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Abstract. We develop a mixed-characteristic version of the Mori-
Mukai technique for producing rational curves on K3 surfaces. We
reduce modulo p, produce rational curves on the resulting K3 sur-
face over a finite field, and lift to characteristic zero. As an appli-
cation, we prove that all complex K3 surfaces with Picard group
generated by a class of degree two have an infinite number of ra-
tional curves.
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1. Introduction

Let K be an algebraically closed field and S a K3 surface defined over
K. It is known that S contains rational curves—see Mori-Mukai [18],
as well as Theorem 7 and Proposition 17 below. In fact, an extension
of the argument in [18] shows that the general K3 surface of given
degree has infinitely many rational curves (see Theorem 9 and [7]).
The idea is to specialize the K3 surface S to a K3 surface S0 with
Picard group of rank 2, where some multiple of the polarization can be
expressed as a sum of linearly independent classes of smooth rational
curves. The union of these rational curves deforms to an irreducible
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rational curve on S. This idea applies to K3 surfaces parametrized by
points outside a countable union of subvarieties of the moduli space. In
particular, a priori it doesn’t apply to K3 surfaces over countable fields,
such as Fp and Q. Of course, there are also other techniques proving
density of rational curves on special K3 surfaces, e.g., certain Kummer
surfaces [18], surfaces with infinite automorphism groups [4, proof of
Thm. 4.10], or with elliptic fibrations (see Remark 6 below). These
K3 surfaces have Picard rank ≥ 2, and all except finitely many lattices
in rank ≥ 3 correspond to K3 surfaces with infinite automorphisms or
elliptic fibrations [19, 28].

Moreover, in [5] it is proved that, over k = Fp, every algebraic point
on a Kummer K3 surface lies on an irreducible rational curve. The
proof of this result uses the Frobenius endomorphism on the covering
abelian surface.

The following is the main theorem of this paper:

Theorem 1. Let S be a K3 surface over an algebraically closed field
of characteristic zero with Pic(S) = Z, generated by a divisor of degree
two. Then S contains infinitely many rational curves.

The motivation for our argument comes from a result of Bogomolov
and Mumford [18]: Let (S, f) be a general K3 surface of degree 2g− 2.
We can degenerate S to a Kummer K3 surface (S0, f), which has in-
finitely many rational curves. Indeed, we can produce examples where
there are infinitely many (reducible) rational curves in |Nf |, N ≥ 1,
consisting of unions of smooth components meeting transversally. A
deformation argument shows that these deform to infinitely many (ir-
reducible) rational curves in nearby fibers. However, on subsequent
specializations, distinct rational curves might collapse onto each other.
If there were an infinite number of such collisions, the specialized K3
surfaces might only have a finite number of rational curves.

Here we emulate the argument in [18] in mixed characteristic. K3
surfaces over finite fields play the rôle of the Kummer surface; the
‘general’ K3 surface is a K3 surface over a number field with Picard
group of rank one. The main technical issue is that we cannot assume
a priori that the rational curves on the reduction mod p have mild
singularities. Thus we are forced to use more sophisticated deformation
techniques.
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2. Guiding questions and examples

The following is well-known but hard to trace in the literature:

Conjecture 2 (Main conjecture). Let K be an algebraically closed
field of arbitrary characteristic and S a projective K3 surface over K.
There exist infinitely many rational curves on S.

In characteristic zero, we can reduce this to the case of number fields:

Theorem 3. Assume that for every K3 surface S0 defined over a num-
ber field K0, there are infinitely many rational curves in

S0 := S0 ×Spec(K0) Spec(Q).

Then Conjecture 2 holds over fields of characteristic zero.

Proof. Let S be a K3 surface defined over a field of characteristic zero,
which we may assume is the function field of a variety B defined over
a number field F . Shrinking B as necessary, we obtain a smooth pro-
jective morphism

π : S → B

with generic fiber S.
We claim there exists a point b ∈ B(Q) such that the specialization

map to the fiber Sb = π−1(b)

Pic(S) → Pic(Sb)

is surjective. The argument is essentially the same as the proof of the
main result of [10]. The only difference is that Ellenberg considers
the Galois representation on the full primitive cohomology of a polar-
ized K3 surface, whereas here we restrict to the representation on the
transcendental cohomology of S, i.e., the orthogonal complement to
Pic(S) ⊂ H2(S, Z).

Our assumption is that Sb admits infinitely many rational curves.
We claim each of these lifts to a rational curve of S, perhaps after a

generically-finite base-change B̃ → B. Suppose we have a morphism
φb : P1 → Sb, birational onto its image. The class φb∗[P

1] remains
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algebraic in the fibers of S → B. Consider the normal bundle Nφb
,

which in this context is the cokernel of the differential

dφ : TP1 → φ∗

bTSb
;

in Lemma 11 below, we use a more general formulation. Riemann-Roch
shows that χ(Nφb

) = −1. Consider the space of morphisms

MorB(P1 × B,S),

i.e., morphisms from P1’s into the fibers of S over B. Its dimension is
at least dim(B) + χ(Nφb

) = dim(B) − 1 [16, II.2], but here we can do
better: A result of Ran, which builds on earlier work of Voisin [29] and
Bloch [3], shows the relative dimension is at least dim(B)+χ(Nφb

)+1 =
dim(B). See [23, Cor. 3.2 and 3.3] for the general statement and [23,
§5] for the computation of the relevant parameters when the source is a
curve. K3 surfaces are not uniruled in characteristic zero, therefore φb

admits no deformations in Sb and φb lifts to a morphism φ : P1 → S. �

Remark 4. We do not know whether the positive-characteristic case
of Conjecture 2 can be reduced to the case of finite fields.

Example 5. Here we show that any Kummer K3 surface over an arbi-
trary algebraically-closed field of characteristic 6= 2 admits an infinite
number of rational curves.

Let A be an abelian surface with Kummer surface S:

S
↓

A → A/±

Note that A is isogenous to the Jacobian J of a genus two curve C.
(Every abelian surface is isogenous to a principally-polarized surface,
which is either a Jacobian or a product E1 × E2 of elliptic curves. In
the latter case, if we express E1 and E2 as branched coverings on P1 at
{0,∞, α1, β1} and {0,∞, α2, β2} with the αi and βi distinct, then the
genus-two double cover C → P1 branched at {0,∞, α1, β1, α2, β2} will
work. Indeed, E1 and E2 are Prym varieties of C.)

We choose the embedding C →֒ J such that a Weierstrass point is
mapped to zero. Then the images of n ·C in A/± are distinct rational
curves. Indeed, multiplication-by-n commutes with ±, and acts on C
via the hyperelliptic involution.

Remark 6. Elliptic complex K3 surfaces always have infinitely many
rational curves: see [4, Thm. 1.8] or [14, Cor. 8.12, Prop. 9.10, Rem. 9.7]
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and Example 5 above for the degenerate case where the elliptic surface
arises from a Kummer construction.

3. Background results

A polarized K3 surface (S, f) consists of a K3 surface and an ample
divisor f that is primitive in the Picard group. Its degree is the positive
even integer f · f . Let Kg, g ≥ 2 denote the moduli space (stack) of
complex polarized K3 surfaces of degree 2g − 2, which is smooth and
connected of dimension 19.

The following result was initially presented by the first author in Oc-
tober 1981 at Mori’s seminar at IAS; the proof was based on deformation-
theoretic ideas developed several years earlier. A different argument
was presented in [18]; Mori and Mukai indicate that Mumford also had
a proof.

Theorem 7. Every complex projective K3 surfaces contains a rational
curve.

Remark 8. The argument yields a more precise statement [14, 6.10]:
Let S be a complex projective K3 surface, D a nonzero effective divisor
on S, such that D is indecomposable in the effective monoid, i.e., it
cannot be written as a sum of two nonzero effective divisors. Then
there exists a rational curve in |D|.

The following theorem has been known to experts; the first published
proof is in [7]. (Xi Chen attributes a special case to S. Nakatani.)

Theorem 9. Fix N ≥ 1. Then for a generic (S, f) ∈ Kg there exists
an irreducible rational curve in |Nf |.

Corollary 10. A very general K3 surface of degree 2g− 2 contains an
infinite number of rational curves.

The proof in [7] involves specializing the K3 surface to a union of
two rational normal scrolls, meeting transversely along an elliptic curve.
Xi Chen identifies reducible rational curves on this surface that can be
deformed back to irreducible rational curves on a general K3 surface.

For our purposes this argument is not sufficiently flexible. Our tech-
nique entails analyzing the reductions mod p of a K3 surface defined
over a number field. We cannot expect these reductions to be unions
of rational normal scrolls.
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4. Deformation results for stable maps

In this section, we work over a field of arbitrary characteristic. Let
Y be a smooth projective variety and β a curve class on Y .

Consider the open substack

M
◦

0(Y, β) ⊂ M0(Y, β)

corresponding to maps φ : T → Y that are generic embeddings, i.e.,
there exists a dense open subset T ′ ⊂ T over which φ is an embed-
ding. Note that M

◦

0(Y, β) is a quasi-projective scheme, since generic
embeddings have trivial automorphism groups.

This open set dominates the locus Ξ in the Chow variety consisting
of cycles

C = C1 ∪ . . . ∪ Cr ⊂ Y,

r∑

i=1

[Ci] = β,

of rational curves Ci with each component having multiplicity one; the
induced morphism is finite-to-one. Indeed, there is a finite collection
of connected seminormal curves T factoring

C ′ :=
r∐

j=1

P1 → T → C,

where C ′ is the disjoint union of the normalizations of C1, . . . , Cr.
The obstruction theory over M

◦

0(Y, β) takes a particularly simple
form: Given a stable map φ : T → Y , first-order deformations and
obstructions are given by

Hi(RHomOT
(Ω•

φ,OT )), i = 1, 2,

where Ω•

φ is the complex

dφt : φ∗Ω1
Y → Ω1

T

supported in degrees −1 and 0 [13, p. 61].
We shall require the following result; our analysis is similar to the

discussion in [13], except that we work under slightly less restrictive
assumptions:

Lemma 11. Let φ : T → Y be a stable map to a smooth variety that
is unramified at the generic point of each irreducible component of T .
Then the complex

RHomOT
(Ω•

φ,OT )

is quasi-isomorphic to Nφ[−1] for some sheaf Nφ.
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The sheaf Nφ is called the normal sheaf of φ. In the special case
where the domain T is smooth, Nφ is the cokernel of the differential
dφ : TT → φ∗TY . First order deformations of φ are given by H0(Nφ);
obstructions are given by H1(Nφ).

Proof. Let T be a nodal projective curve. Suppose that p ∈ T is a node
expressed as xy = 0 in local étale/analytic coordinates. Then

Ω1
T = (OT dx + OT dy)/ 〈ydx + xdy〉

and Ω1
T admits a local resolution in OT -modules

0 → E1
f1→ E0 → Ω1

T → 0,

where E1 is invertible and E0 is locally free of rank two.
Given a bounded complex of OT -modules

E• = {0 · · · E−p−1 → E−p → E−p+1 → · · · 0}

we compute RHomOT
(E•,OT ) using the spectral sequence

Ep,q
1 = Extq

OT
(E−p,OT ) ⇒ Extp+q

OT
(E•,OT ).

Note that

• Ext q
OT

(φ∗Ω1
Y ,OT ) = 0 for q > 0 as Ω1

Y is locally free;

• Ext q
OT

(Ω1
T ,OT ) = 0 for q > 1 by the explicit resolution above.

In particular, only the following terms can be nonzero

HomOT
(φ∗Ω1

Y ,OT ),HomOT
(Ω1

T ,OT ), Ext1
OT

(Ω1
T ,OT ).

We focus on the unique interesting arrow

d1 : E0,0
1 → E1,0

1

dφ : HomOT
(Ω1

T ,OT ) → HomOT
(Ω1

Y ,OT ).

Since HomOT
(Ω1

T ,OT ) is torsion-free, dφ is injective if and only if it is
injective at generic points of T , which was one of our assumptions.

Thus we have

E1,0
2 = HomOT

(φ∗Ω1
Y ,OT )/HomOT

(Ω1
T ,OT )

and
E0,1

2 = Ext1
OT

(Ω1
T ,OT ).

Consequently
RHomOT

(Ω•

φ,OT )

is supported in degree one, and the associated sheaf Nφ fits into an
exact sequence

0 → HomOT
(φ∗Ω1

Y ,OT )/HomOT
(Ω1

T ,OT ) → Nφ → Ext1
OT

(Ω1
T ,OT ) → 0.
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Note that the first term corresponds to deformations that leave the
nodes of T unchanged; the last term is the local versal deformation
space of these nodes. �

Remark 12. In fact, Nφ is locally-free if φ is unramified (see, for
example, [13, §2])). Conversely, if φ is ramified at a smooth point then
Nφ necessarily has torsion.

5. K3 surfaces over finite fields

For general background and definitions, we refer the reader to [24].
A K3 surface over an algebraically closed field of characteristic p is

ordinary if its formal Brauer group has height one [24, p. 1513] and
supersingular (in the sense of Artin [2]) if its formal Brauer group has
infinite height. Thus supersingular K3 surfaces fail to be ordinary in
a dramatic way. Shioda proposes an alternate definition [24, §5]: a
K3 surface is supersingular if its Picard group has rank twenty two.
This condition implies supersingularity in the sense of Artin [24, §9,
Prop. 2]; the converse remains open.

Let S0 be a K3 surface over a finite field Fq, and S0 the resulting

surface over Fq. Consider the Picard group Pic(S0) and the ℓ-adic
cohomology group H2(S0, Qℓ(1)), which are related by the cycle-class
map

Pic(S0) → H2(S0, Qℓ(1)).

Frobenius acts on both these groups compatibly with this map, and
preserving the intersection form.

The following application of the Tate conjecture is well-known to
experts (and was ascribed to Swinnerton-Dyer in [2, p. 544]) but we
are not aware of a reference:

Theorem 13. Let S0 be a non-supersingular K3 surface over a finite
field of characteristic ≥ 5. Then Pic(S0) has even rank.

Proof. The Frobenius action on H2(S0, Qℓ(1)) is diagonalizable over
Qℓ with eigenvalues α1, . . . , α22 [9]. Since this factors through the or-
thogonal group, if α appears as an eigenvalue then α−1 also appears.
Consequently, we conclude that the following sets have an even number
of elements

• the eigenvalues that are not roots of unity;
• the eigenvalues that are roots of unity but are not equal to ±1;
• the total number of times ±1 appears as an eigenvalue.
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Results of Nygaard and Ogus on the Tate conjecture for K3 surfaces
[20, 21] imply Galois-invariant cohomology classes are in the image of
the cycle map, at least rationally. �

We shall use the following result:

Proposition 14. Let X be a smooth projective surface over an alge-
braically closed field with Néron-Severi group NS(X). If X is uniruled
then

rank NS(X) = b2(X),

where b2(X) is the second Betti number. In particular, if X is a K3
surface then

rank Pic(X) = rank NS(X) = 22

and thus is supersingular.

This follows from [24, §2 Prop. 2]; while the argument there assumes
unirational rather than uniruled, the weaker condition suffices.

For supersingular K3 surfaces, it may happen that an invertible sheaf
fails to deform in families even where its p-th power does deform. For
detailed discussion of this phenomenon, see [2, §7] where the Artin
invariant is first introduced. This behavior does not occur for ordinary
K3 surfaces:

Proposition 15. Let B be the spectrum of a complete discrete valu-
ation ring with residue field Fq. Let S → B be a smooth proper mor-
phism with K3 surfaces as fibers, with geometric generic fiber S and
special fiber S0. Let Qtors denote the torsion part of the cokernel of the
specialization homomorphism

NS(S) → NS(S0).

Then Qtors is a p-group [17, Prop. 3.6] (see also [12, §3]) and is trivial
if S0 is ordinary [22, 1.16].

Suppose S is a K3 surface over a number field F with an integral
model

S → Spec(oF ),

which is smooth away from a finite set of primes. For each finite ex-
tension F ′/F , consider the set of primes

OrdF ′(S) = {p ∈ Spec(oF ′) : Sp is smooth and ordinary }.

After passing to a suitably large finite extension F ′/F , the set OrdF ′(S)
has Dirichlet density one. This is due to Tankeev [27] in the special
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case where the Hodge group of SC is semisimple, and to Joshi-Rajan
[15, §6] and Bogomolov-Zarhin [6] in general.

6. Curves on K3 surfaces in positive and mixed

characteristic

Let k be an algebraically closed field of characteristic p > 0. We
shall require some general results on lifting to characteristic zero. In
particular, we shall need to set up the formalism in order to discuss
stable maps in the relative context of a universal family over the versal
deformation space.

We first review deformation and lifting results for K3 surfaces, es-
tablished in [8, §1] and [22, 2.2] using fine analysis of Chern classes and
crystalline cohomology:

Theorem 16. Let S0 be a K3 surface defined over k. Then the formal
versal deformation space of S0 is smooth over the Witt vectors W (k)
of relative dimension twenty.

Let L be a non-trivial divisor on S0 and ΣL the locus in the formal
versal deformation space corresponding to K3 surfaces over which L
deforms. Then ΣL is a Cartier divisor, not contained in the closed
fiber over Spf(W (k)).

Let (S0, f) denote a polarized K3 surface. Then (S0, f) admits a
lifting to a polarized K3 surface (S, f) after passing to an extension of
W (k). If S0 is not supersingular then Σf is smooth.

Note that we continue to assume f is primitive in the Picard group
of S0.

Proposition 17. Let S0 be a projective K3 surface over an algebraically
closed field of characteristic p. Then S0 contains a rational curve.

More precisely, let D be a nonzero effective divisor on S0 that is
indecomposable in the effective monoid. Assume that D is ample or S0

is ordinary. Then S0 contains a rational curve in |D|.

Proof. The first statement is a corollary of Theorems 16 and 7. Lift S0

to a projective K3 surface S in characteristic zero; rational curves on
S specialize to unions of rational curves on S0.

We recall a result of Saint-Donat [25, 2.6, 2.7]: Let D be a nonzero
indecomposable effective divisor on a K3 surface S0. Then the higher
cohomology of D vanishes.

Assume first that D is ample. In the application of Theorem 16, we
may assume that D lifts to a polarization on S. Now assume S0 is
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ordinary. Take S to be the canonical lift of S0 to characteristic zero;
specialization induces an isomorphism Pic(S)

∼
→ Pic(S0) [20, 1.8]. In

either case, since H i(OS0
(D)) = 0 for i > 0 semicontinuity implies

D lifts to an effective divisor on S. This clearly remains indecompos-
able. By Remark 8, S admits a rational curve with class [D], which
specializes to a rational curve in S0. �

Theorem 18. Let (S0, f) be a polarized ordinary K3 surface over k.
Suppose that

C = C1 + . . . + Cr

is a connected union of distinct rational curves Ci ⊂ S0, such that
[C] = Nf . Let (S, f) be a polarized K3 surface over the Witt vectors
W (k) reducing to (S0, f). Then there exists a relative curve R ⊂ S,
defined over a finite extension of W (k), such that R reduces to C and
each irreducible component of R is rational.

Proof. Consider the formal versal deformation space of S0

S → B,

where B ≃ Spf(W (k)[[x1, . . . , x20]]), i.e., a smooth formal scheme of
dimension 20 over W (k). Let b ∈ B denote the distinguished closed
point. For each N ≥ 1, consider the relative stable map space

M
◦

0(S/B, Nf) → B,

consisting of generic embeddings. This is a formal scheme over B,
as generic embeddings have only trivial automorphisms. We refer the
reader to [1, §8] for a discussion of the construction of moduli spaces
of stable maps for proper (but not necessarily projective) schemes. We
apply this over systems of Artinian local rings approximating B.

General deformation-theoretic arguments (cf. [16, I.2.15]) show that

the relative dimension of M
◦

0(S/B, Nf) over B at φ is at least

χ(T,Nφ) + dim(B) = dim(B) − 1.

Take T to be a nodal connected curve of genus zero factoring through
the normalization

Cν → T → C.

The induced φ : T → S0 is a stable map unramified at the generic point
of each component, i.e., φ ∈ M

◦

0(S/B, Nf). Since S is not uniruled
by Proposition 14, we conclude that φ does not deform to another
genus-zero stable map to S0.
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In either case, the dimensions of M
◦

0(S/B, Nf) and its image in B
are at least 20. On the other hand, this image is contained in the locus

ΣNf ⊂ B

parametrizing K3 surfaces admitting Nf as a polarization. Indeed, in
each fiber

(φt)∗Tt = Nf.

By Theorem 16, the formal scheme ΣNf has dimension 20 and is not
contained in the fiber over the closed point of Spf(W (k)). The same

must hold for M
◦

0(S/B, Nf), so there are formal lifts of φ : T → S to
genus-zero maps in characteristic zero.

We show these formal deformations are algebraic. For this purpose,
we restrict to the polarized deformation space

SΣNf
→ ΣNf ,

which is projective in the sense that it admits a formal embedding
into a projective space Pd

ΣNf
, d = χ(S,OS(Nf)) − 1. This deformation

is algebraizable by standard results of Grothendieck (see [26, 2.5.13],
for example.) It follows that the associated moduli spaces of stable
maps are algebraizable as well. Indeed, moduli spaces of stable maps
into projective schemes are proper stacks with projective coarse moduli
spaces.

Thus we have two algebraizable formal subschemes

Σf ⊂ ΣNf ⊂ B,

both of pure codimension one and flat over W (k). The former is smooth
(by Theorem 16) and contains the deformation corresponding to (S, f).
The latter has at least one irreducible component over which C de-
forms to cycles of rational curves, i.e., the images of the stable maps
in M

◦

0(S/B, Nf). However, Proposition 15 shows that Σf = ΣNf , at
least set-theoretically. We conclude that C deforms to a cycle R of
rational curves in S. �

7. Proof of the Main Theorem

In light of Theorem 3, it suffices to restrict to S defined over a number
field F . Let

S → Spec(oF )

be an integral model. For each prime p, let Sp denote the reduction
modulo p and Sp its basechange to the algebraic closure of the corre-
sponding finite field.
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Assume Pic(S) is generated by an ample class f , of arbitrary degree.
Suppose S admits only a finite number of rational curves R1, . . . , Rs

with classes [Ri] = mif and write m = max{m1, . . . , ms}.

Lemma 19. There are only a finite number of primes p such that there
exists a curve C ⊂ Sp with [C] 6∈ Zf and

C · f ≤ mf · f.

Proof. Consider the Hilbert scheme H → Spec(oF ) parametrizing curves
of degree ≤ m in fibers of S → Spec(oF ); this is projective over
Spec(oF ). For each irreducible component dominating Spec(oF ), the
corresponding curves have class Nf for some N > 0. Curves C with
[C] 6∈ Zf are therefore contained in many ‘fibral components’ of H,
i.e., components supported over primes p ∈ Spec(oF ). However, there
can be at most finitely many such components, lying over finitely many
primes. �

Now we assume S has degree two. Let ι : S → S denote the invo-
lution associated to the branched double cover S → P2. It acts on the
primitive cohomology of S via multiplication by −1. We shall derive a
contradiction by producing an irreducible rational curve in a class Nf
for some N > m.

Choose p to a prime satisfying the following conditions:

(1) Sp is of good and ordinary reduction (see Section 5), so that Sp

is not uniruled by Proposition 14;
(2) fp, the restriction of f to Sp, remains a polarization;
(3) ιp, the reduction of ι mod p, remains an involution fixing fp and

acting via multiplication by −1 on the primitive part of Picard
group;

(4) p is not in the finite set of primes specified in Lemma 19.

Since Pic(Sp) has rank ≥ 2, there exist numerous effective divisors
not proportional to fp; choose an indecomposable class in the effective
monoid with this property. Proposition 17 implies there exists an ir-
reducible rational curve Cp ⊂ Sp with this class. Write C ′

p
= ι(Cp),

which is distinct from Cp; since Cp + C ′

p
is invariant under ιp, we have

[Cp + C ′

p
] = Nfp

for some N . Note that N > 2m by our assumption on p and Lemma 19.
We claim Cp ∪ C ′

p
lifts to an irreducible rational curve R over Q.

Consider the chain of two P1’s

T = {xy = 0} ⊂ P2
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and choose a birational morphism φ : T → Cp ∪ C ′

p
. Let j : T → Sp

be the induced morphism; then T is the specialization of a rational
curve over the Witt vectors by Theorem 18. Since this curve does not
deform—Sp is not uniruled—it can be lifted to Q. �

While Theorem 1 applies to general degree two K3 surfaces, it does
not apply to every such surface. A crucial aspect of the proof is that,
for K3 surfaces with Picard group of rank one (or odd rank), the Picard
groups of the reductions mod p jump. The resulting surfaces over finite
fields have additional curve classes, which are necessary for our lifting
argument.

We give an example of a degree two K3 surface with Picard group of
rank two, for which we do not know whether there are infinitely many
rational curves, over Q or Fp.

Example 20. Let S be a K3 surface over an algebraically closed field
such that the Picard group is generated over Q by smooth rational
curves C1 and C2 satisfying

(7.1)
C1 C2

C1 −2 6
C2 6 −2

and generated over Z by C1 and f = (C1 + C2)/2. Note that (S, f)
can be realized geometrically as the double cover of P2 branched over
a plane sextic curve that admits a six-tangent conic.

Surfaces of this type can be defined over F3 [11, Ex. 6.1], e.g.,

w2 = (y3−x2y)2+(x2+y2+z2)(2x3y+x3z+2x2yz+x2z2+2xy3+2y4+z4).

The technique of [10] can be used to obtain examples over Q. Indeed,
the moduli space of lattice-polarized K3 surfaces of type (7.1) is uni-
rational: The sextic plane curves six-tangent to a fixed conic plane
curve D are parametrized by a P15-bundle over P6, and these domi-
nate our moduli space. We can apply Ellenberg’s Hilbert irreducibility
argument [10] directly to this rational variety.
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