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Abstract. We study hyperbolic curves and their Jacobians over finite
fields in the context of anabelian geometry.

1. Introduction

This paper is inspired by the foundational results and ideas of John Tate in the
theory of abelian varieties over finite fields. To this day, the depth of this theory
has not been fully explored. Here we apply Tate’s theorems to anabelian geometry
of curves over finite fields.

Let C be an irreducible smooth projective curve of genus g = g(C) > 2
defined over a field k and let C(k) be its set of k-rational points. When k is the
field of complex numbers, the complex torus

H%(C(C),Q¢) /Hi(C(C), Z)

is the set of complex points of an algebraic variety, the Jacobian variety J of C.
Choosing a point ¢y € C(C) we get a map

c(C) =  J(C)

c H(wl—>fﬁ/w),

where w € QF is a global section of the sheaf of holomorphic differentials on C and
v is any path from ¢y to c. In a more algebraic interpretation, the abelian group
J(C) is isomorphic to Pic’(C), the group of degree-zero divisors on C' modulo
principal divisors, and the map above is simply:

C(C)— J(C)

C = C — Cp.

This construction can be carried out over any field k, provided the basepoint c¢g is
defined over k, by a fundamental result of Weil, the Jacobian J is defined over the
field of definition of C, and the set-theoretic maps above arise from k-morphisms.



For each n € N, we get maps
C™(k) 2= ¢ (k) 25 J(k)

where C™ is the n-th power and cm = C"/&,, is the n-th symmetric power
of C, ie., C™(k) is the set of effective degree-n zero-cycles on C' which are
defined over k. The map to the Jacobian assigns to a degree-n zero-cycle ¢; +
o4, € CM(E) the degree-0 zero-cycle (¢i + ...+ ¢,) — nco. The maps ¢,
capture interesting geometric information. For example, ¢, is birational, which
leads to an alternative definition of J as the unique abelian variety birational to
C®. The locus O := gag_l(C(gfl)) C J is an ample divisor, the theta-divisor.
The classical Torelli theorem says that the pair (J, ©), consisting of the Jacobian
J of C and its polarization ©, determines C' up to isomorphism. This theorem
holds over any field and is one of the main tools in geometric and arithmetic
investigations of algebraic curves, relating these to much more symmetric objects
- abelian varieties.

From now on, let ko be a finite field of characteristic p and k = ko an algebraic
closure of kg. Recall that J(k) is a torsion abelian group, with ¢-primary part

J{} = (Qu/Z0)%,  for £ #p.

The description of J{p} is slightly more complicated: there exists a nonnegative
integer n < g such that J{p} = (Q,/Z,)". Nevertheless, as an abstract abelian
group, J(k) depends “almost” only on the genus g of C. The procyclic Galois
group of k/ky acts on J(k) and one can consider the Galois representation on the
Tate-module:

To(J) = lim J[¢"), £ +#p,

where J[¢"] C J(k) is the subgroup of £"-torsion points. Let F; be the character-
istic polynomial of the Frobenius endomorphism on

Ve(J) :==To(J) @ Qp.

By a fundamental result of Tate, F; determines the Jacobian as an algebraic
variety, modulo isogenies:

Theorem 1.1 (Tate [Tat66|). Let J,.J be abelian varieties over ko and Fy, F; €
Z[T] the characteristic polynomials of the ko-Frobenius endomorphism Fr acting

on Vi(J), resp. Vy(J). Then
Hom(J, J) ® Z¢ — Homg, (g, (Te(J), Te(J)).

The abelian varieties J and J are isogenous if and only if Iy = F5.

In particular, while the Galois-module structure of J(k) distinguishes J in a
rather strong sense (but not up to isomorphism of abelian varieties, an example
can be found in [Zar08], Section 12), the group structure of J(k) does not.



In this paper, we investigate a certain “group-theoretic” analog of the Torelli
theorem for curves over finite fields. This analog has a natural setting in the
anabelian geometry of curves. Throughout, we work in characteristic > 3.

Let J! be the Jacobian of (degree-1 zero-cycles of) C and
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the corresponding embedding. The Jacobian J of degree-0 zero-cycles on C acts on
J', translating by points ¢ € C(k). Let C, resp. J, be another smooth projective
curve, resp. its Jacobian. We will say that

¢ (C,J)— (C,J)

is an isomorphism of pairs if there exists a diagram

T(k) JU(K) <—— C(k)
NN
F(k) JU(k) <—— ()

where

e ¢° is an isomorphism of abstract abelian groups;

e ¢! is an isomorphism of homogeneous spaces, compatible with #°;
e the restriction ¢ : C(k) — C(k) of ¢! is a bijection of sets.

Our main result is:

Theorem 1.2. Let k = ]Fp, with p > 3, and let C,C be smooth projective curves

over k of genus > 2, with Jacobians J, resp. J. Suppose that there exists an
isomorphism of pairs

¢ : (C,J) = (C,J).
Then J and J are isogenous.

Conjecture 1.3. Under the assumptions of Theorem 1.2, C and C are isomorphic
as algebraic varieties, modulo Frobenius twisting.

There are examples of geometrically nonisomorphic curves over finite fields
with isomorphic Jacobians, as (unpolarized) algebraic varieties over kq. Pairs of
such curves are given by

y?=(2*+1)(2® — 1) and y* = (2 - 1)(z* — 4)



over [F1; with Jacobian F x FE, for a supersingular elliptic curve E, or
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V=2 +2 422 —2 -1 and y* =2

— -z —1

over F3, with a geometrically simple Jacobian (see [IKOS86|, [How96] and the
references therein).

Theorem 1.2 was motivated by Grothendieck’s anabelian geometry. This is a
program relating algebraic fundamental groups of hyperbolic varieties over arith-
metic fields to the underlying algebraic structure. One of the recent theorems in
this direction is due to A. Tamagawa: Let II be a nonabelian profinite group.
Then there are at most finitely many curves over k = F,, with tame fundamental
group isomorphic to I [Tam04]. Tamagawa generalized previous results by Pop-
Saidi [PS03] and Raynaud [Ray02], who proved similar statements under some
technical restrictions on curves. The main new ingredient in Tamagawa’s proof is
a delicate geometric analysis of special loci in Jacobians.

In the second part of this paper, we apply Theorem 1.2 to a somewhat ortho-
gonal problem. Namely, we focus on the prime to p part of the abelianization of the
absolute Galois group of the function field of the curve, together with the set of
valuation subgroups. Our main result (Theorem 8.4) is that for projective curves
C over k, of genus g(C) > 3, the pair (G%,Z), consisting of the abelianization
of the Galois group of K = k(C) and the set Z = {I?}, of inertia subgroups
I3 C G§% corresponding to nontrivial valuations of K, determines the isogeny class
of the Jacobian of C.

Here is a road-map of the paper. In Section 2, included as a motivation for
Conjecture 1.3, we discuss certain subvarieties of moduli spaces of curves cut out
by conditions on the order of zero-cycles of the form ¢— ¢’ on C in the group J(k)
(i.e., images of Hurwitz schemes and their intersections). Typically, very few such
conditions suffice to determine C, up to a finite choice. In Section 3 we study the
formal automorphism group G¢ of the pair (C,J) and derive some of its basic
properties. In Section 4 we collect several group-theoretic results about profinite
groups which we apply in Section 5 to prove that any elements v,5 € G¢ have
the property that some integral powers 7", 5" commute. We then prove that this
holds for the Frobenius endomorphisms ¢°(Fr) and Fr, as elements in Aut(J(k)),
whenever we have an isomorphism of pairs ¢ : (C,J) — (C,.J). In Section 6
we apply the theory of integer-valued linear recurrences as in [CZ02] to obtain
a sufficient condition for isogeny of abelian varieties. In Section 7 we construct
towers of degree-2 field extensions

ko C...ChnC...Chkoo, resp. ko C...Ckn C...C koo,
provide set-theoretic intrinsic definitions of J(k, ), resp. J (l%n), and establish that

' (J(kn)) C j(l;"), for all n.



Combining Tate’s theorem 1.1 with Theorem 6.3 we conclude that .J and J are
isogenous. In Section 8 we discuss extensions and applications of Theorem 1.2 to
anabelian geometry.
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2. Curves and their moduli

Let ko be a finite field of characteristic p and let k& be an algebraic closure of
ko. Let C be an irreducible smooth projective curve of genus g = g(C) > 1 over
ko with C(kg) # 0, and let J = Jo be its Jacobian. The Jacobian of degree-1
zero-cycles J' is a principal homogeneous space for J. For ¢ a prime number let

J{t} := UnenJ[€"] C J(k), resp. Ty(J)=lmJ[¢"]

be the f-primary part of J(k), resp. the Tate-module. For any set of primes S,
put

J{S} =P J{e} c J(k).

tes
The order of x € J(k) will be denoted by ord(x).

Lemma 2.1. Let C be a curve of genus g > 1. Let J be its Jacobian and a € J(k)
be such that

a+C(k) c C(k) c J*k).
Then a = 0.

Proof. Let (a) be the cyclic subgroup generated by a and let n be its order. The
translation by a gives an action of (a) on J! and a separable unramified covering
C — C/{a) of degree n. The quotient J := J/{a) acts on the corresponding
principal homogeneous space J! = J!/{(a). The image C of C under the projection
J' — J! has genus g = g/n — 1/n+1 < g, since n > 2 and g(C) > 2. Hence
the Jacobian of C' is a proper abelian subvariety of .J, of dimension at most g.
It follows that the same holds for its preimage C, contradicting the fact that C
generates J. O

Definition 2.2. An ordered set R, = {r1,...,r,} of integers r; > 1 will be called
an n-string. Let J be an abelian variety over k and X C J(k). An ordered subset
{zo,21,..., 20} C X will be called an R, -configuration on X if r; = ord(z; —xo),
for1<j<n.



We will mostly consider the case when X = C(k) — J(k), where C is a curve
of genus g = g(C) > 1. Note that an isomorphism of pairs ¢ : (C,.J) — (C,.J)
preserves all configurations, i.e., for all n € N, every R,-configuration in C(k) C
J(k) is mapped to an R,-configuration in C(k) C J(k). In particular, ¢ maps
equivalent effective divisors on C to equivalent divisors on C'. Since the projective
dimension of the space of global sections of a divisor D on a curve is defined as
the maximal degree of an effective divisor D’ such that D — D’ is still effective,
the isomorphism ¢ respects these dimensions. Since the canonical class on a curve
of genus > 2 is the unique class of dimension 2g — 2, the map ¢ maps a canonical
divisor of C' to a canonical divisor of C. However, a priori, the corresponding
set-theoretic bijection

P(H(C, Kc))(k) < P(H(C, K¢))(k)

does not preserve the projective structure. If we had an isomorphism of projective
structures, we would immediately obtain an isomorphism of curves, as algebraic
varieties.

Theorem 2.3. Let C be a curve over k = IF‘p of genus g > 1. Then there exists an
n-string R, , with n < 3g — 2 such that

o C(k) C J(k) contains an R, -configuration,
e there exist at most finitely many nonisomorphic curves of genus g contain-
ing an R,-configuration.

Proof. We write Mg, for the moduli space (stack) of genus g curves with
n-marked points. The subvariety of M, parametrizing curves with an R,-
configuration is contained in the intersection of varieties corresponding to config-
urations of order 1 built from appropriate subsets of R,,.

Every 1-string Ry = {r1} defines an algebraic subvariety Dg, ¢ C Mg 1. By
[Hru96] and [PR04], the number of points of finite order on a nonisotrivial curve
embedded into an abelian variety, over a function field of positive dimension, is
bounded. Applying this theorem to the Jacobian fibration of the universal curve
over the function field of M,, we conclude that the subvariety Dg, ¢ projects with
finite fibers onto a proper subvariety of M, for all r; > 0. Now we can proceed
by induction. Assume that C' contains an R,-configuration {co,...,c,} C C(k)
and let Dg, C Mg,1 be a union of irreducible subvarieties of dimension < 3g —n,
corresponding to curves with such a configuration, each having a finite map onto
a subvariety of Mg. Using [Hru96] and [PR04]| for each irreducible component D
of Dg, we conclude that there exists an V,1; such that:

1. there is a point ¢,11 € C'(k) with ¢,.41 — ¢o of order N1,
2. in each irreducible component of Dg  the subvariety parametrizing curves
with a torsion point of order N, is proper.

Iterating this, in at most 3g — 2 steps we obtain a string R and a zero-dimensional
variety D such that C(k) contains an R-configuration which distinguishes C' from
all but finitely many other genus g curves over k. O



Remark 2.4. Over C, the Hurwitz scheme parametrizing genus g curves admitting
a degree-m map onto P!, with ramification of degree m at two distinct points, is
irreducible and has dimension 2g—1. The generic point of this scheme corresponds
to a cover with simple additional ramification points whose images are all distinct.
Indeed, a cycle ¢; —cp of order m defines a function f on C with divisor m(c; —cq),
and thus a cover C — P! of degree m, which is totally ramified over two points:
0,00. The genus computation gives an upper bound of 2g for the number of
additional ramification points. Since there are only finitely many covers of fixed
degree with fixed branch points in P!, the dimension of the corresponding Hurwitz
scheme is bounded by 2g — 1.

We have dim M, ; = 3g — 2 and codimD,, ; = g — 1. Accordingly, a gen-
eral 3-configuration should give a subvariety of dimension 1 in M, ; and a 4-
configuration - a zero-dimensional subvariety in Mg ;.

Conjecture 2.5. For any curve C of genus g(C) > 2 there exist a string Ry and
an Ry-configuration on C such that there are only finitely many curves C with
an Ry-configuration on C realizing the Ry-string. Moreover, all such curves and
such Ry-configurations are Galois conjugated.

Clearly, this would imply a strong version of Conjecture 1.3.

Remark 2.6. Consider R3 = {2, 3}. Transversality would give 3g—2—(2g—2) =g
in this case. However, the corresponding intersection is trivial.

Indeed, in general the set of solutions ncy = nc is trivial for odd n < g —1,
and a point ¢ invariant under a hyperelliptic involution. For n < g — 1 and n
even the point ¢ is always invariant under a hyperelliptic involution.

In fact, we have a “supertransversality” for these Hurwitz schemes.

Proposition 2.7. Let r1,r} be coprime integers. Let Ry = {r1} and R} = {r{} be
the corresponding 1-strings and Z := Dpg, ¢ N Dp; o C Mg the inlersection of
the associated Hurwitz schemes. Then Z =0, provided g > (r; — 1)(r] — 1)/2.

Proof. The coprimality condition implies that the pair of functions (f.,, f,;), with
divisors r1(c; — ¢p), resp. ri(c] — ), realizing the configuration, gives a map
C — P! x P!, birational onto its image. The family of such curves in P! x P! is
algebraic. Hence g(C) < (r; — 1)(r} — 1)/2. Indeed, a smooth curve in the family
has genus g = (C(C+ K)/2)+1 (where K = Kp1yp1 is the canonical class) which
gives

(riH+r 1 H)((r1—=2)H+(r}—=2)H')/2+1 = (2r1r]—2r1—2r1) /241 = (r1—=1)(r]—1).

The image of C in P! x P! has a singularity in the image of ¢y, the same singularity
as the rational curve (t’”l,trll). This rational curve has the same homology class
as C and has exactly two equivalent singularities, at (0,0) and at (0o, 00). Thus
if (ry —1)(r} —1) —25(r1,77) = 0 then the defect of the singularity is 6(rq, 7)) =
(r1 —1)(r} = 1)/2, which gives a lower bound for the defect for C. Hence g(C) <
(1 — 1)}~ 1)/2. O



Conjecture 2.8. Let r1,7,7{ € N be pairwise coprime, let f.,, fu, frv € k(CO)
be functions as above and N\ € k* \ {1}. Assume that there are four points
o, C1,Ca,c3 € C(k) such that

div(fr,) =7r1(co — 1)
div(frr) =ri(co — ca)
div(fry) =r{(co — c3)

and such that
f7‘1 (62) =1 and f7'1 (63) = A
Then there are only finitely many curves C with the same property.

This would imply that the 3-point scheme intersection
Dr, g N Drig N Dryg C Mg

has dimension at most 1, and, using the argument in the proof of Theorem 2.3,
the claim in Conjecture 2.5 concerning the finiteness of the set of curves with
prescribed 4-strings. We don’t know whether or not this intersection is irreducible.
We would expect it at least for sufficiently large coprime ry, 77, 77.

3. Formal automorphisms

Let A be an abelian variety defined over an algebraic closure k of a finite field,
Al a principal homogeneous space for A and X C A' a closed subvariety not
preserved by the action of an abelian subvariety of A of positive dimension.

Lemma 3.1. The subgroup
Stabx := {a € A(k)|a+ X (k) C X(k)}
is finite.

Proof. See, e.g., [Abr94]. O

Let Aut(A) be the group of automorphisms of the torsion abelian group
A(k) and let Aut(A)** be the group of affine automorphisms of the principal
homogeneous space A!(k). We have

Aut(A) = Aut(A), x [ GLaa(Z),
{#£p

with d = dim A and Aut(A), = GL((Z,), where t is the rank of the étale p-
subgroup of A(k). There is a split affine extension

1 — A(k) — Aut(A)*T 2 Aut(A4) — 1, (2)



where the projection o corresponds to the action on zero-cycles. Let
Gx = {y € Aut(A)™ | A(X(k)) C X (k)  A'(k)}

be the subgroup preserving X (k). We call Gx the group of automorphisms of the
pair (X, A).

Lemma 3.2. The projection of Gx to Aut(A) has finite kernel.
Proof. Follows from Lemma 3.1. O

Lemma 3.3. For every a € Al (k) the intersection G,NGx has finite index in Gx.

Proof. Consider
Gx C Aut(A)* 25 Aut(A)

and let pox be the restriction of g to Gx. For each oo € A(k) let Go,x C Gx be
the preimage of the intersection of o(Gx) with the stabilizer of o in Aut(A). The
group G x has finite index in Gx since the order of « is unchanged under an
automorphism of X. Hence, if G, N Gx has finite index in Gx for at least one
point a € Al(k), we have the same property for all points.

We now assume that a € X (k). Put

Xo= [ (X(k)+ (a—x)).

zeX (k)

Then X, is the set of k-points of an algebraic subvariety of X, containing a. Since
the intersection runs over k-points of an algebraic variety, we can find finitely
many zi,...,x, such that

X, =

.

(X(k)+ ;) with o :=a — ;.

Jj=1

We have, for all j,
(Gx, NGx) 2 NGy, x,

as a subgroup of finite index. If X, is finite then G, NG x has finite index in Gx,
as claimed. Otherwise, note that for all o’ € X(k), X, is a translate of X, by
a’' — a. In particular, if ' € X, then

a =2+ (a—u2),

for some =’ € X (k). Thus, for any € X (k) the translate z + (¢’ —a) € X (k) so
that X (k) = X (k)+(a—a’). Conversely, X, is also invariant under translations by
a—a', provided a,a’ € X,, i.e., X, is a principal homogeneous space for (k-points
of) a positive-dimensional subvariety of A, which preserves X. This contradicts
our assumptions on X. O



Remark 3.4. The group Gx always contains the procyclic subgroup 7 generated
by a Frobenius automorphism, and its extension by a finite group of algebraic
automorphisms of the pair (X, A).

Proposition 3.5. Let A be an abelian variety of dimension d. Let X C A' be
a subvariety which is not preserved under translations by a positive-dimensional
abelian subvariety of A. Assume that all components of X have dimension > 1.
Let Gx be the group of automorphisms of the pair (X, A). Let

= ]]we s Gx = GLu(Zy) x [ ] Glaa(Ze), t € [0,d],
‘ tp

be the corresponding homomorphism. Then, for all v € Gx \ Ker(v), there are
infinitely many ¢ such that V() # 1.

Proof.

Step 1. Fix v € Gx and zp € X (k) and write y(x) — zo = By(z — x0) + a, €
A(k), where 3, = o(7) (see Equation (2)) and a, € A(k) is an affine translation. In
particular, if 5, acts trivially on A{¢} and a, projects to 0 € A{¢}, for £ ¢ S, then
the action of v is trivial on the fibers of the projection A'(k) — A'(k)/® g5 A{(}.

Step 2. Assume that (, # 1. Then for any z € A'(k)/ ®res A{(}, with
y(x) # x define X,y := X N (X + (y(x) — x)). By assumption on v and the
projection, X, ) contains all points of X over z.

Step 3. Let us show that X is invariant under translations by v(z)—xz. Assume
on the contrary that X ) is a proper subvariety of X. Thus for some component
X; C X, with dim(X;) > 0, the intersection X (,)NX; C X;. Then there is a curve
C € X; which has finite intersection with X; ,,). However, the intersection of C
with the preimage of v(x) is infinite (see Theorem 5.5 and [BT05]), contradiction.

Step 4. Hence, for any x € A'(k), the element v(x)—z belongs to the subgroup
of those translations which keep X invariant. By our assumptions on X, this
subgroup is finite.

Step 5. The group generated by v(x) —x,z € A{S} is finite only if the 8, = 1.
Assume the contrary. Consider the action of v on A{¢}, for £ € S. The group
generated by [, (z) —z in A{¢} is infinite unless 5, = 1. Indeed, if 5, (z) —z =y
then n(8y(z/n) —x/n) = y and hence the image of (8, —1) is a divisible subgroup
of A{¢} and hence infinite for the linearized action of 3, # 1. On the other hand,
the group R generated by projections of v(z) — z to A{¢},z € Al(k) contains the
group Ry generated by (,(z) — z,z € A{{} as a subgroup of finite index. Indeed,
if we write z = ¢ —y,z,y € R then 8,(2) — z = y(z) — 2 — (7(y) — y)- Thus
Ry has to be trivial for R to be finite which implies that §,(z) — z = 0 for any
z e A{l},LeS. O

Definition 3.6. A homomorphism of abelian groups ¢° : A(k) — A(k) is called
a formal endomorphism if it arises from a sequence {¢{} of algebraic endomor-
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phisms ¢Y : A — A, with the property that for all finite subgroups G C A(k),
there exists an n(G) € N such that ng?lG = (bO‘G, for all i > n(G).

An example is a Z*-power of the Frobenius endomorphism Fr € Endyg, (A).

Proposition 3.7. Let (X, A) be a pair as in Proposition 3.5 and let v € Gx be
an element which commutes with the Frobenius action. Then o(v) is a formal
endomorphism.

Proof. Recall that the endomorphism ring End(A) is finitely-generated over Z
and that End(A)g is a sum of simple algebras over Q corresponding to sim-
ple components of the isogeny type of A. Any element in End(A) with non-
trivial projection into the factors defines an endomorphism of A. Note that
[Tz, End(T7) x End(7T;") contains a subalgebra Er of elements commuting with
the action of Frobenius on Ty, ¢ # p and T}".

The statement of the lemma is equivalent to the existence, for any h € Ep
and any finite subgroup S C A(k), of an b’ € End(A) such that A’ = h on S.
If S is an ¢-group then the result follows from Tate’s theorem, which identifies
End(A) ® Z; with the centralizer of the ¢-component of Ep. Similar result for any
S of order coprime to p follows from the density of End(A) under projection to
any finite product of End(7}). Tate’s theorem implies the same result for the full
p-divisible subgroup A, of A. Note that A, splits functorially into a product of the
étale Aff and the local Ag parts. In order to prove the lemma it suffices to extend
an endomorphism of A;’;t, which commutes with the Frobenius endomorphism, to
an endomorphism of A,. The action of Frobenius respects the splitting above.
Thus we can always extend an automorphism of Aff by identity on Ag. If the
endomorphism of Aff commutes with Frobenius the same holds for the extension.
This implies the lemma. O

4. Group-theoretic background

In this section we collect some group-theoretic facts which will be needed in
the proof of Theorem 5.11 - assuring that the Frobenius endomorphisms in
Aut(J(k)) = Aut(J(k) commute.

Lemma 4.1. Let £ > n+ 1 be a prime and G C GL,,(Z,) a closed subgroup with
an abelian ¢-Sylow subgroup. Assume further that G is generated by its £-Sylow
subgroups. Then G is abelian.

Proof. Since £ > n + 1, the group G does not contain elements of finite f-order.
Indeed, assume that v € GL,(Z;) has order £. Then it generates a subalgebra of
the matrix algebra which contains a subfield Q(+/1), which has dimension ¢ — 1
over (@7, and has to embed into the natural representation space Qj. This implies
that ¢ <n + 1.

Consider the reduction homomorphism

De + G — GL,(Z/0).
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The preimage G° = ¢, (1) of the identity in GL,,(Z/¢) is a normal pro-¢ subgroup.
In particular, Gy is contained in every ¢-Sylow subgroup of G. Hence G| is abelian
and torsion-free, i.e., Gy ~ Zj, for some r € N.

Step 1. Since G is generated by its ¢-Sylow subgroups, which are abelian, and
Gy is contained in all these subgroups, Gg commutes with all elements of G. Let
G|, be the ¢-component of the center of G. It is a torsion-free group isomorphic
to Zj and containing G as a subgroup of finite index.

Thus G is a central extension

1-G,—-G—-G —1 (3)
where G’ is a finite group.

Step 2. By Schur’s theorem, since G is a group whose center has finite index,
the derived group [G,G] is finite, and G is a split extension of [G, G|, a finite
group of {-prime order, by a Sylow pro-¢ subgroup, which is isomorphic to Zj.

Step 3. Since G has no (-torsion, G has order coprime to £. It follows that f
admits a section o : Zj — G.

Step 4. We claim that Zj acts trivially on G and that the extension
1-G-aL Zy — 1

splits.

Let g € GL,,(Z¢) be an element of infinite f-order (i.e., all but finitely many
reductions ¢ym(g) € GL,(Z/¢™) are of nontrivial {-power order). Consider an
element h € G C GL,(Z) of finite order. Assume that ¢ commutes with h.
Then g commutes with k. Indeed, in that case, both g and hgh ! are in the same
triangular subgroup U as ¢ = (hgh™'), and in this subgroup U the extraction
of ¢-th roots is unique (log is bijective from U to its Lie algebra).

We have g = g¢,9, where g5 is semi-simple, g, is unipotent, and gs, g,
commute. If an element h € GL,(Z;) has finite order and commutes with g
then it commutes with g, and g,. Note that (¢°), = (g,)" and that they have
the same commutators. Thus we can assume g = gs. In this case the algebra
Qelg] € Maty, xn(Qp) is a direct sum of fields Ki(g) (finite extensions of Qy).

The subalgebra in Mat,, x,,(Qy) of elements commuting with A is a direct sum
of matrix algebras over division algebras with centers K l-(g). We have a natural
embedding of algebras Q¢[g¢] C Qy[g]. If this embedding is an isomorphism then

£
h commutes with g. Otherwise, there is a proper subfield KZ-(g ) ¢ Ki(g), which
does not contain the projection of g to this component of the matrix algebra.

The Galois group Gal(Ki(g)/Ki(gz)) is a subgroup of the affine extension of Z/¢ by
14 4
Z)(6 — 1) ~ Gal(Qy(Cr)/Qp). If K9 /K is not Galois then [K¥ : K9] =,
3
contradicting the assumption £ > n + 1. Otherwise, both K7, K" are subfields
of Q¢(¢¢). Note that the ¢-subgroup of invertible elements in the multiplicative

12



group of any subfield of Q,(({,) is a direct summand of the ¢-group of this field,

4
hence primitive. Since g* is a primitive element in Ki(g ) it will remain primitive
in Q¢(;), contradicting the assumption that g is an /-power of an element in

Qe(Ce).

Step 5. Since G is generated by its ¢-Sylow subgroups and all elements of G
commute with Zj, it follows that G =1 and G = Zj. O

Lemma 4.2. Let H — H be a surjective homomorphism of finite groups. Assume
that we have an exact sequence

1-S—>H-C-—>1

where Sy is a nontrivial normal /-subgroup of H, C is a cyclic group whose order
is a power of a prime number # £.
Then there is an ¢-Sylow subgroup S, C H’ such that

e S surjects onto Sy,
e the normalizer N’ of S}, in H’ surjects onto H.

In particular, there exists an element b’ € N’ of order coprime to £ which surjects
onto a generator of C.

Proof. All (-Sylow subgroups of H' surject onto S;. Hence they generate a proper
normal subgroup S’ C H’ which surjects onto Sy. Any h' € H’ acts (by conjugation)
on the set S(H’) of (-Sylow subgroups of H'.

Since S’ acts transitively on S(H’) there exists an element s’ € S’ such that
h's" acts with a fixed point on S(H’). Let S’ be an (-Sylow subgroup preserved
by h's’. The normalizer N’ of S’ surjects onto H. In particular, we can find an
element A’ contained in this normalizer, of order coprime to ¢, which is mapped
to a generator of C. O

Let H be a finite group and ¢, p two distinct primes. We say that H contains
an (¢,p™)-extension {s € Sy, n € N} if the following holds:

e S, C His an ¢-Sylow subgroup,

N C H is a subgroup containing S, as a normal subgroup,

the quotient C := N/Sy is a cyclic group of order p™* with my > m,
n € N projects onto a generator of C,

s € Sy satisfies [s,n?"] # 1 in S,.

Corollary 4.3. Let 7 : H' — H be a surjective homomorphism of finite groups.
Assume that H contains an (£,p™)-extension {s € Sg,n € N}. Then H' contains
an (£,p™ )-extension {s' € S;,n" € N'}. Moreover,

e m' >m,

e 7(S)) =Sy,
o 7(s') =s,
e w(n’) =n.

13



Proof. We start with the exact sequence
1-S,—>N->C—1. (4)

The full preimage of N in H’ contains an ¢-Sylow subgroup S of H'. By Lemma 4.2,
the normalizer of S}, in H’ contains an element n’ of order coprime to ¢ such that
w(n’") = n, surjecting onto a generator of C. We may correct n’ such that its
order becomes a power of p. It is divisible by the order of C, i.e., it equals p™ ,
with m’ > m. Let N' C H’ be the subgroup generated by S, and n’. Take s’ to
be any element in the preimage 7 '(s). Then {s’ € S},n’ € N’} is the required
(¢, p™")-extension. O

Let G be a smooth Z-model of a reductive linear algebraic group defined over
Q. We will use the following generalization of a theorem of Jordan:

Theorem 4.4. Let kg be a field with ¢ = p” elements. There exists ann = n(G) € N
such that every subgroup G C G(ko) with p 1 |G| contains an abelian normal
subgroup H C G with |G/H| < n.

Further, there exists an £y = £o(G) such that for all primes ¢ and all primes
£ > by with £ # 0, the £-Sylow subgroups of G(Z/l') and G(Zy) are abelian.

Proof. See [BF66], [Wei84]. O

Proposition 4.5. Let G be a profinite group. Let S be an infinite set of primes.
Let

v=]]ve: G- ][] 62

Les Les

be a continuous homomorphism. Assume that for all v € G, v # 1 one has

Ye(y) # 1 € G(Zy) (5)

for infinitely many £ € S (i.e., v has infinite support). Then

1. the induced reduction map

¢o= ] - G—J]G(Z/0)

Les Les

18 injective;

2. there exists an £y = Lo(G) such that for all primes ¢ > {y the ¢-Sylow
subgroup of G is abelian;

3. there exist a normal closed abelian subgroup H C G and an n = n(G) such
that G/H has exponent bounded by n, i.e., the order of every element in
G/H is bounded by n.

14



Proof. Put
Ky :=Ker(G(Z,) — G(Z/?0)).

We have an exact sequence

1- [ K- [[62z) - [] Gz/0) -1

Les Les Les

Our assumption implies that v is injective, and we get an injection of the kernel

of the reduction Ker(¢)) — [],cq K¢ If we had a nontrivial v € Ker(v)), its
image () would generate a nontrivial closed procyclic subgroup isomorphic to
[Iycs Zer C lpeg Ke, for some infinite set S C S. Thus, there would exist a
nontrivial element vy € Ker(1) such that ve(ye) = 1 for all £ # ¢/, contradicting
our assumption. This proves the first claim.

The second claim follows by combining the injectivity of

I ¢ :6— ] c@z/e)

res\e ves\t

with Theorem 4.4.
From now on, we assume that ¢ > ¢y so that the ¢-Sylow subgroup of G is
abelian.

Lemma 4.6. There exists a constant £ = x(G) such that for all £ > fy, there exists
a normal abelian subgroup Z, C 9¢(G) of index

[&K(G) : Zd < K.

Proof. If the image v¢(G) C G(Z/¢) does not contain elements of order ¢ we can
directly apply Theorem 4.4 to conclude that v,(G) contains a normal abelian
subgroup of index x(G) = n(G).

We may now assume that the image does contain elements of order ¢. We
claim that there do not exist v,7" € G such that

. 1&@(7), @(7) have ¢-power order and
e (), Ye(7y) do not commute in G(Z/?).

Otherwise, both () and v,(y’) are contained in some ¢-Sylow subgroups of
Ye(G), which are both abelian, by the assumption ¢ > {3. By Lemma 4.1, the
subgroup of G(Z,) generated by these ¢-Sylow subgroups is abelian, contradicting
the second assumption.

If follows that all elements of ¢-power order in (G) commute, so that the
group Sy generated by them is in fact the /-Sylow subgroup of ¢, (G). It is abelian
and normal. Consider the exact sequence

1—S;— (G) — Up—1 (6)

where Uy := 1,(G)/S,. Since £ { |Uy| the sequence (6) admits a section and there
is an embedding

15



Uy — ’(Zg(G) C G(Z/f)
We apply Theorem 4.4 to conclude that U, has an abelian normal subgroup
Ay C Uy with |Ug/As| < n(G). We have the diagram
1 —= 5 —> %(G) —= U —=1

]

1 Sy Hy Ay 1

where Hy is the full preimage of A, in v(G). It is a normal subgroup of 1,(G)
with

[6(G)/Hel = [Ue/A| < 1(G).

Let Z, C Hy be the centralizer of Sg, it is a normal abelian subgroup of H,.
Lemma 4.6 follows if we show that the index [Hy : Z,] is bounded independently
of /.

There is a section
oc: A — @(G) c G(Z/¢0).

In particular, the finite abelian group A, has at most n := rank(G) generators.
Consider the conjugation action of A, on Sy. For a € A, let C(a) be the cyclic
subgroup generated by the image of a in the group of outer automorphisms of S,.
It suffices to show that for each of the < n generators of A, the order |C(a)] is
bounded independently of ¢ and a.

Let C,(a) C C(a) be the p-Sylow cyclic subgroup, with p™+! = |C,(a)|. We
have an extension of abelian groups

1—S;— Ny, — Cp(a) — 1. (7

We claim that the length of the orbits of ¢ € C,(a) on S; is universally bounded,
provided that ¢ := p™ and ¢ are sufficiently large. More precisely, we have:

Lemma 4.7. There exists a constant n’ = n’(G) such that for all a € Ay, all s € S,
and all generators c of C,(a) the commutator

[s,c?] =1,
provided £,q := p™ > n/.
Proof. We will argue by contradiction. We have

%

G=1lmG;, where G;:= 1%,

J
7 Jj=1
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{l1,0s,...} is the set of primes, with ¢; = ¢, and the maps m; : G;11 — G; are
the natural projections. Assume that

[s,c!]=s"#1 in S,. (8)

We apply Corollary 4.3 inductively to conclude that each of the groups G;
has an (¢, p™)-extension

{Si S Sg,i,ni S Nz}

More precisely, there is a sequence of groups S;; C G; and elements s;,n; € Gy,
with the following properties:

S¢,i is an ¢-Sylow subgroup of G;,

S; € 5[77;

n; is in the normalizer of Sy ;,

n; has order pm“1 with m;1 > my > m,

[Si’ nf 1} 7& ]-7

7i(Se,i+1) = Seis Tig1(Si41) = Si, mi(iiq1) = ny, for all 7.

The corresponding limits
¥s =lims;, 4 =limc, € G

have infinite support and don’t commute. Thus there exists a prime number r >
£, q (and £9(G)) such that

[@r('VsL "er('}/c)] # 1.

Let i be sufficiently large so that the prime r is among the primes ¢4, ..., ¢;. There
is a natural projection

1/_)7, G — 1[}7(G) c G(Z/r).

The ¢-Sylow subgroup S,; surjects onto the ¢-Sylow subgroup of ,.(G), which is
abelian by Theorem 4.4. Let

N, C ¢, (G) C G(Z/r)

be the nonabelian group generated by ¥, (7s) and (), i.e., by 1,.(s;) and 1,.(n;).
It fits into an exact sequence

1_)§€,T_)NT_>ATH1?

where SLT is an abelian group of ¢-power order, A, a cyclic abelian group of order
divisible by p™t!, p #£ £.

Since 7 { |N,.| we can apply Theorem 4.4: Any subgroup of G(Z/r) of order
coprime to r has a normal abelian subgroup of index bounded by some constant
n(G). However, any abelian normal subgroup of N, has index > min(/,q). We
obtain a contradiction, when ¢ and ¢ are > n(G). O
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This finishes the proof of Lemma 4.6. O

We complete the proof of Proposition 4.5. Indeed, put

=[]z c ]Gz

Les Les

This is an closed abelian normal subgroup of ¥(G) = [],cq ¢¢(G). Since ¥ is
an injection, the preimage H := 1~ 1(H) is a closed abelian normal subgroup of
G. By Lemma 4.6, [{¢(G) : Z;] < k, for all £, the quotient G/H has exponent
bounded by &. O

5. Curves and their Jacobians

Let C be a smooth projective curve of genus g > 2 over a field k and J" the
Jacobian of degree-n zero-cycles, or alternatively, degree-n line bundles on C,
with the convention J = J°. We have the diagram

on ——» )

J".

For any field ko we denote by C'™)(kq) the set of ko-points of the variety C(™), i.e.,
the set of effective cycles ¢;+. . .+¢,, defined over ky. We write C(ko)(") ccm (ko)
for the subset of cycles ¢; + ... 4 ¢, where each ¢; is defined over ky. Put

Wr(C) :={[L] € J"| dimH°(C, L) > r + 1}, W,(C) := W2(C).

The map ¢, is surjective for n > g. For n = g there is a divisor D C J such
that for all z € J(k)\ D(k), the fiber o, 1 () consists of one point. For n > 2g—1,
the map ¢, is a P*""&-bundle.

We assume that C(kg) # 0, fix a point ¢y € C(kg) and the embedding

C— J
¢ — [c— ¢l

This allows us to identify J™ and J.

The following lemma will be used in Section 7.

Lemma 5.1. Let kg be a finite field of characteristic p. Fix a prime number ¢ # p
and assume that J(kg) D J[f]. For £ = 2 assume that J(ko) D J[4], respectively.
Let k1/ko be a degree-f-extension. Then

o %J(ko) C J(kl),

o J{}NJ (k1) = $J (ko) N J{C}.

18



Proof. Let Fr be the ko-Frobenius automorphism of k = ko, whose action on
J(k) coincides with that of the ko-Frobenius endomorphism Fr € End(J). By
assumption, Fr acts trivially on J[¢’], hence we have Fr — 1 = (°f, for some
f € End(J), where § = 1 (resp. 2) for £ # 2 (resp. £ = 2). Then, a direct
computation (using the binomial expansion) shows that

Frf —1 = fu(Fr—1),

for some u € 1+ ¢Z[f] C 1+ ¢End(J). Since u acts on J{¢} as an isomorphism,
this implies the second assertion. The first assertion follows from the second. O

Lemma 5.2. For n > 2g—1, a finite field kg such that #kq is sufficiently large, any
finite extension k; /ko and any point x € J(k1) there exists a point z € P*"~8(k;) =
@ 1(z) such that the fiber o, !(2) is completely reducible over kj.

Proof. Follows from the equidistribution theorem [Kat02], Theorem 9.4.4. O

Corollary 5.3. There exists a finite extension k{/ko such that C(k1) generates
J(k1), for all finite extensions k1 /k{.

Proof. The claim follows from the existence of z in Lemma 5.2. O

Tt will be useful to be able to bound indices of subgroups in J(k1) generated
by fewer points from C(k;). Assume that k1 /ko is a finite extension with #k; = gq.
Write

#J(k1) = ®(1+ Ag) and #C(k1) = q(1+4q)

We know that Ay, 04 = O(%), the implicit constant depending only on the genus
g(C). We may assume that ¢ is such that

1l 18] < 1/2. (9)
Lemma 5.4. Let D C C(k1) be a subset of points such that

#D/#C (k1) < €.
Let H C J(k1) be the subgroup generated by points in C'(k1) \ D. Then

_ (g 1)'g2%
I=1J(k1)/H| < (1 —¢,)% !

Proof. We have

1+ A
#H—fq.

Observe that
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1

#HOk)\ D)™ 2 G

BN (1+6,)% (1 —¢ )% L

On the other hand, C?€=1) — j26=1 ig a projective bundle of relative dimension
g — 1. This implies that

1

¢#(1+4y) ¢&—1
(2g — )1

I g—1"

2g—1(1 +5q)2g—1(1 _ 6q)2g;—1 S

Using the bound (9), we obtain

(2e—1)lg

I o) a eyt

O

Recall that the Galois group T’ := Gal(k/kg) is isomorphic to 7 = I, Z
and is topologically generated by the Frobenius automorphism Fr. For a finite
set of primes S let kg C k be the fixed field of T'g := Hzgs Zg; the Galois group
of the (infinite) extension kg /ko is [],c g Z¢- Note that J{S} C J(ks) and that
C(kg) C J(kg) is infinite. We have a natural projection map

As @ C(k) — J(k) — J{S},
(depending on the choice of ¢g).

Theorem 5.5. Let S be a finite set of primes. Then

o the set C'(k) N J{S} is finite;
o the map g : C(kg) — J{S} is surjective with infinite fibers.

Proof. The first statement is due to Boxall [Box92]. The second was proved in
[BTO5]. O

Remark 5.6. Theorem 5.5 admits a generalization: Let X C A be a proper sub-
variety of an abelian variety. If S is a finite set of primes and if the intersection
Y := X (k) N [[,cq A{¢} is infinite then

Y C (Uie]xi + Al(k)) - X(k‘) - A(k>7
where [ is a finite set, A; C A are abelian subvarieties and z; € A(k) [Box92].

Note that for finite fields ko with #kq sufficiently large, the image of C'(ko)(®
does not coincide with J(kg). Indeed, the number of F,-points in C(F,)® is
approximately equal to

On the other hand, among infinite extensions of k'/ky we can easily find some
with C(k)9) = J(k').
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Proposition 5.7. Let kg be a finite field with algebraic closure k, S the set of
primes < g and I's = [[ 45 Z¢ C Gal(k/ko). Put k' := kTs. Then

Proof. There exists a subvariety Y C J of codimension > 2 such that for all
z € J(k)\ Y(k) there is a unique representation z = > % _, ¢;, with ¢; € C(k),
modulo permutations.

Assume that x € J(k')\ Y (k') and that its representation as a cycle contains
at least one ¢; ¢ C(k'). For any v € I's we have z = > 5 v(¢;). If v # 1, then the
size of any nontrivial orbit of « is strictly greater than g. Thus there is more than
one representation of x as a sum of points in C'(k), modulo permutations within
the cycle. Contradiction.

Assume that = C Y(k’). Consider the fibration C9) — J. The fiber over
x is the projective space P, defined over k', parametrizing all representations
of 2 as a sum of degree-g zero-cycles. There exists (ci,...,cg) € CW (k') with
S8 ¢; = z. We are done if ¢; € C(k'), for all i. Otherwise, observing that I's
preserves this cycle, we can apply the argument above about the minimal length
of Galois orbits in the complement C(k)\ C(k'). O

Lemma 5.8. Let J, (k) C J(k) be the subset of elements fixed by v € G¢. If C'is
not hyperelliptic then

v C(k)\ Cy (k) — J(k)/Jy (k)
is an embedding of sets. If C' is hyperelliptic let
Cl4]:={ceC(k)|ce JH4] and v(c) = —c}.
Then
Jy 2 C(R)\ (Cy (k) UCH]) — J(k)/J,(k)
is an embedding of sets.
Proof. Assume there exist two points ¢, ¢’ € C(k) with v(c) # cand y(¢) # ¢’ and
such that j,(c) = j,(¢’). Then v(c) —y(¢') = ¢—¢ and hence y(c)+¢ = c+v(c).
The cycles v(c) + ¢, ¢+ (') consist of different points since ¢’ # ¢, ¢’ # ('), by
assumption. Thus v(c) + ¢’ defines a hyperelliptic pencil and we have proved the

lemma for nonhyperelliptic curves.
In the hyperelliptic case assume that the pencil consists of elements ¢, —c

(since the pencil is clearly y-invariant and belongs to J,). Thus ¢/ = —c and v
acts as —1 on c¢. Note that j,(c) = —j,(c) implies that j,(2¢) = 0 and 2c € J, (k).
Then 2¢ = —2c¢ implies that 4c = 0. Thus in this case a possible exceptional
subset consists of points ¢ # ¢/ = —c of order 4 such that y(c) = —c. O

Theorem 5.9. The group of automorphisms G¢ satisfies conditions of Proposi-
tion 4.5.
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Proof. Immediate from Proposition 3.5. O

Corollary 5.10. For all v,7 € G¢ there exists an n € N such that 4™ and A"
commute.

Proof. If suffices to combine Theorem 5.9 and Proposition 4.5. O

Theorem 5.11. Let ¢ : (C,J) — (C’, J) be an isomorphism of pairs. Then there
exists an n € N such that Frg, and ¢~ (Frg) commute in Aut(J(k)).

Proof. Immediate from Corollary 5.10. O

Lemma 5.12. Assume that Fr and Fr generate the same f-adic subgroup in
GL,,(Z). Then there exist n,7 € N such that

" = Fr .

Proof. The assumption implies that there exist an o € Z} and an 7 € N such that

Fr® =Fr .

The same equality holds for the determinants. However, the determinants are
positive integer powers of p. O

6. Detecting isogenies

In this section, we recall some facts from divisibility theory for linear recurrences,
as developed in [CZ02], and apply these to derive a sufficient condition for isogeny
of abelian varieties.

A function F' : N — C is called a linear recurrence if there exist an r € N,
and a; € C, such that for all n € N one has

Fn+r)= i a;F(n+1).
i=0

There is a unique expression

m

Fn) = Y- i,

where f; € Clx] are nonzero and -y; € C*. The complex numbers v; € C* are called
the roots of the recurrence. Let T" be a torsion-free finitely-generated subgroup of
the multiplicative group C*. Then the ring of linear recurrences with roots in I is
isomorphic to the unique factorization domain Clz,I'] (see [CZ02, Lemma 2.1]);
the element in C[xz, '] corresponding to a linear recurrence F' will be denoted by
the same letter.

We say that {F(n)}nen is a simple linear recurrence, if deg(f;) = 0, for all 4,
i.e., f; are constants.
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Proposition 6.1. Let {F'(n)}nen, {F(n)}nen be simple linear recurrences such that
F(n),F(n) # 0 for all n,n € N. Assume that

1. The set of roots of F and F generates a torsion-free subgroup of C*.
2. There is a finitely-generated subring | C C with F(n)/F(n) € R, for
infinitely many n € N.

Then

G :N— (C~
n— F(n)/F(n)

is a simple linear recurrence.

Proof. The fact that G is a linear recurrence is proved in [CZ02, p. 434]. Enlarging
I, if necessary, we obtain an identity

G-F=F,
in the ring C[z,T)]. Since F, F" are simple, i.e., in C[[], G is also simple. O

Lemma 6.2. Let ' be a finitely-generated torsion-free abelian group of rank r
with a fixed basis {71,...,7}. Let C[I'] be the corresponding algebra of Laurent

polynomials, i.e., finite linear combinations of monomials 27 = [[_, %, where

J=175"

v =>_1 97 €. Let v be a primitive element in T, i.e., ged(g1,...,9,) = 1.

Then, for each A € C*, the polynomial 27 — A is irreducible in C[I'], i.e., defines
an irreducible hypersurface in the torus (C*)".

Let 7,7 € I' be arbitrary elements. The polynomials 7 — 1 and 2 -1

are not coprime in C[I'], i.e., the corresponding divisors in (C*)" have common

irreducible components, if and only if v, generate a cyclic subgroup of T'.

Proof. The map defined by the monomial 27 : (C*)" — C* has irreducible fibers,
if and only if 7y is primitive. For other v, put m := ged(g1,...,g-) > 1 and v = m#7.
Then 27 —1 = []", (27 —¢5,), where ¢, is a primitive m-th root of 1. By the first
observation, the polynomials 27 — (7, are irreducible. To prove the last statement,
note that coprimality of 7 — 1 and 27 —1is equivalent to coprimality of 27 — 1
and 27" — 1, for the corresponding primitivizations 7,7 of ,~’. This coprimality

is equivalent to 5 # +7'. O

Let A be an abelian variety of dimension g defined over a finite field %k of
characteristic p, and let {a;; };=1,... 2¢ be the set of eigenvalues of the corresponding
Frobenius endomorphism Fr on the ¢-adic Tate module, for £ # p. Let k,/k1 be
the unique extension of degree n. The sequence

2g

F(n) = #A(kn) = [[(ef — D). (10)

j=1

is a simple linear recurrence. Let I" be the multiplicative subgroup of C* generated
by {a;}=1,. 2¢. Choosing k; of sufficiently large and divisible degree over F,,, we
may assume that T is torsion-free. Choose a basis 7, ..., 7, of ', and write
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r
— aij
Q5 = Vi
=1

with a;; € Z. Recall that all o; are Weil numbers, i.e., all Galois-conjugates of a;
have absolute value /g, where ¢ = #k;. It follows that, for j # j/, either a;; = ayr
or a;, oy generate a subgroup of rank two in I' (since I' does not contain torsion
elements). We get a subdivision of the sequence of eigenvalues

{aj}jm1, e = UL I, t<2g,
into subsets of equal elements. Put d, = #1I, and let o, € L.

Theorem 6.3. Let A and 121~ be abelian varieties of dimension g over finite fields
ki, resp. k1. Let I, resp. F, be a simple linear recurrence as in_ equation (10).
Assume that F(n) | F(n) for infinitely many n € N. Then A and A are isogenous.

Proof. Let ' € C* be the (multiplicative) subgroup generated by {«a;} U {&;}.
Choosing k1, resp. 1%1, of sufficiently large and divisible degree over the correspond-
ing prime fields, we may assume that I' is torsion-free. Proposition 6.1 implies
that F/F is a simple linear recurrence.

The Laurent polynomial corresponding to F', resp. F, has the form

t

H(H .T;_lis _ 1)(15, resp. H(H xflz; _ 1)d§.

s=1 i=1 s§=1 i=1

Observe that

gcd(ﬁ ziit —1, ﬁx?“' —-1)eCr,
i=1

=1

for s # s'. The same holds for F. Using Lemma 6.2, we conclude that t = ¢,
that we can order the indices so that #I, = #I, and so that the multiplicative
groups generated by a, € I, and a; € I, have rank 1, for each s = 1,...,t. Thus
s = af, where u € Q depends only on k; and k. It follows that some integer
powers of Fr, Fr have the same sets of eigenvalues, with equal multiplicities. It
suffices to apply Theorem 1.1 to conclude that A is isogenous to A. O

7. Reconstruction

We return to the setup in Section 1: C, C are irreducible smooth projective curves
over k of genus > 2, with Jacobians J, resp. J. We have a diagram

Ji

J(k) JH(k) =—— C(k)

|l

S
=
S
=
(@}
=



where

e ¢° is an isomorphism of abstract abelian groups;
e ¢! is an isomorphism of homogeneous spaces, compatible with Y,
e the restriction ¢, : C(k) — C(k) of ¢! is a bijection of sets.

It will be convenient to choose a point ¢y € C(kg) and fix the embeddings

C(k) — J(k) é(]c) - J(k)

c —c—cg ¢ —¢— ds(co).

With this choice, the isomorphism of abelian groups ¢ induces a bijection on the
sets C(k) and C(k). In this situation we will say that

61 (C.I) = (C.)
is an isomorphism of pairs.

Lemma 7.1. For any choice of ny,...,n,. € Nand cq,...,¢. € C(k) one has
dimH(C,0(> nici)) = dimHY(C, 0> nid°(c:)).

Proof. The effectivity of a divisor on C is intrinsically determined by the group
J(k): the images of the maps C(4) — J, resp. C() — J, are the same (under
#°). We can distinguish D € J(k) with dim H°(C, D) > 1, and therefore all sets
of linearly equivalent divisors. By induction, we can detect that dim HY(C, D) >
n, with n > 1: there are infinitely many points ¢ € C(k) C J(k) such that
dimH°(C, D —¢) >n —1. O

Corollary 7.2. If C is hyperelliptic, trigonal or special (i.e., violate the Brill-
Noether inequality) then so is C.

Corollary 7.3. Let A ¢ CD — J, for d < g, be a proper abelian subvariety of
mazimal dimension. Then there is a proper abelian subvariety A ¢ C(4) = J
such that ¢° induces an isomorphism of abelian groups between A(k) and A(k).

Proof. Any such abelian subvariety of maximal dimension is characterized by the
property that it contains an arbitrarily large abelian subgroup of rank equal to
twice its dimension. By [Box92], ¢° induces an isomorphism on such subvarieties.

O

Lemma 7.4. Assume that g(C') > 2 and that C is bielliptic. Then C is also
bielliptic and the map ¢° commutes with every bielliptic involution on C and C,
respectively.

Recall that a bielliptic structure is a map jg : C — FE of degree 2, where
E is an elliptic curve. All bielliptic structures correspond to embedded elliptic
curves E C C?) C J. Since we assume g(C) > 2, there is a finite number of such
embeddings and they are preserved under ¢°. Thus if C is bielliptic then so is C,
and the groups generated by bielliptic reflections are isomorphic.
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Corollary 7.5. If C is the Klein curve then C is also a Klein curve.

Proof. Indeed, this is a unique curve of genus 3 which has the action of PGLy(IF7).
The action is generated by bielliptic involutions, hence C' is isomorphic to C. O

Remark 7.6. Note that the isomorphism ¢° itself does not have to be algebraic,
a profinite power of the Frobenius will have the same properties.

Assume that char(ko) # 2, and that #ko is sufficiently large, i.e., for all
finite extensions kj/ko the points C(k1) generate J(k1), and same for C (see
Corollary 5.3).

Lemma 7.7. Assume that C and C are not hyperelliptic. Fix finite fields ko, ko
such that #ko, #ko are sufficiently large and J (ko) C J (ko). Consider the tower
of field extensions: kg C k1 C ..., where k;/k;_1 is the unique extension of degree
2, and similarly for ko. Then, for all n € N,

¢°(J (kn)) C J(kn).

Proof. We have an intrinsic inductive characterization of C'(k,) and J(ky,), resp.
C(ky) and J(k,). Namely, ¢ € C(k,), iff there exists a point ¢ € C(k) such
that ¢ + ¢ € J(kp—1). Indeed, if ¢ € C(ky) \ C(kn—1) then ¢ is the conju-
gate for the Galois automorphism o of k,/k,—1. Conversely, if ¢ + ¢ is a pair
as above and o(c) # ¢, then o(c+ ) = ¢+ ¢ € J(k), which defines a non-
trivial hyperelliptic pencil on C, contradicting our assumption. By Corollary 5.3,
points C(k,,) generate J(k,), as an abelian group. By induction, it follows that

PO(J(kn)) C J(kn). O

By Corollary 7.2, the hyperelliptic property of C implies the same for C. The
hyperelliptic case requires a more delicate analysis of point configurations.

Let C be a hyperelliptic curve over a finite field F,. The Jacobian J? of zero
cycles of degree 2 contains a unique effective zero-cycle 2o € J?(FF,) corresponding
to the hyperelliptic pencil on C. We use this cycle to identify J?(k) ~ J(k) =
JO(k). Let ko/F, be a finite extension, k1/ko a quadratic extension and o the
nontrivial element of the Galois group Gal(ky/ko). Put

C(k1)” :=={ce C(k)|o(c)+c=z € J*(ko)}.
Lemma 7.8. Let C' be a hyperelliptic curve defined over ;. Then there exists an
N € N such that for all finite extensions ko /F, with ¢~ | #ko, the zero-cycles of
even degree with support in C(k;) \ C(k1)~ generate J (k1) ~ J?(k1).

Proof. Let H C J(k1) be the subgroup generated by zero-cycles of even degree
with support in C'(k1) \ C(k1)~. Put q := #ko. Note that

[#C (k)™ — (¢ + 1) <284

Indeed, let ¢ : C' — P! be the hyperelliptic projection. Then +(C'(k1)~) C P! (ko),
and the image corresponds to those points on b € P!(kg) such that the degree-2
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cycle :=1(b) does not split over ko. The claim follows from standard Weil estimates.
Lemma 5.4 implies a universal (k; independent) bound for the index I := [J(k1) :
H),eg., I <m.

Now we apply the argument of Lemma, 5.1. Let kg be such that J (ko) contains
all J(k)[¢], for £ < m (resp. J(k)[4], when 2 < m). Then H = J(k;). Indeed,
for £ # 2 and J(k)[¢] C J(ko) the order of J(k1)/J(ko) is coprime to ¢: if an
automorphism of order 2 acts trivially on J(k)[¢] then it also acts trivially on
all elements of ¢-power order in J(k1). Next, note that the elements of the form
1z, x € J(ko) generate the 2-primary part of J(ki) but that o(32) = 2+ 20,20 €
J?(ko) and hence Jx is never in J(ky)~ (the subgroup generated by C(k1)™).

This completes the argument for £ = 2. O
Lemma 7.9. Assume that C and C are hyperelliptic. There exist finite fields ko, ko
and towers of quadratic field extensions: kg C k1 C ..., resp. for kg, such that for
alln e N

¢°(J(kn)) C J(kn).

Proof. By Lemma 7.8, the points in C(k;) \ C'(k;)~ generate J(k;). This subset
of points is defined intrinsically in C(k), provided J(k;—_1) is already known. By
induction, as in the proof of Lemma 7.7, we obtain the required tower of degree-2
extensions, with an embedding

O

Theorem 7.10. Let ¢ : (C,J) — (C,J) be an isomorphism of pairs. Then J and
J are isogenous.

Proof. In both hyperelliptic and nonhyperelliptic case we have shown that, for suf-
ficiently large finite ground fields ko, ko, there exist towers {k, }nen and {k, }nen
of degree-2 field extensions with the following property:

¢°(J(kn)) C J(kn)
(see Lemma 7.7 and Lemma 7.9). Now we apply Theorem 6.3 to the Frobenius
automorphisms Fr, Fr. O
8. Anabelian geometry

In this section we discuss an application of the above results to Grothendieck’s
Anabelian Program - the reconstruction of function fields from Galois groups.

Let C be an irreducible smooth projective curve over k = Fp of genus g > 2, J
its Jacobian and K = k(p’) its function field. Throughout, we assume that p > 2.
Fix a separable closure K /K and let G = Gx = Gal(K/K) be the absolute Galois
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group. The main idea of anabelian geometry is that G, or even one of its factors,
determines C'. Note that G is the completion of a free group with an infinite
number of generators [Har95], [Pop95]. In particular, for any two curves over k
the corresponding groups are isomorphic as abstract topological groups. However,
we will see that in some instances additional structures allow us to recover the
curve from the Galois group.

Let

Gg*=¢/g,9]

be the abelianization of G. Let £ be a prime number, G, the ¢-completion of G,
and G§ the abelianization of Gy. Clearly, G* =[], Gf. A k-rational point ¢ € C(k)
determines a discrete rank-one valuation v = v, of the function field K. We write
Z, C G for the corresponding inertia subgroup and Z3, resp. Z2,, for its image
in G%, resp. G. The group Z., is topologically cyclic for ¢ # p. For ¢ # p, let
G;*"™ C G¢ be the subgroup generated by all 17 ,- We have an exact sequence

1= G~ G — G — 1 (11)

where the quotient group G;" = 7{ , is the {-part of the abelianized étale funda-
mental group.

Consider Gf ) :=[1,, 67 and let I = {Z}}, resp. Ij = {Z},}, be the set of
inertia subgroups Z} C ggp), resp. Z,;, C G7, corresponding to points in C(k).

Conjecture 8.1. Let C be a curve of genus g(C) > 2 over k = ]Fp. The pair
(ggp),za) determines the function field k(C), modulo isomorphisms.

Remark 8.2. This fails when g(C) = 1. For any two elliptic curves over k the
pairs (Q(ap),l'“) are isomorphic. There are two types: supersingular curves with

J{p} = 0 (which are all isogenous) and ordinary curves.

Remark 8.3. In principle, one could include the p-part of G® into the conjec-
ture. However, the p-part is of a completely different nature. It corresponds to
abelian towers of Artin-Schreier extensions; fixing the inertia subgroups yields
much stronger information about k(C).

We have the following partial result:

Theorem 8.4. Let C,C be curves of genus > 2 over k = F,, with p > 2. Assume
that there is an isomorphism of pairs

(G I%) = (GG, I7). (12)

Assume in addition that either

o J{p} =0 or
e g(C) > 2.

Then there is an isogeny J — J.
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We are grateful to the referee whose arguments helped to improve the lower
bound for g from 4 to 2. The rest of this section is devoted to a proof of this theo-
rem. We will reduce to a version of Theorem 1.2, following closely the description
of Galois groups in [BT08], Section 11.

Proposition 8.5. Let C' and C be curves of genus > 2 over k = F, and let ¢ be a
prime # p. Assume that there exists an isomorphism of pairs:

(G¢,7¢) — (G, 17),
i.e., an isomorphism of abelian groups inducing a bijection of sets. Then exists a

diagram

Ck) —— J{0}

where vy and Iy are the standard maps induced from embeddings of C and C into
their Jacobians, and ¢° is an isomorphism of abelian groups such that the induced
map ¢s is a bijection of sets.

Proof. We start with a description of G, for £ # p, following Sections 9 and 11
of [BTO08] (the structure of G7 is more refined). Dualizing the exact sequence

0 — K*/k* — Div(C) — Pic(C) — 0
we obtain the sequence
0— Ay — M(C(k),Z) — GF — BExt'(J(k),Z) — 0, (13)

with the identifications

e Ay :=Hom(Pic(C), Zy) ~ Z; (since J(k) = Pic’(C) is torsion);

o M(C(k),Zy) := Hom(Div(C), Zy) is the Z,-linear space of maps C(k) — Zy

(regarding Div(C) as the free abelian group generated by ¢ € C(k));

o Ext!(J(k),Z,) ~ Z2E.

The interpretation
Gi = Hom(K™/k*, Zy), (14)

arising from Kummer theory allows us to identify

Gy C M(C(k),Qg)/constant maps (15)

29



as the subspace of maps p : C(k) — Q, (modulo constant maps) such that
[, fl € Z¢ for all fe K*/k*.
Here [, ] is the pairing:

M(C(k),Qe) x K*/k* — Qy

(1 f) = [, ) = X ) fr (16)

where div(f) = >_, fcc. In this language, elements of inertia subgroups 7, C G
correspond to “delta”maps (constant outside the point ¢ = ¢,).

Consider the following exact sequences

0— K*/k* 2% Div®(C) 5 J(k) — 0, (17)
0— K*/k* @ Zy 225 DivO(C) @ Zy 25 J{t} — 0. (18)

Put

T(C) := @Torl(Z/én, J{}).

We have 7,(C') ~ Zig, where g = g(C). Passing to ¢-adic completions in (17) we
obtain an exact sequence of torsion-free groups

0 — T(C) — K; 2 Divo(C)—0, (19)

—

since J (k) is a ¢-divisible. We write DiVO(C)g for the ¢-adic completion of DivO(C).
Clearly, Div°(C), := Div’(C) ® Z; € Div’(C), and we have a diagram
0 — K*/k*®Z 225 DvO(C), 25 J{t} — 0
l R o (20)
0—-T(C)— Ky D), 2 o

Recall that, by Kummer theory, KZ‘ = Hom(G},Z,). Dualizing the exact
sequence (11), we obtain the diagram

0 — Hom(G}",Z;) —— Hom(G},Z;) —— Hom(G;*™,Z¢) — 0

7.(0) K; DivY(C),
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The group G;*™ has a distinguished basis consisting of d, ¢, with (d,¢) = A
and subject to the condition

> bup € Ay C M(C(R), Z).

This basis is unique, modulo simultaneous multiplication of all 6, by an element

in Zj. Define FS(C), as the subgroup of elements in KZ‘ with a finite support on
d,. We have an exact sequence

0 — T(C) — FS(C)y — Div(C); — 0
and the dual sequence
0 — Hom(Div®(C)¢, Z¢) — Hom(FS(C)¢, Zy) — Hom(T(C), Zg) — 0. (21)
The homomorphism

g; — HOHI(]:S(C)E,ZZ)
v (v(f) = f(0)

for f € FS(C) C K}, defines an isomorphism of exact sequences (11) and (21):

Te
1 —— g g gy

0 — Hom(Div’(C)¢, Zy) — Hom(FS(C)e, Z¢) —>> Hom(Ty(C), Zy)

Indeed, the restriction
Hom(Div?(C)e, Z) — M(C(k), Ze) /Ay
is an isomorphism (via Riesz duality). The map on quotient groups
Gi" — Hom(7;(C), Zy)

is also an isomorphism (duality for finite-rank Z,-modules). Since every element
in FS§(C), C K} defines a nontrivial functional on G§, the map

G¢ — Hom(FS(C)e, Zy)

is surjective.
We have a primitive embedding K*/k* ® Z; — FS(C),, with quotient

R:=FS(C)e/(K*|k* @ Zy) ~ Q.
Indeed, note that
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FS(C)e/(K* k" @ L + To(C)) = J{l} = (Qu/Ze)*®, (22)

and that the primitive subgroup K*/k* ® Z; C FS(C), has trivial intersection
with 7y(C). The quotient R is a torsion-free Z,~module, generated by the image
of an extension of 7,(C) by J{¢}, with Hom(R,Z;) = 0 due to the restriction
isomorphism. Hence R ~ Q?g and the image of 7;(C) in Q?g coincides with Z?g.

Lemma 8.6. Let f € FS(C), be such that there exists a v € G§ with v(f) =1
(e.g., f is primitive in K*/k* ® Z;). Then f € (K*/k* @ Zy + T;(C)).

Proof. By (22), FS(C)¢/(K*/k* ® Z¢ + T4(C)) is a torsion group; and there is a
minimal n € N such that (" f € (K*/k* ® Z¢ + T,(C)). In particular, y(¢" f) is
divisible by ¢" for all v € G. Consider the projection

poy : FS(C)e — FS(C)e/Te(C) = Div’(C),
from Equation (20). Since

G} = Hom(FS(C)¢,Z¢) = Hom(K* /k*, Zy),
we have

pee("f) = pee("f)  mod Tp(C),

for some f’ € K*/k* ® Z. Since all elements in FS(C)¢/7,(C) = Div®(C), are

uniquely divisible we get f — f' € T,(C), i.e., f € f'+ Ty(C), as claimed.
0

Hence we obtain a well-defined homomorphism
FS(C)/TC) — T{1},
and a Galois-theoretic characterization of the homomorphism
Div?(C), — J{t}.
It remains to characterize the image of C'(k) in J{¢}. Every §, ; defines a nontrivial
functional on DiVO(C)g and thus a functional on FS(C),. Fix a do 4 € ARy (and
thus all other d, (). For v # v define
c, —Cp € DiVO(C)g
by
Suelcy —co) =1, dou(cy, —co)=—-1 and &,,=0 foral v #uv, .
Recall that

Gy € M(C(k),Qg)/ constant maps
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is the subspace of Z,-valued functionals. The homomorphism Q; — Q,/Z, defines
an embedding

G /Gra™ = Gi™ = 7.,¢ — Hom(Div(C),Q¢/Z¢)/ constant maps .
Fixing topological generators 7i,...,72s of G}/ we get 2g maps on C(k) with

values in Q¢/Zy, well-defined modulo addition of a constant (corresponding to
Ay). This gives a well-defined vector (v;(c — cg)) € (Q¢/Z¢)?, and a map

C(k) = (Qe/Z)%®
¢ (yi(c = o)),

which is unique, modulo translations. This defines ¢,, modulo affine automor-
phisms of J{¢}. O

Proposition 8.5 implies that any isomorphism of pairs
(G5 T%) = (GG 1)

induces a commutative diagram

Clk) — J(k)/T{p}

i |

Clk) —— J()/T{p)

with the left vertical arrow a bijection of sets and the right vertical arrow an
isomorphism of abelian groups, modulo affine automorphisms of J(k), J(k), re-
spectively. If J{p} = 0, the map ¢ is an embedding and we can apply Theorem 1.2
to conclude that the Galois isomorphism implies isogeny.

Assume g(C) > 2 and p > 2. Fix a point ¢y € J(k) and consider the diagram

COk) — > J(k)

with p((¢1,c2)) = ¢1 + co. Put
Wy == p(CP) c J.
For g(C) > 2, the stabilizer of W5 is trivial, i.e.,
Wy :i={weWy(k)|lw+beWyk), beJk)\O0},
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is a proper subset of Ws. For every subgroup B ~ Z/p C J[p] (with p # 2) we
put

Hp :=Npep Wh.

These loci play a role in the proof of Theorem 8.4; the following results describe
their geometric properties.

Proposition 8.7. Assume that g(C) > 2 and that for some B ~ Z/p C Jp),
the subvariety Hp contains o 1-dimensional component. Then Hp is an elliptic
curve, B C Hp(k) C J(k), and there is a degree-two map C — Hp inducing the
embedding of Hg — J.

We subdivide the proof into a sequence of lemmas.

Lemma 8.8. Let b = — y, for some z,y € C(k). Then

If Wy, # (C + y) then one of the following holds:

(1) C is nonhyperelliptic, with a unique trigonal structure and
Wy,=(C+y)Uz, z=2z + 2,

where 2z + 23 + ¥ is the unique fiber of the degree-three map C — P!;

(2) C'is hyperelliptic and Wp, = (C'+y)U(C +z7), where o is the hyperelliptic
involution;

(3) g(C) = 3 and C is nonhyperelliptic, W, = (C + y) U (k¢ — C), where k¢
is the canonical class of C;

(4) Hp is zero-dimensional.

Proof. First of all, (C +y) + (v —y) = (C + z) C W5 and the inclusion holds.

Assume that for some degree-2 cycle z 1= 21 + 23 ¢ (C + y) we have Z :=
Z1+4 29 = z+x —y € Wy, If the degree-3 cycles (z1, 22,y) and (21, Z2,2) on C are
equal then z; = y, Z; = & (modulo relabeling) and z € (C + y), contradiction. If
they are distinct then (21, 22, %) is a g3-cycle.

If z 4+ o = Z + y are nontrivial gi-cycles and C' is nonhyperelliptic then z +
defines a trigonal structure on C, which is unique for g(C) > 3. Hence z is the
unique cycle with this property and we obtain (1).

If C is hyperelliptic then W}, O (C' + y) U (C' + z7). Indeed,

C+2+x—y=C+h—y=C+y° C Wy,

where h =z + 2% = y + y° is a hyperelliptic pencil.

Asgsume that z ¢ (C+y)U(C+27) and z+x = Z+y. Since z ¢ (C' +y) this
is not an identity of cycles on C. Any 3-gonal structure on a hyperelliptic curve C
with g(C) > 2 is degenerate, i.e., z+x = h+u, and hence z = u+z° C (C+2x7),
contradiction. This proves (2).
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In case (3) the canonical map realizes C' as a plane curve of degree 4; any
trigonal structure on C is obtained as restriction of a projection P? — P! from a
point u € C. If z ¢ (C'+vy) then z+y = Z+x implies z+y+u = Z+x+u+ ke,
for u € C as above. Hence z € k¢ — (y + C). This proves (3).

To prove the last claim notice that C' C J is not invariant under any transla-
tion in J and that the same holds for all irreducible components of W} listed in
the lemma. Since B is a cyclic group of odd order and W}, consists of at most two
components, the same holds for all W, above. This completes the proof. O

Lemma 8.9. Assume that b # a2 — y, for any z,y € C(k). Then

(1) if C is nonhyperelliptic and g(C) > 3 then for any z # 2 € Hp the
difference z — 2 # & — g, for 7,35 € C(k).

(2) if C is hyperelliptic and g(C) > 2 then for any z # Z € Hg — (h + B) the
difference z — 2 # & — g, for Z,§ € C(k) (where (h + B) is the B-orbit of
the hyperelliptic pencil h, if it is contained in Hp).

Proof. Assume that for some z #£ Z € Hg one has z — 2 = & — ¢, with &, € C.
Same holds for pairs (z +b), (2 +b) € Hp and (z —b), (2 — b) € Hp.

Step 1. We have z + § = Z + & and similarly for other pairs (z + mb) + § =
(Z+mb)+ &, form=1,...,p—1.

Step 2. Assume that z+§ = 2+ identically on C. Then (21, 22, 7) = (21, 22, T)
implies that z1 = #,2; = § and z = u + &, for some u € C. If 2+ b € (C + ),
ie,z4+b=1u+7 for some @ € C, then b = (z +b) — z = @ — u, for u,u € C,
contradicting the assumption on b. Thus at least two of the relations

z+i=24z (+b)+7§=EF+b)+7 (-b+i=(2-b+7
are nontrivial. Since the cycles

are not equivalent there are at least two different trigonal structures on C. This
implies (1).

Step 3. Assume that C' is hyperelliptic. If z ¢ h+ B, z # 2, and z4+y; = 24+
is not an identity for cycles on C then z+y; = 2+ 1 = h+¢ (as in Lemma 8.8),
z=y{ +tand zZ =27 + ¢, hence yJ = x§ and z = Z, contradiction.

As in Step 2, the relation z + y; = Z + x1 is identical only if z € C' + x4, Z,
and hence the relation (z + b) + y1 = (£ + b) + 21 is nontrivial. By the argument
above, applied to z + b, we obtain z + b = Z + b and hence z = Z, contradiction.

If similarly (2 +0) = (y§ +t1) then (z+b) —z = b = t; —t, contradicting the
assumption on b. If z+y; = h+y; then z = h and if 2+ y; = h+ 2z then Z = h.
This implies (2). O

Lemma 8.10. Assume that Hp is one-dimensional and z—Z # x1 —y; for arbitrary
x1,y1 € C and z # 2,2,2 € Hg \ S, where S C Hp(k) is a finite subset. Then
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(1) Hp contains only one irreducible one-dimensional component H%;
(2) there is a degree-two map C' — HY defining the embedding HY — W?;
(3) HY% = Hp is an elliptic curve containing b.

Proof. Consider the proper preimage R of Hg in C'x C' under the degree-two map
C x C — Wy, Thus 7/ : R — Hp is a degree-two map of algebraic schemes. Let
m; : R — C, with ¢ = 1,2, be projections induced on R by the natural projections
of CxC to C. By the assumption of the lemma, the preimage of z = (21, 22) € Hp
in R consists of

r1(z) = (21,22), 12(2) = (22,21).

By assumption, for all but a finite number of z € Hg and any v’ € R, 1’ # r1(2),
we have 7 (') # z1. The same argument holds for m5. Thus both maps w; : R — C
induce an isomorphism on the unique one-dimensional irreducible component of
R. In particular, this component is isomorphic to C' and the restriction of j' to
C defines a degree-two map j : C — H%. The map j defines an embedding
HY% — Hp C Wa. This proves (1) and (2).

The component HY is invariant under B since it is the unique irreducible
component of Hp. Thus any cycle z € HS is given as (z1,7(21)), where 7 is the
involution on C' defining j, i.e., j : C — C/7 = HY and C/7 = R.

The map j* : Pic”(H%) — Pic’(C) has finite kernel since it is contained in
Pic’(HY)[2]. Write t,(h) for the image of h € H% under b € B. Any

(h—ty(h) —h' +ty(h')), with h,h € Hp,
is contained in the kernel of j* since
F (k= tp(h) = B +tp(R')) = 55 (h) — (5" (h) + b) — 57*(h') + 5*(h') + b = 0.

Thus h+h' = t,(h)+t,(h') on HY, for any h, h'. In particular, H% has a family of
hyperelliptic involutions. On the other hand, H% C J is not rational, thus it is an
elliptic curve. Since j : C — E is surjective, for any z = (z1,22) € Hp \ F there
isaze FE C Hp with Z = (21, 23). This proves Hg = E in case (1) (Lemma 8.9).
In case (2), 7(h) = h and there is a hyperelliptic involution ¢’ on E such that j
commutes with the hyperelliptic involution ¢’ on C. Hence h coincides with the
preimage of a ¢’-invariant point on E, h+ B C F and Hp = F in case (2). O

Applying Lemma 8.9 we prove Proposition 8.7, for all C, except for quartic
curves in P2, i.e., nonhyperelliptic curves of genus 3. We now treat this remaining
case.

The canonical embedding realizes C' as a plane quartic. Thus for any two-cycle
z = z1 + 22, z; € C(k) there is a uniquely defined two-cycle Z = k¢ — 2z, where
ke is the canonical class. Applying Lemma 8.8 we will assume that mb # (x —y),
for any x,y € C(k) and m-coprime to p, hence

b= (x1+x2) — (y1 +32), x5,y € Ck)
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(and similarly for mb, m-coprime to p). The cycle z + b = Z is equivalent to
z+ (x1 +22) =2+ (Y1 + y2), Le.,

24 2= (y1 +1yo) + (&1 +32) = ke + b e J(k).

Note that k¢ + b # k¢ — b, i.e., they define nonequivalent linear series. If Hpg
is nonzero then ko + mb, with m-coprime to p, pb = 0, defines p — 1 different
gi-series on C.

Lemma 8.11. If b # = — y then k¢ + b does not degenerate, i.e., it defines a
degree-4 map m, : C — P

Proof. The series is degenerate, i.e., defines a degree-three map 6, : C — P! if
the lines in P? defined by z1, 2 and y1,y» intersect in ¢ € C(k). In this case
r1txetrs+t=y1+y2+ys+t==rc

and hence

b= (z1+22) — (y1 +y2) = y3 — T3

contradicting the assumption on b.
Thus we can assume that 8, : C — P! has degree 4. Consider also #_; and
the map

(0y,0_3) : C — P! x PL,

Lemma 8.12. Assume that Hp has a one-dimensional component. Then

(1) the map (6y,0_3) : C — P! x P! is a degree-two map onto its image;

(2) the image E := (05,0_4)(C) is an elliptic curve;

(3) the map o : E — W, defined by o(e) = (0y,0_p) ' (e) € W? identifies E
with HB.

Proof. By description, any two-cycle z in Hp is contained in a fiber of 6,. The
same holds for 6_;. Note that L, # L_; since 2b # 0 (by the argument above).
Thus any such z is contained in the fiber of (6;,60_;) and the the map of C' onto
its image has degree at least 2. Note that the fibers of 6, and 6_; have at most a
degree-2 cycle in common.

Assume on the contrary that for some z +2Z = kg +band 21 + 2, = ke — b
have a degree-3 cycle in the intersection. This means that

(z+2)—(n1+2)=2—7 forsome Z,5¢€C(k).
Then
(ke +b) — (kg —b) =kc +2b=(2+2)— (21 +21) =7 —
which contradicts the assumption on b. This proves (1).
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Thus the image of C' in P! x P! is a curve of degree (2,2), hence it is either
elliptic or rational. Since C is hyperelliptic, E := (6),0_;)(C) is elliptic. Note that
the fibers of map (6y,0_;) : C — E coincide with the cycles 2 € Hp and hence
we obtain (3) O

Thus Proposition 8.7 holds also for g(C) = 3, and we completed its proof. [

Lemma 8.13. Assume that J(kg) 2 J[p]. Let z € J(k) \ J(ko) be such that
mp(2) € J(ko)/(J(ko)NJ{p}). Then there exists a subgroup B ~ Z/p C J[p] such
that the Galois orbit of z contains

{z+0b|be B}.
Proof. Let w be the image of 2 in W = ¢(C®) C J and write w = w(,) + wp,
where w(,) is of order prime to p and wy, is of p-power order. By assumption, w,,
is kg-rational.
Suppose that w is not ko-rational. Then w, is not ko-rational. Since w, € J{p}
and J[p] C J(ko), we have Gal(ko(w,)/ko) ~ Z/p™Z for some m > 1. Take

v € Gal(k/ko) whose image in Gal(ko(wp)/ko) is of order p. Then we can write
pu(y —1) = (4 — 1) on J{p} (see proof of Lemma 5.1). Accordingly,

p(y = Dwy = u™ (4" = wp = 0.
Since (v — 1)w, # 0 by definition, this implies
(v = Dw = (v = Dwy € J[p] \ {0}.

In other words, there exists an a € J[p] \ {0}, such that (y — 1)w = a, or w =
yw — a. O

Let ko be a sufficiently large finite extension of the ground field containing
the field of definition of C' and such that c¢g € C(ko) and J[p] C J(ko). Let

K(ko) := {ko/ko | J (ko) 0 J{p} = J(ko) N J{p} }

be the set of extensions of kg such that the p-component of J(k) remains stable.
Note that IC(ko) contains all finite extensions of kg of degree coprime to p. Put

Mult(7) = {a € m(Wa(k)) | #my (a) > 2}.
and
H :=Upcpp|,B~z/pHB, Hp = Npep(W2 +0).
Note that
Mult(.J) = Mult(.J),
under the identification of J(k)/J{p} = J(k)/J{p} above.
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Lemma 8.14. For all k| € K(ky) the intersection
Mult(J) N J(kg)/ (J (ko) 0 T{p})

is contained in the union of the following sets

T (Vaestkornsn C2 (k) N (CP (k) + 0))

mp (H(k) 0 (J (ko) + J{p})) -

Proof. Let z1, 20 € Wa(k{) with m,(21) = mp(22). Then z1 — 2o € J(k{) N J{p} =
J(ko) N J{p} and thus m,(21) = mp(22) is in the first set. If z € Wy (k) \ Wa(kj)
projects into J(k{)/(J(ky) N J{p}), then we apply Lemma 8.13. O

Thus the intrinsically defined subset Mult(J) C J(k)/J{p} (e.g., for g(C) <
4) may be a union of projections of an infinite number of algebraic curves in J.
However, if we consider subfields & from (ko) then the number of such curves
is bounded.

The intersection Mult(J) N J(k{)/J{p} splits into two sets. The first consists
of projections of k{-points of a finite number of curves which are independent
of ki € K(ko). The number of such points is bounded by c - #k{, where c is
independent of kf € K (ko).

The second is contained in the projection of H, a finite union of curves defined
by C. In general, it may contain projection of points from H which lie in much
bigger fields, and the number of such points could be difficult to bound.

The next lemma shows that when all one-dimensional components of H are
elliptic curves then it suffices to count only the projections of H(k{), and hence a
similar estimate works. By Proposition 8.7, all one-dimensional components of H,
for g(C) > 3, are indeed elliptic curves; this yields the desired universal estimate.

Proposition 8.15. Assume that g(C) > 2 and that for all finite subgroups B ~
Z[p C J[p] any one-dimensional component of Hp is an elliptic curve. Then the
isomorphism (12) implies an isogeny between J and J.

Lemma 8.16. Assume that for all B ~ Z/p C J[p| all irreducible components of
Hp are elliptic curves. Then there exists a constant ¢ > 0 such that

#mp(Hp (k) 0 (J(ko)/ J{p}) < ik,

for all k), € K(ko).

Proof. We can assume that E C J and its translates E 4 s,s € J(kg), are defined
over ko. Decompose E(kj)) = E(k{) N E{p} ® E’. The projection of the translates
to J(k)/J{p} coincides with the image of E' + s and the intersection of E(k})+ s
with E'@® J{p} is contained in E'® E{p}. Hence the intersection of m,(E(k})) with
J(ky)/J{p} is equal to m,(E(k(), and thus bounded by c- ¢, with ¢ = #k;. O
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We now apply the following inductive algorithm to subgroups By C
J(k)/J{p}, for p > 2.

1
By = <§Bn,c>, 3¢ € m,(C(k)) with ¢+ € Bp,c+ ¢ ¢ Mult(J),
The union U, B, C J(k)/J{p} is an infinite group containing the image of J{2}.
If By € By then B,, C B,, for all n.

Lemma 8.17. Assume that kg is sufficiently large such that:

(1) J[€] C J(ko) for all primes ¢ < I, for I from Lemma 5.4;
(2) J(ko) N J{p} is relatively small.

Put By := J(ko)/J{p}. Then B, = (J(k,)/J{p}), for all n € N, where k, is the
unique extension of kq of degree 2".

The same holds for sufficiently large lNc() such that in addition to the above
conditions, .J(kj)/.J{p} contains the image of J(kj)/J{p}.

Since the definition of B,;; is the same for C' and C we obtain that
J(KL)/J{p} C J(k,)/J{p}, for all n € N. Thus the orders of J(k,) divide the or-
ders of J(k!), for all n € N, modulo a constant term equal to #.J (kj)NJ{p} < ¢&.
Applying [CZ02] and Theorem 7.10 we conclude that J and J are isogenous. This
finishes the proof of Theorem 8.4.

Remark 8.18. Our analysis of the map C' — J(k)/J{p} works similarly for a map
into any quotient J(k)/J{m}, where m is an arbitrary odd number.

Remark 8.19. Let C be a curve of genus > 3 with a bielliptic structure j : C' — E,
i.e., a degree-two map onto an elliptic curve. Then E C W5 coincides with a
component of Hg, for subgroup B ~ Z/p C E(k). By Corollary 7.3, if (C,J) —
(CN'7 j) is an isomorphism of pairs and j a bielliptic structure then there is a
commutative diagram

(C,J) — (C,J)

]

E——F

Thus the groups of algebraic automorphisms generated by bielliptic reflections
are isomorphic. Same holds for an isomorphism

(C,J(k)/{p}) — (C, T /J{p})

from Equation (12).

In particular, the Klein quartic curve C' (the unique curve of genus 3 with
bielliptic involutions generating PSLy(F7), the maximal group of automorphisms)
is defined by the image of C(k) — J(k)/J{p} or (G(,,Z) (for p > 2). In order
to adjust the argument in Corollary 7.3 for the map C(k) — J(k)/J{p} we have
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to notice only that the presence of an elliptic curve E C W5 is detected by
the infinity of the intersection of Wy with J{S}, for any finite set of primes S
(see [Box92]). Thus Wy C J contains an elliptic curve if and only if m,(W2) N
Tp(®e,esJ(k)/J{¢;:}) is infinite for a finite set S of primes ¢; # p. Then W5 has
an infinite intersection with @¢,es/J(k)/J{l;} ® J{p}.

Similar results hold for other special curves C' with sufficiently many maps
onto curves of small genus.
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