

RECONSTRUCTION OF HIGHER-DIMENSIONAL FUNCTION FIELDS

FEDOR BOGOMOLOV AND YURI TSCHINKEL

ABSTRACT. We determine the function fields of varieties of dimension ≥ 2 defined over the algebraic closure of \mathbb{F}_p , modulo purely inseparable extensions, from the quotient by the second term in the lower central series of their pro- ℓ Galois groups.

CONTENTS

Introduction	1
2. Basic algebra and geometry of fields	3
3. Galois groups	4
4. Valuations	5
5. ℓ -adic analysis: generalities	10
6. One-dimensional subfields	15
7. Proof	21
References	24

INTRODUCTION

Fix two distinct primes p and ℓ . Let $k = \overline{\mathbb{F}}_p$ be an algebraic closure of the finite field \mathbb{F}_p . Let X be an algebraic variety defined over k and $K = k(X)$ its function field. We will refer to X as a *model* of K ; we will generally assume that X is normal and projective. Let \mathcal{G}_K^a be the abelianization of the pro- ℓ -quotient \mathcal{G}_K of the absolute Galois group of K . Under our assumptions on k , \mathcal{G}_K^a is a torsion-free \mathbb{Z}_ℓ -module isomorphic to $\mathbb{Z}_\ell^{\mathbb{N}}$. Let \mathcal{G}_K^c be its canonical central extension - the second lower central series quotient of \mathcal{G}_K . It determines a set Σ_K of distinguished (primitive) finite-rank subgroups of \mathcal{G}_K^a : a topologically noncyclic subgroup $\sigma \in \Sigma_K$ iff

- the inverse image of σ in \mathcal{G}_K^c is abelian;

Key words and phrases. Galois groups, function fields.

- σ is maximal: there are no subgroups $\sigma' \subset \mathcal{G}_K^a$ whose preimages in \mathcal{G}_K^c are abelian and which contain σ as a proper subgroup.

Our main theorem is

Theorem 1. *Let K and L be function fields over algebraic closures of finite fields k , resp. l , of characteristic $\neq \ell$. Assume that the transcendence degree of K over k is at least two and that there exists an isomorphism*

$$(1.1) \quad \Psi = \Psi_{K,L} : \mathcal{G}_K^a \xrightarrow{\sim} \mathcal{G}_L^a$$

of abelian pro- ℓ -groups inducing a bijection of sets Σ_K and Σ_L . Then k is isomorphic to l and there exists a constant $\epsilon \in \mathbb{Z}_\ell^$ such that $\epsilon^{-1} \cdot \Psi$ is induced from a unique, up to the composition with a power of the absolute Frobenius automorphism on \bar{K} , isomorphism of perfect closures*

$$\bar{\Psi}^* : \bar{L} \xrightarrow{\sim} \bar{K}.$$

In this paper we implement the program outlined in [1] and [2] describing the correspondence between higher-dimensional function fields and their abelianized Galois groups. We follow closely our paper [4], where we treated in detail the case of surfaces: The isomorphism (1.1) of abelianized Galois groups induces canonically an isomorphism

$$\Psi^* : \hat{L}^* \xrightarrow{\sim} \hat{K}^*$$

between pro- ℓ -completions of multiplicative groups. One of the steps in the proof is to show that under the assumptions of Theorem 1, Ψ^* induces by restriction canonically an isomorphism

$$(1.2) \quad \Psi^* : L^*/l^* \otimes \mathbb{Z}_{(\ell)} \xrightarrow{\sim} (K^*/k^* \otimes \mathbb{Z}_{(\ell)})^\epsilon \subset \hat{K}^*, \quad \text{for some } \epsilon \in \mathbb{Z}_\ell^*,$$

Here $\mathbb{Z}_{(\ell)}$ is the additive group of rational numbers with denominators coprime to ℓ and the exponent ϵ indicates the scaling of the lattice K^*/k^* by ϵ .

The proof of Theorem 1 proceeds by induction on the transcendence degree, using [4] as the inductive assumption. We first recover abelianized inertia and decomposition subgroups of divisorial valuations using the theory of commuting pairs developed in [3]. Then we apply the inductive assumption (1.2) to residue fields of divisorial valuations. This allows to prove that for every normally closed one-dimensional subfield $F = l(f) \subset L$ there exists a one-dimensional subfield $E \subset K$ such that

$$\Psi^*(F^*/l^* \otimes \mathbb{Z}_{(\ell)}) \subseteq (E^*/k^* \otimes \mathbb{Z}_{(\ell)})^\epsilon,$$

for some constant $\epsilon \in \mathbb{Z}_\ell^*$, depending on F . The proof that ϵ is independent of F and, finally, the proof of Theorem 1 are then identical to those in dimension two in [4].

Acknowledgments. We are grateful to M. Rovinsky and the referee for their helpful remarks which improved the exposition. The first author was partially supported by NSF grant DMS-0701578. The second author was partially supported by NSF grants DMS-0739380 and 0901777.

2. BASIC ALGEBRA AND GEOMETRY OF FIELDS

Here we state some auxiliary facts used in the proof of our main theorem.

Lemma 2.1. *Every function field over an algebraically closed ground field admits a projective normal model.*

Lemma 2.2. *For every one-dimensional subfield $E \subset K$ there is a canonical sequence of maps from a sufficiently large normal projective model X of K*

$$X \xrightarrow{\pi_E} C' \xrightarrow{\mu_E} C,$$

where

- C' and C are normal projective curves;
- π_E is dominant with irreducible generic fiber;
- μ_E is quasi-finite and dominant;
- $k(C')$ is the normal closure of E in K , and $k(C) = E$.

Note that C' and C do not depend on the choice of suitable X .

A divisor D on a normal variety X is called p -irreducible if there exists an irreducible divisor $D' \subset X$ such that $D = p^n D'$, for some $n \in \mathbb{N} \cup \{0\}$.

Lemma 2.3. *Let C be a curve, $\pi : X \rightarrow C$ a surjective map with irreducible generic fiber, and $R \subset X$ an irreducible divisor surjecting onto C . Then the intersection $R \cdot \pi^{-1}(c)$ is a sum of p -irreducible divisors with disjoint support, for all but finitely many $c \in C$.*

Proof. This is a positive-characteristic version of Bertini's theorem (see, e.g., [7]). \square

Lemma 2.4. *Let $\pi : T \rightarrow C$ be a separable map of degree m with branch locus $\{c_1, \dots, c_N\} \subset C$. Write*

$$\pi^{-1}(c_j) = \sum_{r=1}^{m_j} e_{j,r} t_{j,r}, \quad t_{j,r} \in T, e_{j,r} \in \mathbb{N}, \quad \text{and} \quad \sum_{r=1}^{m_j} e_{j,r} = m.$$

Let $e'_{j,r}$ be the maximal prime-to- p divisor of $e_{j,r}$. Assume that

$$\sum_{r=1}^{m_j} (e'_{j,r} - 1) > m/2,$$

for all $j = 1, \dots, N$. Then

$$g(T) > N - 3.$$

Proof. Hurwitz formula (for curves over a field of finite characteristics). \square

Let $X \subset \mathbb{P}^N$ be a normal projective variety of dimension $n \geq 2$ over k . Consider the moduli space $\mathcal{M}(d)$ of complete intersection curves on X of multidegree $d = (d_1, \dots, d_{n-1})$. For $|d| \gg 0$ we have:

- for any codimension ≥ 2 subvariety $Z \subset X$ there is a Zariski open subset of $\mathcal{M}(d)$ such that every curve C parametrized by a point in this subset avoids Z and intersects every irreducible divisor $D \subset X$.

Such families will be called *families of flexible curves*.

A *Lefschetz pencil* is a surjective map

$$\lambda : X \rightarrow \mathbb{P}^1$$

from a normal variety with irreducible fibers and normal generic fiber.

Lemma 2.5. *Let $\lambda : X \rightarrow \mathbb{P}^1$ be a Lefschetz pencil on a normal projective variety. Then there exists an $m \in \mathbb{N}$ such that every irreducible normal fiber $D_t := \lambda^{-1}(t)$ contains a family of flexible curves of genus $\leq m$.*

Proof. There is a very ample line bundle H on X which has the same degree on all fibers D_t . We consider complete intersection curves on D_t with respect to the restriction of H . These curves are flexible on D_t and admit a uniform genus estimate from above. \square

3. GALOIS GROUPS

Let \mathcal{G}_K^a the abelianization of the pro- ℓ -quotient \mathcal{G}_K of the Galois group of a separable closure of $K = k(X)$,

$$\mathcal{G}_K^c = \mathcal{G}_K / [[\mathcal{G}_K, \mathcal{G}_K], \mathcal{G}_K] \xrightarrow{\text{pr}} \mathcal{G}_K^a$$

its canonical central extension and pr the natural projection. By our assumptions, \mathcal{G}_K^a is a torsion-free \mathbb{Z}_ℓ -module.

Definition 3.1. We say that $\gamma, \gamma' \in \mathcal{G}_K^a$ form a commuting pair if for some (and therefore any) of their preimages $\tilde{\gamma} \in \text{pr}^{-1}(\gamma), \tilde{\gamma}' \in \text{pr}^{-1}(\gamma') \in \mathcal{G}_K^c$, one has $[\tilde{\gamma}, \tilde{\gamma}'] = 0$. A subgroup \mathcal{H} of \mathcal{G}_K^a is called liftable if any two elements in \mathcal{H} form a commuting pair. A liftable subgroup is called maximal if it is not properly contained in any other liftable subgroup.

Definition 3.2. The fan $\Sigma_K = \{\sigma\}$ on \mathcal{G}_K^a is the set of all topologically non-cyclic maximal liftable subgroups $\sigma \subset \mathcal{G}_K^a$.

Notation 3.3. Let

$$\mu_{\ell^n} := \{ \sqrt[\ell^n]{1} \}$$

the group of ℓ^n -th roots of unity, the collection of these groups forms a projective system under the map $x \mapsto x^\ell$. Its projective limit

$$\mathbb{Z}_\ell(1) = \varprojlim \mu_{\ell^n}$$

is called the Tate twist of \mathbb{Z}_ℓ . Write

$$\hat{K}^* := \varprojlim K^*/(K^*)^{\ell^n}$$

for a similar projective limit of the multiplicative group K^* .

Theorem 3.4 (Kummer theory). For every $n \in \mathbb{N}$ we have a pairing

$$\begin{aligned} [\cdot, \cdot]_n : \mathcal{G}_K^a / \ell^n \times K^* / (K^*)^{\ell^n} &\rightarrow \mu_{\ell^n} \\ (\mu, f) &\mapsto [\mu, f]_n := \mu(\sqrt[\ell^n]{f}) / \sqrt[\ell^n]{f} \end{aligned}$$

which extends to a nondegenerate pairing

$$[\cdot, \cdot] : \mathcal{G}_K^a \times \hat{K}^* \rightarrow \mathbb{Z}_\ell(1).$$

Since k is algebraically closed of characteristic $\neq \ell$ we can choose a non-canonical isomorphism of topological Galois-modules

$$\mathbb{Z}_\ell \simeq \mathbb{Z}_\ell(1).$$

From now on we will fix such a choice.

4. VALUATIONS

In this section we recall basic definitions and facts concerning valuations, and their inertia and decomposition subgroups of Galois groups (see [5] and [8]).

A (nonarchimedean) valuation $\nu = (\nu, \Gamma_\nu)$ on K is a pair consisting of a totally ordered abelian group $\Gamma_\nu = (\Gamma_\nu, +)$ (the value group) and a map

$$\nu : K \rightarrow \Gamma_{\nu, \infty} := \Gamma_\nu \cup \{\infty\}$$

such that

- $\nu : K^* \rightarrow \Gamma_\nu$ is a surjective homomorphism;
- $\nu(\kappa + \kappa') \geq \min(\nu(\kappa), \nu(\kappa'))$ for all $\kappa, \kappa' \in K$;
- $\nu(0) = \infty$.

Every valuation of $K = k(X)$ restricts to the trivial valuation on $k = \overline{\mathbb{F}}_p$.

Let $\mathfrak{o}_\nu, \mathfrak{m}_\nu$ and \mathbf{K}_ν be the ring of ν -integers in K , the maximal ideal of \mathfrak{o}_ν and the residue field

$$\mathbf{K}_\nu := \mathfrak{o}_\nu / \mathfrak{m}_\nu.$$

Basic invariants of valuations are: the \mathbb{Q} -rank $\text{rk}_\mathbb{Q}(\Gamma_\nu)$ of the value group Γ_ν and the transcendence degree $\text{tr deg}_k(\mathbf{K}_\nu)$ of the residue field. We have:

$$(4.1) \quad \text{rk}_\mathbb{Q}(\Gamma_\nu) + \text{tr deg}_k(\mathbf{K}_\nu) \leq \text{tr deg}_k(K).$$

A valuation on K has an algebraic center $\mathfrak{c}_{\nu, X}$ on every projective model X of K , i.e., the irreducible subvariety whose trace on every affine chart $U \subset X$ is defined by the prime ideal $\mathfrak{m}_\nu \cap k[U]$. There exists a projective model X where the dimension of $\mathfrak{c}_{\nu, X}$ is maximal, and equal to $\text{tr deg}_k(\mathbf{K}_\nu)$. A valuation ν is called *divisorial* if

$$\text{tr deg}_k(\mathbf{K}_\nu) = \dim(X) - 1;$$

it can be realized as the discrete rank-one valuation arising from a divisor on some normal model X of K . We let \mathcal{V}_K be the set of all nontrivial (nonarchimedean) valuations of K and \mathcal{DV}_K the subset of its divisorial valuations.

It is useful to keep in mind the following exact sequences:

$$(4.2) \quad 1 \rightarrow \mathfrak{o}_\nu^* \rightarrow K^* \rightarrow \Gamma_\nu \rightarrow 1$$

and

$$(4.3) \quad 1 \rightarrow (1 + \mathfrak{m}_\nu)^* \rightarrow \mathfrak{o}_\nu^* \rightarrow \mathbf{K}_\nu^* \rightarrow 1.$$

For every $\nu \in \mathcal{V}_K$ we have the diagram

$$\begin{array}{ccccccc} \mathcal{I}_\nu^c & \subseteq & \mathcal{D}_\nu^c & \subset & \mathcal{G}_K^c \\ \downarrow & & \downarrow & & \downarrow \\ \mathcal{I}_\nu^a & \subseteq & \mathcal{D}_\nu^a & \subset & \mathcal{G}_K^a, \end{array}$$

where $\mathcal{I}_\nu^c, \mathcal{I}_\nu^a, \mathcal{D}_\nu^c, \mathcal{D}_\nu^a$ are the images of the inertia and the decomposition group of the valuation ν in \mathcal{G}_K^c , respectively, \mathcal{G}_K^a ; the left arrow is an isomorphism and the other arrows surjections. There are canonical isomorphisms

$$\mathcal{D}_\nu^c / \mathcal{I}_\nu^c \simeq \mathcal{G}_{\mathbf{K}_\nu}^c \quad \text{and} \quad \mathcal{D}_\nu^a / \mathcal{I}_\nu^a \simeq \mathcal{G}_{\mathbf{K}_\nu}^a.$$

The group \mathcal{D}_ν^c is the centralizer of $\mathcal{I}_\nu^c = \mathcal{I}_\nu^a$ in \mathcal{G}_ν^c , i.e., \mathcal{I}_ν^a is the subgroup of elements forming a commuting pair with every element of \mathcal{D}_ν^a .

For divisorial valuations $\nu \in \mathcal{DV}_K$, we have

$$(4.4) \quad \mathcal{I}_\nu^c = \mathcal{I}_\nu^a \simeq \mathbb{Z}_\ell.$$

Kummer theory, combined with equations (4.2) and (4.3) yields

$$(4.5) \quad \mathcal{I}_\nu^a = \{\gamma \in \text{Hom}(K^*, \mathbb{Z}_\ell) \mid \gamma \text{ trivial on } \mathfrak{o}_\nu^*\} = \text{Hom}(\Gamma_\nu, \mathbb{Z}_\ell)$$

and

$$(4.6) \quad \mathcal{D}_\nu^a = \{\gamma \in \text{Hom}(K^*, \mathbb{Z}_\ell) \mid \gamma \text{ trivial on } (1 + \mathfrak{m}_\nu)^*\}.$$

In particular,

$$(4.7) \quad \text{rk}_{\mathbb{Z}_\ell}(\mathcal{I}_\nu^a) \leq \text{rk}_{\mathbb{Q}}(\Gamma_\nu) \leq \text{tr deg}_k(K).$$

Two valuations ν_1, ν_2 are dependent if there exists a common coarsening valuation ν (i.e., \mathfrak{m}_ν is contained in both $\mathfrak{m}_{\nu_1}, \mathfrak{m}_{\nu_2}$), in which case

$$\mathcal{D}_{\nu_1}^a, \mathcal{D}_{\nu_2}^a \subset \mathcal{D}_\nu^a.$$

For independent valuations ν_1, ν_2 we have

$$K^* = (1 + \mathfrak{m}_{\nu_1})^* (1 + \mathfrak{m}_{\nu_2})^*;$$

it follows that their decomposition groups have trivial intersection.

In [3, Proposition 6.4.1, Lemma 6.4.3 and Corollary 6.4.4] we proved:

Proposition 4.1. *Every topologically noncyclic liftable subgroup σ of \mathcal{G}_K^a contains a subgroup $\sigma' \subseteq \sigma$ such that there exists a valuation $\nu \in \mathcal{V}_K$ with*

$$\sigma' \subseteq \mathcal{I}_\nu^a, \quad \sigma \subseteq \mathcal{D}_\nu^a,$$

and σ/σ' topologically cyclic.

Corollary 4.2. *For every $\sigma \in \Sigma_K$ one has*

$$\text{rk}_{\mathbb{Z}_\ell}(\sigma) \leq \text{tr deg}_k(K).$$

Proof. By (4.7),

$$\text{rk}_{\mathbb{Z}_\ell}(\mathcal{I}_\nu^a) \leq \text{tr deg}_k(K).$$

We are done if $\sigma = \sigma'$. Otherwise, $\mathcal{D}_\nu^a/\mathcal{I}_\nu^a$ is nontrivial and $\text{tr deg}_k(\mathbf{K}_\nu) \geq 1$. In this case, (4.7) and (4.1) yield that

$$\text{rk}_{\mathbb{Z}_\ell}(\sigma') \leq \text{tr deg}_k(K) - 1,$$

and the claim follows. \square

Corollary 4.3. *Assume that for $\sigma_1, \sigma_2 \in \Sigma_K$ one has*

$$\sigma_1 \cap \sigma_2 \neq 0.$$

Then there exists a valuation $\nu \in \mathcal{V}_K$ such that

$$\sigma_1, \sigma_2 \subset \mathcal{D}_\nu^a.$$

Proof. The valuations cannot be independent. Thus there exists a common coarsening. \square

This allows to recover the abelianized decomposition and inertia groups of valuations in terms of Σ_K . Here is one possible description for divisorial valuations, a straightforward generalization of the two-dimensional case treated in [4, Proposition 8.3]:

Lemma 4.4. *Let $K = k(X)$ be the function field of an algebraic variety of dimension $n \geq 2$. Let $\sigma_1, \sigma_2 \in \Sigma_K$ be liftable subgroups of rank n such that $\mathcal{I} := \sigma_1 \cap \sigma_2$ is topologically cyclic. Then there exists a unique divisorial valuation ν such that $\mathcal{I} = \mathcal{I}_\nu^a$. The corresponding decomposition group $\mathcal{D}_\nu^a \subset \mathcal{G}_K^a$ is the subgroup of elements forming a commuting pair with a topological generator of \mathcal{I}_ν^a .*

Proof. Let $\nu_1, \nu_2 \in \mathcal{V}_K$ be the valuations associated to σ_1, σ_2 in Proposition 4.1. By Corollary 4.3, there exists a valuation $\nu \in \mathcal{V}_K$ such that

$$\sigma_j \subset \mathcal{D}_{\nu_j}^a \subset \mathcal{D}_\nu^a, \quad \text{for } j = 1, 2.$$

Let \mathcal{I}_ν^a be the corresponding inertia subgroup, the subgroup of elements commuting with all of \mathcal{D}_ν^a . In particular, \mathcal{I}_ν^a commutes with all elements of σ_1 and σ_2 . Since σ_1, σ_2 are maximal liftable subgroups of \mathcal{G}_K^a , we obtain that

$$\mathcal{I}_\nu^a \subseteq \sigma_1 \cap \sigma_2 = \mathcal{I} \simeq \mathbb{Z}_\ell.$$

Note that \mathcal{I}_ν^a cannot be trivial; otherwise, the residue field \mathbf{K}_ν would contain a liftable subgroup of rank n , and have transcendence degree n , by Corollary 4.2, which is impossible. It follows that $\text{rk}_{\mathbb{Z}_\ell}(\mathcal{I}_\nu^a) = 1$ and $\text{tr deg}_k(\mathbf{K}_\nu) \leq n - 1$.

Now we apply Corollary 4.2 to

$$\bar{\sigma}_j := \sigma_j / \mathcal{I}_\nu^a \subset \mathcal{G}_{\mathbf{K}_\nu}^a, \quad \text{for } j = 1, 2,$$

liftable subgroups of rank $n - 1$. It follows that $\text{tr deg}_k(\mathbf{K}_\nu) \geq n - 1$, thus equal to $n - 1$, i.e., ν is a divisorial valuation.

Conversely, an inertia subgroup \mathcal{I}_ν^a can be embedded into maximal liftable subgroups σ_1, σ_2 as above, e.g., by considering “flag” valuation with value

group \mathbb{Z}^n , with disjoint centers supported on the corresponding divisor $D = D_\nu \subset X$. \square

The following is useful for the visualization of composite valuations:

Lemma 4.5. *Let $\nu \in \mathcal{DV}_K$ be a divisorial valuation. There is a bijection between liftable subgroups $\sigma \in \Sigma_K$ with the property that*

$$\mathcal{I}_\nu^a \subset \sigma \subseteq \mathcal{D}_\nu^a$$

and liftable subgroups $\sigma_\nu \in \Sigma_{K_\nu}$.

Proof. We apply [4, Corollary 8.2] (whose proof is valid for arbitrary function fields): Let ν be a valuation of K and $\iota_\nu \in \mathcal{I}_\nu^a$. Let $\gamma \in \mathcal{G}_K^a$ be such that ι_ν and γ form a commuting pair. Then $\gamma \in \mathcal{D}_\nu^a$. \square

In summary, under the assumptions of Theorem 1, we have obtained:

- an isomorphism of completions $\Psi^* : \hat{L}^* \xrightarrow{\sim} \hat{K}^*$ canonically induced, by Kummer theory, from the isomorphism $\Psi : \mathcal{G}_K^a \xrightarrow{\sim} \mathcal{G}_L^a$;
- a bijection on the set of inertia (and decomposition) subgroups of divisorial valuations

$$\mathcal{G}_K^a \supset \mathcal{I}_\nu^a \xrightarrow{\Psi} \mathcal{I}_\nu^a \subset \mathcal{G}_L^a.$$

Note that $K^*/k^* \subset \hat{K}^*$ determines a canonical (up to a sign) topological generator $\delta_{\nu,K} \in \mathcal{I}_\nu^a$, for all $\nu \in \mathcal{DV}_K$, by the condition that the restriction takes all integer values

$$\delta_{\nu,K} : K^*/k^* \rightarrow \mathbb{Z} \subset \mathbb{Z}_\ell$$

i.e., that there exist elements $f \in K^*/k^*$ such that $\delta_{\nu,K}(f) = 1$. A topological generator of the procyclic group $\mathcal{I}_\nu^a \simeq \mathbb{Z}_\ell$ is defined up to the action of \mathbb{Z}_ℓ^* . We conclude that there exist constants

$$\varepsilon_\nu \in \mathbb{Z}_\ell^*, \quad \nu \in \mathcal{DV}_K = \mathcal{DV}_L$$

such that

$$(4.8) \quad \Psi(\delta_{\nu,K}) = \varepsilon_\nu \cdot \delta_{\nu,L}, \quad \forall \nu \in \mathcal{DV}_K.$$

The main difficulty is to show that there exists a conformally *unique* $\mathbb{Z}_{(\ell)}$ -lattice, i.e., a constant $\epsilon \in \mathbb{Z}_\ell^*$, unique modulo $\mathbb{Z}_{(\ell)}^*$, such that

$$\varepsilon_\nu = \epsilon, \quad \forall \nu \in \mathcal{DV}_K.$$

A proof of this fact will be carried out in Section 6.

Let ν be a divisorial valuation. Passing to ℓ -adic completions in sequence (4.2) we obtain an exact sequence

$$1 \rightarrow \hat{\mathfrak{o}}_\nu^* \rightarrow \hat{K}^* \xrightarrow{\hat{\nu}} \mathbb{Z}_\ell \rightarrow 0.$$

The sequence (4.3) gives rise to a surjective homomorphism

$$\hat{\mathfrak{o}}_\nu^* \rightarrow \hat{K}_\nu^*.$$

Combining these, we obtain a surjective homomorphism

$$(4.9) \quad \text{res}_\nu : \text{Ker}(\hat{\nu}) \rightarrow \hat{K}_\nu^*.$$

This homomorphism has a Galois-theoretic description, via duality arising from Kummer theory: We have

$$\mathcal{I}_\nu^a \subset \mathcal{D}_\nu^a \subset \mathcal{G}_K^a,$$

and

$$\hat{K}_\nu^* = \text{Hom}(\mathcal{G}_{K_\nu}^a, \mathbb{Z}_\ell) = \text{Hom}(\mathcal{D}_\nu^a / \mathcal{I}_\nu^a, \mathbb{Z}_\ell);$$

each $\hat{f} \in \text{Ker}(\hat{\nu}) \subset \hat{K}^* = \text{Hom}(\mathcal{G}_K^a, \mathbb{Z}_\ell)$ gives rise to a well-defined element in $\text{Hom}(\mathcal{D}_\nu^a / \mathcal{I}_\nu^a, \mathbb{Z}_\ell)$.

5. ℓ -ADIC ANALYSIS: GENERALITIES

Here we recall the main issues arising in the analysis of ℓ -adic completions of functions, divisors, and Picard groups of normal projective models X of function fields $K = k(X)$ (see [4, Section 11] for more details).

We have an exact sequence

$$(5.1) \quad 0 \rightarrow K^*/k^* \xrightarrow{\text{div}_X} \text{Div}(X) \xrightarrow{\varphi} \text{Pic}(X) \rightarrow 0,$$

where $\text{Div}(X)$ is the group of Cartier divisors of X and $\text{Pic}(X)$ is the Picard group. Write $\text{Div}^0(X)$ for the group of divisors algebraically equivalent to zero, in particular, of degree zero upon restriction to every curve $C \rightarrow X$. We will identify an element $f \in K^*/k^*$ with its image under div_X . Let

$$\widehat{\text{Div}}(X)$$

be the pro- ℓ -completion of $\text{Div}(X)$ and put

$$\text{Div}(X)_\ell := \text{Div}(X) \otimes_{\mathbb{Z}} \mathbb{Z}_\ell \subset \widehat{\text{Div}}(X).$$

Every element $\hat{f} \in \hat{K}^*$ has a representation

$$\hat{f} = (f_n)_{n \in \mathbb{N}} \text{ or } \hat{f} = f_0 f_1^\ell f_2^{\ell^2} \cdots,$$

with $f_n \in K^*$. We have homomorphisms

$$\begin{aligned} \text{div}_X : \hat{K}^* &\rightarrow \widehat{\text{Div}}(X), \\ \hat{f} &\mapsto \text{div}_X(\hat{f}) := \sum_{n \in \mathbb{N} \cup \{0\}} \ell^n \cdot \text{div}_X(f_n) = \sum_m \hat{a}_m D_m, \end{aligned}$$

where $D_m \subset X$ are irreducible divisors,

$$\hat{a}_m = \sum_{n \in \mathbb{N} \cup \{0\}} a_{nm} \ell^n \in \mathbb{Z}_\ell, \quad a_{nm} \in \mathbb{Z}.$$

Equation (5.1) gives rise to an exact sequence

$$(5.2) \quad 0 \rightarrow K^*/k^* \otimes \mathbb{Z}_\ell \xrightarrow{\text{div}_X} \text{Div}^0(X)_\ell \xrightarrow{\varphi_\ell} \text{Pic}^0(X)\{\ell\} \rightarrow 0,$$

where

$$\text{Div}^0(X)_\ell := \text{Div}(X)^0 \otimes \mathbb{Z}_\ell, \quad \text{and} \quad \text{Pic}^0(X)\{\ell\} = \text{Pic}^0(X) \otimes \mathbb{Z}_\ell$$

is the ℓ -primary component of the torsion group $\text{Pic}^0(X)$. The assignment

$$\mathcal{T}_\ell(X) := \varprojlim \text{Tor}_1(\mathbb{Z}/\ell^n, \text{Pic}^0(X)\{\ell\}).$$

is functorial:

$$(5.3) \quad Y \rightarrow X \quad \Rightarrow \quad \mathcal{T}_\ell(X) \rightarrow \mathcal{T}_\ell(Y).$$

We have $\mathcal{T}_\ell(X) \simeq \mathbb{Z}_\ell^{2g}$, where g is the dimension of $\text{Pic}^0(X)$. Let $\widehat{\text{Div}}^0(X)$ be the ℓ -completion of $\text{Div}^0(X)$. Note that $\widehat{\text{Div}}^0(X)$ embeds into $\widehat{\text{Div}}(X)$ since the Néron-Severi group $\text{NS}(X)$ is finitely-generated. Passing to pro- ℓ -completions in (5.2) we obtain an exact sequence:

$$(5.4) \quad 0 \rightarrow \mathcal{T}_\ell(X) \rightarrow \hat{K}^* \xrightarrow{\text{div}_X} \widehat{\text{Div}}^0(X) \rightarrow 0,$$

since $\text{Pic}^0(X)$ is an ℓ -divisible group. Note that all groups in this sequence are torsion-free. We have a diagram

$$(5.5) \quad \begin{array}{ccccccc} 0 & \rightarrow & K^*/k^* \otimes \mathbb{Z}_\ell & \xrightarrow{\text{div}_X} & \text{Div}^0(X)_\ell & \xrightarrow{\varphi_\ell} & \text{Pic}^0(X)\{\ell\} \rightarrow 0 \\ & & \downarrow & & \downarrow & & \downarrow \\ 0 & \rightarrow & \mathcal{T}_\ell(X) & \rightarrow & \hat{K}^* & \xrightarrow{\text{div}_X} & \widehat{\text{Div}}^0(X) \xrightarrow{\hat{\varphi}} 0. \end{array}$$

Every $\nu \in \mathcal{DV}_K$ gives rise to a homomorphism

$$\hat{\nu} : \hat{K}^* \rightarrow \mathbb{Z}_\ell.$$

On a normal model X , where $\nu = \nu_D$ for some divisor $D \subset X$, $\hat{\nu}(\hat{f})$ is the ℓ -adic coefficient at D of $\text{div}(\hat{f})$.

The following lemma generalizes [4, Lemmas 11.2 and 11.4] to normal varieties.

Lemma 5.1. *Let K be a function field over k . Then there exists a normal projective model X of K such that for all birational maps $\tilde{X} \rightarrow X$ from a normal variety \tilde{X} one has a canonical isomorphism*

$$\mathcal{T}_\ell(X) \rightarrow \mathcal{T}_\ell(\tilde{X}).$$

In particular, $\mathcal{T}_\ell(X)$ is an invariant of K . Moreover, we have

$$(5.6) \quad \mathcal{T}_\ell(X) = \mathcal{T}_\ell(K) = \cap_{\nu \in \mathcal{DV}_K} \text{Ker}(\hat{\nu}) \subset \hat{K}^*.$$

Proof. For any projective X , its Albanese $\text{Alb}(X)$ is an abelian variety endowed with a universal morphism $\text{alb}: X \rightarrow \text{Alb}(X)$, i.e., for any map $\alpha: X \rightarrow A$ to an abelian variety there exists a map $h: \text{Alb}(X) \rightarrow A$ such that $h \circ \text{alb} = \alpha$ (see [6, Chapter II, pp. 41–50] for the background). This construction is functorial with respect to morphisms between projective varieties. Thus, given a function field K there exists a natural tower $\text{Alb}(X_i)$ of such varieties for a projective system of projective normal models. This tower is bounded since all $\text{Alb}(X_i)$ are dominated by the Jacobian of a sufficiently general curve $C \subset X_i$. Thus there exists a maximal abelian variety $\text{Alb}(K)$ dominating all $\text{Alb}(X)$. It suffices to observe that $\mathcal{T}_\ell(X) = \mathcal{T}_\ell(\text{Alb}(K))$.

The second claim follows from the exactness of the sequence (5.4) and the fact that every divisorial valuation can be realized as a divisor on a normal model X of K . \square

Lemma 5.2. *Let $K = k(X)$ be the function field of a normal projective variety $X \subset \mathbb{P}^N$ of dimension ≥ 3 . For every divisorial valuation $\nu \in \mathcal{DV}_K$ there is a canonical homomorphism:*

$$\xi_{\nu,\ell} : \mathcal{T}_\ell(K) \rightarrow \mathcal{T}_\ell(K_\nu).$$

Assume that ν corresponds to an irreducible normal hyperplane section of X . Then $\xi_{\nu,\ell}$ is an isomorphism.

Proof. The map is induced from a canonical map of Albanese varieties (see [4, Lemma 11.2]). It suffices to apply Lefschetz' theorem. \square

Lemma 5.3. *Let $\lambda: X \rightarrow \mathbb{P}^1$ be a Lefschetz pencil on a normal variety of dimension ≥ 3 and $D_t = \lambda^{-1}(t)$. Then:*

(1) *For all but finitely many $t \in \mathbb{P}^1$,*

$$\xi_{D_t,\ell} : \mathcal{T}_\ell(X) \xrightarrow{\sim} \mathcal{T}_\ell(D_t),$$

is an isomorphism.

(2) For any $t \in \mathbb{P}^1$ and any surjection $D_t \rightarrow C_t$ onto a smooth projective curve we have $g(C_t) \leq \text{rk}_{\mathbb{Z}_\ell}(\mathcal{T}_\ell(X))$.

Proof. Follows from standard facts for general hyperplane sections of normal varieties (see Lemma 5.2). \square

Lemma 5.4. *Let X be a normal variety, C a curve, and $\pi : X \rightarrow C$ a surjective map with irreducible fibers. Assume that $\hat{f} \in \text{Ker}(\hat{\nu})$ and that $\text{res}_\nu(\hat{f}) = 1 \in \hat{\mathbf{K}}_\nu^*$, for infinitely many $\nu \in \mathcal{DV}_K$ corresponding to fibers of π . Then \hat{f} is induced from $\widehat{k(C)}^*$.*

Proof. Assume that $\hat{f} \pmod{\ell^n}$, for some $n \in \mathbb{N}$, contains a summand corresponding to a horizontal divisor R . By Lemma 2.3, R intersects all but finitely many fibers p^m -transversally. In particular, $\text{div}_X(\hat{f})$ intersects infinitely many fibers nontrivially, contradiction to the assumption. Thus $\text{div}_X(\hat{f})$ is a sum of vertical divisors.

Hence $\hat{f} = \tau + \hat{g}$, where $\hat{g} \in \widehat{k(C)}^*$, and $\tau \in \mathcal{T}_\ell(K)$. The triviality of τ on fibers $D_c = \pi^{-1}(c)$ implies that τ is induced from the image of X in $\text{Alb}(X)/\text{Alb}(D_c)$. In particular, the triviality on infinitely many fibers implies that it is induced from the Jacobian $J(C)$ and hence $\hat{f} \in \widehat{k(C)}^*$. \square

Notation 5.5. Let X be a normal projective model of K . For $\hat{f} \in \hat{K}^*$ with

$$\text{div}_X(\hat{f}) = \sum_m \hat{a}_m D_m$$

we put

$$\begin{aligned} \text{supp}_K(\hat{f}) &:= \{ \nu \in \mathcal{DV}_K \mid \hat{f} \text{ nontrivial on } \mathcal{I}_\nu^a \}; \\ \text{supp}_X(\hat{f}) &:= \{ D_m \subset X \mid \hat{a}_m \neq 0 \}; \\ \text{fibr}(\hat{f}) &:= \{ \nu \in \mathcal{DV}_K \mid \hat{f} \in \text{Ker}(\hat{\nu}) \text{ and } \text{res}_\nu(\hat{f}) = 1 \in \hat{\mathbf{K}}_\nu^* \}, \end{aligned}$$

where res_ν is the projection from Equation (4.9). Note that the *finiteness* of $\text{supp}_X(\hat{f})$ does not depend on the choice of the normal model X . Put

$$\text{supp}'_K(\hat{f}) := \text{fibr}(\hat{f}) \cup \text{supp}_K(\hat{f}).$$

If X is a normal model of K write

$$\text{supp}'_X(\hat{f}) \subset \text{supp}'_K(\hat{f})$$

for the subset of divisorial valuations realized by divisors on X . We have

$$\text{supp}'_K(\hat{f}) = \cup_X \text{supp}'_X(\hat{f}).$$

Definition 5.6. *A K -divisor is a function*

$$\mathcal{DV}_K \rightarrow \mathbb{Z}_\ell.$$

Each $\hat{f} \in \hat{K}^$ defines a K -divisor by*

$$\text{div}_K(\hat{f}): \quad \nu \mapsto [\delta_{\nu, K}, \hat{f}].$$

The different notions of support for elements in \hat{K}^* introduced in Notation 5.5 extend naturally to K -divisors. The divisor of \hat{f} on a normal model X of K coincides with the restriction of $\text{div}_K(\hat{f})$ to the set of divisorial valuations of K which are realized by divisors on X . In particular, it has finite support on X modulo ℓ^n , for any $n \in \mathbb{N}$. (This fails for general K -divisors.)

Let $E \subset K$ be a one-dimensional subfield and $\pi_E : X \rightarrow C$ the corresponding surjective map with irreducible generic fiber. For all nontrivial $\hat{f}_1, \hat{f}_2 \in \hat{E}^*$, we have

$$\text{supp}'_K(\hat{f}_1) = \text{supp}'_K(\hat{f}_2).$$

This gives a well-defined invariant of \hat{E}^* . We have a decomposition

$$(5.7) \quad \text{supp}'_K(\hat{E}^*) = \sqcup_{c \in C} \text{supp}'_{K,c}(\hat{E}^*),$$

where $\text{supp}'_{K,c}(\hat{E}^*)$ are minimal nonempty subsets of the form

$$\text{supp}_K(\hat{f}_1) \cap \text{supp}_K(\hat{f}_2)$$

contained in $\text{supp}'_K(\hat{E}^*)$; these correspond to sets of irreducible divisors supported in $\pi_E^{-1}(c)$, for $c \in C(k)$. Note that $\text{supp}'_K(\hat{E}^*)$ depends only on the normal closure of E in K . On the other hand, the decomposition (5.7) is preserved only under purely inseparable extensions of E . We formalize this discussion in the following definition.

Definition 5.7. *A formal projection is a triple*

$$\pi_{\hat{E}} = (C, \{R_c\}_{c \in C}, Q),$$

where C is an infinite set, $\{R_c\}_{c \in C}$ is a set of K -divisors, and $Q \subset \hat{K}^$ a subgroup of \mathbb{Z}_ℓ -rank at least two satisfying the following properties:*

- (1) *for all $\hat{f}_1, \hat{f}_2 \in Q$ one has $\text{supp}'_K(\hat{f}_1) = \text{supp}'_K(\hat{f}_2)$;*
- (2) *$\text{supp}_K(R_{c_1}) \cap \text{supp}_K(R_{c_2}) = \emptyset$, for all pairs of distinct $c_1, c_2 \in C$;*
- (3) *for all nontrivial $\hat{f} \in Q$ one has*

$$\text{div}_K(\hat{f}) = \sum_{c \in C} a_c R_c, \quad a_c \in \mathbb{Z}_\ell,$$

and

$$\cup_{c \in C} \text{supp}_K(R_c) = \text{supp}'_K(\hat{f});$$

(4) for all $c_1, c_2 \in C$ there exists an $m \in \mathbb{N}$ such that

$$m(R_{c_1} - R_{c_2}) = \text{div}_K(\hat{f}),$$

for some $\hat{f} \in Q$.

Example 5.8. A one-dimensional subfield $E = k(C) \subset K$ defines a formal projection $\pi_{\hat{E}} = (C, \{R_c\}_{c \in C}, Q)$, with C the set of k -points of the image of π_E , R_c the intrinsic K -divisors over $c \in C$, and $Q = \hat{E}^*$.

Note that for normally closed subfields $E \subset K$, the corresponding subgroup Q is maximal, for subgroups of \hat{K}^* appearing in formal projections.

Lemma 5.9. *For any model X of K , the support of the formal divisor R_c on X is finite mod ℓ^n .*

Proof. The support of $\text{div}_X(\hat{f})$ mod ℓ^n is finite for all $n \in \mathbb{N}$. Now observe that the K -divisors R_c have disjoint support in $\text{supp}'_K(Q)$, thus have no components in common. \square

6. ONE-DIMENSIONAL SUBFIELDS

We recall the setup of Theorem 1:

$$\Psi : \mathcal{G}_K^a \rightarrow \mathcal{G}_L^a.$$

Our goal here is to show:

$$\begin{array}{ccc} \hat{L}^* & \xrightarrow{\Psi^*} & \hat{K}^* \\ \uparrow & & \uparrow \\ L^*/l^* & \longrightarrow & (K^*/k^*)^\epsilon \end{array}$$

for some constant ϵ . We know that $g \in K^*/k^* \otimes \mathbb{Z}_\ell$ have finite support $\text{supp}_X(g)$, on every normal model X of K . In the second half of this section we will prove:

Proposition 6.1 (Finiteness of support). *For all $f \in L^*/l^*$ and all normal models X of K the support $\text{supp}_X(\Psi^*(f))$ is finite.*

Assuming this, we will prove:

Proposition 6.2 (Image of Ψ^*). *For all $f \in L^*/l^*$ there exist a function $g \in K^*/k^*$ and constants $N \in \mathbb{N}$, $\alpha \in \mathbb{Z}_\ell$ such that*

$$(6.1) \quad \Psi^*(f)^N = g^\alpha.$$

Moreover, there exists a constant $\epsilon \in \mathbb{Z}_\ell^*$ such that

$$\Psi^*(l(f)^*/l^* \otimes \mathbb{Z}_{(\ell)}) \subseteq (k(g)^*/k^* \otimes \mathbb{Z}_{(\ell)})^\epsilon.$$

Considerations in Section 4 imply that under the assumptions of Theorem 1 we have a canonical commutative diagram, for every $\nu \in \mathcal{DV}_K$:

$$\begin{array}{ccccc} 0 & \longrightarrow & \mathcal{T}_\ell(L) & \longrightarrow & \text{Ker}(\hat{\nu}) \longrightarrow \hat{\mathbf{L}}_\nu^* & \supset & \mathbf{L}_\nu^*/l^* \otimes \mathbb{Z}_{(\ell)} \\ & & \downarrow \Psi^* & & \downarrow \Psi_\nu^* & & \downarrow \Psi_\nu^* \\ 0 & \longrightarrow & \mathcal{T}_\ell(K) & \longrightarrow & \text{Ker}(\hat{\nu}) \longrightarrow \hat{\mathbf{K}}_\nu^* & \supset & (\mathbf{K}_\nu^*/k^* \otimes \mathbb{Z}_{(\ell)})^\epsilon, \end{array}$$

for some constant $\epsilon \in \mathbb{Z}_\ell^*$, depending on ν . By [4, Proposition 12.10], the left vertical map is an isomorphism canonically induced by Ψ . In both proofs (Finiteness of support and Image of Ψ^*) we will apply the inductive assumption (1.2) to residue fields of appropriate divisorial valuations.

Proof of Proposition 6.2. Let X be a normal projective model of K and put $\hat{f} := \Psi^*(f)$. By Proposition 6.1, we may assume that $\text{supp}_X(\hat{f})$ is finite, i.e.,

$$\text{div}(\hat{f}) = \sum_{j \in J} d_j D_j,$$

where J is a finite set, $d_j \in \mathbb{Z}_\ell$ and D_i are irreducible divisors on X . A priori, we do not know that $\text{div}(\hat{f}) \in \widehat{\text{Div}^0}(X)_\ell$. Since the support of \hat{f} on X is finite, $\text{div}_X(\hat{f}) \in \text{Div}^0(X)_\ell \subset \widehat{\text{Div}^0}(X)$, as $\widehat{\text{Div}^0}(X) \cap \text{Div}(X)_\ell = \text{Div}^0(X)_\ell$. Furthermore, since $\text{Pic}^0(X)$ is torsion, there exists an $N \in \mathbb{N}$ such that

$$\text{div}_X(\hat{f}^N) \in K^*/k^* \otimes \mathbb{Z}_\ell \subseteq \text{Div}^0(X)_\ell.$$

By (5.5), we have

$$\hat{f}^N = t_{\hat{f}} \cdot \prod_{i \in I} g_i^{a_i},$$

with I a finite set, $a_i \in \mathbb{Z}_\ell$ linearly independent over $\mathbb{Z}_{(\ell)}$, $g_i \in K^*/k^*$ multiplicatively independent, and $t_{\hat{f}} \in \mathcal{T}_\ell(K)$.

The projective model X contains a hyperplane section $D \subset X$ such that

$$\mathcal{T}_\ell(K) = \mathcal{T}_\ell(X) = \mathcal{T}_\ell(D),$$

under the natural restriction isomorphism $\xi_{D,\ell}$ from Lemma 5.3, and the restrictions of g_i to D are multiplicatively independent in $k(D)^*/k^* = \mathbf{K}_\nu^*/k^*$, where $\nu = \nu_D$.

By the construction and the inductive assumption, we have $\text{res}_\nu(\hat{f}^N) = g_\nu^{b_\nu}$, where $b_\nu \in \mathbb{Z}_\ell$, $g_\nu \in \mathbf{K}_\nu^*$:

$$\text{res}_\nu(\hat{f}^N) = \text{res}_\nu(t_{\hat{f}}) \cdot \prod_{i \in I} \text{res}_\nu(g_i)^{a_i} = g_\nu^{b_\nu}.$$

In particular, $\text{res}_\nu(t_{\hat{f}}) = 1$ and hence $t_{\hat{f}} = 1$. Since $\text{res}_\nu(g_i) \in \mathbf{K}_\nu^*$ are independent, it follows that $\#I = 1$ and

$$\hat{f}^N = g^a, \quad g \in K^*/k^*, \quad a \in \mathbb{Z}_\ell.$$

This proves the first claim.

The function $g \in K^*/k^*$ defines a map $\pi : X \rightarrow C$ from some normal model of K onto a curve, with generically irreducible fibers. For each $h \in l(f)^*/l^*$, consider $\text{div}_X(\Psi^*(h)) \in \widehat{\text{Div}}^0(X)$. Then divisors in $\text{div}_X(\Psi^*(h))$ are π -vertical. Indeed, the restriction of g to a π -horizontal component D would be defined and nontrivial. On the other hand, the restriction of f to D is either not defined or trivial, contradiction. By Lemma 5.4, $\Psi^*(h) \in \widehat{k(C)}^* \supseteq \widehat{k(g)}^*$.

Let $\nu = \nu_D$ be a divisorial valuation such that f is defined and nontrivial on D . Then

$$f \in \mathbf{L}_\nu^*/l^* \text{ and } g \in \mathbf{K}_\nu^*/k^*,$$

and

$$\hat{\mathbf{L}}_\nu^* \supset \widehat{l(f)}^* \xrightarrow{\Psi_\nu^*} \widehat{k(g)}^* \subset \hat{\mathbf{K}}_\nu^*.$$

By the inductive assumption, this implies that there exists a constant $\epsilon \in \mathbb{Z}_\ell^*$ such that

$$\Psi_\nu^*(l(f)^*/l^* \otimes \mathbb{Z}_{(\ell)}) \subseteq (k(g)^*/k^* \otimes \mathbb{Z}_{(\ell)})^\epsilon,$$

(see, e.g., [4, Proposition 13.1]). \square

We now prove Proposition 6.1. Fix a normal projective model Y of L . The subfield $F = l(f)$ determines a surjective map $\pi_F : Y \rightarrow C$ with irreducible generic fibers. For each $c \in C$ we have an intrinsically defined formal sum

$$(6.2) \quad R_c = \sum_{\nu \in \mathcal{DV}_{L,c}} a_{c,\nu} R_{c,\nu}, \quad a_{c,\nu} \in \mathbb{N} \cup \{0\},$$

where $\mathcal{DV}_{L,c} \subset \mathcal{DV}_L = \mathcal{DV}_K$ is the subset of divisorial valuations supported in the fiber over c , $R_{c,\nu}$ is a divisor on some model $\tilde{Y} \rightarrow Y$ realizing ν , and $a_{c,\nu}$ are local degrees. Note that R_c do not depend on the model Y , and that R_{c_1} and R_{c_2} have no common components, for $c_1 \neq c_2$. Furthermore, the

sets $\mathcal{DV}_{L,c}$ have an intrinsic Galois-theoretic characterization in terms of \hat{F}^* : these are minimal nonempty subsets of the form

$$\text{supp}_K(\hat{f}_1) \cap \text{supp}_K(\hat{f}_2), \quad f_1, f_2 \in \hat{F}^*,$$

contained in $\text{supp}'_K(\hat{F}^*)$.

For each model $\tilde{Y} \rightarrow Y$ we have a map

$$R_c \mapsto R_{\tilde{Y},c} := \sum_{\nu : D_\nu \in \text{Div}(\tilde{Y})} a_{c,\nu} R_{c,\nu},$$

the fiber over c . The divisor of a function $f \in F^*/l^*$ on this model can be written as a finite sum

$$\text{div}_{\tilde{Y}}(f) = \sum n_c R_{\tilde{Y},c}, \quad n_c \in \mathbb{Z}.$$

Given $\{\delta_{\nu,L}\}$ as in Section 4, each $\hat{f} \in \hat{L}^*$ defines a \mathbb{Z}_ℓ -valued function on \mathcal{DV}_L by the Kummer-pairing from Theorem 3.4

$$(6.3) \quad \begin{aligned} \mathcal{DV}_L &\rightarrow \mathbb{Z}_\ell \\ \nu &\mapsto [\delta_{\nu,L}, \hat{f}]. \end{aligned}$$

Similarly, each R_c defines a function on \mathcal{DV}_L by setting

$$\nu \mapsto \delta_{\nu,L} \cdot R_c = \delta_{\nu,L}(t),$$

where t is a local parameter along c if ν is supported over c , and $\nu \mapsto 0$, otherwise.

For $\hat{f} \in \hat{F}^* \subset \hat{L}^*$ write

$$\text{div}_C(\hat{f}) = \sum_{c \in C} b_{\hat{f},c} c, \quad b_{\hat{f},c} \in \mathbb{Z}_\ell,$$

with “decreasing” coefficients $b_{\hat{f},c}$. Then (6.3) is given by

$$\nu \mapsto b_{\hat{f},c} a_{\nu,c}.$$

We face the following difficulty: we don’t know the image $\Psi^*(F^*/l^*)$ in \hat{K}^* , and in particular, we don’t know that $\Psi^*(R_c)$, resp. $\Psi^*(R_{\tilde{Y},c})$, as functions on \mathcal{DV}_K , correspond to fibers of any fibration on a model X of K . However, as explained in Section 4, we know the “action” of Ψ^* on the coefficients in Equation (6.2):

$$a_{c,\nu} \mapsto \varepsilon_\nu^{-1} a_{c,\nu}.$$

Lemma 6.3. *Either there is a nonconstant $f \in F^*/l^*$ such that $\text{supp}_X(\Psi^*(f))$ is finite or there is at most one $c \in C$, where C corresponds to F , such that $\Psi^*(R_c)$ has finite support on every model X of K .*

Proof. Let $c_1, c_2 \in C$ be distinct points such that

$$\text{supp}_X(\Psi^*(R_{c_1})) \cup \text{supp}_X(\Psi^*(R_{c_2}))$$

is finite. Then there is a function f with divisor supported in this set, thus finite $\text{supp}_X(\Psi^*(f))$. \square

Proof of Proposition 6.1. By contradiction. Assume that $\text{supp}_X(\Psi^*(f))$ is infinite. An argument as in the proof of Proposition 6.2 shows that the same holds for every nonconstant $h \in l(f)^*/l^*$.

Fix a Lefschetz pencil $\lambda : X \rightarrow \mathbb{P}^1$ such that for almost all fibers D_t of λ we have a well-defined

$$\text{res}_\nu : l(f)^*/l^* \rightarrow \mathbf{L}_{\nu_t}^* \xrightarrow{\Psi^*} \widehat{\mathbf{K}}_{\nu_t}^*,$$

where ν_t is the divisorial valuation corresponding to D_t . By the inductive assumption, there exist one-dimensional closed subfields $E_t = k(C_t) \subset k(D_t) = \mathbf{K}_{\nu_t}$ such that

$$\Psi^*(\text{res}_{\nu_t}(l(f)^*/l^*) \otimes \mathbb{Z}_{(\ell)}) \subseteq (E_t^* \otimes \mathbb{Z}_{(\ell)})^{\epsilon_t}, \quad \epsilon_t \in \mathbb{Z}_\ell^*.$$

We have an induced surjective map

$$\pi_t : D_t \rightarrow C_t$$

as in Lemma 2.2. Passing to a finite purely-inseparable cover of C_t we may assume that π_t is separable (this effects the constant ϵ by multiplication by a power of p which is in \mathbb{Z}_ℓ^*). We identify the sets $C(k)$ and $C_t(k)$, set-theoretically.

Fix a family of flexible curves $\{T_t\}$ uniformly on all but finitely many D_t as in Lemma 2.5 and let m be the bound on the genus of these curves obtained in this Lemma. Put $N := m + 4$ and choose $c_1, \dots, c_N \in C_t(k) = C(k)$ such that $\text{supp}_X(R_{c_j})$ is infinite for all j , this is possible by Lemma 6.3.

For each c_j express the fiber over c_j as

$$R_{c_j} := \sum_{e=0}^{\infty} \ell^e R_{c_j, e}, \quad R_{c_j, e} := \sum_{i \in I_{e, j}} \epsilon_{i, e, j} R_{i, e, j},$$

where $I_{e, j}$ are finite, and $R_{i, e, j}$ irreducible divisors over c_j , and $\epsilon_{i, e, j} \in \mathbb{Z}_\ell^*$ (see Lemma 5.9). Let $S_{c_j, e} = \bigcup R_{i, e, j}$ be the support of $R_{c_j, e}$. Note that T_t intersect

all $S_{c_j,e}$ and write $d_{j,e} := \deg(S_{c_j,e} \cdot T_t)$ for the degree of the intersection. Choose M such that for all $j = 1, \dots, N$ one has

$$(6.4) \quad d_{j,0} < \sum_{e=1}^M d_{j,e},$$

this is possible since the number of components over all c_j is infinite. Using Lemma 2.3 choose t so that the intersections

$$R_{i,e,j,t} := D_t \cdot R_{i,e,j}$$

are p -irreducible and pairwise distinct, this holds for all but finitely many t . Choose a flexible curve $T_t \subset D_t$ such that

- T_t does not pass through the points of indeterminacy of $\pi_t : D_t \rightarrow C_t$;
- T_t is not contained in any of the $R_{i,e,j,t}$;
- T_t does not pass through pairwise intersections of these divisors.

Consider the restriction

$$\pi_t : T_t \rightarrow C_t.$$

By the choice of T_t , the number of nonramified points over each c_j is at most $d_{j,0}$. On the other hand, the ramification index over c_j is at least $\ell \cdot \sum_{e=1}^m d_{j,e}$. By the choice (6.4), combined with Hurwitz formula in Lemma 2.4, we obtain that $g(T_t) > m$, contradicting the universal bound. \square

Proposition 6.4. *There exists a constant $\epsilon \in \mathbb{Z}_\ell^*$ such that*

$$(6.5) \quad \Psi^*(L^*/l^* \otimes \mathbb{Z}_{(\ell)}) = (K^*/k^* \otimes \mathbb{Z}_{(\ell)})^\epsilon.$$

Proof. By Proposition 6.2, for each one-dimensional subfield $F = l(f) \subset L$ there exists a one-dimensional subfield $E = k(g)$ and a constant $\epsilon_F \in \mathbb{Z}_\ell^*$ such that

$$\Psi^*(F^*/l^* \otimes \mathbb{Z}_{(\ell)}) \subseteq (E^*/k^* \otimes \mathbb{Z}_{(\ell)})^{\epsilon_F}.$$

We claim that ϵ_F does not depend on F , modulo $\mathbb{Z}_{(\ell)}^*$. For $f_1, f_2 \in L^*/l^* \subset \hat{L}^*$ and $f_3 := f_1 f_2$ let $\Psi^*(f_j) = g_j^{\alpha_j}$, for $g_j \in K^*/k^* \subset \hat{K}^*$ and $\alpha_j \in \mathbb{Z}_\ell^*$.

We want to show that α_j/α_i are rational and hence contained in $\mathbb{Z}_{(\ell)}^*$. We have an equality of K -divisors:

$$\text{div}_K(\Psi^*(f_1)) + \text{div}_K(\Psi^*(f_2)) = \text{div}_K(\Psi^*(f_3)),$$

since $f_1 f_2 = f_3 \in L^*/l^*$. We have

$$\alpha_j \text{div}_K(g_j) = \text{div}_K(\Psi^*(f_j)).$$

For every model X of K we have

$$\alpha_1 \text{div}_X(g_1) + \alpha_2 \text{div}_X(g_2) = \alpha_3 \text{div}_X(g_3),$$

where div_X is obtained from div_K by removing contributions from all divisorial valuations which are not represented by divisors on a normal projective model X . This can be rewritten as an equality between coefficients for irreducible divisors D_r on such models X :

$$(6.6) \quad \alpha_1 n_{1,r} + \alpha_2 n_{2,r} = \alpha_3 n_{3,r},$$

where $n_{j,r}$ is the multiplicity of a component D_r in the divisor of g_j on X . The rank of the matrix $(n_{j,r})$ cannot be equal to 3, due to the relation (6.6). If the rank is 2, then the ratios α_j/α_i are all \mathbb{Q} -rational, and hence are contained in $\mathbb{Z}_{(\ell)}^*$. If the rank is one, all g_j are powers of the same element, and the same property holds for f_j ; hence $\alpha_i = \alpha_j$.

Applying the same arguments to the inverse isomorphism $(\Psi^*)^{-1}$ we obtain the claim. \square

7. PROOF

In this section we prove our main theorem.

Step 1. We have a nondegenerate pairing

$$\mathcal{G}_K^a \times \hat{K}^* \rightarrow \mathbb{Z}_\ell(1).$$

This induces canonically an isomorphism

$$\Psi^* : \hat{L}^* \rightarrow \hat{K}^*.$$

Step 2. By assumption, $\Psi : \mathcal{G}_K^a \rightarrow \mathcal{G}_L^a$ is bijective on the set of liftable subgroups, in particular, it maps liftable subgroups $\sigma \in \Sigma_K$ to a liftable subgroups of the same rank. In Section 4 we identify intrinsically the inertia and decomposition groups of divisorial valuations:

$$\mathcal{I}_\nu^a \subset \mathcal{D}_\nu^a \subset \mathcal{G}_K^a :$$

every liftable subgroup $\sigma \in \Sigma_K$ contains an inertia element of a divisorial valuation (which is also contained in at least one other $\sigma' \in \Sigma_K$). The corresponding decomposition group is the “centralizer” of the (topologically) cyclic inertia group (the set of all elements which “commute” with inertia). This identifies $\mathcal{D}\mathcal{V}_K = \mathcal{D}\mathcal{V}_L$.

Step 3. By [4, Section 17, Step 7 and 8], when $K = k(X)$ and $L = l(Y)$ are function fields of surfaces over algebraic closures of finite fields of characteristic $\neq \ell$, the existence of an isomorphism

$$\Psi : \mathcal{G}_K^a \rightarrow \mathcal{G}_L^a$$

identifying Σ_K and Σ_L , implies the existence of a constant $\epsilon \in \mathbb{Z}_\ell^*$ such that Ψ^* restricts to an isomorphism

$$L^*/l^* \otimes \mathbb{Z}_\ell \supset \cup_{n \in \mathbb{N}} (L^*/l^*)^{1/p^n} \simeq \cup_{n \in \mathbb{N}} (K^*/k^*)^{\epsilon/p^n} \subset K^*/k^* \otimes \mathbb{Z}_\ell.$$

By the induction hypothesis, we may assume that this isomorphism holds for all function fields of transcendence degree $\leq n-1$: Once we have identified decomposition and inertia subgroups of divisorial valuations, we have, for each $\nu \in \mathcal{DV}_K$, an intrinsically defined sublattice

$$(7.1) \quad \Psi^*(L_\nu^*/l^* \otimes \mathbb{Z}[\frac{1}{p}]) = (K_\nu^*/k^*)^\epsilon \otimes \mathbb{Z}[\frac{1}{p}] \subset \hat{K}_\nu^*$$

of elements of the form g^ϵ , with $g \in K_\nu^*/k^*$ and $\epsilon \in \mathbb{Z}_\ell^*$ in the completion of the multiplicative group of the residue field.

Step 4. Proposition 6.1 states that for any $f \in L^*/l^*$ the support of $\Psi^*(f)$ is finite on every projective model of K . The proof of this fact in Section 6 uses the induction hypothesis formulated in Step 3, for ν corresponding to divisors in a general Lefschetz pencil, depending on $f \in L^*/l^*$. Then Proposition 6.2 implies that $\Psi^*(f)$ has the form g^ϵ , for some $g \in K^*/k^*$, and Proposition 6.4 says that we have an isomorphism:

$$\epsilon^{-1} \cdot \Psi^* : L^*/l^* \otimes \mathbb{Z}_{(\ell)} \rightarrow K^*/k^* \otimes \mathbb{Z}_{(\ell)}$$

which maps multiplicative groups of one-dimensional subfields L into multiplicative groups of one-dimensional subfields of K , modulo $\mathbb{Z}_{(\ell)}$.

Step 5. If $f_1, f_2 \in L^*$ are algebraically dependent then

$$\text{supp}'_L(f_1) = \text{supp}'_L(f_2)$$

(see Section 5 for the definition). Conversely, if f_1, f_2 are algebraically independent then the map

$$(f_1, f_2) : Y \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$$

is dominant and hence there is an irreducible divisor $D \subset Y$, e.g., in the preimage of $(\mathbb{P}^1, 0)$, such that the restriction of f_1 to D is nonconstant in the

residue field \mathbf{K}_D of D (modulo a sufficiently high power of ℓ), and in its completion $\hat{\mathbf{K}}_D^*$. It follows that

$$\text{supp}'_L(f_1) \neq \text{supp}'_L(f_2).$$

This property is preserved under Ψ^* .

Step 6. Assume that $f_1, f_2 \in L^*$ are algebraically independent elements and let

$$g_j = \epsilon^{-1} \cdot \Psi^*(f_j) \in K^*/k^* \otimes \mathbb{Z}_{(\ell)}.$$

By Step 5, g_1, g_2 (or rather their integral powers contained in K^*) are also algebraically independent.

Step 7. Let $F = F_{f_1, f_2}$ be the smallest subfield of L containing $l(f_1, f_2)$ and such that for any $f \in F$ the normal closure of $l(f)$ in L is contained in F . The group F^*/l^* can be characterized as the minimal subgroup $S = S(f_1, f_2)$ of L^*/l^* containing f_1, f_2 and closed under the following operation: if $f \in S$ then the multiplicative group of the normal closure of $l(f)$ in L , modulo l^* , is contained in S . Note that the subgroup S is also closed under “addition”, in the following sense: if $h_1, h_2 \in L^*$ are such that $h_1 + h_2 \neq 0$, and their images in L^*/l^* are in S , then the image of $h_1 + h_2$ is also in S . Indeed, the one-dimensional field $l(h_1/h_2)$ contains $(h_1/h_2) + 1 = (h_1 + h_2)/h_2$ and hence $h_1 + h_2$, since S is a multiplicative subgroup. This implies that the preimage of S in L^* is F^* . The homomorphism $\epsilon^{-1} \cdot \Psi^*$ preserves this property.

Step 8. We can now apply Proposition 2.13 and Lemma 2.14 in [4] to multiplicative subgroups of such two-dimensional subfields $F = F_{f_1, f_2}$, i.e., for each such two-dimensional subfield $F \subset L$ there exists a two-dimensional subfield $E = E_{g_1, g_2} \subset K$ such that the intersection

$$\epsilon^{-1} \cdot \Psi^*(F^*/l^*) \cap K^*/k^*$$

is the multiplicative group of a subfield $E' \subseteq E$, with E/E' purely inseparable. It follows that

$$R := \epsilon^{-1} \cdot \Psi^*(L^*/l^*) \cap K^*/k^*$$

has the same property, i.e., there is a purely inseparable extension K/K' such that the multiplicative group of K' is R .

Thus $\epsilon^{-1} \cdot \Psi^*$ defines an isomorphism between perfect closures of K and L . Since we can modify ϵ^{-1} by arbitrary p -primary multiples, the initial map Ψ^*

defines a unique isomorphism between perfect closures of K and L modulo integral powers of the absolute Frobenius endomorphism.

REFERENCES

- [1] F. A. BOGOMOLOV – “Abelian subgroups of Galois groups”, *Izv. Akad. Nauk SSSR Ser. Mat.* **55** (1991), no. 1, p. 32–67.
- [2] ———, “On two conjectures in birational algebraic geometry”, in *Algebraic geometry and analytic geometry (Tokyo, 1990)*, ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, p. 26–52.
- [3] F. A. BOGOMOLOV & Y. TSCHINKEL – “Commuting elements in Galois groups of function fields”, in *Motives, Polylogarithms and Hodge theory*, International Press, 2002, p. 75–120.
- [4] ———, “Reconstruction of function fields”, *Geom. Funct. Anal.* **18** (2008), no. 2, p. 400–462.
- [5] N. BOURBAKI – *Commutative algebra. Chapters 1–7*, Elements of Mathematics, Springer-Verlag, Berlin, 1998, Translated from the French, Reprint of the 1989 English translation.
- [6] S. LANG – *Abelian varieties*, Springer-Verlag, New York, 1983, Reprint of the 1959 original.
- [7] B. POONEN – “Bertini theorems over finite fields”, *Ann. of Math. (2)* **160** (2004), no. 3, p. 1099–1127.
- [8] O. ZARISKI & P. SAMUEL – *Commutative algebra. Vol. II*, Springer-Verlag, New York, 1975, Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29.

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, N.Y.U., 251 MERCER STR.,
NEW YORK, NY 10012, U.S.A. AND STEKLOV MATHEMATICAL INSTITUTE, GUBKINA
STR. 8, 119991, MOSCOW, RUSSIA

E-mail address: bogomolo@cims.nyu.edu

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, N.Y.U., 251 MERCER STR.,
NEW YORK, NY 10012, U.S.A.

E-mail address: tschinkel@cims.nyu.edu