then there is a bijection
Homy (X,Y) = Homg, (71 (X), m(Y))/ ~

between the set of dominant k-morphisms and Gj-equivariant open ho-
momorphisms of fundamental groups, modulo conjugacy (inner automor-
phisms by the geometric fundamental group of Y').

Sections: If X is anabelian then there is a bijection between the set of
rational points X (k) and the set of sections of pry (modulo conjugacy).

Similar conjectures can be made for nonproper varieties. Excising
points from curves makes them “more” hyperbolic. Thus, one may reduce
to the generic point of X, replacing the fundamental group by the Galois
group of the function field K = k(X). In the resulting birational version
of Grothendieck’s conjectures, the exact sequence (Vx) is replaced by
(V) and the projection pry by prg.

These conjectures have generated wide interest and stimulated intense
research. Here are some of the highlights of these efforts:



4 FEDOR BOGOMOLOV AND YURI TSCHINKEL

e proof of the birational Isom-conjecture for function fields over k,
where k is finitely generated over its prime field, by Pop [43];

e proof of the birational Hom-conjecture over sub-p-adic fields k,
i.e., k which are contained in a finitely generated extension of Q,,
by Mochizuki [35];

e proof of the birational Section-conjecture for local fields of char-
acteristic zero, by Konigsmann [33].

Here is an incomplete list of other significant result in this area [37], [62],
[61], [57]. In all cases, the proofs relied on nonabelian properties in the
structure of the Galois group Gk, respectively, the relative Galois group.
Some of these developments were surveyed in [32], [27], [38], [45], [44],
(36].

After the work of Iwasawa the study of representations of the maximal
pro-f-quotient Gx of the absolute Galois group G developed into a
major branch of number theory and geometry. So it was natural to turn
to pro-f-versions of the hyperbolic anabelian conjectures, replacing the
fundamental groups by their maximal pro-/-quotients and the absolute
Galois group G by Gk. Several results in this direction were obtained
in [19], [49].

A very different intuition evolved from higher-dimensional birational
algebraic geometry. One of the basic questions in this area is the char-
acterization of fields isomorphic to purely transcendental extensions of
the ground field, i.e., varieties birational to projective space. Interesting
examples of function fields arise from faithful representations of finite
groups

G — Aut(V),

where V' = A} is the standard affine space over k. The corresponding
variety

X =V/G

is clearly unirational. When n < 2 and k is algebraically closed the
quotient is rational (even though there exist unirational but nonrational
surfaces in positive characteristic). The quotient is also rational when G
is abelian and k algebraically closed.

Noether’s problem (inspired by invariant theory and the inverse prob-
lem in Galois theory) asks whether or not X = V/G is rational for non-
abelian groups. The first counterexamples were constructed by Saltman
[50]. Geometrically, they are quotients of products of projective spaces
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by projective actions of finite abelian groups. The first obstruction to
(retract) rationality was described in terms of Azumaya algebras and the
unramified Brauer group

By, (k(X)) = Hy,.(X),

(see Section 7). A group cohomological interpretation of these examples
was given by the first author in [2]; it allowed one to generate many other
examples and elucidated the key structural properties of the obstruction
group. This obstruction can be computed in terms of GG, in particular, it
does not depend on the chosen representation V' of G:

By(G) := Ker (H?(G, Q/z) — [[H*(B, Q/Z)) :

where the product ranges over the set of subgroups B C G which are
generated by two commuting elements. A key fact is that, for X = V/G,

By(G) = Bra, (k(X)) = H,.(X),

see Section 7 and Theorem 22.

One has a decomposition into primary components
(01) Bo(G) - @@ BQ@(G),

and computation of each piece reduces to computations of cohomology
of the ¢-Sylow subgroups of G, with coefficients in Q,/Z,.

We now restrict to this case, i.e., finite f-groups G' and Q,/Z,-coefficients.
Consider the exact sequence
127 -G —G*—1,

where

G° = G/[|G,G],G]
is the canonical central extension of the abelianization

G* =G/[G,G).

We have
(0.2) Bo(G) = Bo(G)

(see Section 7); in general, the image is a proper subgroup. The computa-
tion of Bo(G®) is a problem in linear algebra: We have a well-defined map



6 FEDOR BOGOMOLOV AND YURI TSCHINKEL

(from “skew-symmetric matrices” on G*, considered as a linear space over
Z/?) to the center of G*:

NG 2 Z

(v,72) = [T, %),
where 7 is some lift of v € G* to G°. Let

R(G°) := Ker())

be the subgroup of relations in A%(G?) (the subgroup generated by “ma-
trices” of rank one). We say that 71,72 form a commuting pair if

[1,92] =1 € Z.
Let
RA(G€) = (n1 A y2) CR(GY)
be the subgroup generated by commuting pairs. The first author proved
in [2] that
Bo(G°) = (R(G*)/RA(G))".

Using this representation it is easy to produce examples with nonvan-
ishing Bo(G), thus nonrational fields of G-invariants, already for central
extensions of (Z/0)* by (Z/¢)? [2].

Note that for K = k(V)% the group G is naturally a quotient of the
absolute Galois group Gg. The sketched arguments from group coho-
mology suggested to focus on G, the pro-¢-quotient of G and the pro-
{-cohomology groups introduced above. The theory of commuting pairs
explained in Section 4 implies that the groups Gx are very special: for
any function field K over an algebraically closed field one has

Bo«(Gx) = Bo(Gk) = Bo(G).

This lead to a dismantling of nonabelian aspects of anabelian geometry.
For example, from this point of view it is unnecessary to assume that the
Galois group of the ground field k is large. On the contrary, it is preferable
if k is algebraically closed, or at least contains all /"-th roots of 1. More
significantly, while the hyperbolic anabelian geometry has dealt primarily
with curves C', the corresponding Bo(G(c)), and hence Bo(Gf ), are
triwial, since the ¢-Sylow subgroups of Gy are free. Thus we need to
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consider function fields K of transcendence degree at least 2 over k. It
became apparent that in these cases, at least over k& = [F,,

Bo(G) = H;,(k(X))
encodes a wealth of information about k(X). In particular, it determines
all higher unramified cohomological invariants of X (see Section 3).
Let p and ¢ be distinct primes and k = F, an algebraic closure of F,,.
Let X be an algebraic variety over k and K = k(X) its function field
(X will be called a model of K). In this situation, G% is a torsion-free

Zy-module. Let X be the set of not procyclic subgroups of Gj which
lift to abelian subgroups in the canonical central extension

g;( - gK/[[gKa gK]7gK] - g}l(
The set Xk is canonically encoded in
RA(G%) C A*(G%),

a group that carries less information than G§. (see Section 6).

The main goal of this survey is to explain the background of the fol-
lowing result, proved in [10] and [12]:

Theorem 2. Let K and L be function fields over algebraic closures of
finite fields k and [, of characteristic # (. Assume that the transcendence
degree of K over k is at least two and that there exists an isomorphism

(0.3) U=Vgy: Gk — G}
of abelian pro-C-groups inducing a bijection of sets
Yk =Xr.

Then k =1 and there ezists a constant € € Z, such that e 'V is induced
from a unique isomorphism of perfect closures

Ut L5 K.

The intuition behind Theorem 2 is that the arithmetic and geometry
of varieties of transcendence degree > 2 over algebraically closed ground
fields is governed by abelian or almost abelian phenomena. One of the
consequences is that central extensions of abelian groups provide univer-
sal counterexamples to Noether’s problem, and more generally, provide

all finite cohomological obstructions to rationality, at least over I, (see
Section 3).
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Conceptually, the proof of Theorem 2 explores a skew-symmetric in-
carnation of the field, which is a symmetric object, with two symmetric
operations. Indeed, by Kummer theory, we can identify

Gy = Hom (K™ k™, Zy).
Dualizing again, we obtain
Hom(G%,Z,) = K*,
the pro-f-completion of the multiplicative group of K. Recall that
K* =K/ (K),

the first Milnor K-group of the field. The elements of A?(G%) are matched
with symbols in Milnor’s K-group K3 (K). The symbol (f, g) is infinitely
divisible in KY(K) if and only if f,g are algebraically dependent, i.e.,
f,g € E = k(C) for some curve C' (in particular, we get no information

when trdeg,(K) = 1). In Section 2 we describe how to reconstruct
homomorphisms of fields from compatible homomorphisms

i
K (L) — Ky (K),

KM (L) 2> K (K).

Indeed, the multiplicative group of the ground field £ is characterized as
the subgroup of infinitely divisible elements of K>, thus

v P(L)=L"/I" - P(K)=K"/k",

a homomorphism of multiplicative groups (which we assume to be in-
jective). The compatibility with 1), means that infinitely divisible sym-
bols are mapped to infinitely divisible symbols, i.e., ¥; maps multiplica-
tive groups F'* of 1-dimensional subfields F' C L to E* C K*, for 1-
dimensional F C K. This implies that already each P! C P(L) is mapped
to a P! C P(K). The Fundamental theorem of projective geometry (see
Theorem 5) shows that (some rational power of) 1, is a restriction of a
homomorphisms of fields L — K.

Theorem 2 is a pro-¢-version of this result. Kummer theory provides
the isomorphism

U X — KX

The main difficulty is to recover the lattice

K*/k*®2Z; C K*.
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This is done in several stages. First, the theory of commuting pairs (see
[9]) allows to reconstruct abelianized inertia and decomposition groups
of valuations

71, C D) C Gk.
Note that for divisorial valuations v we have Z ~ Z,, and the set
I =1L}

resembles a Z,-fan in Gj; ~ Z3°. The key issue is to pin down, canonically,
a topological generator for each of these 7. The next step is to show
that

U (F* /1) € BX C K*

for some 1-dimensional F C K. This occupies most of the paper [10],
for function fields of surfaces. The higher-dimensional case, treated in
[12], proceeds by induction on dimension. The last step, i.e., matching
of projective structures on multiplicative groups, is then identical to the
arguments used above in the context of Milnor K-groups.

The Bloch—Kato conjecture says that Gj contains all information about
the cohomology of Gk, with finite constant coefficients (see Section 3 for
a detailed discussion). Thus we can consider Theorem 2 as a homotopic
version of the Bloch-Kato conjecture, i.e., G determines the field K
itself, modulo purely-inseparable extension.

Almost abelian anabelian geometry evolved from the Galois-theoretic
interpretation of Saltman’s counterexamples described above and the
Bloch—Kato conjecture. These ideas, and the “recognition” technique
used in the proof of Theorem 2, were put forward in [2], [5], [3], [7], [4],
and developed in [9], [10], [11], and [12]. In recent years, this approach
has attracted the attention of several experts, for example, F. Pop, see
[42], as well as his webpage, for other preprints on this topic, which con-
tain his version of the recognition procedure of K from G, for the same
class of fields K. Other notable contributions are due to Chebolu, Efrat,
and Minac [16], [17].

Several ingredients of the the proof of Theorem 2 sketched above ap-
peared already in Grothendieck’s anabelian geometry, relating the full
absolute Galois group of function fields to the geometry of projective
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models. Specifically, even before Grothendieck’s insight, it was under-
stood by Uchida and Neukirch (in the context of number fields and func-
tion fields of curves over finite fields) that the identification of decom-
position groups of valuations can be obtained in purely group-theoretic
terms as, roughly speaking, subgroups with nontrivial center. Similarly,
it was clear that Kummer theory essentially captures the multiplicative
structure of the field and that the projective structure on Py (K’) encodes
the additive structure. The main difference between our approach and
the techniques of, e.g., Mochizuki [35] and Pop [42] is the theory of com-
muting pairs which is based on an unexpected coincidence: the minimal
necessary condition for the commutation of two elements of the absolute
Galois group of a function field K is also sufficient and already implies
that these elements belong to the same decomposition group. It suffices
to check this condition on G, which linearizes the commutation relation.
Another important ingredient in our approach is the correspondence be-
tween large free quotients of G and integrally closed 1-dimensional sub-
fields of K. Unfortunately, in full generality, this conjectural equivalence
remains open (see the discussion in Section 6). However, by exploiting
geometric properties of projective models of K we succeed in proving it in
many important cases, which suffices for solving the recognition problem
and for several other applications.

Finally, in Section 9 we discuss almost abelian phenomena in Galois
groups of curves which occur for competely different reasons. An appli-
cation of a recent result of Corvaja—Zannier concerning the divisibility
of values of recurrence sequences leads to a Galois-theoretic Torelli-type
result for curves over finite fields.

Acknowledgments. We have benefited from conversations with J.-L.
Colliot-Thélene, B. Hassett, and M. Rovinsky. We are grateful to the
referee for helpful remarks and suggestions. The first author was partially
supported by NSF grant DMS-0701578. The second author was partially
supported by NSF grants DMS-0739380 and 0901777.

1. ABSTRACT PROJECTIVE GEOMETRY

Definition 3. A projective structure is a pair (S, £) where S is a set (of
points) and £ a collection of subsets [ C S (lines) such that

P1 there exist an s € S and an [ € £ such that s ¢ [;
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P2 for every [ € £ there exist at least three distinct s, s’,s” € [;
P3 for every pair of distinct s,s" € S there exists exactly one

[=1(s,s) e L

such that s,s" € [;
P4 for every quadruple of pairwise distinct s, s',t,¢ € S one has

(s, )Nt t)£D = (s, t) NI 1) #0.

In this context, one can define (inductively) the dimension of a projec-
tive space: a two-dimensional projective space, i.e., a projective plane,
is the set of points on lines passing through a line and a point outside
this line; a three-dimensional space is the set of points on lines passing
through a plane and a point outside this plane, etc.

A morphism of projective structures p : (S, £) — (5',£') is a map of
sets p 1 S — S’ preserving lines, i.e., p(I) € £ for all [ € £,

A projective structure (S, £) satisfies Pappus’ aziom if

PA for all 2-dimensional subspaces and every configuration of six
points and lines in these subspaces as below

the intersections are collinear.

The following Fundamental theorem of abstract projective geometry
goes back at least to Schur and Hessenberg, but there were many re-
searchers before and after exploring the various interconnections between
different sets of axioms (Poncelet, Steiner, von Staudt, Klein, Pasch,
Pieri, Hilbert, and others).?

2But there is one group of deductions which cannot be ignored in any consideration
of the principles of Projective Geometry. I refer to the theorems, by which it is
proved that numerical coordinates, with the usual properties, can be defined without
the introduction of distance as a fundamental idea. The establishment of this result is
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Theorem 4 (Reconstruction). Let (S, £) be a projective structure of
dimension n > 2 which satisfies Pappus’ axiom. Then there exists a
vector space V' over a field k and an isomorphism

o PL(V) = 5.

Moreover, for any two such triples (V,k,o) and (V' k' d') there is an
1somorphism

Vik = V'K
compatible with 0,0’ and unique up to homothety v — v, XA € k*.

Main examples are of course the sets of k-rational points of the usual
projective P" space over k of dimension n > 2. Then P"(k) carries a
projective structure: lines are the usual projective lines P*(k) C P™(k).

A related example arises as follows: Let K /k be an extension of fields.
Then

S = Py(K) = (K\0)/k"
carries a natural (possibly, infinite-dimensional) projective structure. More-
over, the multiplication in K* /k* preserves this structure. In this setup
we have the following reconstruction theorem ([10, Theorem 3.6]):

Theorem 5 (Reconstructing fields). Let K/k and K'/k' be field exten-
sions of degree > 3 and

Y1 S=Pu(K) = Pu(K')=95

an injective homomorphism of abelian groups compatible with projective
structures. Then k ~ k' and K is isomorphic to a subfield of K'.

The following strengthening is due to M. Rovinsky.

Theorem 6. Let S be an abelian group equipped with a compatible struc-
ture of a projective space. Then there exist fields k and K such that
S =Py(K).

Proof. There is an embedding of S = P(V') as a projective subspace into
PGL(V). Its preimage in GL(V) is a linear subspace minus a point.
Since V' is invariant under products (because P(V') is) we obtain that V'
is a commutative subalgebra of Mat(V') and every element is invertible -
hence it is a field. 0

one of the triumphs of modern mathematical thought. A.N. Whitehead, “The axioms
of projective geometry”, p. v, 1906.
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Related reconstruction theorems of “large” fields have recently emerged
in model theory. The setup there is as follows: A combinatorial prege-
ometry (finitary matroid) is a pair (P, cl) where P is a set and

cl : Subsets(P) — Subsets(P),

such that for all a,b € P and all Y, Z C P one has:

Y Cc(Y),
if Y C Z, then cl(Y) C cl(Z),
c(cl(Y)) =cl(Y),
if a € cl(Y), then there is a finite subset Y’ C Y such that
a € cl(Y') (finite character),
e (exchange condition) if a € cl(Y U {b}) \ cl(Y), then b € cl(Y U
{a}).

A geometry is a pregeometry such that cl(a) = a, for all a € P, and

cl(@) = 0. Standard examples are provided by:

(1) P = V/k, a vector space over a field k and ¢l(Y') the k-span of
Y CP;

(2) P =P(V), the usual projective space over a field k;

(3) P = P(K), afield K containing an algebraically closed subfield k
and cl(Y") - the normal closure of k(Y) in K, note that a geometry
is obtained after factoring by = ~ y iff cl(z) = cl(y).

It turns out that a sufficiently large field can reconstructed from the
geometry of its 1-dimensional subfields.

Theorem 7 (Evans—Hrushovski [24],[25] / Gismatullin [28]). Let k and
k' be algebraically closed fields, K/k and K'/k' field extensions of tran-
scendence degree > 5 over k, resp. k'. Then, every isomorphism of
combinatorial geometries

Pr(K) — Pr(K')
18 induced by an isomorphism of purely inseparable closures
K — K’
In the next section, we show how to reconstruct a field of transcendence

degree > 2 from its projectivized multiplicative group and the “geometry”
of multiplicative groups of 1-dimensional subfields.
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2. K-THEORY
Let KM(K) be i-th Milnor K-group of a field K. Recall that
KM(K) =K~
and that there is a canonical surjective homomorphism
0w+ KN(K) & KY(K) — K} (K):

we write (z,y) for the image of x ® y. The kernel of ok is generated by
symbols x ® (1 — z), for z € K* \ 1. Put

KM(K) := KM(K)/infinitely divisible elements, i = 1,2.

Theorem 8. [11] Let K and L be function fields of transcendence degree
> 2 over an algebraically closed field k, resp. 1. Let

151 : Ki\/l(—fﬂ - K{W(L)

be an injective homomorphism.
Assume that there is a commutative diagram

KY(K) @ K} () —" = K}Y(L) @ K}Y(L)
aKi iaL
_— _
KY() .
Assume that 1 (K> /k*) € E* /1%, for a 1-dimensional field E C L (i.e.,

a field of transcendence degree 1 over ).
Then there exist an m € Q and a homomorphism of fields

v K — L
such that the induced map on K> /k* coincides with {7

Sketch of proof. First we reconstruct the multiplicative group of the ground
field as the subgroup of infinitely divisible elements: An element [ €
K* = KM(K) is infinitely divisible if and only if f € £*. In particular,

KY(K) = K*/k*.

Next, we characterize multiplicative groups of 1-dimensional subfields:
Given a nonconstant f; € K*/k*, we have

Kero(f1) = E* k™,
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——K
where E' = k(f;) is the normal closure in K of the 1-dimensional field
generated by f; and

Kery(f) i= { g € K*/k* = KM(K) | (f,9) =0 € K} (K) }.

At this stage we know the infinite-dimensional projective subspaces
P(FE) C P(K). To apply Theorem 5 we need to show that projective
lines P! C P(K) are mapped to projective lines in P(L). It turns out
that lines can be characterized as intersections of (shifted) P(E), for
appropriate 1-dimensional £ C K. The following technical result lies at
the heart of the proof.

O

Proposition 9. [11, Theorem 22| Let k be an algebraically closed field,
K be an algebraically closed field extension of k, x,y € K algebraically

independent over k, p € k(m)X Nk-2% and q € k(y)X <k -y Suppose
that
— X —0 X
k(z/y) -ynk(p/a) -q#0.
Then there exist
(1) an a € Q,
(2) 1,2 € kK* such that

1/a

pEK - (x% =) qekx-(y“—CQ)l/“

and

Ka/y) -ynk(p/a) -a=k- (2" — cy)'",
where ¢ = ¢1/co.

Proof. The following proof, which works in characteristic zero, has been
suggested by M. Rovinsky (the general case in [11] is more involved).
Assume that there is a nontrivial

X

Lek(@/y) -ynkp/a) -q

We obtain equalities in Qg /.

diZfy) _ =~ dlz/y) o dd/g) _ - dp/g)
Iy z/y I/q pla

(2.1)

for some
r e k(az/y)x, and se€ k:(p/q)x.
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Using the first equation, rewrite the second as
d d d
4@y dly/g) o dp/g)

r/y y/q plq
or d d
T P Y q/y q

The differentials on the left and on the right are linearly independent,
thus both are zero, i.e., r = sf = sg — g + 1, where
— X —0X
f=uxp'/pek(x) and g=yq'/q€k(y),
and p’ is derivative with respect to x, ¢’ the derivative In particular,
s = ﬁ. Applying dlog to both sides, we get
d 'd 'dy — f'd !
ds _gdy  gdy—fde _F
s g-—1 f=g g—1f 1=9)(f—9)

As ds/s is proportional to

/ /
_d(p/q) P - q—dy = fd—aj — g%dya
p/q p q x y
we get
A g0
f (1—-9)g’
f g

x =y :
A=Hr “(1-g)
Note that the left side is in k:(:x)x, while the right hand side is in k(y)
It follows that 7 /
g

—nf Y=gy

Solving the ordinary differential equation(s), we get

—fil :cl_lx“ and —ggl :Cg_lya

for some ¢q,co € kX and a € Q, so

X

T =ack.
(

d
f=0- clx’a)’l = xa log(z® — cl)l/“,

gzu—@yﬂ*zy%maw—@W%
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Thus finally,
p="0i- (2" — Cl)l/a and ¢ =10y (y* — Cz)l/a-

We can now find

. (1 —crz7) gy _ co(x® — )
CY~*—cxr? Cox? — Cc1y?
and then
CQLCQ —a\—1
pr— T —— 1 —
resf= = (0 elafy) )

where ¢ = ¢;1/cy. From equation (2.1) we find

dlog(I/y) = —%%,

where T' = ¢(z/y)~*, and thus,
I=y-bs(1—c ' (x/y))* = bo(z" — cy) V.
0

This functional equation has the following projective interpretation: If
E = k(z) then the image of each P! C P(E) under V¥ lies in a rational
normal curve given by (2) in Proposition 9, where a may a priori depend
on z. However, a simple lemma shows that it is actually independent of
z (in characteristic zero), thus W'/? extends to a field homomorphism.
(In general, it is well-defined modulo powers of p, this brings up purely
inseparable extensions, which are handled by an independent argument.)

3. BLOCH-KATO CONJECTURE

Let K be a field and ¢ a prime distinct from the characteristic of K.
Let

po ={V1} and Zy(1) = lim prpn.

We will assume that K contains all £"-th roots of unity and identify Z,
and Z,(1). Let G% be the abelianization of the maximal pro-¢-quotient
of the absolute Galois group Gg.

Theorem 10 (Kummer theory). There is a canonical isomorphism

(3.1) HY (G, Z/0") = H (Ge, Z/0") = K* /™.
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More precisely, the discrete group K> /(K*)*" and the compact profi-
nite group G% /0" are Pontryagin dual to each other, for a p,.-duality,
i.e., there is a perfect pairing

KXJ(K)" % G /0" — paym.
Explicitly, this is given by

(f:7) = WV VT E pen.
For K = k(X), with k algebraically closed of characteristic # ¢, we have
e K*/k* is a free Z-module and
K*)(K)" = (K*/E*)/e",  forall ne€N;
e identifying K*/k* — Z", one has K*/(K*)" = (z/im)D
and

~

G /0" — (Z/"(1)),
in particular, the duality between K* = K*/k* and G% is mod-
eled on that between

{functions I — Z, tending to 0 at co} and Zj.

Since the index set I is not finite taking double-duals increases the
space of functions with finite support to the space of functions with
support converging to zero, i.e., the support modulo ¢" is finite,
for all n € N. For function fields, the index set is essentially the
set of irreducible divisors on a projective model of the field. This
description is a key ingredient in the reconstruction of function
fields from their Galois groups.

In particular, an isomorphism of Galois groups
Ver: Ok — g1
as in Theorem 2 implies a canonical isomorphism
U KX~ LX
The Bloch-Kato conjecture, now a theorem established by Voevodsky
[63], [64], with crucial contributions by Rost and Weibel [30], [65], de-

scribes the cohomology of the absolute Galois group G through Milnor
K-theory for all n:

(3.2) KM(K) /" = H"(G g, Z.)).

There is an alternative formulation. Let Gf be the canonical central
extension of G as in the Introduction. We have the diagram
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Gk
Gk Gk

Theorem 11. The Bloch-Kato conjecture (3.2) is equivalent to:
(1) The map

7 H (G, Z/0") — H* (G, Z/")

18 surjective and
(2) Ker(m}) = Ker(7*).

Proof. The proof uses the first two cases of the Bloch—Kato conjecture.
The first is (3.1), i.e., Kummer theory. Recall that the cohomology ring
of a torsion-free abelian group is the exterior algebra on H'. We apply
this to G%; combining with (3.1) we obtain:

H* (G, Z/0") = N (K> /™).
Since G¢ is a central extension of the torsion-free abelian group G%, the
kernel of the ring homomorphism

mo: HY (G, Z/0") — HY (G5, Z)0)
is an ideal I Hk(n) generated by
Ker (H*(G, Z/0") — H* (G5, Z/ ™))
(as follows from the standard spectral sequence argument). We have an
exact sequence

0 — [Hy(n) — AKX /") — H*(G°, Z/ (™).

On the other hand, we have a diagram for the Milnor K-functor:

1— Ix(n) — @ (KX /") ——=KM(K) /1" —1

i |

1 —= Ixe(n) —= AKX /07 ——= KM (K) /0" — 1

gK? Z/£n>
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Thus the surjectivity of 7* is equivalent to the surjectivity of
KM(K) /" — H"(Gg, Z/ (™).
Part (2) is equivalent to
ITHg(n) ~ Ix(n),
under the isomorphism above. Both ideals are generated by degree 2
components. In degree 2, the claimed isomorphism follows from the
Merkurjev—Suslin theorem
H*(Gk, Z/0") = Ky (K) /0.
O

Thus the Bloch-Kato conjecture implies that G§ completely captures
the ¢-part of the cohomology of Gg. This led the first author to conjec-
ture in [3] that the “homotopy” structure of Gy is also captured by G5
and that morphisms between function fields L — K should be captured
(up to purely inseparable extensions) by morphisms G§, — G¢. This
motivated the development of the almost abelian anabelian geometry.

We now describe a recent related result in Galois cohomology, which
could be considered as one of the incarnations of the general principle for-
mulated above. Let GG be a group and ¢ a prime number. The descending
("-central series of GG is given by

G =G, G .= (G GEM G), i=1,....
We write
Gen — G/G(S’n), Gon — G/G(Q’n),
so that
Gc — GC,O’ Ga — Ga,O.

Theorem 12 (Chebolu-Efrat-Mina¢ [16]). Let K and L be fields con-
taining (" -th roots of 1 and

V: gk — 01
a continuous homomorphism. The following are equivalent:

(i) the induced homomorphism
ye: %n — QZ’"

1 an 1somorphism;
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(ii) the induced homomorphism
U H(Gr, Z)0") — H* (G, Z/ (")

1S an isomorphism.

4. COMMUTING PAIRS AND VALUATIONS

A wvalue group, T, is a totally ordered (torsion-free) abelian group. A
(nonarchimedean) valuation on a field K is a pair v = (v,I',) consisting
of a value group I', and a map

v:K—-T,=I,Uc
such that

e v : K* — 1T, is a surjective homomorphism;
e v(k+K') > min(v(k),v(x")) for all k, k" € K;
e (0) = 0.

The set of all valuations of K is denoted by V.

Note that F, admits only the trivial valuation; we will be mostly in-
terested in function fields K = k(X) over k = F,. A valuation is a flag
map on K: every finite-dimensional ]Fp—subspace, and also [F,-subspace,
V C K has aflag V =V; D V,... such that v is constant on V; \ Vji1.
Conversely, every flag map gives rise to a valuation.

Let K,, 0,,m,, and K, := 0, /m, be the completion of K with respect
to v, the valuation ring of v, the maximal ideal of 0,, and the residue field,
respectively. A valuation of K = [F,(X), is called divisorial if the residue
field is the function field of a divisor on X; the set of such valuations is
denoted by DVy. We have exact sequences:

l—o, - K*—>TI,—1
l1—-(14+m,) —o, - K, — 1
A homomorphism x : I, — Z,(1) gives rise to a homomorphism
xov : K* — Z(1),

thus to an element of G§., an inertia element of v. These form the inertia
subgroup I} C Gy. The decomposition group Dj is the image of G in
G%. We have an embedding Gj < G% and an isomorphism

Dy /1) ~ Gk, -
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We have a dictionary (for K = k(X) and k =F,):

G% = {homomorphisms v : K*/k* — Z,(1)},
D = {p€Gy|p trivial on (1+m,)},
7¢ = {1€G% | trivial on 0X}.

In this language, inertia elements define flag maps on K. If £ C K is
a subfield, the corresponding homomorphism of Galois groups Gx — Gg
is simply the restriction of special Z,(1)-valued functions on the space
P.(K) to the projective subspace Py(FE).

The following result is fundamental in our approach to anabelian geom-
etry.

Theorem 13. [9], [10, Section 4] Let K be any field containing a sub-
field k with #k > 11. Assume that there exist nonproportional homo-
morphisms

77 K= R
where R is either Z, Zy or Z/{, such that

(1) v, are trivial on k*;
(2) the restrictions of the R-module {y,~',1) to every projective line
P! C Pu(K) = K*/k* has R-rank < 2.
Then there exists a valuation v of K with value group I',, a homomor-
phism v: T, — R, and an element v, in the R-span of v,~" such that

L, =LOU.

In (2), 7,7/, and 1 are viewed as functions on a projective line and the
condition states simply that these functions are linearly dependent.

This general theorem can be applied in the following contexts: K is
a function field over k, where k contains all ¢-th roots of its elements
and R = Z/{, or k = F, with { # p and R = Z,. In these situations, a
homomorphism v: K* — R (satisfying the first condition) corresponds
via Kummer theory to an element in G¢% /¢, resp. G%. Nonproportional
elements v,v" € G% lifting to commuting elements in G¢- satisfy condition
(2). Indeed, for 1-dimensional function fields E C K the group G§, is a
free central extension of G%. This holds in particular for k(z) C K. Hence
7,7/ are proportional on any P! containing 1; the restriction of ¢ = (7, ~)
to such P! is isomorphic to Z,. Property (2) follows since every P! C
P.(K) is a translate, with respect to multiplication in Py (K) = K*/k*,
of the “standard” P! = P(k & kz), + € K*. Finally, the element ¢,
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obtained in the theorem is an inertia element for v, by the dictionary
above.

Corollary 14. Let K be a function field of an algebraic variety X over
an algebraically closed field k of dimension n. Let o € Y be a liftable
subgroup. Then
o 1ky, (o) < n;
e there exists a valuation v € Vi and a subgroup o' C o such that
o' CI¢ o C DY and o/o’ is topologically cyclic.

Theorem 13 and its Corollary 14 allow to recover inertia and decompo-
sition groups of valuations from (G%, ¥ ). In reconstructions of function
fields we need only divisorial valuations; these can be characterized as
follows:

Corollary 15. Let K be a function field of an algebraic variety X over
k =T, of dimension n. If 01,00 C G% are mazimal liftable subgroups of
Zy-rank n such that I := o, N oy is topologically cyclic then there exists
a diwisorial valuation v € DV such that 7% = I7.

Here we restricted to k = IF‘p to avoid a discussion of mixed characteris-
tic phenomena. For example, the obtained valuation may be a divisorial
valuation of a reduction of the field, and not of the field itself.

This implies that an isomorphism of Galois groups
aye -
inducing a bijection of the sets of liftable subgroups
Yk =%

induces a bijection of the sets of inertial and decomposition subgroups of
valuations

{Zovepve = {20 bvepv,, DL }vepvie = {Dy}vepy, -

Moreover, ¥ maps topological generators d, x of procyclic subgroups
I C Gf, for v € DVk, to generators 4, 1, of corresponding inertia sub-
groups in G¢, which pins down a generator up to the action of Z;.

Here are two related results concerning the reconstruction of valua-
tions.
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Theorem 16 (Efrat [21]). Assume that char(K) # ¢, —1 € (K*)*, and
that
N(K™ (X)) = Ky (K) /¢
Then there exists a valuation v on K such that
o char(K,) # (;
e dimg, (I, /0) > dimF[(KX/(KX)Z) —1;
e cither dimg, (T, /¢) = dimg, (K*/(K*)¢) or K, # K.

In our terminology, under the assumption that K contains an alge-
braically closed subfield k and ¢ # 2, the conditions mean that G¢%
modulo 7 is liftable, i.e., G% = G%. Thus there exists a valuation with
abelianized inertia subgroup (modulo ¢) of corank at most one, by Corol-
lary 14. The third assumption distinguishes the two cases, when the
corank is zero versus one. In the latter case, the residue field K, has
nontrivial f-extensions, hence satisfies K # (K )’

Theorem 17 (Engler-Kénigsmann [22]/Engler-Nogueira, ¢ = 2 [23]).
Let K be a field of characteristic # { containing the roots of unity of order
0. Then K admits an (-Henselian valuation v (i.e., v extends uniquely
to the maximal Galois {-extension of K ) with char(K,) # ¢ and non-
(-divisible T, if and only if Gx is noncyclic and contains a nontrivial
normal abelian subgroup.

Again, under the assumption that K contains an algebraically closed
field k, of characteristic # ¢, we can directly relate this result to our The-
orem 13 and Corollary 14 as follows: The presence of an abelian normal
subgroup in G means that modulo ¢ there is a nontrivial center. Thus
there is a valuation v such that Gx = D,, the corresponding decompo-
sition group. Note that the inertia subgroup Z, C Gx maps injectively
into 7.

We now sketch the proof of Theorem 13. Reformulating the claim,
we see that the goal is to produce a flag map on Py (K). Such a map ¢
jumps only on projective subspaces of Py (K), i.e., every finite dimensional
projective space P" C P(K') should admit a flag by projective subspaces

PPl o .

such that ¢ is constant on P"(k) \ P"~1(k), for all r. Indeed, a flag map
defines a partial order on K* which is preserved under shifts by multi-
plication in K* /k*, hence a scale of k-subspaces parametrized by some
ordered abelian group I'.
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We proceed by contradiction. Assuming that the R-span o := (v,7/)
does not contain a flag map we find a distinguished P? C Py (K) such
that o contains no maps which would be flag maps on this P? (this uses
that #k > 11). To simplify the exposition, assume now that k = F,,.

Step 1. If p > 3 then a : P?(F,) — R is a flag map iff the restriction
to every P1(F,) C P*(F,) is a flag map, i.e., constant on the complement
of one point.

A counterexample for p = 2 and R = Z/2 is provided by the Fano
plane:

(0:1:0)

(0:0:1 (1:0:1 (1:0:0V

Step 2. On the other hand, assumptions (1) and (2) imply that the
map

KXk =Pu(K) % A%(R)

f = (v(f):7(f))
maps every projective line into an affine line, a collineation. This imposes
strong conditions on ¢ = ¢, and both 7,7. For example, for all

P? C Px(K) the image ¢(IP?) is contained in a union of an affine line and
at most one extra point in A%(R).

Step 3. At this stage we are working with maps
Pz(Fp) - A2(R),

preserving the geometries as above. Using Step 2 we may even reduce to
considerations of maps with image consisting of 3 points:

P?(F,) — {e,0,%}
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and such that every line P!(F,) C P*(F,) is mapped to exactly two
points. Projective/affine geometry considerations produce a flag map in
the R-linear span of 7,7/, contradicting the assumption.

The case of char(K) = 0 is more complicated (see [9]).

5. PRO-/-GEOMETRY

One of the main advantages in working with function fields K as op-
posed to arbitrary fields is the existence of normal models, i.e., algebraic
varieties X with K = k(X), and a divisor theory on X . Divisors on these
models give rise to a rich supply of valuations of K, and we can employ
geometric considerations in the study of relations between them.

We now assume that k = F,, with p # £. Let Div(X) be the group of
(locally principal) Weil divisors of X and Pic(X) the Picard group. The
exact sequence

(5.1) 0 — K*/k* &5 Div(X) % Pic(X) — 0,

allows us to connect functions f € K* to divisorial valuations, realized
by irreducible divisors on X.

We need to work simultaneously with two functors on Z-modules of
possibly infinite rank:

Mw— M;:=M®Z, and M — M :=1limM ® Z/(",

Some difficulties arise from the fact that these are “the same” at each
finite level, (mod ¢™). We now recall these issues for functions, divisors,
and Picard groups of normal projective models of function fields (see [10,
Section 11] for more details).

Equation (5.1) gives rise to an exact sequence

(5.2) 0 — K*/k* @ Z &5 Div0(X), 25 Pic®(X){¢} — 0.
where
Pic’(X){¢} = Pic"(X) ® Z,
is the (-primary component of the torsion group of k = F,-points of

Pic?(X ), the algebraic group parametrizing classes of algebraically equiv-
alent divisors modulo rational equivalence. Put

7y(X) := lim Tory (Z/¢", Pic’(X){¢}).
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We have T;(X) =~ Z7%, where g is the dimension of Pic’(X). In fact,
7, is a contravariant functor, which stabilizes on some normal projective
model X i.e., 7y(X) = 7y(X) for all X surjecting onto X. In the sequel,
we will implicitly work with such X and we write 7,(K).

Passing to pro-f-completions in (5.2) we obtain an exact sequence:

(5.3) 0— T(K) — K &% Divd(X) — 0,
since PiCO(X ) is an ¢-divisible group. Note that all groups in this sequence

are torsion-free. We have a diagram

0 —= KX [k ® Zy 225 Div(X), —2 Pic®(X) {0} —= 0

L |

0 — To(K) " Do (x) 0

Galois theory allows to “reconstruct” the second row of this diagram.
The reconstruction of fields requires the first row. The passage from the
second to the first employs the theory of valuations. Every v € DVyg
gives rise to a homomorphism

v KX — 7,

A

On a normal model X, where v = vp for some divisor D C X, v(f) is the
¢-adic coefficient at D of divx( f) “Functions”, i.e., elements f € K*,
have finite support on models X of K, i.e., only finitely many coefficients
v(f) are nonzero. However, the passage to blowups of X introduces
more and more divisors (divisorial valuations) in the support of f. The
strategy in [10], specific to dimension two, was to extract elements of
K* with intrinsically finite support, using the interplay between one-
dimensional subfields £ C K, i.e., projections of X onto curves, and
divisors of X, i.e., curves C' C X. For example, Galois theory allows to
distinguish valuations v corresponding to rational and nonrational curves
on X. If X had only finitely many rational curves, then every blowup
X — X would have the same property. Thus elements f € K* with finite
nonrational support, i.e., v(f) = 0 for all but finitely many nonrational
v, have necessarily finite support on every model X of K, and thus have a
chance of being functions. A different geometric argument applies when
X admits a fibration over a curve of genus > 1, with rational generic
fiber. The most difficult case to treat, surprisingly, is the case of rational
surfaces. See Section 12 of [10] for more details.
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The proof of Theorem 2 in [12] reduces to dimension two, via Lefschetz
pencils.

6. PRO-/-K-THEORY

Let k£ be an algebraically closed field of characteristic # ¢ and X a
smooth projective variety over k, with function field K = k(X). A
natural generalization of (5.1) is the Gersten sequence (see, e.g., [56]):

0 — Ky(X) = Ky(K) — @ Ki(k(z)) — D Z — CH*(X) — 0,
zeX1 r€Xo
where X, is the set of points of X of codimension d and CH?(X) is the
second Chow group of X. Applying the functor
M +— MY := Hom(M, Z,)
and using the duality
Gy = Hom (K™, Zy)

we obtain a sequence

Ko(X)Y =—— Ky(K)" =— HDCX gg(D)

Dualizing the sequence

0— Ix — AN(K*) — Ky(K) — 0
we obtain

[[v( — /\Q(Q%) — KQ(K)V — 0
On the other hand, we have the following exact sequences:
0— Zi — G — Go — 0

and the resolution of Zx = [G%, G5/]

0 — R(K) — A*(G%) — Zk — 0.

Recall that G% = Hom(K*/k*,Zy) is a torsion-free Z,-module, with
topology induced from the discrete topology on K*/k*. Thus any prim-
itive finitely-generated subgroup A C K*/k* is a direct summand and
defines a continuous surjection G% — Hom(A,Z;). The above topol-
ogy on G% defines a natural topology on A?(G%). On the other hand,
we have a topological profinite group Gf with topology induced by fi-
nite f-extensions of K, which contains a closed abelian subgroup Zx =

9%, Gkl
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Proposition 18. [3] We have
R(K) = (Hom(Kq(K)/Image(k™ @ K*),Z;) = Ko(K)".
Proof. There is continuous surjective homomorphism
N(Gk) — Zk
YAY = Y]
The kernel R(K) is a profinite group with the induced topology. Any
r € R(K) is trivial on symbols (z,1 — x) € A?(K*/k*) (since the cor-
responding elements are trivial in H*(G%,Z/¢"), for all n € N). Thus
R(K) C Ky(K)".

Conversely, let o € Ko(K)Y \ R(K); so that it projects nontrivially
to Zk, i.e., to a nontrivial element modulo ¢, for some n € N. Finite
quotient groups of G§, with Z(G%) = [G¢, G¢] form a basis of topology on
Gf. The induced surjective homomorphisms Gf. — G¢ define surjections
/\2<g?() — [Gl, Gl] and

R(K) — R; := Ker(A*(GY) — [Gy, Gi]).
Fix a G; such that « is nontrivial of G§. Then the element « is nonzero
in the image of H2(G¢,Z/™) — H%(G¢,Z/¢™). But this is incompatible
with relations in Ky(K'), modulo ¢". O

It follows that R(K') contains a distinguished Z;,-submodule
(6.1) RA(K) = Image of H Grp)

DCX
and that
Ky(X)" 2 R(K)/RA(K).
In general, let

Ko (K) = Ker(Ko(K) —» € K))

veDVk

be the unramified Ky-group. Combining Proposition 18 and (6.1), we
find that .

Ky, (K) € Hom(R(K)/RA(K), Zy).
This sheds light on the connection between relations in G§ and the K-
theory of the field, more precisely, the unramified Brauer group of K.
This in turn helps to reconstruct multiplicative groups of 1-dimensional

subfields of K.
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We now sketch a closely related, alternative strategy for the recon-
struction of these subgroups of K* from Galois-theoretic data. We have
a diagram

0—Gi — 1,64 2=~ G;

0—~ Gt — 1,08 £ ~gs

where the product is taken over all normally closed 1-dimensional sub-
fields £ C K, equipped with the direct product topology, and the hori-
zontal maps are closed embeddings. Note that G} is a primitive subgroup
given by equations

G ={7 | (@) - @) -wH=0rc][d

where z,y are algebraically independent in K and zy,x,y € K* are
considered as functionals on Qg(xy), g;g(x), Qg(y), respectively. The central
subgroup

Zi C G C [ A*(G5)
E

is the image of A?(G%) in []; A?(G%). Thus for any finite quotient ¢-
group G of G there is an intermediate quotient which is a subgroup
of finite index in the product of free central extensions. The following
fundamental conjecture lies at the core of our approach.

Conjecture 19. Let K be a function field over IF'I,, with p # ¢, F* a
torsion-free topological Z,~-module of infinite rank. Assume that

V% Gy — F°
is a continuous surjective homomorphism such that
rkz, (Vi(0)) <1

for all liftable subgroups o € Y. Then there exist a l-dimensional
subfield £ C K, a subgroup F® C F* of finite corank, and a diagram
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9% Fe

We expect that F, = F,, when m;(X) is finite. Note that there can
exist at most one normally closed subfield £ C F satisfying this property.

The intuition behind this conjecture is that such maps should arise
from surjective homomorphisms onto free central extensions, i.e., we
should be able to factor as follows:

P =Gic G o P
where F° is a free central extension of F'%:
0 — A}(F*) — F¢ — F* — 0.

We can prove the conjecture under some additional geometric assump-
tions. Assuming the conjecture, the proofs in [10], [12] would become
much more straightforward. Indeed, consider the diagram

Ok —= 01

|

G

Applying Conjecture 19 we find a unique normally closed subfield £ C K
and a canonical isomorphism

v: gy — Gy, FCL,

Moreover, this map gives a bijection between the set of inertia subgroups
of divisorial valuations on E and of F'; these are the images of inertia
subgroups of divisorial valuations on K and L. At this stage, the sim-
ple rationality argument (see [10, Proposition 13.1 and Corollary 15.6])
implies that

VAR ey ‘g
induces an isomorphism

L></l>< ®Z(f) ;E(Kx/kx ®Z(f))’
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for some € € Z;, respecting multiplicative subgroups of 1-dimensional
subfields. Moreover, for each 1-dimensional rational subfield I(y) C L we
obtain

U (l(y)* /1) =€ € - (k(x)* k)
for some ¢, € Q. Proposition 2.13 in [10] shows that this implies the
existence of subfields L and K such that L/L and K/K are purely in-

separable extensions and such that ¢! - U* induces an isomorphism of
multiplicative groups

P(L) = L* /IX =5 P(K) = K% k"

Moreover, this isomorphism maps lines P! C P(i(y)) to lines P! C
P(k(z)). Arguments similar to those in Section 2 allow us to show that
U* induces an bijection of the sets of all projective lines of the projective
structures. The Fundamental theorem of projective geometry (Theo-
rem 5) allows to match the additive structures and leads to an isomor-
phism of fields.

The proof of Theorem 2 in [10] is given for the case of the fields of
transcendence degree two. However, the general case immediately follows
by applying Theorem 5 from Section 1 (or [12]). Indeed, it suffices to
show that for all z,y € L*/I*

U (U(z,y)* /1) C k(z,y) [k @ L) C K* [k ® L.

Note that the groups @X /I* map into subgroups k:(x)x/k:X X L
since U* satisfies the conditions of [12, Lemma 26], i.e., the symbol

(T (y), ¥"(2)) € Ky (K) ® Z
is infinitely ¢-divisible, for any y, z € @X /1. Thus
U(I(2fy)) € k(x.y)" /K" @ Ly
and similarly for \D*(mx) JU*,b € 1, since by multiplicativity

(I +y) /1) C Unly™ W ((x/y + ) /1) = Un(y™ " (U /)" /1))
Thus

U (a/y) /U, V(@ +y) /U € klz,y) /K @ L,
so that Theorem 2, for fields of arbitrary transcendence degree, follows
from the result for transcendence degree two.
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7. GROUP THEORY

Our intuition in Galois theory and Galois cohomology is based on the
study of finite covers and finite groups. Our goal is to recover fields or
some of their invariants from invariants of their absolute Galois groups
and their quotients.

In this section, we study some group-theoretic constructions which
appear, in disguise, in the study of function fields. Let G be a finite
group. We have

G° =G/[|G,G), G|, G*=G/|G,d].
Let

By(G) := Ker <H2(G, Q/Z) — H H?(B, Q/Z))

be the subgroup of those Schur multipliers which restrict trivially to all
bicyclic subgroups B C G. The first author conjectured in [5] that

for all finite simple groups. Some special cases were proved in [13], and
the general case was settled [34].

In computations of this group it is useful to keep in mind the following
diagram

Bo(GF) H2(G) Bo(G)
| ; l
H2(GF) ——— H2(G) H2(G)
| | l

l_chG’C H2<B) - l_IBcGC HQ(B) — HBcG Hz(B)
Thus we have a homomorphism
Bo(GC) — BO(G)
We also have an isomorphism

Ker (H*(G*,Q/Z) — H*(G,Q/Z)) = Ker (H*(G*,Q/Z) — H*(G*,Q/Z))



34 FEDOR BOGOMOLOV AND YURI TSCHINKEL

Combining with the fact that Bo(G€) is in the image of
m,: H*(G",Q/Z) — H*(G,Q/Z)

this implies that

(7.1) Bo(G) = Bo(G).

Let £ be a prime number. We write G, for the maximal /-quotient of
G and fix an ¢-Sylow subgroup Syl,(G) C G, all considerations below are
independent of the conjugacy class. We have a diagram

G — G —=G"

CoL

Syl,(G) Gy Gi Gy

Note that
G = Syl,(G°), and Gy = Syl,(G?),

but that, in general, Syl,(G) is much bigger than G,.

We keep the same notation when working with pro-¢-groups.

Proposition 20. [7] Let X be a projective algebraic variety of dimension
n over a field k. Assume that X (k) contains a smooth point. Then

Proof. First of all, let X and Y be algebraic varieties over a field k with
function fields K = k(X), resp. L = k(Y). Let X — Y be a map of
degree d and ¢ a prime not dividing d and char(k). Then

Syle(GK) = Sylz(GL)'

Let X — P"*! be a birational embedding as a (singular) hypersurface of
degree d'. Consider two projections onto P™: the first, m, from a smooth
point z in the image of X and the second, m,, from a point y in the
complement of X in P"*'. We have deg(m,) = d’ and deg(m,) —deg(m,) =
1, in particular, one of these degrees is coprime to ¢. The proposition
follows from the first step. O

Remark 21. This shows that the full Galois group Gk is, in some sense,
too large: the isomorphism classes of its /-Sylow subgroups depend only
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on the dimension and the ground field. We may write

Syle(GK ) = Sylz,n,k-
In particular, they do not determine the function field. However, the
maximal pro-f-quotients do [35], [43]. Thus we have a surjection from
a universal group, depending only on the dimension and ground field k,
onto a highly individual group G, which by Theorem 2 determines the
field K, for k =T,, £ # p, and n > 2.

The argument shows in particular that the group Syl,, , belongs to
the class of self-similar groups. Namely any open subgroup of finite
index in Syl, ; ,, is isomorphic to Syl , ,,. The above construction provides
with isomorphisms parametrized by smooth k-points of n-dimensional
algebraic varieties. Note that the absence of smooth k-points in K may
lead to a nonisomorphic group Syl, ;. ,,, as seen already in the example of
a conic C over k =R with C(R) = ( [7].

Theorem 22. [3, Thm. 13.2] Let Gk be the Galois group of a function
field K = k(X)) over an algebraically closed ground field k. Then, for all
¢ # char(k) we have

Bo«(Gk) = Bo(Gk)-

Here is a sample of known facts:

e if X is stably rational over k, then
Bo(Gk) = 0;

e if X = V/G, where V is a faithful representation of G' over an
algebraically closed field of characteristic coprime to the order of
G, and K = k(X), then

By(G) = Bo(Gk),
thus nonzero in many cases.

Already this shows that the groups Gk are quite special. The following
“Freeness conjecture” is related to the Bloch—-Kato conjecture discussed
in Section 3; it would imply that all cohomology of G is induced from
metabelian finite /-groups.

Conjecture 23 (Bogomolov). For K = k(X), with k algebraically closed
of characteristic # ¢, let

Sylf?)z,k = [Sylﬁ,n,ku Sy1€,n,k]7
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and let M be a finite Sylf&k-module. Then
H'(Syl) , M) =0, forall i>2

Further discussions in this direction, in particular, concerning the con-
nections between the Bloch—Kato conjecture, “Freeness”, and the Koszul
property of the algebra K (K)/¢, can be found in [46] and [47].

8. STABILIZATION

The varieties V/G considered in the Introduction seem very special.
On the other hand, let X be any variety over a field k and let

Gk(X) — G

be a continuous homomorphism from its Galois group onto some finite
group. Let V be a faithful representation of G. Then we have two ho-
momorphisms (for cohomology with finite coefficients and trivial action)

kx: H(G) — H (Grx))
and
kyv)c: HY(G) — H (Grvya))-
These satisfy
o Ker(ky/q) € H*(G) is independent of V, and the quotient

H;(G) := H*(G)/Ker(ky/q)

is well-defined;
o Ker(ky/q) C Ker(ky).

The groups H’(G) are called stable cohomology groups of G. They were
introduced and studied by the first author in [5]. A priori, these groups
depend on the ground field k. We get a surjective homomorphism

HI(G) — H*(G)/Ker(kx).

This explains the interest in stable cohomology—all group-cohomological
invariants arising from finite quotients of G(x) arise from similar invari-
ants of V/G. On the other hand, there is no effective procedure for the
computation of stable cohomology, except in special cases. For example,
for abelian groups the stabilization can be described already on the group
level:
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Proposition 24 (see, e.g., [5]). Let G be a finite abelian group and
o : 7™ — G a surjective homomorphism. Then x* : H*(G) — H*(Z™)
coincides with the stabilization map, i.e.,

Ker(k*) = Ker(kv/c)

for any faithful representation V- of G, for arbitrary ground fields k with
char(k) coprime to the order of G.

Geometrically, stabilization is achieved on the variety T/G C V/G,
where GG acts faithfully on V' by diagonal matrices and 7" C V is a G-
invariant subtorus in V' (see, e.g., [6]).

Similar actions exist for any finite group G: there is faithful represen-
tation V' and a torus 7" C Aut(V'), with normalizer N = N(T') such that
G C N C Aut(V), and such that G acts freely on T. We have an exact
sequence

1-m(T) - m(T/G) - G —1

of topological fundamental groups. Note that m1(7T") decomposes as a
sum of G-permutation modules and that 7 (7'/G) is torsion-free of coho-
mological dimension dim(7") = dim(V'). Torus actions were considered
by Saltman [51], and the special case of actions coming from restrictions
to open tori in linear representations by the first author in [6].

The following proposition, a consequence of the Bloch-Kato conjec-
ture, describes a partial stabilization for central extensions of abelian
groups.

Proposition 25. Let G be a finite (-group which is a central extension
of an abelian group

(8.1) 0—-72—-G—G"—0, Z=I[GG,
and K = k(V/G®). Let
o Ly — G*
be a surjection and
0—-2Z—=D"=Z"—0

the central extension induced from (8.1). Then
Ker(H*(G*) — H*(D)) = Ker(H*(G*) — H*(Gg)),
for cohomology with Z /0" -coefficients, n € N.
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Proof. Since Gj; is a torsion-free Z,-module we have a diagram
Gk % Ok 0

I
|
\
0 A D¢ YA 0
L
0 Z G° G° 0

By Theorem 11,
Ker (H*(G") — H*(Gk)) = Ker (H(G*) — H"(Gk)) -
Note that
I := Ker (H*(G*) — H*(D?))
is an ideal generated by its degree-two elements I and that
I, = Ker (H*(G*) — H*(G")) @ §(H'(G*)).
Similarly, for all intermediate D¢
Ker (H*(G*) — H*(D"))

is also generated by I, and hence equals I.

O

Corollary 26. Let G¢ be a finite (-group as above, R C A*(G?) the

subgroup of relations defining D€, and let
Y ={o; C G}

be the set of subgroups of G* liftable to abelian subgroups of G¢. Then the
image of H*(G*, Z/0™) in H: (G, Z/{™) coincides with N*(G*)* /15, where
I, C A?(G?) are the elements orthogonal to R (with respect to the natural

pairing).

Lemma 27. For any finite group G¢ there is a torsion-free group G°
with G* = 7} and [G¢,G¢] = Z}' with a natural surjection G¢ — G° and

a natural embedding
Ker(H*(G*) — H*(G)) = Ker(H*(G") — H*(G")),
for cohomology with Qg/Z,-coefficients.

Proof. Assume that we have a diagram of central extensions
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Uy

0 Zg Ge —% ge 0

|

0 Zy H ——=H* 0

with G* = H*, Zg, and Zy finite rank torsion-free Z,-modules. Assume
that

Ker(m} 5,) := Ker (H*(H®, Z¢) — H*(H°, Zy))
coincides with
Ker(m} ;) := Ker (H*(G*, Z) — H*(G%, Zy)) .
Then there is a section
s:HS— G 7wos=1d.
Indeed, since H®*, G* are torsion-free Z,-modules we have
H*(H", Zy)) = H*(H® Z;)) (mod ("), Vn €N,

and H?(H%,7Z,)) is a free Zs;-module. The groups G¢, H¢ are determined
by the surjective homomorphisms

/\Z(Ha) N Z’H — [HC7HC]’ A?(ga) N Zg — [gcjgc]‘

Since Zy, Zg are free Zy-modules, Ker(Zg — Z3) is also a free Z,-module.
O

Let G be a finite group, V' a faithful representation of G over k£ and
K = k(V/G). We have a natural homomorphism Gx — G. Every
valuation v € Vi defines a residue homomorphism

HY(G,Z/0") — B (G, Z)0") 25 H (G, , Z/ 1Y),
and we define the stable unramified cohomology as the kernel of this
homomorphism, over all divisorial valuations v:

H;, (G, Z/01") = {a € H(G,Z/") | 6,(a) =0 Vv € DVg}.

Again, this is independent of the choice of V' and is functorial in G. Fix
an element g € G. We say that o € HX(G,Z/(") is g-unramified if the
restriction of « to the centralizer Z(g) of ¢ in G is unramified (see [5] for
more details).
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Lemma 28. Let G be a finite group of order coprime to p = char(k).
Then

H;,.(G,Z/t") C H{(G,Z/t")
1s the subring of elements which are g-unramified for all g € G.

Proof. We may assume that G is an ¢-group, with ¢ coprime to char(k).
By functoriality, a class a € H} (G, Z/(") is also g-unramified.
Conversely, let v € DVg be a divisorial valuation and X a normal
projective model of K = k(V/G) such that v is realized by a divisor
D C X and both D, X are smooth at the generic point of D. Let D*
be a formal neighborhood of this point. The map V — V/G defines a
G-extension of the completion K,. Geometrically, this corresponds to
a union of finite coverings of formal neighborhoods of D*, since G has
order coprime to p: the preimage of D* in V is a finite union of smooth
formal neighborhoods D} of irreducible divisors D; C V. If the covering
m; © Df — D is unramified at the generic point of D; then d,(a) = 0.
On the other hand, if there is ramification, then there is a ¢ € G which
acts trivially on some D;, and we may assume that ¢ is a generator of a
cyclic subgroup acting trivially on D;. Consider the subgroup of G which
preserves D; and acts linearly on the normal bundle of D;. This group
is a subgroup of Z(g); hence there is a Z(g)-equivariant map D} — V
for some faithful linear representation of Z(g) such that o on D}/Z(g)
is induced from V/Z(g). In particular, if « € H}, (Z(g),Z/¢") then
d,(a) = 0. Thus an element which is unramified for any ¢ € G in
H*(G,Z/0") is unramified. O

The considerations above allow to linearize the construction of all finite
cohomological obstructions to rationality.

Corollary 29. Let
1-7Z-G —-G"—1

be a central extension, g € G* a nontrivial element, and g a lift of g to
G¢. Then Z(g) is a sum of liftable abelian subgroups o; containing g.

Lemma 30. An element in the image of H*(G*, Z/(") C H (G, Z /")

1s g-unramified for a primitive element g if and only if its restriction to
Z(g) is induced from Z(g)/{g).

Proof. One direction is clear. Conversely, Z(g) is a central extension
of its abelian quotient. Hence the stabilization homomorphism coincides
with the quotient by the ideal I H (n) (see the proof of Theorem 11). [
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Corollary 31. The subring H:, (G* Z/(") C HX(G*, Z/(") is defined

s,nr

by X, i.e., by the configuration of liftable subgroups o;.

Such cohomological obstructions were considered by Colliot-Théléene
and Ojanguren in [18], where they showed that unramified cohomology
is an invariant under stable birational equivalence. In addition, they
produced explicit examples of nontrivial obstructions in dimension 3.
Subsequently, Peyre [40], [41] gave further examples withn = 3 and n =4
(see also [52], [53]). Similarly to the examples with nontrivial H? (G)
in [2], one can construct examples with nontrivial higher cohomology
using as the only input the combinatorics of the set of liftable subgroups
Y = ¥(G°) for suitable central extensions G¢. Since we are interested
in function fields K = k(V/G¢) with trivial H2 (K), we are looking for
groups G¢ with R(G) = RA(G). Such examples can be found by working
with analogs of quaternionic structures on linear spaces G* = F}", for
n € N.

9. WHAT ABOUT CURVES?

In this section we focus on anabelian geometry of curves over finite
fields. By Uchida’s theorem (see Theorem 1), a curve over k = F,
is uniquely determined by its absolute Galois group. Recently, Saidi-
Tamagawa proved the Isom-version of Grothendieck’s conjecture for
the prime-to-characteristic geometric fundamental (and absolute Galois)
groups of hyperbolic curves [49] (generalizing results of Tamagawa and
Mochizuki which dealt with the full groups). A Hom-form appears in
their recent preprint [48]. The authors are interested in rigid homomor-
phisms of full and prime-to-characterstic Galois groups of function fields
of curves. Modulo passage to open subgroups, a homomorphism

v: G K — G L
is called rigid if it preserves the decomposition subgroups, i.e., if for all
v e DVg

\IJ(DV) = D,,/,
for some v/ € DV;. The main result is that there is a bijection between

admissible homomorphisms of fields and rigid homomorphisms of Galois
groups

Hom™™ (L, K) — Hom"8(Gg, G1)/ ~,
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modulo conjugation (here admissible essentially means that the extension
of function fields K/L is finite of degree coprime to the characteristic,
see [48, p. 3| for a complete description of this notion).

Our work on higher-dimensional anabelian geometry led us to consider
homomorphisms of Galois groups preserving inertia subgroups.

Theorem 32. [8] Let K = k(X) and L = (YY) be function fields of
curves over algebraic closures of finite fields. Assume that g(X) > 2 and
that

U: G% — G
1s an isomorphism of abelianized absolute Galois groups such that for all
v € DV there exists a V' € DV; with

Then k = [ and the corresponding Jacobians are isogenous.

This theorem is a Galois-theoretic incarnation of a finite field version
of the “Torelli” theorem for curves. Classically, the setup is as follows:
let k be any field and C/k a smooth curve over k of genus g(C) > 2, with
C(k) # 0. For each n € N, let J" be Jacobian of rational equivalence
classes of degree n zero-cycles on C. Put J* = J. We have

Choosing a point ¢y € C(k), we may identify J* = J. The image
Image(Ag_1) = © C J is called the theta divisor. The Torelli theorem
asserts that the pair (J,©) determines C', up to isomorphism.

Theorem 33. [8] Let C,C be smooth projective curves of genus g > 2
over closures of finite fields k and k. Let

U J(k) = J(k)
be an isomorphism of abelian groups inducing a bijection of sets
Then k =k and J is isogenous to J.

We expect that the curves C' and C are isomorphic over k.
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Recall that
J(F,) = p-part © @(Qe/ze)%-
t#p
The main point of Theorem 33 is that the set C(F,) C J(F,) rigidifies
this very large torsion abelian group. Moreover, we have

Theorem 34. [8] There exists an N, bounded effectively in terms of g,
such that

U(Fr)Y  and B

(the respective Frobenius) commute, as automorphisms of j(fc)

In some cases, we can prove that the curves C' and C are actually
isomorphic, as algebraic curves. Could Theorem 33 hold with &k and k&
replaced by C? Such an isomorphism ¥ matches all “special” points
and linear systems of the curves. Thus the problem may be amenable to
techniques developed in [31], where an algebraic curve is reconstructed
from an abstract “Zariski geometry” (ibid., Proposition 1.1), analogously
to the reconstruction of projective spaces from an “abstract projective
geometry” in Section 1.

The proof of Theorem 33 has as its starting point the following suffi-
cient condition for the existence of an isogeny:

Theorem 35 ([8], [15]). Let A and A be abelian varieties of dimension
g over finite fields ki, resp. ky (of sufficiently divisible cardinality). Let
kn/ky, resp. kn/ki, be the unique extensions of degree n. Assume that

#A(kn) | #A (k)

for infinitely many n € N. Then char(k) = char(k) and A and A are
1sogenous over k.

The proof of this result is based on the theorem of Tate:
Hom(A, A) ® Zy = Homg, ) (Ti(A), To(A))

and the following, seemingly unrelated, theorem concerning divisibilities
of values of recurrence sequences.
Recall that a linear recurrence is a map R : N — C such that

r—1
R(n+r) = Z a;R(n + 1),
i=0
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for some a; € C and all n € N. Equivalently,

91) R(n) = 3" e, ()",

~ero
where ¢, € C[z] and T C C* is a finite set of roots of R. Through-
out, we need only simple recurrences, i.e., those where the characteristic
polynomial of R has no multiple roots so that ¢, € C*, for all v € T°.
Let I' ¢ C* be the group generated by I'°. In our applications we may
assume that it is torsion-free. Then there is an isomorphism of rings

{Simple recurrences with roots in I'} < CI[I'],

where C[I'] is the ring of Laurent polynomials with exponents in the
finite-rank Z-module I'. The map

RHFREC[F]

is given by
Rw— Fp:= Z ey’

~€eTo

Theorem 36 (CorvajaZannier [20]). Let R and R be simple linear re-
currences such that
(1) R(n),R(7) # 0, for all n,i > 0; i
(2) the subgroup I' C C* generated by the roots of R and R is torsion-
ree;
(3) ]zfchere is a finitely-generated subring A C C with R(n)/R(n) € 2,
for infinitely many n € N.
Then
Q:N — C
is a simple linear recurrence. In particular, Fo € C[I'] and
Fg - Fs = Fh.

This very useful theorem concerning divisibilities is actually an applica-
tion of a known case of the Lang—Vojta conjecture concerning nondensity
of integral points on “hyperbolic” varieties, i.e., quasi-projective varieties
of log-general type. In this case, one is interested in subvarieties of al-
gebraic tori and the needed result is Schmidt’s subspace theorem. Other
applications of this result to integral points and diophantine approxima-
tion are discussed in [1], and connections to Vojta’s conjecture in [54],
[55].
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A rich source of interesting simple linear recurrences is geometry over
finite fields. Let X be a smooth projective variety over k; = F, of
dimension d, X = X X &y ki, and let k, /k1 be the unique extension of
degree n. Then

2d
#HX (k) = tr(Fr") = > (=1)'ci;all,
i=0
where Fr is Frobenius acting on étale cohomology H?,(X,Q,), with £ 1 q,
and ¢;; € C*. Let I := {ay;} be the set of corresponding eigenvalues.
and I'x C C* the multiplicative group generated by «;. It is torsion-free
provided the cardinality of k; is sufficiently divisible.
For example, let A be an abelian variety over ki, {a;};=1,. 24 the set
of eigenvalues of the Frobenius on H!, (A, Qy), for £ # p, and T'y C C*
the multiplicative subgroup spanned by the a;. Then

2g

(9.2) R(n) := #A(ky) = [J(a} - 1).

j=1
is a simple linear recurrence with roots in I'y. Theorem 35 follows by

applying Theorem 36 to this recurrence and exploiting the special shape
of the Laurent polynomial associated to (9.2).

We now sketch a proof of Theorem 33, assuming for simplicity that C
be a nonhyperelliptic curve of genus g(C') > 3.

Step 1. For all finite fields k; with sufficiently many elements (> cg?)

the group J(k;) is generated by C(k;), by [8, Corollary 5.3]. Let
kiCkyC...Ck,C...

be the tower of degree 2 extensions. To characterize J(ky) it suffices to
characterize C'(k,,).

Step 2. For each n € N, the abelian group J(k,) is generated by
¢ € C(k) such that there exists a point ¢’ € C(k) with

c+c € J(ky1).

Step 3. Choose k1, ki (sufficiently large) such that
U(J(k1)) C J(ky)
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Define C(k,,), resp. é’(l;n), intrinsically, using only the group- and set-
theoretic information as above. Then

U(J(k,)) C J(kn), forall neN.

and

- (kn) | 7T (k).
To conclude the proof of Theorem 33 it suffices to apply Theorem 36 and
Theorem 35 about divisibility of recurrence sequences.

One of the strongest and somewhat counter-intuitive results in this
area is a theorem of Tamagawa:

Theorem 37. [58] There are at most finitely many (isomorphism classes
of) curves of genus g over k = F, with given (profinite) geometric fun-
damental group.

On the other hand, in 2002 we proved:

Theorem 38. [14] Let C' be a hyperelliptic curve of genus > 2 over
k=TF,, withp > 5. Then for every curve C' over k there exists an étale

cover m: C'— C and surjective map C — C'.

This shows that the geometric fundamental groups of hyperbolic curves
are “almost” independent of the curve: every such 7 (C') has a subgroup
of small index and such that the quotient by this subgroup is almost
abelian, surjecting onto the fundamental group of another curve C’.

This relates to the problem of couniformization for hyperbolic curves
(see [14]). The Riemann theorem says that the unit disc in the complex
plane serves as a universal covering for all complex projective curves of
genus > 2, simultaneously. This provides a canonical embedding of the
fundamental group of a curve into the group of complex automorphisms
of the disc, which is isomorphic to PGL2(R). In particular, it defines a
natural embedding of the field of rational functions on the curve into the
field of meromorphic functions on the disc. The latter is unfortunately
is too large to be of any help in solving concrete problems.

However, in some cases there is an algebraic substitute. For example,
in the class of modular curves there is a natural pro-algebraic object Mod
(introduced by Shafarevich) which is given by a tower of modular curves;
the corresponding pro-algebraic field, which is an inductive union M of
the fields of rational functions on modular curves. Similarly to the case
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of a disc the space Mod has a wealth of of symmetries which contains a
product [[,SL2(Z,) and the absolute Galois group G(Q/Q).
The above result alludes to the existence of a similar disc-type algebraic

object for all hyperbolic curves defined over F, (or even for arithmetic
hyperbolic curves).

For example consider Cy given by y® = z(z — 1) over F,, with p # 2,3,
and define Cy as a pro-algebraic universal covering of Cs. Thus IF‘p(C’G) =
UTF,(C;), where C; range over all finite geometrically nonramified cov-
erings of Cs. Then F,(Cs) contains all other fields F,(C), where C is
an arbitrary curve defined over some F, C FF,. Note that it also implies
that étale fundamental group 71 (Cs) contains a subgroup of finite index
which surjects onto m;(C') with the action of Z = G(F,/F,).

The corresponding results in the case of curves over number fields
K C Q are weaker, but even in the weak form they are quite intriguing.
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