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Abstract. We study hyperbolic curves and their Jacobians over �nite
�elds in the context of anabelian geometry.

1. Introduction

This paper is inspired by the foundational results and ideas of John Tate in the
theory of abelian varieties over �nite �elds. To this day, the depth of this theory
has not been fully explored. Here we apply Tate's theorems to anabelian geometry
of curves over �nite �elds.

Let C be an irreducible smooth projective curve of genus g = g(C) ≥ 2
de�ned over a �eld k and let C(k) be its set of k-rational points. When k is the
�eld of complex numbers, the complex torus

H0(C(C),Ω1
C)∨/H1(C(C),Z)

is the set of complex points of an algebraic variety, the Jacobian variety J of C.
Choosing a point c0 ∈ C(C) we get a map

C(C)→ J(C)
c 7→ (ω 7→

∫
γ
ω),

where ω ∈ Ω1
C is a global section of the sheaf of holomorphic di�erentials on C and

γ is any path from c0 to c. In a more algebraic interpretation, the abelian group
J(C) is isomorphic to Pic0(C), the group of degree-zero divisors on C modulo
principal divisors, and the map above is simply:

C(C)→ J(C)
c 7→ c− c0.

This construction can be carried out over any �eld k, provided the basepoint c0 is
de�ned over k, by a fundamental result of Weil, the Jacobian J is de�ned over the
�eld of de�nition of C, and the set-theoretic maps above arise from k-morphisms.
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For each n ∈ N, we get maps

Cn(k) σn−→ C(n)(k)
ϕn−→ J(k)

where Cn is the n-th power and C(n) = Cn/Sn is the n-th symmetric power
of C, i.e., C(n)(k) is the set of e�ective degree-n zero-cycles on C which are
de�ned over k. The map to the Jacobian assigns to a degree-n zero-cycle c1 +
. . . + cn ∈ C(n)(k) the degree-0 zero-cycle (c1 + . . . + cn) − nc0. The maps ϕn

capture interesting geometric information. For example, ϕg is birational, which
leads to an alternative de�nition of J as the unique abelian variety birational to
C(g). The locus Θ := ϕg−1(C(g−1)) ⊂ J is an ample divisor, the theta-divisor.
The classical Torelli theorem says that the pair (J,Θ), consisting of the Jacobian
J of C and its polarization Θ, determines C up to isomorphism. This theorem
holds over any �eld and is one of the main tools in geometric and arithmetic
investigations of algebraic curves, relating these to much more symmetric objects
- abelian varieties.

From now on, let k0 be a �nite �eld of characteristic p and k = k̄0 an algebraic
closure of k0. Recall that J(k) is a torsion abelian group, with `-primary part

J{`} ' (Q`/Z`)2g, for ` 6= p.

The description of J{p} is slightly more complicated: there exists a nonnegative
integer n ≤ g such that J{p} ∼= (Qp/Zp)n. Nevertheless, as an abstract abelian
group, J(k) depends �almost� only on the genus g of C. The procyclic Galois
group of k/k0 acts on J(k) and one can consider the Galois representation on the
Tate-module:

T`(J) := lim←− J [`n], ` 6= p,

where J [`n] ⊂ J(k) is the subgroup of `n-torsion points. Let FJ be the character-
istic polynomial of the Frobenius endomorphism on

V`(J) := T`(J)⊗Q`.

By a fundamental result of Tate, FJ determines the Jacobian as an algebraic
variety, modulo isogenies:

Theorem 1.1 (Tate [Tat66]). Let J, J̃ be abelian varieties over k0 and FJ , FJ̃ ∈
Z[T ] the characteristic polynomials of the k0-Frobenius endomorphism Fr acting
on V`(J), resp. V`(J̃). Then

Hom(J, J̃)⊗ Z`
∼−→ HomZ`[Fr](T`(J), T`(J̃)).

The abelian varieties J and J̃ are isogenous if and only if FJ = FJ̃ .

In particular, while the Galois-module structure of J(k) distinguishes J in a
rather strong sense (but not up to isomorphism of abelian varieties, an example
can be found in [Zar08], Section 12), the group structure of J(k) does not.
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In this paper, we investigate a certain �group-theoretic� analog of the Torelli
theorem for curves over �nite �elds. This analog has a natural setting in the
anabelian geometry of curves. Throughout, we work in characteristic ≥ 3.

Let J1 be the Jacobian of (degree-1 zero-cycles of) C and

j1 : C(k) ↪→ J1(k)
c 7→ [c] (1)

the corresponding embedding. The Jacobian J of degree-0 zero-cycles on C acts on
J1, translating by points c ∈ C(k). Let C̃, resp. J̃ , be another smooth projective
curve, resp. its Jacobian. We will say that

φ : (C, J)→ (C̃, J̃)

is an isomorphism of pairs if there exists a diagram

J(k)

φ0

��

J1(k)

φ1

��

C(k)
j1

oo

φs

��

J̃(k) J̃1(k) C̃(k)
j̃1

oo

where

• φ0 is an isomorphism of abstract abelian groups;
• φ1 is an isomorphism of homogeneous spaces, compatible with φ0;
• the restriction φs : C(k)→ C̃(k) of φ1 is a bijection of sets.

Our main result is:

Theorem 1.2. Let k = F̄p, with p ≥ 3, and let C, C̃ be smooth projective curves

over k of genus ≥ 2, with Jacobians J , resp. J̃ . Suppose that there exists an
isomorphism of pairs

φ : (C, J)→ (C̃, J̃).

Then J and J̃ are isogenous.

Conjecture 1.3. Under the assumptions of Theorem 1.2, C and C̃ are isomorphic
as algebraic varieties, modulo Frobenius twisting.

There are examples of geometrically nonisomorphic curves over �nite �elds
with isomorphic Jacobians, as (unpolarized) algebraic varieties over k0. Pairs of
such curves are given by

y2 = (x3 + 1)(x3 − 1) and y2 = (x3 − 1)(x3 − 4)
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over F11 with Jacobian E × E, for a supersingular elliptic curve E, or

y2 = x5 + x3 + x2 − x− 1 and y2 = x5 − x3 + x2 − x− 1

over F3, with a geometrically simple Jacobian (see [IKO86], [How96] and the
references therein).

Theorem 1.2 was motivated by Grothendieck's anabelian geometry. This is a
program relating algebraic fundamental groups of hyperbolic varieties over arith-
metic �elds to the underlying algebraic structure. One of the recent theorems in
this direction is due to A. Tamagawa: Let Π be a nonabelian pro�nite group.
Then there are at most �nitely many curves over k = F̄p with tame fundamental
group isomorphic to Π [Tam04]. Tamagawa generalized previous results by Pop-
Saidi [PS03] and Raynaud [Ray02], who proved similar statements under some
technical restrictions on curves. The main new ingredient in Tamagawa's proof is
a delicate geometric analysis of special loci in Jacobians.

In the second part of this paper, we apply Theorem 1.2 to a somewhat ortho-
gonal problem. Namely, we focus on the prime to p part of the abelianization of the
absolute Galois group of the function �eld of the curve, together with the set of
valuation subgroups. Our main result (Theorem 8.4) is that for projective curves
C over k, of genus g(C) > 3, the pair (Ga

K , I), consisting of the abelianization
of the Galois group of K = k(C) and the set I = {Ia

ν }ν of inertia subgroups
Ia
ν ⊂ Ga

K corresponding to nontrivial valuations of K, determines the isogeny class
of the Jacobian of C.

Here is a road-map of the paper. In Section 2, included as a motivation for
Conjecture 1.3, we discuss certain subvarieties of moduli spaces of curves cut out
by conditions on the order of zero-cycles of the form c−c′ on C in the group J(k)
(i.e., images of Hurwitz schemes and their intersections). Typically, very few such
conditions su�ce to determine C, up to a �nite choice. In Section 3 we study the
formal automorphism group GC of the pair (C, J) and derive some of its basic
properties. In Section 4 we collect several group-theoretic results about pro�nite
groups which we apply in Section 5 to prove that any elements γ, γ̃ ∈ GC have
the property that some integral powers γn, γ̃ñ commute. We then prove that this
holds for the Frobenius endomorphisms φ0(Fr) and F̃r, as elements in Aut(J̃(k)),
whenever we have an isomorphism of pairs φ : (C, J) → (C̃, J̃). In Section 6
we apply the theory of integer-valued linear recurrences as in [CZ02] to obtain
a su�cient condition for isogeny of abelian varieties. In Section 7 we construct
towers of degree-2 �eld extensions

k0 ⊂ . . . ⊂ kn ⊂ . . . ⊂ k∞, resp. k̃0 ⊂ . . . ⊂ k̃n ⊂ . . . ⊂ k̃∞,

provide set-theoretic intrinsic de�nitions of J(kn), resp. J̃(k̃n), and establish that

φ0(J(kn)) ⊂ J̃(k̃n), for all n.
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Combining Tate's theorem 1.1 with Theorem 6.3 we conclude that J and J̃ are
isogenous. In Section 8 we discuss extensions and applications of Theorem 1.2 to
anabelian geometry.

Acknowledgments: We very much appreciate the extremely helpful reports by the
referee. We are grateful to A. Venkatesh and U. Zannier for useful suggestions, and
to B. Hassett, L. Kindler and Yu. Zarhin for their comments. The �rst author was
partially supported by NSF grant DMS-0701578. The third author was partially
supported by NSF grant DMS-0602333.

2. Curves and their moduli

Let k0 be a �nite �eld of characteristic p and let k be an algebraic closure of
k0. Let C be an irreducible smooth projective curve of genus g = g(C) > 1 over
k0 with C(k0) 6= ∅, and let J = JC be its Jacobian. The Jacobian of degree-1
zero-cycles J1 is a principal homogeneous space for J . For ` a prime number let

J{`} := ∪n∈NJ [`n] ⊂ J(k), resp. T`(J) = lim←− J [`n]

be the `-primary part of J(k), resp. the Tate-module. For any set of primes S,
put

J{S} :=
⊕
`∈S

J{`} ⊂ J(k).

The order of x ∈ J(k) will be denoted by ord(x).

Lemma 2.1. Let C be a curve of genus g > 1. Let J be its Jacobian and a ∈ J(k)
be such that

a+ C(k) ⊂ C(k) ⊂ J1(k).

Then a = 0.

Proof. Let 〈a〉 be the cyclic subgroup generated by a and let n be its order. The
translation by a gives an action of 〈a〉 on J1 and a separable unrami�ed covering
C → C/〈a〉 of degree n. The quotient J̄ := J/〈a〉 acts on the corresponding
principal homogeneous space J̄1 = J1/〈a〉. The image C̄ of C under the projection
J1 → J̄1 has genus ḡ = g/n − 1/n + 1 < g, since n ≥ 2 and g(C) ≥ 2. Hence
the Jacobian of C̄ is a proper abelian subvariety of J̄ , of dimension at most ḡ.
It follows that the same holds for its preimage C, contradicting the fact that C
generates J .

De�nition 2.2. An ordered set Rn = {r1, . . . , rn} of integers rj > 1 will be called
an n-string. Let J be an abelian variety over k and X ⊂ J(k). An ordered subset
{x0, x1, . . . , xn} ⊂ X will be called an Rn-con�guration on X if rj = ord(xj−x0),
for 1 ≤ j ≤ n.
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We will mostly consider the case when X = C(k) ↪→ J(k), where C is a curve
of genus g = g(C) ≥ 1. Note that an isomorphism of pairs φ : (C, J) → (C̃, J̃)
preserves all con�gurations, i.e., for all n ∈ N, every Rn-con�guration in C(k) ⊂
J(k) is mapped to an Rn-con�guration in C̃(k) ⊂ J̃(k). In particular, φ maps
equivalent e�ective divisors on C to equivalent divisors on C̃. Since the projective
dimension of the space of global sections of a divisor D on a curve is de�ned as
the maximal degree of an e�ective divisor D′ such that D −D′ is still e�ective,
the isomorphism φ respects these dimensions. Since the canonical class on a curve
of genus ≥ 2 is the unique class of dimension 2g− 2, the map φ maps a canonical
divisor of C to a canonical divisor of C̃. However, a priori, the corresponding
set-theoretic bijection

P(H0(C,KC))(k)↔ P(H0(C̃,KC̃))(k̃)

does not preserve the projective structure. If we had an isomorphism of projective
structures, we would immediately obtain an isomorphism of curves, as algebraic
varieties.

Theorem 2.3. Let C be a curve over k = F̄p of genus g > 1. Then there exists an
n-string Rn, with n < 3g − 2 such that

• C(k) ⊂ J(k) contains an Rn-con�guration,
• there exist at most �nitely many nonisomorphic curves of genus g contain-
ing an Rn-con�guration.

Proof. We write Mg,n for the moduli space (stack) of genus g curves with
n-marked points. The subvariety of Mg parametrizing curves with an Rn-
con�guration is contained in the intersection of varieties corresponding to con�g-
urations of order 1 built from appropriate subsets of Rn.

Every 1-string R1 = {r1} de�nes an algebraic subvariety DR1,g ⊂ Mg,1. By
[Hru96] and [PR04], the number of points of �nite order on a nonisotrivial curve
embedded into an abelian variety, over a function �eld of positive dimension, is
bounded. Applying this theorem to the Jacobian �bration of the universal curve
over the function �eld ofMg, we conclude that the subvariety DR1,g projects with
�nite �bers onto a proper subvariety of Mg for all r1 � 0. Now we can proceed
by induction. Assume that C contains an Rn-con�guration {c0, . . . , cn} ⊂ C(k)
and let DRn

⊂Mg,1 be a union of irreducible subvarieties of dimension ≤ 3g− n,
corresponding to curves with such a con�guration, each having a �nite map onto
a subvariety ofMg. Using [Hru96] and [PR04] for each irreducible component D
of DRr

we conclude that there exists an Nr+1 such that:

1. there is a point cr+1 ∈ C(k) with cr+1 − c0 of order Nr+1,
2. in each irreducible component of DRr

the subvariety parametrizing curves
with a torsion point of order Nr+1 is proper.

Iterating this, in at most 3g−2 steps we obtain a string R and a zero-dimensional
variety D such that C(k) contains an R-con�guration which distinguishes C from
all but �nitely many other genus g curves over k.
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Remark 2.4. Over C, the Hurwitz scheme parametrizing genus g curves admitting
a degree-m map onto P1, with rami�cation of degree m at two distinct points, is
irreducible and has dimension 2g−1. The generic point of this scheme corresponds
to a cover with simple additional rami�cation points whose images are all distinct.
Indeed, a cycle c1−c0 of orderm de�nes a function f on C with divisorm(c1−c0),
and thus a cover C → P1 of degree m, which is totally rami�ed over two points:
0,∞. The genus computation gives an upper bound of 2g for the number of
additional rami�cation points. Since there are only �nitely many covers of �xed
degree with �xed branch points in P1, the dimension of the corresponding Hurwitz
scheme is bounded by 2g − 1.

We have dimMg,1 = 3g − 2 and codimDr1,g = g − 1. Accordingly, a gen-
eral 3-con�guration should give a subvariety of dimension 1 in Mg,1 and a 4-
con�guration - a zero-dimensional subvariety inMg,1.

Conjecture 2.5. For any curve C of genus g(C) ≥ 2 there exist a string R4 and
an R4-con�guration on C such that there are only �nitely many curves C̃ with
an R4-con�guration on C̃ realizing the R4-string. Moreover, all such curves and
such R4-con�gurations are Galois conjugated.

Clearly, this would imply a strong version of Conjecture 1.3.

Remark 2.6. Consider R3 = {2, 3}. Transversality would give 3g−2−(2g−2) = g
in this case. However, the corresponding intersection is trivial.

Indeed, in general the set of solutions nc0 = nc is trivial for odd n ≤ g − 1,
and a point c0 invariant under a hyperelliptic involution. For n ≤ g − 1 and n
even the point c is always invariant under a hyperelliptic involution.

In fact, we have a �supertransversality� for these Hurwitz schemes.

Proposition 2.7. Let r1, r
′
1 be coprime integers. Let R1 = {r1} and R′1 = {r′1} be

the corresponding 1-strings and Z := DR1,g ∩ DR′
1,g ⊂ Mg,1 the intersection of

the associated Hurwitz schemes. Then Z = ∅, provided g ≥ (r1 − 1)(r′1 − 1)/2.

Proof. The coprimality condition implies that the pair of functions (fr1 , fr′
1
), with

divisors r1(c1 − c0), resp. r′1(c
′
1 − c0), realizing the con�guration, gives a map

C → P1 × P1, birational onto its image. The family of such curves in P1 × P1 is
algebraic. Hence g(C) ≤ (r1 − 1)(r′1 − 1)/2. Indeed, a smooth curve in the family
has genus g = (C(C+K)/2)+1 (where K = KP1×P1 is the canonical class) which
gives

(r1H+r′1H
′)((r′1−2)H+(r′1−2)H ′)/2+1 = (2r1r′1−2r1−2r′1)/2+1 = (r1−1)(r′1−1).

The image of C in P1×P1 has a singularity in the image of c0, the same singularity
as the rational curve (tr1 , tr

′
1). This rational curve has the same homology class

as C and has exactly two equivalent singularities, at (0, 0) and at (∞,∞). Thus
if (r1 − 1)(r′1 − 1)− 2δ(r1, r′1) = 0 then the defect of the singularity is δ(r1, r′1) =
(r1 − 1)(r′1 − 1)/2, which gives a lower bound for the defect for C. Hence g(C) ≤
(r1 − 1)(r′1 − 1)/2.
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Conjecture 2.8. Let r1, r
′
1, r
′′
1 ∈ N be pairwise coprime, let fr1 , fr′

1
, fr′′

1
∈ k(C)

be functions as above and λ ∈ k∗ \ {1}. Assume that there are four points
c0, c1, c2, c3 ∈ C(k) such that

div(fr1) = r1(c0 − c1)
div(fr′

1
) = r′1(c0 − c2)

div(fr′′
1
) = r′′1 (c0 − c3)

and such that

fr1(c2) = 1 and fr1(c3) = λ.

Then there are only �nitely many curves C̃ with the same property.

This would imply that the 3-point scheme intersection

DR1,g ∩ DR′
1,g ∩ DR′′

1 ,g ⊂Mg,1

has dimension at most 1, and, using the argument in the proof of Theorem 2.3,
the claim in Conjecture 2.5 concerning the �niteness of the set of curves with
prescribed 4-strings. We don't know whether or not this intersection is irreducible.
We would expect it at least for su�ciently large coprime r1, r

′
1, r
′′
1 .

3. Formal automorphisms

Let A be an abelian variety de�ned over an algebraic closure k of a �nite �eld,
A1 a principal homogeneous space for A and X ⊂ A1 a closed subvariety not
preserved by the action of an abelian subvariety of A of positive dimension.

Lemma 3.1. The subgroup

StabX := {a ∈ A(k) | a+X(k) ⊂ X(k)}

is �nite.

Proof. See, e.g., [Abr94].

Let Aut(A) be the group of automorphisms of the torsion abelian group
A(k) and let Aut(A)aff be the group of a�ne automorphisms of the principal
homogeneous space A1(k). We have

Aut(A) = Aut(A)p ×
∏
` 6=p

GL2d(Z`),

with d = dimA and Aut(A)p = GLt(Zp), where t is the rank of the étale p-
subgroup of A(k). There is a split a�ne extension

1→ A(k)→ Aut(A)aff
%−→ Aut(A)→ 1, (2)
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where the projection % corresponds to the action on zero-cycles. Let

GX := {γ ∈ Aut(A)aff | γ(X(k)) ⊆ X(k) ⊂ A1(k)}

be the subgroup preserving X(k). We call GX the group of automorphisms of the
pair (X,A).

Lemma 3.2. The projection of GX to Aut(A) has �nite kernel.

Proof. Follows from Lemma 3.1.

Lemma 3.3. For every a ∈ A1(k) the intersection Ga∩GX has �nite index in GX .

Proof. Consider

GX ⊂ Aut(A)aff
%−→ Aut(A)

and let %X be the restriction of % to GX . For each α ∈ A(k) let Gα,X ⊂ GX be
the preimage of the intersection of %(GX) with the stabilizer of α in Aut(A). The
group Gα,X has �nite index in GX since the order of α is unchanged under an
automorphism of X. Hence, if Ga ∩ GX has �nite index in GX for at least one
point a ∈ A1(k), we have the same property for all points.

We now assume that a ∈ X(k). Put

Xa :=
⋂

x∈X(k)

(X(k) + (a− x)).

Then Xa is the set of k-points of an algebraic subvariety of X, containing a. Since
the intersection runs over k-points of an algebraic variety, we can �nd �nitely
many x1, . . . , xr such that

Xa =
r⋂

j=1

(X(k) + αj) with αj := a− xj .

We have, for all j,

(GXa ∩GX) ⊇ ∩jGαj ,X ,

as a subgroup of �nite index. If Xa is �nite then Ga ∩GX has �nite index in GX ,
as claimed. Otherwise, note that for all a′ ∈ X(k), Xa′ is a translate of Xa by
a′ − a. In particular, if a′ ∈ Xa then

a′ = x′ + (a− x),

for some x′ ∈ X(k). Thus, for any x ∈ X(k) the translate x+ (a′ − a) ∈ X(k) so
that X(k) = X(k)+(a−a′). Conversely, Xa is also invariant under translations by
a−a′, provided a, a′ ∈ Xa, i.e., Xa is a principal homogeneous space for (k-points
of) a positive-dimensional subvariety of A, which preserves X. This contradicts
our assumptions on X.
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Remark 3.4. The group GX always contains the procyclic subgroup Ẑ generated
by a Frobenius automorphism, and its extension by a �nite group of algebraic
automorphisms of the pair (X,A).

Proposition 3.5. Let A be an abelian variety of dimension d. Let X ⊂ A1 be
a subvariety which is not preserved under translations by a positive-dimensional
abelian subvariety of A. Assume that all components of X have dimension ≥ 1.
Let GX be the group of automorphisms of the pair (X,A). Let

ψ =
∏

`

ψ` : GX → GLt(Zp)×
∏
` 6=p

GL2d(Z`), t ∈ [0, d],

be the corresponding homomorphism. Then, for all γ ∈ GX \ Ker(ψ), there are
in�nitely many ` such that ψ`(γ) 6= 1.

Proof.
Step 1. Fix γ ∈ GX and x0 ∈ X(k) and write γ(x)− x0 = βγ(x− x0) + aγ ∈

A(k), where βγ = %(γ) (see Equation (2)) and aγ ∈ A(k) is an a�ne translation. In
particular, if βγ acts trivially on A{`} and aγ projects to 0 ∈ A{`}, for ` /∈ S, then
the action of γ is trivial on the �bers of the projection A1(k)→ A1(k)/⊕`/∈SA{`}.

Step 2. Assume that βγ 6= 1. Then for any x ∈ A1(k)/ ⊕`/∈S A{`}, with
γ(x) 6= x de�ne Xγ(x) := X ∩ (X + (γ(x)− x)). By assumption on γ and the
projection, Xγ(x) contains all points of X over x.

Step 3. Let us show thatX is invariant under translations by γ(x)−x. Assume
on the contrary that Xγ(x) is a proper subvariety of X. Thus for some component
Xi ⊂ X, with dim(Xi) > 0, the intersectionXγ(x)∩Xi ( Xi. Then there is a curve
C ∈ Xi which has �nite intersection with Xi,γ(x). However, the intersection of C
with the preimage of γ(x) is in�nite (see Theorem 5.5 and [BT05]), contradiction.

Step 4. Hence, for any x ∈ A1(k), the element γ(x)−x belongs to the subgroup
of those translations which keep X invariant. By our assumptions on X, this
subgroup is �nite.

Step 5. The group generated by γ(x)−x, x ∈ A{S} is �nite only if the βγ = 1.
Assume the contrary. Consider the action of γ on A{`}, for ` ∈ S. The group
generated by βγ(x)− x in A{`} is in�nite unless βγ = 1. Indeed, if βγ(x)− x = y
then n(βγ(x/n)−x/n) = y and hence the image of (βγ−1) is a divisible subgroup
of A{`} and hence in�nite for the linearized action of βγ 6= 1. On the other hand,
the group R generated by projections of γ(x)−x to A{`}, x ∈ A1(k) contains the
group R` generated by βγ(z)− z, z ∈ A{`} as a subgroup of �nite index. Indeed,
if we write z = x − y, x, y ∈ R then βγ(z) − z = γ(x) − x − (γ(y) − y). Thus
R` has to be trivial for R to be �nite which implies that βγ(z) − z = 0 for any
z ∈ A{`}, ` ∈ S.

De�nition 3.6. A homomorphism of abelian groups φ0 : A(k) → A(k) is called
a formal endomorphism if it arises from a sequence {φ0

i } of algebraic endomor-
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phisms φ0
i : A → A, with the property that for all �nite subgroups G ⊂ A(k),

there exists an n(G) ∈ N such that φ0
i |G = φ0

|G, for all i ≥ n(G).

An example is a Ẑ∗-power of the Frobenius endomorphism Fr ∈ Endk0(A).

Proposition 3.7. Let (X,A) be a pair as in Proposition 3.5 and let γ ∈ GX be
an element which commutes with the Frobenius action. Then %(γ) is a formal
endomorphism.

Proof. Recall that the endomorphism ring End(A) is �nitely-generated over Z
and that End(A)Q is a sum of simple algebras over Q corresponding to sim-
ple components of the isogeny type of A. Any element in End(A) with non-
trivial projection into the factors de�nes an endomorphism of A. Note that∏

` 6=p End(T`)×End(T et
p ) contains a subalgebra EF of elements commuting with

the action of Frobenius on T`, ` 6= p and T et
p .

The statement of the lemma is equivalent to the existence, for any h ∈ EF

and any �nite subgroup S ⊂ A(k), of an h′ ∈ End(A) such that h′ = h on S.
If S is an `-group then the result follows from Tate's theorem, which identi�es
End(A)⊗Z` with the centralizer of the `-component of EF . Similar result for any
S of order coprime to p follows from the density of End(A) under projection to
any �nite product of End(T`). Tate's theorem implies the same result for the full
p-divisible subgroup Ap of A. Note that Ap splits functorially into a product of the
étale Aet

p and the local A0
p parts. In order to prove the lemma it su�ces to extend

an endomorphism of Aet
p , which commutes with the Frobenius endomorphism, to

an endomorphism of Ap. The action of Frobenius respects the splitting above.
Thus we can always extend an automorphism of Aet

p by identity on A0
p. If the

endomorphism of Aet
p commutes with Frobenius the same holds for the extension.

This implies the lemma.

4. Group-theoretic background

In this section we collect some group-theoretic facts which will be needed in
the proof of Theorem 5.11 - assuring that the Frobenius endomorphisms in
Aut(J(k)) = Aut(J̃(k) commute.

Lemma 4.1. Let ` > n+ 1 be a prime and G ⊂ GLn(Z`) a closed subgroup with
an abelian `-Sylow subgroup. Assume further that G is generated by its `-Sylow
subgroups. Then G is abelian.

Proof. Since ` > n + 1, the group G does not contain elements of �nite `-order.
Indeed, assume that γ ∈ GLn(Z`) has order `. Then it generates a subalgebra of
the matrix algebra which contains a sub�eld Q`(

√̀
1), which has dimension `− 1

over Q`, and has to embed into the natural representation space Qn
` . This implies

that ` ≤ n+ 1.
Consider the reduction homomorphism

ψ̄` : G→ GLn(Z/`).
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The preimageG0 = ψ̄−1
` (1) of the identity in GLn(Z/`) is a normal pro-` subgroup.

In particular, G0 is contained in every `-Sylow subgroup of G. Hence G0 is abelian
and torsion-free, i.e., G0 ' Zr

` , for some r ∈ N.

Step 1. Since G is generated by its `-Sylow subgroups, which are abelian, and
G0 is contained in all these subgroups, G0 commutes with all elements of G. Let
G′0 be the `-component of the center of G. It is a torsion-free group isomorphic
to Zr

` and containing G0 as a subgroup of �nite index.
Thus G is a central extension

1→ G′0 → G→ G′ → 1 (3)

where G′ is a �nite group.

Step 2. By Schur's theorem, since G is a group whose center has �nite index,
the derived group [G,G] is �nite, and G is a split extension of [G,G], a �nite
group of `-prime order, by a Sylow pro-` subgroup, which is isomorphic to Zr

` .

Step 3. Since G has no `-torsion, G̃ has order coprime to `. It follows that f
admits a section σ : Zr

` → G.

Step 4. We claim that Zr
` acts trivially on G̃ and that the extension

1→ G̃→ G
f→ Zr

` → 1

splits.
Let g ∈ GLn(Z`) be an element of in�nite `-order (i.e., all but �nitely many

reductions ψ̄`m(g) ∈ GLn(Z/`m) are of nontrivial `-power order). Consider an
element h ∈ G ⊂ GLn(Z`) of �nite order. Assume that g` commutes with h.
Then g commutes with h. Indeed, in that case, both g and hgh−1 are in the same
triangular subgroup U as g` = (hgh−1)`, and in this subgroup U the extraction
of `-th roots is unique (log is bijective from U to its Lie algebra).

We have g = gsgu where gs is semi-simple, gu is unipotent, and gs, gu

commute. If an element h ∈ GLn(Z`) has �nite order and commutes with g
then it commutes with gs and gu. Note that (g`)u = (gu)` and that they have
the same commutators. Thus we can assume g = gs. In this case the algebra

Q`[g] ⊂ Matn×n(Q`) is a direct sum of �elds K
(g)
i (�nite extensions of Q`).

The subalgebra in Matn×n(Q`) of elements commuting with h is a direct sum

of matrix algebras over division algebras with centers K
(g)
i . We have a natural

embedding of algebras Q`[g`] ⊆ Q`[g]. If this embedding is an isomorphism then

h commutes with g. Otherwise, there is a proper sub�eld K
(g`)
i ⊂ K

(g)
i , which

does not contain the projection of g to this component of the matrix algebra.

The Galois group Gal(K(g)
i /K

(g`)
i ) is a subgroup of the a�ne extension of Z/` by

Z/(`− 1) ' Gal(Q`(ζ`)/Q`). If K
(g)
i /K

(g`)
i is not Galois then [K(g)

i : K(g`)
i ] = `,

contradicting the assumption ` > n+1. Otherwise, both K(g)
i ,K

(g`)
i are sub�elds

of Q`(ζ`). Note that the `-subgroup of invertible elements in the multiplicative

12



group of any sub�eld of Q`(ζ`) is a direct summand of the `-group of this �eld,

hence primitive. Since g` is a primitive element in K
(g`)
i it will remain primitive

in Q`(ζ`), contradicting the assumption that g` is an `-power of an element in
Q`(ζ`).

Step 5. Since G is generated by its `-Sylow subgroups and all elements of G̃
commute with Zr

` , it follows that G̃ = 1 and G = Zr
` .

Lemma 4.2. Let H′ → H be a surjective homomorphism of �nite groups. Assume
that we have an exact sequence

1→ S` → H→ C→ 1

where S` is a nontrivial normal `-subgroup of H, C is a cyclic group whose order
is a power of a prime number 6= `.

Then there is an `-Sylow subgroup S′` ⊂ H′ such that

• S′` surjects onto S`,
• the normalizer N′ of S′` in H′ surjects onto H.

In particular, there exists an element h′ ∈ N′ of order coprime to ` which surjects
onto a generator of C.

Proof. All `-Sylow subgroups of H′ surject onto S`. Hence they generate a proper
normal subgroup S′ ⊂ H′ which surjects onto S`. Any h

′ ∈ H′ acts (by conjugation)
on the set S(H′) of `-Sylow subgroups of H′.

Since S′ acts transitively on S(H′) there exists an element s′ ∈ S′ such that
h′s′ acts with a �xed point on S(H′). Let S̃′ be an `-Sylow subgroup preserved
by h′s′. The normalizer N′ of S̃′ surjects onto H. In particular, we can �nd an
element h̃′ contained in this normalizer, of order coprime to `, which is mapped
to a generator of C.

Let H be a �nite group and `, p two distinct primes. We say that H contains
an (`, pm)-extension {s ∈ S`, n ∈ N} if the following holds:

• S` ⊂ H is an `-Sylow subgroup,
• N ⊂ H is a subgroup containing S` as a normal subgroup,
• the quotient C := N/S` is a cyclic group of order pm1 with m1 > m,
• n ∈ N projects onto a generator of C,
• s ∈ S` satis�es [s, npm

] 6= 1 in S`.

Corollary 4.3. Let π : H′ → H be a surjective homomorphism of �nite groups.
Assume that H contains an (`, pm)-extension {s ∈ S`, n ∈ N}. Then H′ contains
an (`, pm′

)-extension {s′ ∈ S′`, n
′ ∈ N′}. Moreover,

• m′ ≥ m,
• π(S′`) = S`,
• π(s′) = s,
• π(n′) = n.

13



Proof. We start with the exact sequence

1→ S` → N→ C→ 1. (4)

The full preimage of N in H′ contains an `-Sylow subgroup S′` of H
′. By Lemma 4.2,

the normalizer of S′` in H′ contains an element n′ of order coprime to ` such that
π(n′) = n, surjecting onto a generator of C. We may correct n′ such that its
order becomes a power of p. It is divisible by the order of C, i.e., it equals pm′

,
with m′ ≥ m. Let N′ ⊂ H′ be the subgroup generated by S′` and n′. Take s′ to
be any element in the preimage π−1(s). Then {s′ ∈ S′`, n

′ ∈ N′} is the required

(`, pm′
)-extension.

Let G be a smooth Z-model of a reductive linear algebraic group de�ned over
Q. We will use the following generalization of a theorem of Jordan:

Theorem 4.4. Let k0 be a �eld with q = pr elements. There exists an n = n(G) ∈ N
such that every subgroup G ⊂ G(k0) with p - |G| contains an abelian normal

subgroup H ⊂ G with |G/H| ≤ n.
Further, there exists an `0 = `0(G) such that for all primes `′ and all primes

` ≥ `0 with ` 6= `′, the `-Sylow subgroups of G(Z/`′) and G(Z`′) are abelian.

Proof. See [BF66], [Wei84].

Proposition 4.5. Let G be a pro�nite group. Let S be an in�nite set of primes.

Let

ψ =
∏
`∈S

ψ` : G→
∏
`∈S

G(Z`)

be a continuous homomorphism. Assume that for all γ ∈ G, γ 6= 1 one has

ψ`(γ) 6= 1 ∈ G(Z`) (5)

for in�nitely many ` ∈ S (i.e., γ has in�nite support). Then

1. the induced reduction map

ψ̄ :=
∏
`∈S

ψ̄` : G→
∏
`∈S

G(Z/`)

is injective;

2. there exists an `0 = `0(G) such that for all primes ` > `0 the `-Sylow
subgroup of G is abelian;

3. there exist a normal closed abelian subgroup H ⊂ G and an n = n(G) such
that G/H has exponent bounded by n, i.e., the order of every element in

G/H is bounded by n.

14



Proof. Put

K` := Ker(G(Z`)→ G(Z/`)).

We have an exact sequence

1→
∏
`∈S

K` →
∏
`∈S

G(Z`)→
∏
`∈S

G(Z/`)→ 1

Our assumption implies that ψ is injective, and we get an injection of the kernel
of the reduction Ker(ψ̄) ↪→

∏
`∈S K`. If we had a nontrivial γ ∈ Ker(ψ̄), its

image ψ(γ) would generate a nontrivial closed procyclic subgroup isomorphic to∏
`′∈S′ Z`′ ⊂

∏
`∈S K`, for some in�nite set S′ ⊂ S. Thus, there would exist a

nontrivial element γ`′ ∈ Ker(ψ̄) such that ψ`(γ`′) = 1 for all ` 6= `′, contradicting
our assumption. This proves the �rst claim.

The second claim follows by combining the injectivity of∏
`′∈S\`

ψ` : G→
∏

`′∈S\`

G(Z/`′)

with Theorem 4.4.
From now on, we assume that ` > `0 so that the `-Sylow subgroup of G is

abelian.

Lemma 4.6. There exists a constant κ = κ(G) such that for all ` > `0, there exists
a normal abelian subgroup Z` ⊂ ψ̄`(G) of index

[ψ̄`(G) : Z`] ≤ κ.

Proof. If the image ψ̄`(G) ⊂ G(Z/`) does not contain elements of order ` we can
directly apply Theorem 4.4 to conclude that ψ̄`(G) contains a normal abelian
subgroup of index κ(G) = n(G).

We may now assume that the image does contain elements of order `. We
claim that there do not exist γ, γ′ ∈ G such that

• ψ̄`(γ), ψ̄`(γ) have `-power order and
• ψ̄`(γ), ψ̄`(γ) do not commute in G(Z/`).

Otherwise, both ψ`(γ) and ψ`(γ′) are contained in some `-Sylow subgroups of
ψ`(G), which are both abelian, by the assumption ` > `0. By Lemma 4.1, the
subgroup of G(Z`) generated by these `-Sylow subgroups is abelian, contradicting
the second assumption.

If follows that all elements of `-power order in ψ̄`(G) commute, so that the
group S̄` generated by them is in fact the `-Sylow subgroup of ψ̄`(G). It is abelian
and normal. Consider the exact sequence

1→ S̄` → ψ̄`(G)→ U` → 1 (6)

where U` := ψ̄`(G)/S̄`. Since ` - |U`| the sequence (6) admits a section and there
is an embedding
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U` ↪→ ψ̄`(G) ⊂ G(Z/`).

We apply Theorem 4.4 to conclude that U` has an abelian normal subgroup
A` ⊂ U` with |U`/A`| ≤ n(G). We have the diagram

1 // S̄`
// ψ̄`(G) // U`

// 1

1 // S̄`
// H`

//

OO

A`

OO

// 1

where H` is the full preimage of A` in ψ̄`(G). It is a normal subgroup of ψ̄`(G)
with

|ψ̄`(G)/H`| = |U`/A`| ≤ n(G).

Let Z` ⊂ H` be the centralizer of S̄`, it is a normal abelian subgroup of H`.
Lemma 4.6 follows if we show that the index [H` : Z`] is bounded independently
of `.

There is a section

σ : A` → ψ̄`(G) ⊂ G(Z/`).

In particular, the �nite abelian group A` has at most n := rank(G) generators.
Consider the conjugation action of A` on S̄`. For a ∈ A` let C(a) be the cyclic
subgroup generated by the image of a in the group of outer automorphisms of S̄`.
It su�ces to show that for each of the ≤ n generators of A` the order |C(a)| is
bounded independently of ` and a.

Let Cp(a) ⊂ C(a) be the p-Sylow cyclic subgroup, with pm+1 = |Cp(a)|. We
have an extension of abelian groups

1→ S̄` → N` → Cp(a)→ 1. (7)

We claim that the length of the orbits of c ∈ Cp(a) on S̄` is universally bounded,
provided that q := pm and ` are su�ciently large. More precisely, we have:

Lemma 4.7. There exists a constant n′ = n′(G) such that for all a ∈ A`, all s ∈ S̄`

and all generators c of Cp(a) the commutator

[s, cq] = 1,

provided `, q := pm ≥ n′.

Proof. We will argue by contradiction. We have

G = lim←−
i

Gi, where Gi :=

 i∏
j=1

ψ̄`j

 (G),
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{`1, `2, . . .} is the set of primes, with `1 = `, and the maps πi : Gi+1 → Gi are
the natural projections. Assume that

[s, cq] = s′ 6= 1 in S̄`. (8)

We apply Corollary 4.3 inductively to conclude that each of the groups Gi

has an (`, pmi)-extension

{si ∈ S`,i, ni ∈ Ni}.

More precisely, there is a sequence of groups S`,i ⊂ Gi and elements si, ni ∈ Gn

with the following properties:

• S`,i is an `-Sylow subgroup of Gi,
• si ∈ S`,i

• ni is in the normalizer of S`,i,
• ni has order p

mi,1 with mi,1 > mi ≥ m,

• [si, n
pmi

i ] 6= 1,
• πi(S`,i+1) = S`,i, πi+1(si+1) = si, πi(ii+1) = ni, for all i.

The corresponding limits

γs = lim←− si, γc = lim←− ci ∈ G

have in�nite support and don't commute. Thus there exists a prime number r >
`, q (and `0(G)) such that

[ψ̄r(γs), ψ̄r(γc)] 6= 1.

Let i be su�ciently large so that the prime r is among the primes `1, . . . , `i. There
is a natural projection

ψ̄r : Gi → ψ̄r(G) ⊂ G(Z/r).

The `-Sylow subgroup S`,i surjects onto the `-Sylow subgroup of ψ̄r(G), which is
abelian by Theorem 4.4. Let

N̄r ⊂ ψ̄r(G) ⊂ G(Z/r)

be the nonabelian group generated by ψ̄r(γs) and ψ̄r(γn), i.e., by ψ̄r(si) and ψ̄r(ni).
It �ts into an exact sequence

1→ S̄`,r → N̄r → Ār → 1,

where S̄`,r is an abelian group of `-power order, Ār a cyclic abelian group of order
divisible by pm+1, p 6= `.

Since r - |N̄r| we can apply Theorem 4.4: Any subgroup of G(Z/r) of order
coprime to r has a normal abelian subgroup of index bounded by some constant
n(G). However, any abelian normal subgroup of N̄r has index ≥ min(`, q). We
obtain a contradiction, when ` and q are ≥ n(G).
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This �nishes the proof of Lemma 4.6.

We complete the proof of Proposition 4.5. Indeed, put

H̄ :=
∏
`∈S

Z` ⊂
∏
`∈S

G(Z/`).

This is an closed abelian normal subgroup of ψ(G) =
∏

`∈S ψ̄`(G). Since ψ is
an injection, the preimage H := ψ−1(H̄) is a closed abelian normal subgroup of
G. By Lemma 4.6, [ψ̄`(G) : Z`] ≤ κ, for all `, the quotient G/H has exponent
bounded by κ.

5. Curves and their Jacobians

Let C be a smooth projective curve of genus g ≥ 2 over a �eld k and Jn the
Jacobian of degree-n zero-cycles, or alternatively, degree-n line bundles on C,
with the convention J = J0. We have the diagram

Cn
σn

// C(n)

ϕn

��
Jn.

For any �eld k0 we denote by C
(n)(k0) the set of k0-points of the variety C

(n), i.e.,
the set of e�ective cycles c1+. . .+cn de�ned over k0. We write C(k0)(n) ⊂ C(n)(k0)
for the subset of cycles c1 + . . .+ cn where each ci is de�ned over k0. Put

W r
n(C) := {[L] ∈ Jn | dim H0(C,L) ≥ r + 1}, Wn(C) := W 0

n(C).

The map ϕn is surjective for n ≥ g. For n = g there is a divisor D ⊂ J such
that for all x ∈ J(k)\D(k), the �ber ϕ−1

n (x) consists of one point. For n ≥ 2g−1,
the map ϕn is a Pn−g-bundle.

We assume that C(k0) 6= ∅, �x a point c0 ∈ C(k0) and the embedding

C ↪→ J
c 7→ [c− c0].

This allows us to identify Jn and J .

The following lemma will be used in Section 7.

Lemma 5.1. Let k0 be a �nite �eld of characteristic p. Fix a prime number ` 6= p
and assume that J(k0) ⊃ J [`]. For ` = 2 assume that J(k0) ⊃ J [4], respectively.
Let k1/k0 be a degree-`-extension. Then

• 1
`J(k0) ⊂ J(k1),

• J{`} ∩ J(k1) = 1
`J(k0) ∩ J{`}.
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Proof. Let Fr be the k0-Frobenius automorphism of k = k̄0, whose action on
J(k) coincides with that of the k0-Frobenius endomorphism Fr ∈ End(J). By
assumption, Fr acts trivially on J [`δ], hence we have Fr − 1 = `δf , for some
f ∈ End(J), where δ = 1 (resp. 2) for ` 6= 2 (resp. ` = 2). Then, a direct
computation (using the binomial expansion) shows that

Fr` − 1 = ` u(Fr− 1),

for some u ∈ 1 + `Z[f ] ⊂ 1 + `End(J). Since u acts on J{`} as an isomorphism,
this implies the second assertion. The �rst assertion follows from the second.

Lemma 5.2. For n ≥ 2g−1, a �nite �eld k0 such that #k0 is su�ciently large, any
�nite extension k1/k0 and any point x ∈ J(k1) there exists a point z ∈ Pn−g(k1) =
ϕ−1

n (x) such that the �ber σ−1
n (z) is completely reducible over k1.

Proof. Follows from the equidistribution theorem [Kat02], Theorem 9.4.4.

Corollary 5.3. There exists a �nite extension k′0/k0 such that C(k1) generates
J(k1), for all �nite extensions k1/k

′
0.

Proof. The claim follows from the existence of z in Lemma 5.2.

It will be useful to be able to bound indices of subgroups in J(k1) generated
by fewer points from C(k1). Assume that k1/k0 is a �nite extension with #k1 = q.
Write

#J(k1) = qg(1 + ∆q) and #C(k1) = q(1 + δq)

We know that ∆q, δq = O( 1√
q ), the implicit constant depending only on the genus

g(C). We may assume that q is such that

|∆q|, |δq| ≤ 1/2. (9)

Lemma 5.4. Let D ⊂ C(k1) be a subset of points such that

#D/#C(k1) ≤ εq.

Let H ⊂ J(k1) be the subgroup generated by points in C(k1) \D. Then

I := |J(k1)/H| ≤
(2g − 1)!g22g−1

(1− εq)2g−1
.

Proof. We have

#H =
qg(1 + ∆q)

I
.

Observe that

19



#(C(k1) \D)(2g−1) ≥ 1
(2g − 1)!

q2g−1(1 + δq)2g−1(1− εq)2g−1.

On the other hand, C(2g−1) → J2g−1 is a projective bundle of relative dimension
g − 1. This implies that

1
(2g − 1)!

q2g−1(1 + δq)2g−1(1− εq)2g−1 ≤ qg(1 + ∆q)
I

· q
g − 1
q − 1

.

Using the bound (9), we obtain

I <
(2g − 1)!g

((1 + δq)(1− εq))2g−1
.

Recall that the Galois group Γ := Gal(k/k0) is isomorphic to Ẑ =
∏

` Z`

and is topologically generated by the Frobenius automorphism Fr. For a �nite
set of primes S let kS ⊂ k be the �xed �eld of ΓS :=

∏
`/∈S Z`; the Galois group

of the (in�nite) extension kS/k0 is
∏

`∈S Z`. Note that J{S} ⊂ J(kS) and that
C(kS) ⊂ J(kS) is in�nite. We have a natural projection map

λS : C(k)→ J(k)→ J{S},

(depending on the choice of c0).

Theorem 5.5. Let S be a �nite set of primes. Then

• the set C(k) ∩ J{S} is �nite;
• the map λS : C(kS)→ J{S} is surjective with in�nite �bers.

Proof. The �rst statement is due to Boxall [Box92]. The second was proved in
[BT05].

Remark 5.6. Theorem 5.5 admits a generalization: Let X ⊂ A be a proper sub-
variety of an abelian variety. If S is a �nite set of primes and if the intersection
Y := X(k) ∩

∏
`∈S A{`} is in�nite then

Y ⊂ (∪i∈Ixi +Ai(k)) ⊂ X(k) ⊂ A(k),

where I is a �nite set, Ai ⊂ A are abelian subvarieties and xi ∈ A(k) [Box92].

Note that for �nite �elds k0 with #k0 su�ciently large, the image of C(k0)(g)

does not coincide with J(k0). Indeed, the number of Fq-points in C(Fq)(g) is
approximately equal to

qg

g!
< qg.

On the other hand, among in�nite extensions of k′/k0 we can easily �nd some
with C(k′)(g) = J(k′).
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Proposition 5.7. Let k0 be a �nite �eld with algebraic closure k, S the set of
primes ≤ g and ΓS =

∏
`/∈S Z` ⊂ Gal(k/k0). Put k′ := kΓS . Then

C(k′)(g) = J(k′).

Proof. There exists a subvariety Y ⊂ J of codimension ≥ 2 such that for all
x ∈ J(k) \ Y (k) there is a unique representation x =

∑g
i=1 ci, with ci ∈ C(k),

modulo permutations.
Assume that x ∈ J(k′) \Y (k′) and that its representation as a cycle contains

at least one ci /∈ C(k′). For any γ ∈ ΓS we have x =
∑g

1 γ(ci). If γ 6= 1, then the
size of any nontrivial orbit of γ is strictly greater than g. Thus there is more than
one representation of x as a sum of points in C(k), modulo permutations within
the cycle. Contradiction.

Assume that x ⊂ Y (k′). Consider the �bration C(g) → J . The �ber over
x is the projective space Pr, de�ned over k′, parametrizing all representations
of x as a sum of degree-g zero-cycles. There exists (c1, . . . , cg) ∈ C(g)(k′) with∑g

i=1 ci = x. We are done if ci ∈ C(k′), for all i. Otherwise, observing that ΓS

preserves this cycle, we can apply the argument above about the minimal length
of Galois orbits in the complement C(k) \ C(k′).

Lemma 5.8. Let Jγ(k) ⊂ J(k) be the subset of elements �xed by γ ∈ GC . If C is
not hyperelliptic then

jγ : C(k) \ Cγ(k)→ J(k)/Jγ(k)

is an embedding of sets. If C is hyperelliptic let

C[4] := { c ∈ C(k) | c ∈ J [4] and γ(c) = −c }.

Then

jγ : C(k) \ (Cγ(k) ∪ C[4])→ J(k)/Jγ(k)

is an embedding of sets.

Proof. Assume there exist two points c, c′ ∈ C(k) with γ(c) 6= c and γ(c′) 6= c′ and
such that jγ(c) = jγ(c′). Then γ(c)−γ(c′) = c−c′ and hence γ(c)+c′ = c+γ(c′).
The cycles γ(c) + c′, c+ γ(c′) consist of di�erent points since c′ 6= c, c′ 6= γ(c′), by
assumption. Thus γ(c) + c′ de�nes a hyperelliptic pencil and we have proved the
lemma for nonhyperelliptic curves.

In the hyperelliptic case assume that the pencil consists of elements c,−c
(since the pencil is clearly γ-invariant and belongs to Jγ). Thus c

′ = −c and γ
acts as −1 on c. Note that jγ(c) = −jγ(c) implies that jγ(2c) = 0 and 2c ∈ Jγ(k).
Then 2c = −2c implies that 4c = 0. Thus in this case a possible exceptional
subset consists of points c 6= c′ = −c of order 4 such that γ(c) = −c.

Theorem 5.9. The group of automorphisms GC satis�es conditions of Proposi-
tion 4.5.
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Proof. Immediate from Proposition 3.5.

Corollary 5.10. For all γ, γ̃ ∈ GC there exists an n ∈ N such that γn and γ̃n

commute.

Proof. If su�ces to combine Theorem 5.9 and Proposition 4.5.

Theorem 5.11. Let φ : (C, J) → (C̃, J̃) be an isomorphism of pairs. Then there
exists an n ∈ N such that Frn

C and φ−1(Frn
C̃

) commute in Aut(J(k)).

Proof. Immediate from Corollary 5.10.

Lemma 5.12. Assume that Fr and F̃r generate the same `-adic subgroup in
GLn(Z`). Then there exist n, ñ ∈ N such that

Frn = F̃r
ñ
.

Proof. The assumption implies that there exist an α ∈ Z∗` and an ñ ∈ N such that

Frα = F̃r
ñ
.

The same equality holds for the determinants. However, the determinants are
positive integer powers of p.

6. Detecting isogenies

In this section, we recall some facts from divisibility theory for linear recurrences,
as developed in [CZ02], and apply these to derive a su�cient condition for isogeny
of abelian varieties.

A function F : N → C is called a linear recurrence if there exist an r ∈ N,
and ai ∈ C, such that for all n ∈ N one has

F (n+ r) =
r−1∑
i=0

aiF (n+ i).

There is a unique expression

F (n) =
m∑

i=1

fi(n)γn
i ,

where fi ∈ C[x] are nonzero and γi ∈ C∗. The complex numbers γi ∈ C∗ are called
the roots of the recurrence. Let Γ be a torsion-free �nitely-generated subgroup of
the multiplicative group C∗. Then the ring of linear recurrences with roots in Γ is
isomorphic to the unique factorization domain C[x,Γ] (see [CZ02, Lemma 2.1]);
the element in C[x,Γ] corresponding to a linear recurrence F will be denoted by
the same letter.

We say that {F (n)}n∈N is a simple linear recurrence, if deg(fi) = 0, for all i,
i.e., fi are constants.
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Proposition 6.1. Let {F (n)}n∈N, {F̃ (n)}n∈N be simple linear recurrences such that
F (n), F̃ (ñ) 6= 0 for all n, ñ ∈ N. Assume that

1. The set of roots of F and F̃ generates a torsion-free subgroup of C∗.
2. There is a �nitely-generated subring R ⊂ C with F (n)/F̃ (n) ∈ R, for

in�nitely many n ∈ N.

Then

G : N→ C
n 7→ F (n)/F̃ (n)

is a simple linear recurrence.

Proof. The fact that G is a linear recurrence is proved in [CZ02, p. 434]. Enlarging
Γ, if necessary, we obtain an identity

G · F̃ = F,

in the ring C[x,Γ]. Since F, F̃ are simple, i.e., in C[Γ], G is also simple.

Lemma 6.2. Let Γ be a �nitely-generated torsion-free abelian group of rank r
with a �xed basis {γ1, . . . , γr}. Let C[Γ] be the corresponding algebra of Laurent
polynomials, i.e., �nite linear combinations of monomials xγ =

∏r
j=1 x

gj

j , where

γ =
∑r

i=1 giγi ∈ Γ. Let γ be a primitive element in Γ, i.e., gcd(g1, . . . , gr) = 1.
Then, for each λ ∈ C∗, the polynomial xγ − λ is irreducible in C[Γ], i.e., de�nes
an irreducible hypersurface in the torus (C∗)r.

Let γ, γ′ ∈ Γ be arbitrary elements. The polynomials xγ − 1 and xγ′ − 1
are not coprime in C[Γ], i.e., the corresponding divisors in (C∗)r have common
irreducible components, if and only if γ, γ′ generate a cyclic subgroup of Γ.

Proof. The map de�ned by the monomial xγ : (C∗)r → C∗ has irreducible �bers,
if and only if γ is primitive. For other γ, putm := gcd(g1, . . . , gr) > 1 and γ = mγ̄.
Then xγ−1 =

∏m
s=1(x

γ̄−ζs
m), where ζm is a primitive m-th root of 1. By the �rst

observation, the polynomials xγ̄−ζs
m are irreducible. To prove the last statement,

note that coprimality of xγ − 1 and xγ′ − 1 is equivalent to coprimality of xγ̄ − 1
and xγ̄′ − 1, for the corresponding primitivizations γ̄, γ̄′ of γ, γ′. This coprimality
is equivalent to γ̄ 6= ±γ̄′.

Let A be an abelian variety of dimension g de�ned over a �nite �eld k1 of
characteristic p, and let {αj}j=1,...,2g be the set of eigenvalues of the corresponding
Frobenius endomorphism Fr on the `-adic Tate module, for ` 6= p. Let kn/k1 be
the unique extension of degree n. The sequence

F (n) := #A(kn) =
2g∏

j=1

(αn
j − 1). (10)

is a simple linear recurrence. Let Γ be the multiplicative subgroup of C∗ generated
by {αj}j=1,...,2g. Choosing k1 of su�ciently large and divisible degree over Fp, we
may assume that Γ is torsion-free. Choose a basis γ1, . . . , γr of Γ, and write
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αj =
r∏

i=1

γ
aij

i ,

with aij ∈ Z. Recall that all αj are Weil numbers, i.e., all Galois-conjugates of αj

have absolute value
√
q, where q = #k1. It follows that, for j 6= j′, either αj = αj′

or αj , αj′ generate a subgroup of rank two in Γ (since Γ does not contain torsion
elements). We get a subdivision of the sequence of eigenvalues

{αj}j=1,...,2g = tt
s=1Is, t ≤ 2g,

into subsets of equal elements. Put ds = #Is and let αs ∈ Is.

Theorem 6.3. Let A and Ã be abelian varieties of dimension g over �nite �elds
k1, resp. k̃1. Let F , resp. F̃ , be a simple linear recurrence as in equation (10).
Assume that F̃ (n) | F (n) for in�nitely many n ∈ N. Then A and Ã are isogenous.

Proof. Let Γ ∈ C∗ be the (multiplicative) subgroup generated by {αj} ∪ {α̃j}.
Choosing k1, resp. k̃1, of su�ciently large and divisible degree over the correspond-
ing prime �elds, we may assume that Γ is torsion-free. Proposition 6.1 implies
that F/F̃ is a simple linear recurrence.

The Laurent polynomial corresponding to F , resp. F̃ , has the form

t∏
s=1

(
r∏

i=1

xais
i − 1)ds , resp.

t̃∏
s̃=1

(
r∏

i=1

xãis̃
i − 1)ds̃ .

Observe that

gcd(
r∏

i=1

xais
i − 1,

r∏
i=1

x
ais′
i − 1) ∈ C∗,

for s 6= s′. The same holds for F̃ . Using Lemma 6.2, we conclude that t = t̃,
that we can order the indices so that #Is = #Ĩs, and so that the multiplicative
groups generated by αs ∈ Is and α̃s ∈ Ĩs have rank 1, for each s = 1, . . . , t. Thus
α̃s = αu

s , where u ∈ Q depends only on k1 and k̃1. It follows that some integer
powers of Fr, F̃r have the same sets of eigenvalues, with equal multiplicities. It
su�ces to apply Theorem 1.1 to conclude that A is isogenous to Ã.

7. Reconstruction

We return to the setup in Section 1: C, C̃ are irreducible smooth projective curves
over k of genus ≥ 2, with Jacobians J , resp. J̃ . We have a diagram

J(k)

φ0

��

J1(k)

φ1

��

C(k)
j1

oo

φs

��

J̃(k) J̃1(k) C̃(k)
j̃1

oo
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where

• φ0 is an isomorphism of abstract abelian groups;
• φ1 is an isomorphism of homogeneous spaces, compatible with φ0;
• the restriction φs : C(k)→ C̃(k) of φ1 is a bijection of sets.

It will be convenient to choose a point c0 ∈ C(k0) and �x the embeddings

C(k)→ J(k)
c 7→ c− c0

C̃(k)→ J̃(k)
c̃ 7→ c̃− φs(c0).

With this choice, the isomorphism of abelian groups φ induces a bijection on the
sets C(k) and C̃(k). In this situation we will say that

φ : (C, J)→ (C̃, J̃)

is an isomorphism of pairs.

Lemma 7.1. For any choice of n1, . . . , nr ∈ N and c1, . . . , cr ∈ C(k) one has

dim H0(C,O(
∑

i

nici)) = dim H0(C̃,O(
∑

i

niφ
0(ci)).

Proof. The e�ectivity of a divisor on C is intrinsically determined by the group
J(k): the images of the maps C(d) → J , resp. C̃(d) → J̃ , are the same (under
φ0). We can distinguish D ∈ J(k) with dim H0(C,D) ≥ 1, and therefore all sets
of linearly equivalent divisors. By induction, we can detect that dim H0(C,D) ≥
n, with n > 1: there are in�nitely many points c ∈ C(k) ⊂ J(k) such that
dim H0(C,D − c) ≥ n− 1.

Corollary 7.2. If C is hyperelliptic, trigonal or special (i.e., violate the Brill�
Noether inequality) then so is C̃.

Corollary 7.3. Let A ⊂ C(d) ↪→ J , for d < g, be a proper abelian subvariety of
maximal dimension. Then there is a proper abelian subvariety Ã ⊂ C̃(d) ↪→ J̃
such that φ0 induces an isomorphism of abelian groups between A(k) and Ã(k).

Proof. Any such abelian subvariety of maximal dimension is characterized by the
property that it contains an arbitrarily large abelian subgroup of rank equal to
twice its dimension. By [Box92], φ0 induces an isomorphism on such subvarieties.

Lemma 7.4. Assume that g(C) > 2 and that C is bielliptic. Then C̃ is also
bielliptic and the map φ0 commutes with every bielliptic involution on C and C̃,
respectively.

Recall that a bielliptic structure is a map jE : C → E of degree 2, where
E is an elliptic curve. All bielliptic structures correspond to embedded elliptic
curves E ⊂ C(2) ⊂ J . Since we assume g(C) > 2, there is a �nite number of such
embeddings and they are preserved under φ0. Thus if C is bielliptic then so is C̃,
and the groups generated by bielliptic re�ections are isomorphic.
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Corollary 7.5. If C is the Klein curve then C̃ is also a Klein curve.

Proof. Indeed, this is a unique curve of genus 3 which has the action of PGL2(F7).
The action is generated by bielliptic involutions, hence C̃ is isomorphic to C.

Remark 7.6. Note that the isomorphism φ0 itself does not have to be algebraic,
a pro�nite power of the Frobenius will have the same properties.

Assume that char(k0) 6= 2, and that #k0 is su�ciently large, i.e., for all
�nite extensions k1/k0 the points C(k1) generate J(k1), and same for C̃ (see
Corollary 5.3).

Lemma 7.7. Assume that C and C̃ are not hyperelliptic. Fix �nite �elds k0, k̃0

such that #k0,#k̃0 are su�ciently large and J(k0) ⊂ J̃(k̃0). Consider the tower
of �eld extensions: k0 ⊂ k1 ⊂ . . ., where ki/ki−1 is the unique extension of degree
2, and similarly for k̃0. Then, for all n ∈ N,

φ0(J(kn)) ⊂ J̃(k̃n).

Proof. We have an intrinsic inductive characterization of C(kn) and J(kn), resp.
C̃(k̃n) and J̃(k̃n). Namely, c ∈ C(kn), i� there exists a point c′ ∈ C(k) such
that c + c′ ∈ J(kn−1). Indeed, if c ∈ C(kn) \ C(kn−1) then c′ is the conju-
gate for the Galois automorphism σ of kn/kn−1. Conversely, if c + c′ is a pair
as above and σ(c) 6= c′, then σ(c + c′) = c + c′ ∈ J(k), which de�nes a non-
trivial hyperelliptic pencil on C, contradicting our assumption. By Corollary 5.3,
points C(kn) generate J(kn), as an abelian group. By induction, it follows that
φ0(J(kn)) ⊂ J̃(k̃n).

By Corollary 7.2, the hyperelliptic property of C implies the same for C̃. The
hyperelliptic case requires a more delicate analysis of point con�gurations.

Let C be a hyperelliptic curve over a �nite �eld Fq. The Jacobian J
2 of zero

cycles of degree 2 contains a unique e�ective zero-cycle z0 ∈ J2(Fq) corresponding
to the hyperelliptic pencil on C. We use this cycle to identify J2(k) ' J(k) =
J0(k). Let k0/Fq be a �nite extension, k1/k0 a quadratic extension and σ the
nontrivial element of the Galois group Gal(k1/k0). Put

C(k1)− := {c ∈ C(k1) |σ(c) + c = z0 ∈ J2(k0)}.

Lemma 7.8. Let C be a hyperelliptic curve de�ned over Fq. Then there exists an
N ∈ N such that for all �nite extensions k0/Fq with qN | #k0, the zero-cycles of
even degree with support in C(k1) \ C(k1)− generate J(k1) ' J2(k1).

Proof. Let H ⊂ J(k1) be the subgroup generated by zero-cycles of even degree
with support in C(k1) \ C(k1)−. Put q := #k0. Note that

|#C(k1)− − (q + 1)| ≤ 2g
√
q.

Indeed, let ι : C → P1 be the hyperelliptic projection. Then ι(C(k1)−) ⊆ P1(k0),
and the image corresponds to those points on b ∈ P1(k0) such that the degree-2
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cycle ι−1(b) does not split over k0. The claim follows from standardWeil estimates.
Lemma 5.4 implies a universal (k1 independent) bound for the index I := [J(k1) :
H], e.g., I < m.

Now we apply the argument of Lemma 5.1. Let k0 be such that J(k0) contains
all J(k)[`], for ` < m (resp. J(k)[4], when 2 < m). Then H = J(k1). Indeed,
for ` 6= 2 and J(k)[`] ⊂ J(k0) the order of J(k1)/J(k0) is coprime to `: if an
automorphism of order 2 acts trivially on J(k)[`] then it also acts trivially on
all elements of `-power order in J(k1). Next, note that the elements of the form
1
2x, x ∈ J(k0) generate the 2-primary part of J(k1) but that σ( 1

2x) = x+ z0, z0 ∈
J2(k0) and hence 1

2x is never in J(k1)− (the subgroup generated by C(k1)−).
This completes the argument for ` = 2.

Lemma 7.9. Assume that C and C̃ are hyperelliptic. There exist �nite �elds k0, k̃0

and towers of quadratic �eld extensions: k0 ⊂ k1 ⊂ . . ., resp. for k̃0, such that for
all n ∈ N

φ0(J(kn)) ⊂ J̃(k̃n).

Proof. By Lemma 7.8, the points in C(ki) \ C(ki)− generate J(ki). This subset
of points is de�ned intrinsically in C(k), provided J(ki−1) is already known. By
induction, as in the proof of Lemma 7.7, we obtain the required tower of degree-2
extensions, with an embedding

φ0 : J(ki)→ J̃(k̃i).

Theorem 7.10. Let φ : (C, J)→ (C̃, J̃) be an isomorphism of pairs. Then J and
J̃ are isogenous.

Proof. In both hyperelliptic and nonhyperelliptic case we have shown that, for suf-
�ciently large �nite ground �elds k0, k̃0, there exist towers {kn}n∈N and {k̃n}n∈N
of degree-2 �eld extensions with the following property:

φ0(J(kn)) ⊂ J̃(k̃n)

(see Lemma 7.7 and Lemma 7.9). Now we apply Theorem 6.3 to the Frobenius
automorphisms Fr, F̃r.

8. Anabelian geometry

In this section we discuss an application of the above results to Grothendieck's
Anabelian Program - the reconstruction of function �elds from Galois groups.

Let C be an irreducible smooth projective curve over k = F̄p of genus g ≥ 2, J
its Jacobian and K = k(C) its function �eld. Throughout, we assume that p > 2.
Fix a separable closure K̄/K and let G = GK = Gal(K̄/K) be the absolute Galois
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group. The main idea of anabelian geometry is that G, or even one of its factors,
determines C. Note that G is the completion of a free group with an in�nite
number of generators [Har95], [Pop95]. In particular, for any two curves over k
the corresponding groups are isomorphic as abstract topological groups. However,
we will see that in some instances additional structures allow us to recover the
curve from the Galois group.

Let

Ga = G/[G,G]

be the abelianization of G. Let ` be a prime number, G` the `-completion of G,
and Ga

` the abelianization of G`. Clearly, Ga =
∏

` Ga
` . A k-rational point c ∈ C(k)

determines a discrete rank-one valuation ν = νc of the function �eld K. We write
Iν ⊂ G for the corresponding inertia subgroup and Ia

ν , resp. Ia
ν,`, for its image

in Ga, resp. Ga
` . The group Ia

ν,` is topologically cyclic for ` 6= p. For ` 6= p, let
Gram

` ⊂ Ga
` be the subgroup generated by all Ia

ν,`. We have an exact sequence

1→ Gram
` → Ga

` → Gun
` → 1 (11)

where the quotient group Gun
` = π̂a

1,` is the `-part of the abelianized étale funda-
mental group.

Consider Ga
(p) :=

∏
` 6=p Ga

` and let Ia = {Ia
ν }, resp. Ia

` = {Ia
ν,`}, be the set of

inertia subgroups Ia
ν ⊂ Ga

(p), resp. I
a
ν,` ⊂ Ga

` , corresponding to points in C(k).

Conjecture 8.1. Let C be a curve of genus g(C) > 2 over k = F̄p. The pair
(Ga

(p), I
a) determines the function �eld k(C), modulo isomorphisms.

Remark 8.2. This fails when g(C) = 1. For any two elliptic curves over k the
pairs (Ga

(p), I
a) are isomorphic. There are two types: supersingular curves with

J{p} = 0 (which are all isogenous) and ordinary curves.

Remark 8.3. In principle, one could include the p-part of Ga into the conjec-
ture. However, the p-part is of a completely di�erent nature. It corresponds to
abelian towers of Artin-Schreier extensions; �xing the inertia subgroups yields
much stronger information about k(C).

We have the following partial result:

Theorem 8.4. Let C, C̃ be curves of genus ≥ 2 over k = F̄p, with p > 2. Assume
that there is an isomorphism of pairs

(Ga
(p), I

a) ∼−→ (G̃a
(p), Ĩ

a). (12)

Assume in addition that either

• J{p} = 0 or
• g(C) > 2.

Then there is an isogeny J → J̃ .
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We are grateful to the referee whose arguments helped to improve the lower
bound for g from 4 to 2. The rest of this section is devoted to a proof of this theo-
rem. We will reduce to a version of Theorem 1.2, following closely the description
of Galois groups in [BT08], Section 11.

Proposition 8.5. Let C and C̃ be curves of genus ≥ 2 over k = F̄p and let ` be a
prime 6= p. Assume that there exists an isomorphism of pairs:

(Ga
` , Ia

` ) ∼−→ (G̃a
` , Ĩa

` ),

i.e., an isomorphism of abelian groups inducing a bijection of sets. Then exists a
diagram

C(k)

φs

��

ι`
//

��

J{`}

φ0

��

C̃(k)
ι̃`

// J̃{`}

where ι` and ι̃` are the standard maps induced from embeddings of C and C̃ into
their Jacobians, and φ0 is an isomorphism of abelian groups such that the induced
map φs is a bijection of sets.

Proof. We start with a description of Ga
` , for ` 6= p, following Sections 9 and 11

of [BT08] (the structure of Ga
p is more re�ned). Dualizing the exact sequence

0→ K∗/k∗ → Div(C)→ Pic(C)→ 0

we obtain the sequence

0→ ∆` →M(C(k),Z`)→ Ga
` → Ext1(J(k),Z`)→ 0, (13)

with the identi�cations

• ∆` := Hom(Pic(C),Z`) ' Z` (since J(k) = Pic0(C) is torsion);
• M(C(k),Z`) := Hom(Div(C),Z`) is the Z`-linear space of maps C(k)→ Z`

(regarding Div(C) as the free abelian group generated by c ∈ C(k));
• Ext1(J(k),Z`) ' Z2g

` .

The interpretation

Ga
` = Hom(K∗/k∗,Z`), (14)

arising from Kummer theory allows us to identify

Ga
` ⊂M(C(k),Q`)/constant maps (15)
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as the subspace of maps µ : C(k)→ Q` (modulo constant maps) such that

[µ, f ] ∈ Z` for all f ∈ K∗/k∗.

Here [·, ·] is the pairing:

M(C(k),Q`)×K∗/k∗→ Q`

(µ, f) 7→ [µ, f ] :=
∑

c µ(c)fc,
(16)

where div(f) =
∑

c fcc. In this language, elements of inertia subgroups Ia
ν,` ⊂ Ga

`

correspond to �delta�-maps (constant outside the point c = cν).

Consider the following exact sequences

0→ K∗/k∗
ρC−→ Div0(C)

ϕ−→ J(k)→ 0, (17)

0→ K∗/k∗ ⊗ Z`
ρC,`−→ Div0(C)⊗ Z`

ϕ`−→ J{`} → 0. (18)

Put

T`(C) := lim
←−

Tor1(Z/`n, J{`}).

We have T`(C) ' Z2g
` , where g = g(C). Passing to `-adic completions in (17) we

obtain an exact sequence of torsion-free groups

0→ T`(C)→ K̂∗`
ρ̂C−→ D̂iv0(C)`−→0, (19)

since J(k) is a `-divisible. We write D̂iv0(C)` for the `-adic completion of Div0(C).

Clearly, Div0(C)` := Div0(C)⊗ Z` ⊂ D̂iv0(C)` and we have a diagram

0 →K∗/k∗ ⊗ Z`
ρC,`−→ Div0(C)`

ϕ`−→ J{`} → 0
↓ ↓ ↓

0→ T`(C)→ K̂∗`
ρ̂C,`−→ D̂iv0(C)`

ϕ̂`−→ 0.

(20)

Recall that, by Kummer theory, K̂∗` = Hom(Ga
` ,Z`). Dualizing the exact

sequence (11), we obtain the diagram

0 // Hom(Gun
` ,Z`) // Hom(Ga

` ,Z`) // Hom(Gram
` ,Z`) // 0

0 // T`(C) // K̂∗`
// D̂iv0(C)`

// 0
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The group Gram
` has a distinguished basis consisting of δν,`, with 〈δν,`〉 = Ia

ν,`,
and subject to the condition∑

ν

δν,` ∈ ∆` ⊂M(C(k),Z`).

This basis is unique, modulo simultaneous multiplication of all δν,` by an element

in Z∗` . De�ne FS(C)` as the subgroup of elements in K̂∗` with a �nite support on
δν . We have an exact sequence

0→ T`(C)→ FS(C)` → Div0(C)` → 0

and the dual sequence

0→ Hom(Div0(C)`,Z`)→ Hom(FS(C)`,Z`)→ Hom(T`(C),Z`)→ 0. (21)

The homomorphism

Ga
` → Hom(FS(C)`,Z`)
γ 7→ (γ(f) = f(γ)),

for f ∈ FS(C)` ⊂ K̂∗` , de�nes an isomorphism of exact sequences (11) and (21):

1 // Gram
`

τ`
// Ga

`
// // Gun

`

0 // Hom(Div0(C)`,Z`) // Hom(FS(C)`,Z`) // // Hom(T`(C),Z`)

Indeed, the restriction

Hom(Div0(C)`,Z`)→M(C(k),Z`)/∆`

is an isomorphism (via Riesz duality). The map on quotient groups

Gun
` → Hom(T`(C),Z`)

is also an isomorphism (duality for �nite-rank Z`-modules). Since every element
in FS(C)` ⊂ K̂∗` de�nes a nontrivial functional on Ga

` , the map

Ga
` → Hom(FS(C)`,Z`)

is surjective.
We have a primitive embedding K∗/k∗ ⊗ Z` ↪→ FS(C)`, with quotient

R := FS(C)`/(K∗/k∗ ⊗ Z`) ' Q2g
` .

Indeed, note that
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FS(C)`/(K∗/k∗ ⊗ Z` + T`(C)) = J{`} ' (Q`/Z`)2g, (22)

and that the primitive subgroup K∗/k∗ ⊗ Z` ⊂ FS(C)` has trivial intersection
with T`(C). The quotient R is a torsion-free Z`-module, generated by the image
of an extension of T`(C) by J{`}, with Hom(R,Z`) = 0 due to the restriction
isomorphism. Hence R ' Q2g

` and the image of T`(C) in Q2g
` coincides with Z2g

` .

Lemma 8.6. Let f ∈ FS(C)` be such that there exists a γ ∈ Ga
` with γ(f) = 1

(e.g., f is primitive in K∗/k∗ ⊗ Z`). Then f ∈ (K∗/k∗ ⊗ Z` + T`(C)).

Proof. By (22), FS(C)`/(K∗/k∗ ⊗ Z` + T`(C)) is a torsion group; and there is a
minimal n ∈ N such that `nf ∈ (K∗/k∗ ⊗ Z` + T`(C)). In particular, γ(`nf) is
divisible by `n for all γ ∈ Ga

` . Consider the projection

ρ̂C,` : FS(C)` → FS(C)`/T`(C) = Div0(C)`

from Equation (20). Since

Ga
` = Hom(FS(C)`,Z`) = Hom(K∗/k∗,Z`),

we have

ρ̂C,`(`nf) = ρ̂C,`(`nf ′) mod T`(C),

for some f ′ ∈ K∗/k∗ ⊗ Z`. Since all elements in FS(C)`/T`(C) = Div0(C)` are
uniquely divisible we get f − f ′ ∈ T`(C), i.e., f ∈ f ′ + T`(C), as claimed.

Hence we obtain a well-de�ned homomorphism

FS(C)`/T`(C)→ J{`},

and a Galois-theoretic characterization of the homomorphism

Div0(C)` → J{`}.

It remains to characterize the image of C(k) in J{`}. Every δν,` de�nes a nontrivial
functional on Div0(C)` and thus a functional on FS(C)`. Fix a δ0,` ∈ Ia

ν0,` (and
thus all other δν,`). For ν 6= ν0 de�ne

cν − c0 ∈ Div0(C)`

by

δν,`(cν − c0) = 1, δ0,`(cv − c0) = −1 and δν′,` = 0 for all ν′ 6= ν, ν0.

Recall that

Ga
` ⊂M(C(k),Q`)/ constant maps
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is the subspace of Z`-valued functionals. The homomorphism Q` → Q`/Z` de�nes
an embedding

Ga
` /Gram

` = Gun
` = Z2g

` ↪→ Hom(Div(C),Q`/Z`)/ constant maps .

Fixing topological generators γ1, . . . , γ2g of Gun
` we get 2g maps on C(k) with

values in Q`/Z`, well-de�ned modulo addition of a constant (corresponding to
∆`). This gives a well-de�ned vector (γi(c− c0)) ∈ (Q`/Z`)2g, and a map

C(k)→ (Q`/Z`)2g

c 7→ (γi(c− c0)),

which is unique, modulo translations. This de�nes ι`, modulo a�ne automor-
phisms of J{`}.

Proposition 8.5 implies that any isomorphism of pairs

(Ga
(p), I

a) = (G̃a
(p), Ĩ

a)

induces a commutative diagram

C(k)
ι

//

��

J(k)/J{p}

��

C̃(k)
ι̃

// J̃(k)/J̃{p}

with the left vertical arrow a bijection of sets and the right vertical arrow an
isomorphism of abelian groups, modulo a�ne automorphisms of J(k), J̃(k), re-
spectively. If J{p} = 0, the map ι is an embedding and we can apply Theorem 1.2
to conclude that the Galois isomorphism implies isogeny.

Assume g(C) > 2 and p > 2. Fix a point c0 ∈ J(k) and consider the diagram

C(2)(k)
ϕ

// J(k)

πp

��
J(k)/J{p}

with ϕ((c1, c2)) = c1 + c2. Put

W2 := ϕ(C(2)) ⊂ J.

For g(C) > 2, the stabilizer of W2 is trivial, i.e.,

Wb := {w ∈W2(k) |w + b ∈W2(k), b ∈ J(k) \ 0 },
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is a proper subset of W2. For every subgroup B ' Z/p ⊆ J [p] (with p 6= 2) we
put

HB := ∩b∈B Wb.

These loci play a role in the proof of Theorem 8.4; the following results describe
their geometric properties.

Proposition 8.7. Assume that g(C) > 2 and that for some B ' Z/p ⊂ J [p],
the subvariety HB contains a 1-dimensional component. Then HB is an elliptic
curve, B ⊂ HB(k) ⊂ J(k), and there is a degree-two map C → HB inducing the
embedding of HB ↪→ J .

We subdivide the proof into a sequence of lemmas.

Lemma 8.8. Let b = x− y, for some x, y ∈ C(k). Then

(C + y) ⊆Wb := W2 ∩ (W2 + b).

If Wb 6= (C + y) then one of the following holds:

(1) C is nonhyperelliptic, with a unique trigonal structure and

Wb = (C + y) ∪ z, z = z1 + z2,

where z1 + z2 + y is the unique �ber of the degree-three map C → P1;
(2) C is hyperelliptic andWb = (C+y)∪(C+xσ), where σ is the hyperelliptic

involution;
(3) g(C) = 3 and C is nonhyperelliptic, Wb = (C + y) ∪ (κC − C), where κC

is the canonical class of C;
(4) HB is zero-dimensional.

Proof. First of all, (C + y) + (x− y) = (C + x) ⊂W2 and the inclusion holds.
Assume that for some degree-2 cycle z := z1 + z2 /∈ (C + y) we have z̃ :=

z̃1 + z̃2 = z+ x− y ∈W2. If the degree-3 cycles (z1, z2, y) and (z̃1, z̃2, x) on C are
equal then z1 = y, z̃1 = x (modulo relabeling) and z ∈ (C + y), contradiction. If
they are distinct then (z1, z2, y) is a g3

1-cycle.
If z + x = z̃ + y are nontrivial g3

1-cycles and C is nonhyperelliptic then z + x
de�nes a trigonal structure on C, which is unique for g(C) > 3. Hence z is the
unique cycle with this property and we obtain (1).

If C is hyperelliptic then Wb ⊇ (C + y) ∪ (C + xσ). Indeed,

C + xσ + x− y = C + h− y = C + yσ ⊂W2,

where h = x+ xσ = y + yσ is a hyperelliptic pencil.
Assume that z /∈ (C + y)∪ (C +xσ) and z+x = z̃+ y. Since z /∈ (C + y) this

is not an identity of cycles on C. Any 3-gonal structure on a hyperelliptic curve C
with g(C) > 2 is degenerate, i.e., z+x = h+u, and hence z = u+xσ ⊂ (C+xσ),
contradiction. This proves (2).
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In case (3) the canonical map realizes C as a plane curve of degree 4; any
trigonal structure on C is obtained as restriction of a projection P2 → P1 from a
point u ∈ C. If z /∈ (C + y) then z+ y = z̃+x implies z+ y+u = z̃+x+u+κC ,
for u ∈ C as above. Hence z ∈ κC − (y + C). This proves (3).

To prove the last claim notice that C ⊂ J is not invariant under any transla-
tion in J and that the same holds for all irreducible components of Wb listed in
the lemma. Since B is a cyclic group of odd order and Wb consists of at most two
components, the same holds for all Wb above. This completes the proof.

Lemma 8.9. Assume that b 6= x− y, for any x, y ∈ C(k). Then

(1) if C is nonhyperelliptic and g(C) > 3 then for any z 6= z̃ ∈ HB the
di�erence z − z̃ 6= x̃− ỹ, for x̃, ỹ ∈ C(k).

(2) if C is hyperelliptic and g(C) > 2 then for any z 6= z̃ ∈ HB − (h+B) the
di�erence z − z̃ 6= x̃− ỹ, for x̃, ỹ ∈ C(k) (where (h+ B) is the B-orbit of
the hyperelliptic pencil h, if it is contained in HB).

Proof. Assume that for some z 6= z̃ ∈ HB one has z − z̃ = x̃ − ỹ, with x̃, ỹ ∈ C.
Same holds for pairs (z + b), (z̃ + b) ∈ HB and (z − b), (z̃ − b) ∈ HB .

Step 1. We have z + ỹ = z̃ + x̃ and similarly for other pairs (z +mb) + ỹ =
(z̃ +mb) + x̃, for m = 1, . . . , p− 1.

Step 2. Assume that z+ỹ = z̃+x̃ identically on C. Then (z1, z2, ỹ) = (z̃1, z̃2, x̃)
implies that z1 = x̃, z̃1 = ỹ and z = u + x̃, for some u ∈ C. If z + b ∈ (C + x̃),
i.e., z + b = ũ + x̃ for some ũ ∈ C, then b = (z + b) − z = ũ − u, for u, ũ ∈ C,
contradicting the assumption on b. Thus at least two of the relations

z + ỹ = z̃ + x, (z + b) + ỹ = (z̃ + b) + x̃, (z − b) + ỹ = (z̃ − b) + x̃

are nontrivial. Since the cycles

z + ỹ, (z + b) + ỹ, (z − b) + ỹ

are not equivalent there are at least two di�erent trigonal structures on C. This
implies (1).

Step 3. Assume that C is hyperelliptic. If z /∈ h+B, z 6= z̃, and z+y1 = z̃+x1

is not an identity for cycles on C then z+ y1 = z̃+x1 = h+ t (as in Lemma 8.8),
z = yσ

1 + t and z̃ = xσ
1 + t, hence yσ

1 = xσ
1 and z = z̃, contradiction.

As in Step 2, the relation z + y1 = z̃ + x1 is identical only if z ∈ C + x1, z̃,
and hence the relation (z + b) + y1 = (z̃ + b) + x1 is nontrivial. By the argument
above, applied to z + b, we obtain z + b = z̃ + b and hence z = z̃, contradiction.

If similarly (z+ b) = (yσ
1 + t1) then (z+ b)− z = b = t1− t, contradicting the

assumption on b. If z+ y1 = h+ y1 then z = h and if z+ y1 = h+ x1 then z̃ = h.
This implies (2).

Lemma 8.10. Assume that HB is one-dimensional and z−z̃ 6= x1−y1 for arbitrary
x1, y1 ∈ C and z 6= z̃, z, z̃ ∈ HB \ S, where S ⊂ HB(k) is a �nite subset. Then
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(1) HB contains only one irreducible one-dimensional component H0
B ;

(2) there is a degree-two map C → H0
B de�ning the embedding H0

B ↪→W 2;
(3) H0

B = HB is an elliptic curve containing b.

Proof. Consider the proper preimage R of HB in C×C under the degree-two map
C × C → W2. Thus j

′ : R → HB is a degree-two map of algebraic schemes. Let
πi : R→ C, with i = 1, 2, be projections induced on R by the natural projections
of C×C to C. By the assumption of the lemma, the preimage of z = (z1, z2) ∈ HB

in R consists of

r1(z) = (z1, z2), r2(z) = (z2, z1).

By assumption, for all but a �nite number of z ∈ HB and any r′ ∈ R, r′ 6= r1(z),
we have π1(r′) 6= z1. The same argument holds for π2. Thus both maps πi : R→ C
induce an isomorphism on the unique one-dimensional irreducible component of
R. In particular, this component is isomorphic to C and the restriction of j′ to
C de�nes a degree-two map j : C → H0

B . The map j de�nes an embedding
H0

B → HB ⊂W2. This proves (1) and (2).
The component H0

B is invariant under B since it is the unique irreducible
component of HB . Thus any cycle z ∈ H0

B is given as (z1, τ(z1)), where τ is the
involution on C de�ning j, i.e., j : C → C/τ = H0

B and C/τ = R.
The map j∗ : Pic0(H0

B) → Pic0(C) has �nite kernel since it is contained in
Pic0(H0

B)[2]. Write tb(h) for the image of h ∈ H0
B under b ∈ B. Any

(h− tb(h)− h′ + tb(h′)), with h, h′ ∈ H0
B ,

is contained in the kernel of j∗ since

j∗((h− tb(h)− h′ + tb(h′)) = j∗(h)− (j∗(h) + b)− j∗(h′) + j∗(h′) + b = 0.

Thus h+h′ = tb(h)+tb(h′) on H0
B , for any h, h

′. In particular, H0
B has a family of

hyperelliptic involutions. On the other hand, H0
B ⊂ J is not rational, thus it is an

elliptic curve. Since j : C → E is surjective, for any z = (z1, z2) ∈ HB \ E there
is a z̃ ∈ E ⊂ HB with z̃ = (z̃1, z̃2). This proves HB = E in case (1) (Lemma 8.9).
In case (2), τ(h) = h and there is a hyperelliptic involution σ′ on E such that j
commutes with the hyperelliptic involution σ′ on C. Hence h coincides with the
preimage of a σ′-invariant point on E, h+B ⊂ E and HB = E in case (2).

Applying Lemma 8.9 we prove Proposition 8.7, for all C, except for quartic
curves in P2, i.e., nonhyperelliptic curves of genus 3. We now treat this remaining
case.

The canonical embedding realizes C as a plane quartic. Thus for any two-cycle
z = z1 + z2, zi ∈ C(k) there is a uniquely de�ned two-cycle z̃ = κC − z, where
κC is the canonical class. Applying Lemma 8.8 we will assume that mb 6= (x−y),
for any x, y ∈ C(k) and m-coprime to p, hence

b = (x1 + x2)− (y1 + y2), xi, yi ∈ C(k)
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(and similarly for mb,m-coprime to p). The cycle z + b = z̃ is equivalent to
z + (x1 + x2) = z̃ + (y1 + y2), i.e.,

z + z̃ = (y1 + y2) + (x̃1 + x̃2) = κC + b ∈ J(k).

Note that κC + b 6= κC − b, i.e., they de�ne nonequivalent linear series. If HB

is nonzero then κC + mb, with m-coprime to p, pb = 0, de�nes p − 1 di�erent
g4
1-series on C.

Lemma 8.11. If b 6= x − y then κC + b does not degenerate, i.e., it de�nes a
degree-4 map πb : C → P1.

Proof. The series is degenerate, i.e., de�nes a degree-three map θb : C → P1 if
the lines in P2 de�ned by x1, x2 and y1, y2 intersect in t ∈ C(k). In this case

x1 + x2 + x3 + t = y1 + y2 + y3 + t = κC

and hence

b = (x1 + x2)− (y1 + y2) = y3 − x3

contradicting the assumption on b.
Thus we can assume that θb : C → P1 has degree 4. Consider also θ−b and

the map

(θb, θ−b) : C → P1 × P1.

Lemma 8.12. Assume that HB has a one-dimensional component. Then

(1) the map (θb, θ−b) : C → P1 × P1 is a degree-two map onto its image;
(2) the image E := (θb, θ−b)(C) is an elliptic curve;
(3) the map σ : E → W2 de�ned by σ(e) = (θb, θ−b)−1(e) ∈ W 2 identi�es E

with HB .

Proof. By description, any two-cycle z in HB is contained in a �ber of θb. The
same holds for θ−b. Note that Lb 6= L−b since 2b 6= 0 (by the argument above).
Thus any such z is contained in the �ber of (θb, θ−b) and the the map of C onto
its image has degree at least 2. Note that the �bers of θb and θ−b have at most a
degree-2 cycle in common.

Assume on the contrary that for some z + z̃ = κC + b and z1 + z̃1 = κC − b
have a degree-3 cycle in the intersection. This means that

(z + z̃)− (z1 + z̃1) = x̃− ỹ for some x̃, ỹ ∈ C(k).

Then

(κC + b)− (κC − b) = κC + 2b = (z + z̃)− (z1 + z̃1) = x̃− ỹ

which contradicts the assumption on b. This proves (1).
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Thus the image of C in P1 × P1 is a curve of degree (2, 2), hence it is either
elliptic or rational. Since C is hyperelliptic, E := (θb, θ−b)(C) is elliptic. Note that
the �bers of map (θb, θ−b) : C → E coincide with the cycles z ∈ HB and hence
we obtain (3)

Thus Proposition 8.7 holds also for g(C) = 3, and we completed its proof.

Lemma 8.13. Assume that J(k0) ⊇ J [p]. Let z ∈ J(k) \ J(k0) be such that
πp(z) ∈ J(k0)/(J(k0)∩J{p}). Then there exists a subgroup B ' Z/p ⊂ J [p] such
that the Galois orbit of z contains

{z + b | b ∈ B}.

Proof. Let w be the image of z in W2 = ϕ(C(2)) ⊂ J and write w = w(p) + wp,
where w(p) is of order prime to p and wp is of p-power order. By assumption, w(p)

is k0-rational.
Suppose that w is not k0-rational. Then wp is not k0-rational. Since wp ∈ J{p}

and J [p] ⊂ J(k0), we have Gal(k0(wp)/k0) ' Z/pmZ for some m ≥ 1. Take
γ ∈ Gal(k/k0) whose image in Gal(k0(wp)/k0) is of order p. Then we can write
pu(γ − 1) = (γp − 1) on J{p} (see proof of Lemma 5.1). Accordingly,

p(γ − 1)wp = u−1(γp − 1)wp = 0.

Since (γ − 1)wp 6= 0 by de�nition, this implies

(γ − 1)w = (γ − 1)wp ∈ J [p] \ {0}.

In other words, there exists an a ∈ J [p] \ {0}, such that (γ − 1)w = a, or w =
γw − a.

Let k0 be a su�ciently large �nite extension of the ground �eld containing
the �eld of de�nition of C and such that c0 ∈ C(k0) and J [p] ⊂ J(k0). Let

K(k0) := { k′0/k0 |J(k′0) ∩ J{p} = J(k0) ∩ J{p} }

be the set of extensions of k0 such that the p-component of J(k) remains stable.
Note that K(k0) contains all �nite extensions of k0 of degree coprime to p. Put

Mult(J) := { a ∈ πp(W2(k)) |#π−1
p (a) ≥ 2 }.

and

H := ∪B⊂J[p],B'Z/pHB , HB := ∩b∈B(W2 + b).

Note that

Mult(J) = Mult(J̃),

under the identi�cation of J(k)/J{p} = J̃(k)/J̃{p} above.
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Lemma 8.14. For all k′0 ∈ K(k0) the intersection

Mult(J) ∩ J(k′0)/ (J(k′0) ∩ J{p})

is contained in the union of the following sets

πp

(
∪a∈J(k0)∩J{p}C

(2)(k′0) ∩ (C(2)(k′0) + a)
)
,

πp (H(k) ∩ (J(k′0) + J{p})) .

Proof. Let z1, z2 ∈ W2(k′0) with πp(z1) = πp(z2). Then z1 − z2 ∈ J(k′0) ∩ J{p} =
J(k0) ∩ J{p} and thus πp(z1) = πp(z2) is in the �rst set. If z ∈ W2(k) \W2(k′0)
projects into J(k′0)/(J(k′0) ∩ J{p}), then we apply Lemma 8.13.

Thus the intrinsically de�ned subset Mult(J) ⊂ J(k)/J{p} (e.g., for g(C) <
4) may be a union of projections of an in�nite number of algebraic curves in J .
However, if we consider sub�elds k′0 from K(k0) then the number of such curves
is bounded.

The intersection Mult(J)∩ J(k′0)/J{p} splits into two sets. The �rst consists
of projections of k′0-points of a �nite number of curves which are independent
of k′0 ∈ K(k0). The number of such points is bounded by c · #k′0, where c is
independent of k′0 ∈ K(k0).

The second is contained in the projection ofH, a �nite union of curves de�ned
by C. In general, it may contain projection of points from H which lie in much
bigger �elds, and the number of such points could be di�cult to bound.

The next lemma shows that when all one-dimensional components of H are
elliptic curves then it su�ces to count only the projections of H(k′0), and hence a
similar estimate works. By Proposition 8.7, all one-dimensional components of H,
for g(C) ≥ 3, are indeed elliptic curves; this yields the desired universal estimate.

Proposition 8.15. Assume that g(C) > 2 and that for all �nite subgroups B '
Z/p ⊂ J [p] any one-dimensional component of HB is an elliptic curve. Then the
isomorphism (12) implies an isogeny between J and J̃ .

Lemma 8.16. Assume that for all B ' Z/p ⊂ J [p] all irreducible components of
HB are elliptic curves. Then there exists a constant c > 0 such that

#πp(HB(k)) ∩ (J(k′0)/J{p}) ≤ c#k′0,

for all k′0 ∈ K(k0).

Proof. We can assume that E ⊂ J and its translates E+ s, s ∈ J(k0), are de�ned
over k0. Decompose E(k′0) = E(k′0)∩E{p}⊕E′. The projection of the translates
to J(k)/J{p} coincides with the image of E′+ s and the intersection of E(k′0)+ s
with E′⊕J{p} is contained in E′⊕E{p}. Hence the intersection of πp(E(k′0)) with
J(k′0)/J{p} is equal to πp(E(k′0), and thus bounded by c · q, with q = #k′0.
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We now apply the following inductive algorithm to subgroups B0 ⊂
J(k)/J{p}, for p > 2.

Bn+1 := 〈1
2
Bn, c〉, ∃c′ ∈ πp(C(k)) with c+ c′ ∈ Bn, c+ c′ /∈ Mult(J),

The union ∪nBn ⊂ J(k)/J{p} is an in�nite group containing the image of J{2}.
If B0 ⊆ B̃0 then Bn ⊆ B̃n for all n.

Lemma 8.17. Assume that k0 is su�ciently large such that:

(1) J [`] ⊂ J(k0) for all primes ` ≤ I, for I from Lemma 5.4;
(2) J(k0) ∩ J{p} is relatively small.

Put B0 := J(k0)/J{p}. Then Bn = (J(kn)/J{p}), for all n ∈ N, where kn is the
unique extension of k0 of degree 2n.

The same holds for su�ciently large k̃′0 such that in addition to the above
conditions, J̃(k̃′0)/J̃{p} contains the image of J(k′0)/J{p}.

Since the de�nition of Bn+1 is the same for C and C̃ we obtain that
J(k′n)/J{p} ⊂ J̃(k̃′n)/J̃{p}, for all n ∈ N. Thus the orders of J(k′n) divide the or-
ders of J̃(k̃′n), for all n ∈ N, modulo a constant term equal to #J(k′0)∩J{p} ≤ qg.
Applying [CZ02] and Theorem 7.10 we conclude that J and J̃ are isogenous. This
�nishes the proof of Theorem 8.4.

Remark 8.18. Our analysis of the map C → J(k)/J{p} works similarly for a map
into any quotient J(k)/J{m}, where m is an arbitrary odd number.

Remark 8.19. Let C be a curve of genus > 3 with a bielliptic structure j : C → E,
i.e., a degree-two map onto an elliptic curve. Then E ⊂ W2 coincides with a
component of HB , for subgroup B ' Z/p ⊂ E(k). By Corollary 7.3, if (C, J) →
(C̃, J̃) is an isomorphism of pairs and j a bielliptic structure then there is a
commutative diagram

(C, J) //

��

(C̃, J̃)

��

E // Ẽ

Thus the groups of algebraic automorphisms generated by bielliptic re�ections
are isomorphic. Same holds for an isomorphism

(C, J(k)/J{p})→ (C̃, J̃/J{p})

from Equation (12).
In particular, the Klein quartic curve C (the unique curve of genus 3 with

bielliptic involutions generating PSL2(F7), the maximal group of automorphisms)
is de�ned by the image of C(k) → J(k)/J{p} or (Ga

(p), I) (for p > 2). In order

to adjust the argument in Corollary 7.3 for the map C(k)→ J(k)/J{p} we have
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to notice only that the presence of an elliptic curve E ⊂ W2 is detected by
the in�nity of the intersection of W2 with J{S}, for any �nite set of primes S
(see [Box92]). Thus W2 ⊂ J contains an elliptic curve if and only if πp(W2) ∩
πp(⊕`i∈S′J(k)/J{`i}) is in�nite for a �nite set S′ of primes `i 6= p. Then W2 has
an in�nite intersection with ⊕`i∈S′J(k)/J{`i} ⊕ J{p}.

Similar results hold for other special curves C with su�ciently many maps
onto curves of small genus.
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