RECONSTRUCTION OF HIGHER-DIMENSIONAL FUNCTION
FIELDS

FEDOR BOGOMOLOV AND YURI TSCHINKEL

ABSTRACT. We determine the function fields of varieties of dimension
> 2 defined over the algebraic closure of IF),, modulo purely inseparable
extensions, from the quotient by the second term in the lower central series
of their pro-¢ Galois groups.
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INTRODUCTION

Fix two distinct primes p and /. Let k = Fp be an algebraic closure of the
finite field F,. Let X be an algebraic variety defined over k and K = k(X)) its
function field. We will refer to X as a model of K; we will generally assume
that X is normal and projective. Let G% be the abelianization of the pro-/-
quotient Gy of the absolute Galois group of K. Under our assumptions on
k, G% is a torsion-free Z,-module isomorphic to ZIE . Let G be its canonical
central extension - the second lower central series quotient of Gx. It deter-
mines a set X of distinguished (primitive) finite-rank subgroups of Gf.: a
topologically noncyclic subgroup o € X iff

e the inverse image of ¢ in G§, is abelian;

Key words and phrases. Galois groups, function fields.
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e o is maximal: there are no subgroups ¢’ C G% whose preimages in
Gy, are abelian and which contain o as a proper subgroup.

Our main theorem is

Theorem 1. Let K and L be function fields over algebraic closures of finite
fields k, resp. 1, of characteristic # (. Assume that the transcendence degree
of K over k is at least two and that there exists an isomorphism

(1.1) U=Vgy: Gk — G}

of abelian pro-{-groups inducing a bijection of sets Y i and ;. Then k is
isomorphic to | and there exists a constant € € Z such that € ' - U is induced
from a unique, up to the composition with a power of the absolute Frobenius
automorphism on K, isomorphism of perfect closures

Ut L5 K.
In this paper we implement the program outlined in [!1] and [2] describ-
ing the correspondence between higher-dimensional function fields and their
abelianized Galois groups. We follow closely our paper [4], where we treated

in detail the case of surfaces: The isomorphism (1.1) of abelianized Galois
groups induces canonically an isomorphism

UANERY ey e
between pro-/-completions of multiplicative groups. One of the steps in the
proof is to show that under the assumptions of Theorem 1, ¥* induces by
restriction canonically an isomorphism

(12) O* : L*/I'®Zyy — (K*/k* @ Zp))" C K*, forsome ¢ € Z:,

Here Zy) is the additive group of rational numbers with denominators coprime
to ¢ and the exponent e indicates the scaling of the lattice K*/k* by e.

The proof of Theorem 1 proceeds by induction on the transcendence de-
gree, using [4] as the inductive assumption. We first recover abelianized in-
ertia and decomposition subgroups of divisorial valuations using the theory
of commuting pairs developed in [3]. Then we apply the inductive assump-
tion (1.2) to residue fields of divisorial valuations. This allows to prove that
for every normally closed one-dimensional subfield ' = [(f) C L there
exists a one-dimensional subfield £/ C K such that

U (F* /1" ® Zwy) C (E*/k* @ Z(@)ﬁ ,
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for some constant € € Z;, depending on F'. The proof that € is independent of
F and, finally, the proof of Theorem 1 are then identical to those in dimension
two in [4].

Acknowledgments. We are grateful to M. Rovinsky and the referee for their
helpful remarks which improved the exposition. The first author was partially
supported by NSF grant DMS-0701578. The second author was partially sup-
ported by NSF grants DMS-0739380 and 0901777.

2. BASIC ALGEBRA AND GEOMETRY OF FIELDS

Here we state some auxiliary facts used in the proof of our main theorem.

Lemma 2.1. Every function field over an algebraically closed ground field
admits a projective normal model.

Lemma 2.2. For every one-dimensional subfield E C K there is a canonical
sequence of maps from a sufficiently large normal projective model X of K

X 2 ot o

where

C" and C are normal projective curves;

T is dominant with irreducible generic fiber,

g is quasi-finite and dominant;

k(C") is the normal closure of E in K, and k(C) = E.

Note that C" and C' do not depend on the choice of suitable X.

A divisor D on a normal variety X is called p-irreducible if there exists an
irreducible divisor D" C X such that D = p™ D', for some n € N U {0}.

Lemma 2.3. Let C be a curve, T : X — C' a surjective map with irreducible
generic fiber, and R C X an irreducible divisor surjecting onto C. Then the
intersection R-7~'(c) is a sum of p-irreducible divisors with disjoint support,
for all but finitely many c € C.

Proof. This is a positive-characteristic version of Bertini’s theorem (see, e.g.,

[7D. O

Lemma 24. Let 7 : T — C' be a separable map of degree m with branch
locus {c1,...,cn} C C. Write

m; mj
~1
T (¢) = E ejrtir, tir€T,ej, €N, and g ejr =M.
r=1

r=1



4 FEDOR BOGOMOLOV AND YURI TSCHINKEL

Let 63»77, be the maximal prime-to-p divisor of e; ,. Assume that

m;

> (¢, —1)>m/2,

r=1
forall g =1,...,N. Then
g(T) > N —3.
Proof. Hurwitz formula (for curves over a field of finite characteristics). [
Let X C PV be a normal projective variety of dimension n > 2 over k.

Consider the moduli space M(d) of complete intersection curves on X of
multidegree d = (ds, ..., d,_1). For |d| > 0 we have:

e for any codimension > 2 subvariety Z C X there is a Zariski open
subset of M(d) such that every curve C' parametrized by a point in
this subset avoids Z and intersects every irreducible divisor D C X.

Such families will be called families of flexible curves.

A Lefschetz pencil is a surjective map
A X — P!
from a normal variety with irreducible fibers and normal generic fiber.

Lemma 2.5. Let \ : X — P! be a Lefschetz pencil on a normal projective
variety. Then there exists an m € N such that every irreducible normal fiber
Dy := \7X(t) contains a family of flexible curves of genus < m.

Proof. There is a very ample line bundle /7 on X which has the same degree
on all fibers D,. We consider complete intersection curves on D, with respect
to the restriction of H. These curves are flexible on D; and admit a uniform
genus estimate from above. 0

3. GALOIS GROUPS

Let G4 the abelianization of the pro-/-quotient G of the Galois group of a
separable closure of K = k(X),

Gic = G /19, 9k, G| — Gix

its canonical central extension and pr the natural projection. By our assump-
tions, G is a torsion-free Z,-module.
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Definition 3.1. We say that v,y € G form a commuting pair if for some
(and therefore any) of their preimages v € pr—'(~),5" € pr=*(y) € G%, one
has [7,7'] = 0. A subgroup H of G% is called liftable if any two elements in
‘H form a commuting pair. A liftable subgroup is called maximal if it is not
properly contained in any other liftable subgroup.

Definition 3.2. The fan Y5 = {c} on G§. is the set of all topologically non-
cyclic maximal liftable subgroups o C G¥.

Notation 3.3. Let .

pn = { eﬁ}
the group of ¢"-th roots of unity, the collection of these groups forms a pro-
jective system under the map x — 2. Its projective limit

Zy(1) = im gan
is called the Tate twist of Z,. Write
K* - @K*/(K*)gn
for a similar projective limit of the multiplicative group K™.

Theorem 3.4 (Kummer theory). For every n € N we have a pairing
o s G/ X KK = g e

(1, f) =, flo = 0V VT

which extends to a nondegenerate pairing
[ ] 2 G x K™ — Zy(1).
Since k is algebraically closed of characteristic # ¢ we can choose a non-
canonical isomorphism of topological Galois-modules
Zz ~ Zg(l)

From now on we will fix such a choice.

4. VALUATIONS

In this section we recall basic definitions and facts concerning valuations,
and their inertia and decomposition subgroups of Galois groups (see [5] and

[5D.

A (nonarchimedean) valuation v = (v,T',) on K is a pair consisting of a
totally ordered abelian group I', = (T, +) (the value group) and a map

v:K—-T,,:=T,U{oco}
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such that

e v : K* — I', is a surjective homomorphism;

o v(k+ ') > min(v(k),v(x")) forall K, k' € K;

e 1(0) = 0.
Every valuation of K = k(X) restricts to the trivial valuation on k = F,.

Let 0,,m, and K, be the ring of v-integers in K, the maximal ideal of o,
and the residue field
K,:=o0,/m,.

Basic invariants of valuations are: the Q-rank rkq(I",) of the value group I',
and the transcendence degree tr deg, (K,) of the residue field. We have:

4.1) rko(T',) + trdegy,(K,) < trdeg,(K).

A valuation on K has an algebraic center ¢, x on every projective model X of
K, i.e., the irreducible subvariety whose trace on every affine chart U C X is
defined by the prime ideal m,,Nk[U]. There exists a projective model X where
the dimension of ¢, x is maximal, and equal to tr deg, (K, ). A valuation v is
called divisorial if
trdeg, (K ,) = dim(X) — 1;
it can be realized as the discrete rank-one valuation arising from a divisor on
some normal model X of K. We let Vi be the set of all nontrivial (nonar-
chimedean) valuations of K and DV the subset of its divisorial valuations.
It is useful to keep in mind the following exact sequences:

4.2) l—o, —-K —-I,—1
and
(4.3) l-(1+m,)" —0o, — K, — 1

For every v € Vi we have the diagram
e C DS C G
! ! !
; < Dy < Gk,
where 775,17 Dy Dy are the images of the inertia and the decomposition

v v

group of the valuation v in G, respectively, G ; the left arrow is an isomor-
phism and the other arrows surjections. There are canonical isomorphisms

Dy /I, ~ Gy, and D /I)~ G .

The group D¢ is the centralizer of Z° = 79 in G¢, i.e., Z¢ is the subgroup of
elements forming a commuting pair with every element of D¢.
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For divisorial valuations v € DVy, we have
4.4) I, =1 ~ 7.
Kummer theory, combined with equations (4.2) and (4.3) yields
4.5) Iy ={y € Hom(K™,Zy) |y trivial on o} } = Hom(T',, Z,)
and
(4.6) Dy, = {y € Hom(K"*,Z,) |~ trivial on (1 +m,)*}.
In particular,
4.7) tkz, (Z2) < thg(T,) < trdeg, (K).

Two valuations vy, v, are dependent if there exists a common coarsening val-
uation v (i.e., m, is contained in both m,,, m,,), in which case

Dy, , Dy, CDy.
For independent valuations vy, v, we have
K" = (1 + ml’l)*(]' + ml’2)*;

it follows that their decomposition groups have trivial intersection.
In [3, Proposition 6.4.1, Lemma 6.4.3 and Corollary 6.4.4] we proved:

Proposition 4.1. Every topologically noncyclic liftable subgroup o of Gf.
contains a subgroup o' C o such that there exists a valuation v € Vi with

o CI¢ o CDY
and o /o' topologically cyclic.
Corollary 4.2. For every o € Yk one has
rtky, (o) < trdeg,(K).

Proof. By (4.7),
rkz, (Zy) < trdeg,(K).

We are done if o = ¢’. Otherwise, D%/Z is nontrivial and tr deg, (K ,) > 1.
In this case, (4.7) and (4.1) yield that

rkz, (0') < trdeg,(K) — 1,

and the claim follows. ]
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Corollary 4.3. Assume that for 1,09 € Y one has
o1 Noy # 0.

Then there exists a valuation v € Vi such that
01,09 C DJ.

Proof. The valuations cannot be independent. Thus there exists a common
coarsening. U

This allows to recover the abelianized decomposition and inertia groups of
valuations in terms of Y. Here is one possible description for divisorial val-
uations, a straightforward generalization of the two-dimensional case treated
in [4, Proposition 8.3]:

Lemma 4.4. Let K = k(X) be the function field of an algebraic variety of
dimension n > 2. Let 01,09 € X be liftable subgroups of rank n such that
1 = o1 N oy is topologically cyclic. Then there exists a unique divisorial
valuation v such that L = 1}. The corresponding decomposition group D, C
G4 is the subgroup of elements forming a commuting pair with a topological
generator of L.

Proof. Let v1,v5 € Vg be the valuations associated to oy, 09 in Proposi-
tion 4.1. By Corollary 4.3, there exists a valuation v € Vg such that

o;CD, CD;, for j=12
J

Let Z? be the corresponding inertia subgroup, the subgroup of elements com-
muting with all of D¢. In particular, Z? commutes with all elements of o, and
09. Since 01, 05 are maximal liftable subgroups of G, we obtain that

L) CoyNog =1 ~ 7.

Note that Z cannot be trivial; otherwise, the residue field K, would contain
a liftable subgroup of rank 7, and have transcendence degree n, by Corol-
lary 4.2, which is impossible. It follows that rky, (Z) = 1 and tr deg,, (K, ) <
n— 1.

Now we apply Corollary 4.2 to

0;:=0;/1, C Gy , for j=12

liftable subgroups of rank n — 1. It follows that tr deg, (K ,) > n — 1, thus
equal ton — 1, i.e., v is a divisorial valuation.

Conversely, an inertia subgroup Z? can be embedded into maximal liftable
subgroups 01,05 as above, e.g., by considering “flag” valuation with value
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group Z", with disjoint centers supported on the corresponding divisor D =
D, C X. 0J

The following is useful for the visualization of composite valuations:

Lemma 4.5. Let v € DV be a divisorial valuation. There is a bijection
between liftable subgroups o € Y. with the property that

I, CoCD,
and liftable subgroups o, € Y, .
Proof. We apply [4, Corollary 8.2] (whose proof is valid for arbitrary function

fields): Let v be a valuation of K and ¢, € Z7. Let v € G} be such that ¢,
and vy form a commuting pair. Then v € D;. U

In summary, under the assumptions of Theorem 1, we have obtained:
e an isomorphism of completions ¥* : L* = K~ canonically in-
duced, by Kummer theory, from the isomorphism ¥ : G4 — G¢;

e a bijection on the set of inertia (and decomposition) subgroups of di-
visorial valuations

v
Gy > I 2 18 C Gy

Note that K*/k* C K* determines a canonical (up to a sign) topological
generator 0, x € Z7, for all v € DV, by the condition that the restriction
takes all integer values

Sui P K*Jk* > ZC 7y

i.e., that there exist elements [ € K*/k* such that §, - (f) = 1. A topological
generator of the procyclic group Z} ~ Z, is defined up to the action of Zj.
We conclude that there exist constants

e, €Z;, veEDVgk=DV
such that
4.8) \11(5,,7]() =&, 51/,L7 Vv e DVg.

The main difficulty is to show that there exists a conformally unique Z -
lattice, i.e., a constant € € Zj, unique modulo Z&), such that

e, =€, Vv eDVg.

A proof of this fact will be carried out in Section 6.
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Let v be a divisorial valuation. Passing to /-adic completions in sequence
(4.2) we obtain an exact sequence

1—>6i—>f(*i>Zg—>O.
The sequence (4.3) gives rise to a surjective homomorphism
of - K.
Combining these, we obtain a surjective homomorphism
(4.9) res, : Ker(0) — K,

This homomorphism has a Galois-theoretic description, via duality arising
from Kummer theory: We have

1; €D, C Gk,

and
Ak

K, = Hom(G% ,Z;) = Hom(D, /1}, Zy);
each f € Ker(v) ¢ K* = Hom(G%, Z,) gives rise to a well-defined element
in Hom(D%/Z¢, Zy).
5. ¢-ADIC ANALYSIS: GENERALITIES

Here we recall the main issues arising in the analysis of /-adic completions
of functions, divisors, and Picard groups of normal projective models X of
function fields K = k(X) (see [4, Section 11] for more details).

We have an exact sequence
(5.1) 0 — K*/k* &% Div(X) -2 Pic(X) — 0,

where Div(X) is the group of Cartier divisors of X and Pic(X) is the Picard
group. Write Div’(X) for the group of divisors algebraically equivalent to
zero, in particular, of degree zero upon restriction to every curve C' — X. We
will identify an element f € K*/k* with its image under divy. Let

Div(X)
be the pro-/-completion of Div(X') and put
Div(X), := Div(X) ®; Z, C Div(X).
Every element f € K*hasa representation

f: (fn)nEN Orf:fOff 52"'a
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with f,, € K*. We have homomorphisms
divy : l:(* — ]Si;(XA),
[ divx(f) = X enoqoy O - divx (fo) = 32, @mDim,
where D,, C X are irreducible divisors,
Ay, = Z A l" € Ly,  Qpm € 7.
neNU{0}
Equation (5.1) gives rise to an exact sequence
52) 0— K*/k* @ Z &5 Div0(X), 25 Pic®(X){¢} — 0,
where
Div?'(X), := Div(X)’® Zy, and Pic’(X){(} = Pic"(X) ® Z,
is the /-primary component of the torsion group Pic(X). The assignment
Ty(X) = lim Tor, (Z/€", Pic"(X){(}).
is functorial:
(5.3) Y —-X = T(X)—-T(Y).
We have T;(X) ~ Z;%, where g is the dimension of Pic’(X). Let [i;O(X)
be the /-completion of Div"(X). Note that Div"(X) embedds into ]5;(X )
since the Néron-Severi group NS(.X) is finitely-generated. Passing to pro-/-
completions in (5.2) we obtain an exact sequence:
(5.4) 0 — To(X) — K* % Divd(x) — 0,

since Pic’(X) is an (-divisible group. Note that all groups in this sequence
are torsion-free. We have a diagram

(5.5)
0 — KYFeZ 2% Div(X), %% Picd(X){(} —
! o A !
0 — T(X) — K* X DivO(X) - 0.

Every v € DV gives rise to a homomorphism
v K* — 7.

On a normal model X, where v = v for some divisor D C X, &/( f ) is the

~

(-adic coefficient at D of div(f).
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The following lemma generalizes [4, Lemmas 11.2 and 11.4] to normal
varieties.

Lemma 5.1. Let K be a function field over k. Then there exists a normal
projective model X of K such that for all birational maps X — X from a
normal variety X one has a canonical isomorphism

To(X) — To(X).
In particular, T,(X) is an invariant of K. Moreover, we have
(5.6) Ti(X) = TY(K) = Nyepy, Ker(d) C K*.

Proof. For any projective X, its Albanese Alb(X) is an abelian variety en-
dowed with a universal morphism alb: X — Alb(X), i.e., for any map
a: X — A to an abelian variety there exists a map h: Alb(X) — A such
that h o alb = « (see [6, Chapter II, pp. 41-50] for the background). This
construction is functorial with respect to morphisms between projective vari-
eties. Thus, given a function field K there exits a natural tower Alb(X;) of
such varieties for a projective system of projective normal models. This tower
is bounded since all Alb(X;) are dominated by the Jacobian of a sufficiently
general curve C' C X;. Thus there exists a maximal abelian variety Alb(K)
dominating all Alb(.X). It suffices to observe that 7,(X) = Z,(Alb(K)).

The second claim follows from the exactness of the sequence (5.4) and the
fact that every divisorial valuation can be realized as a divisor on a normal
model X of K. 0J

Lemma 5.2. Let K = k(X)) be the function field of a normal projective vari-
ety X C PN of dimension > 3. For every divisorial valuation v € DV there
is a canonical homomorphism:

E0 TI(K) — T,(K,).

Assume that v corresponds to an irreducible normal hyperplane section of X.
Then &, is an isomorphism.

Proof. The map is induced from a canonical map of Albanese varieties (see
[4, Lemma 11.2]). It suffices to apply Lefschetz’ theorem. 0

Lemma 5.3. Let A\ : X — P! be a Lefschetz pencil on a normal variety of
dimension > 3 and D; = \7'(t). Then:
(1) For all but finitely many t € P,
Epie + To(X) — To(Dy),

is an isomorphism.
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(2) For any t € P! and any surjection D, — C, onto a smooth projective
curve we have g(Cy) < rkg, (7,(X)).

Proof. Follows from standard facts for general hyperplane sections of normal
varieties (see Lemma 5.2). [

Lemma 5.4. Let X be a normal variety, C' a curve, and 7 : X — C a
surjective map with irreducible fibers. Assume that f € Ker(v) and that
res, ( f) —1e K Z, for infinitely many v € DV corresponding to fibers of
7. Then f is induced from HC\')*

Proof. Assume that f mod ¢", for some n € N, contains a summand corre-
sponding to a horizontal divisor R. By Lemma 2.3, R intersects all but finitely
many fibers p"'-transversally. In particular, div x ( f ) intersects infinitely many
fibers nontrivially, contradiction to the assumption. Thus div x ( f ) is a sum of
vertical divisors. .

Hence f = 7 + §, where § € k(C) , and 7 € T;(K). The triviality
of 7 on fibers D, = m~!(c) implies that 7 is induced from the image of X in
Alb(X)/Alb(D,). In particular, the triviality on infinitely many fibers implies

that it is induced from the Jacobian J(C) and hence f € k(C)) . O

Notation 5.5. Let X be a normal projective model of K. For f € K* with
divy (f) =) amDnm
we put

SUPPK(f) ={ vreDVg | f nontrivial on ze s
suppx(f) ={ DmCX | an#0};

~

fibr(f) ={ veDVg | f‘e Ker(7) and resy(f) =1€ KZ 1,

where res,, is the projection from Equation (4.9). Note that the finiteness of

~

supp x (f) does not depend on the choice of the normal model X. Put

~ N A

supp (f) = fibr(f) Usuppg (f).

If X is a normal model of K write

~ ~

supp'y (f) C supp (f)

for the subset of divisorial valuations realized by divisors on X. We have

supp (f) = Ux supp’x (f).
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Definition 5.6. A K -divisor is a function
DV — Zy.
Each f e K* defines a K-divisor by
divg (f): v [0k, fl.

The different notions of support for elements in K* introduced in Nota-
tion 5.5 extend naturally to K -divisors. The divisor of f on a normal model
X of K coincides with the restriction of div g ( f ) to the set of divisorial val-
uations of K which are realized by divisors on X. In particular, it has finite

support on X modulo ¢, for any n € N. (This fails for general K -divisors.)

Let £ C K be a one-dimensional subfield and 7 : X — C the cor-
responding surjective map with irreducible generic fiber. For all nontrivial
f1, f2 € E*, we have

suppi (f1) = supp’(f2)-
This gives a well-defined invariant of E*. We have a decomposition
(5.7) suppl (E") = Uee suppf (E7),

A~

where supp .(£*) are minimal nonempty subsets of the form

suppy (f1) N suppg (f2)

contained in supp (E*); these correspond to sets of irreducible divisors sup-
ported in w5 (c), for ¢ € C(k). Note that supp) (E*) depends only on the
normal closure of £/ in K. On the other hand, the decomposition (5.7) is
preserved only under purely inseparable extensions of £. We formalize this
discussion in the following definition.

Definition 5.7. A formal projection is a triple

Th = (07 {Rc}cec’a Q)7

where C' is an infinite set, {R.}.cc is a set of K-divisors, and ) C K* a
subgroup of Zy-rank at least two satisfying the following properties:
(1) forall fy, fo € Q one has supp’y(f1) = supp(f2);
(2) suppg(Re,) Nsuppg (Re,) = 0, for all pairs of distinct ¢y, co € C;
(3) for all nontrivial f € () one has

leK(f) = ZCZCRC, a. € Zg,
ceC
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and

Ueecsuppg (Re) = suppl (f);
(4) forall ¢y, co € C there exists an m € N such that

m<R01 - RCQ) = divK(f)?

for some f € Q.
Example 5.8. A one-dimensional subfield £ = k(C) C K defines a formal
projection 5 = (C, {R.}cec, @), with C' the set of k-points of the image of
g, R. the intrinsic K -divisors over ¢ € C, and () = B
Note that for normally closed subfields £ C K, the corresponding sub-
group () is maximal, for subgroups of K* appearing in formal projections.

Lemma 5.9. For any model X of K, the support of the formal divisor R. on
X is finite mod (.

Proof. The support of divx(f) mod ¢" is finite for all n € N. Now ob-
serve that the K -divisors R. have disjoint support in supp’ (@), thus have no
components in common. O

6. ONE-DIMENSIONAL SUBFIELDS
We recall the setup of Theorem 1:
U Gy — Gr.

Our goal here is to show:

P*

L K*
]
LI — (K" k)

for some constant e. We know that ¢ € K*/k* ® Z, have finite support
suppy(g), on every normal model X of K. In the second half of this section
we will prove:

Proposition 6.1 (Finiteness of support). For all f € L*/lI* and all normal
models X of K the support supp x (V*(f)) is finite.

Assuming this, we will prove:

Proposition 6.2 (Image of ¥*). For all f € L*/I* there exist a function g €
K*/k* and constants N € N, a € Zy such that

(6.1) (N = g
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Moreover, there exists a constant € € Zj such that
(I(f) /1@ L) S (k(9)" /K" © L))"

Considerations in Section 4 imply that under the assumptions of Theorem 1
we have a canonical commutative diagram, for every v € DVk:

0 — To(L) — Ker(?) — L ) L /1* @ Zy
xpl 5 l\y; w;l
0—Ty(K) —=Ker(?) — K, ) (K /k* ® L))",

for some constant ¢ € Zj, depending on v. By [4, Proposition 12.10], the
left vertical map is an isomorphism canonically induced by W. In both proofs
(Finiteness of support and Image of U*) we will apply the inductive assump-
tion (1.2) to residue fields of appropriate divisorial valuations.

Proof of Proposition 6.2. Let X be a normal projective model of K and put
f :=¥*(f). By Proposition 6.1, we may assume that supp y (f) is finite, i.e.,

div(f) =) _d;D;,
jeJ
where J is a finite set, d; € Z, and D; are irreducible divisors on X. A priori,
we do not know that div(f) € Div’(X),. Since the support of f on X is
finite, divx (f) € Div’(X), € Div?(X), as Div?(X)NDiv(X ), = Div’(X),.
Furthermore, since Pic’(X) is torsion, there exists an N € N such that
divx (f¥) € K*/k* @ Zy C Div°(X),.
By (5.5), we have
N g a;
=t
icl
with [ a finite set, a;, € Zy linearly independent over Z), g; € K*/k* multi-

plicatively independent, and ¢ ; € 7,(K).
The projective model X contains a hyperplane section D C X such that

T(K) = To(X) = Ti(D),
under the natural restriction isomorphism {p , from Lemma 5.3, and the re-

strictions of g; to D are multiplicatively independent in k(D)*/k* = K /k*,
where v = vp.



FUNCTION FIELDS 17

By the construction and the inductive assumption, we have res, (fV) = gb,
where b, € Zy, g, € K:

res, (fV) = res, (t7) - Hresy(gi)‘“ =gr.
iel
In particular, res,(t;) = 1 and hence {; = 1. Since res,(¢;) € K are
independent, it follows that #/ = 1 and

fN=g¢" ge Kk, acl,.

This proves the first claim.

The function g € K*/k* defines amap 7 : X — C from some normal
model of K onto a curve, with gene/rigally irreducible fibers. For each h €
I(f)*/1*, consider divyx (¥*(h)) € Div’(X). Then divisors in divx(¥*(h))
are rm-vertical. Indeed, the restriction of ¢ to a m-horizontal component D
would be defined and nontrivial. On the other hand, the restriction of f to
D is either not defined or trivial, contradiction. By Lemma 5.4, U*(h) €
k(C) 2 k(g) .

Let v = vp be a divisorial valuation such that f is defined and nontrivial
on D. Then

feL)/l"andg € K /K",

and

— * —

LoIl(f) “5kg) CcK,

By the inductive assumption, this implies that there exists a constant € € Z;
such that

()1 @ Zy) C (k(9)* k™ ® L),
(see, e.g., [4, Proposition 13.1]). O

We now prove Proposition 6.1. Fix a normal projective model Y of L. The
subfield F' = I(f) determines a surjective map 7p : Y — C with irreducible
generic fibers. For each ¢ € C we have an intrinsically defined formal sum

(62) Rc - Z ac,yRc,w Qe e NU {0}7

VEDVLYC

where DV}, . C DV}, = DV is the subset of divisorial valuations supported
in the fiber over ¢, R, is a divisor on some model Y - Y realizing v, and
ac,, are local degrees. Note that . do not depend on the model Y, and that
R., and R., have no common components, for ¢; # co. Furthermore, the
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sets DVy, . have an intrinsic Galois-theoretic characterization in terms of F*
these are minimal nonempty subsets of the form

suppg (f1) N suppg(f2),  fi, fo € F,

contained in supp/ (F*).

For each model Y — Y we have a map

Rc = Rf/,c = E ac,uRc,l/a

v:D,eDiv(Y)

the fiber over c¢. The divisor of a function f € F*/I* on this model can be
written as a finite sum

divg(f) =Y ncRy, nc€Z
Given {0, 1} as in Section 4, each f € L* defines a Z,-valued function on
DVy, by the Kummer-pairing from Theorem 3.4

DVL — Zg
14 — [6V7L,f].

Similarly, each R, defines a function on DV}, by setting
Vi— 51/,L : Rc - 51/,L(t)7

(6.3)

where ¢ is a local parameter along c if v is supported over ¢, and v +— 0,
otherwise. X
For f € F* C L* write

dive(f) =) “bp.e. bre € Zy,
ceC

with “decreasing” coefficients b; .. Then (6.3) is given by

Vi by e

We face the following difficulty: we don’t know the image W*(F™/I*) in
K*, and in particular, we don’t know that U*(R,), resp. ¥*(Ry ), as func-
tions on DV, correspond to fibers of any fibration on a model X of K. How-
ever, as explained in Section 4, we know the “action” of W* on the coefficients
in Equation (6.2):

-1
Ay = €, Qe
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Lemma 6.3. Either there is a nonconstant f € F*/I* such that supp x (V*(f))
is finite or there is at most one ¢ € C, where C corresponds to F, such that
U*(R.) has finite support on every model X of K.

Proof. Let ¢y, co € C be distinct points such that
suppx (U*(R.)) Usupp (¥*(R))

is finite. Then there is a function f with divisor supported in this set, thus
finite supp x (U*(f)). O

Proof of Proposition 6.1. By contradiction. Assume that supp y (V*(f)) is in-
finite. An argument as in the proof of Proposition 6.2 shows that the same
holds for every nonconstant h € [(f)*/I*.

Fix a Lefschetz pencil A : X — P! such that for almost all fibers D; of \
we have a well-defined

res, : I(f)*/I" — L, AN /IE;,

where 1, is the divisorial valuation corresponding to D;. By the inductive
assumption, there exist one-dimensional closed subfields E; = k(C;) C
k(D;) = K,, such that

U (res,, (1(f)*/1") @ Zw) C (Ef @ Zw)™", & € Z;.
We have an induced surjective map
Tt - Dt — Ct

as in Lemma 2.2. Passing to a finite purely-inseparable cover of C; we may
assume that 7; is separable (this effects the constant € by multiplication by
a power of p which is in Z}). We identify the sets C'(k) and Cy(k), set-
theoretically.

Fix a family of flexible curves {7}} uniformly on all but finitely many D,
as in Lemma 2.5 and let m be the bound on the genus of these curves obtained
in this Lemma. Put N := m + 4 and choose ¢y, . .., cx € Ci(k) = C(k) such
that supp x (R2,) is infinite for all j, this is possible by Lemma 6.3.

For each c¢; express the fiber over ¢; as

[e%9)
J— € .
Rc]- O E E RC]',67 RCj,e T E Ei,e,jRi,e,ja
e=0

i€l

where I, ; are finite, and R, . ; irreducible divisors over ¢, and €; . ; € Zj (see
Lemma 5.9). Let Scj,6 = UR; . ; be the support of R, .. Note that 7} intersect



20 FEDOR BOGOMOLOV AND YURI TSCHINKEL

all S, . and write d;. := deg(S,, . - T;) for the degree of the intersection.
Choose M such that for all j = 1,..., N one has

M
(6.4) dio < dje,
e=1

this is possible since the number of components over all ¢; is infinite. Using
Lemma 2.3 choose ¢ so that the intersections

Rieji:= Di- Ric;
are p-irreducible and pairwise distinct, this holds for all but finitely many ¢.
Choose a flexible curve T; C D; such that

e T, does not pass through the points of indeterminacy of 7; : D; — C;

e T, is not contained in any of the 1?; . ;¢;

e T} does not pass through pairwise intersections of these divisors.

Consider the restriction
m o Ty — C.

By the choice of T}, the number of nonramified points over each c; is at most
djo. On the other hand, the ramification index over ¢; is atleast ¢ - """ d;.
By the choice (6.4), combined with Hurwitz formula in Lemma 2.4, we obtain
that g(7}) > m, contradicting the universal bound. O

Proposition 6.4. There exists a constant € € 7 such that
(6.5) ™ (L*/l* X Z(Z)) = (K*/k* ® Z(g))e.

Proof. By Proposition 6.2, for each one-dimensional subfield F' = [(f) C L
there exists a one-dimensional subfield £ = k(g) and a constant e € Z;
such that
VHE I @ L) © (B /K @ Zg)) ™

We claim that ez does not depend on F', modulo Z&). For f1, fo € L*/I* C L
and f3 := fi fo let U*(f;) = g7, for g; € K*/k* C K* and o; € Zj.

We want to show that «;/c; are rational and hence contained in Za). We
have an equality of K'-divisors:

divie (W (1)) + divie (U7 (f2)) = divi (7(f3)),
since f1 fo = f3 € L*/I*. We have
a;div(g;) = divi (P7(f;)).
For every model X of K we have

ardivy(g1) + aodivx (g2) = asdivy(gs),
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where divy is obtained from divy by removing contributions from all divi-
sorial valuations which are not represented by divisors on a normal projective
model X. This can be rewritten as an equality between coefficients for irre-
ducible divisors D, on such models X:

(6.6) QN + QoNg » = Q3N3

where n;, is the multiplicity of a component D, in the divisor of g; on X.
The rank of the matrix (n;,) cannot be equal to 3, due to the relation (6.6). If
the rank is 2, then the ratios «; /; are all Q-rational, and hence are contained
in Z(k@)' If the rank is one, all g; are powers of the same element, and the same
property holds for f;; hence a; = ;.

Applying the same arguments to the inverse isomorphism (¥*)~! we obtain

the claim.
O

7. PROOF

In this section we prove our main theorem.

Step 1. We have a nondegenerate pairing
G x K* — Zy(1).
This induces canonically an isomorphism

Ut L — K

Step 2. By assumption, ¥ : G — G is bijective on the set of liftable
subgroups, in particular, it maps liftable subgroups o € Y i to a liftable sub-
groups of the same rank. In Section 4 we identify intrinsically the inertia and
decomposition groups of divisorial valuations:

1, C D) CGy:

every liftable subgroup 0 € Y contains an inertia element of a divisorial
valuation (which is also contained in at least one other o/ € Y ). The cor-
responding decomposition group is the “centralizer” of the (topologically)
cyclic inertia group (the set of all elements which “commute” with inertia).
This identifies DV = DYVy,.
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Step 3. By [4, Section 17, Step 7 and 8], when K = k(X) and L =
[(Y') are function fields of surfaces over algebraic closures of finite fields of
characteristic # /, the existence of an isomorphism

VGGl

identifying > i and X, implies the existence of a constant € € Z; such that
W* restricts to an isomorphism

L*JI* ® Ly D Upen(L*JI)YP" ~ Upen(K*JE)P" € K*Jk* ® Zy.

By the induction hypothesis, we may assume that this isomorphism holds for
all function fields of transcendence degree < n — 1: Once we have identified
decomposition and inertia subgroups of divisorial valuations, we have, for
each v € DV, an intrinsically defined sublattice

1 1 o x
(7.1) (L, /I ®Z[z_9]) = (Ki/k*)€®Z[2—9] CK,
of elements of the form ¢, with ¢ € K, /k* and € € Z; in the completion of
the multiplicative group of the residue field.

Step 4. Proposition 6.1 states that for any f € L*/I* the support of U*( f) is
finite on every projective model of K. The proof of this fact in Section 6 uses
the induction hypothesis formulated in Step 3, for v corresponding to divisors
in a general Lefschetz pencil, depending on f € L*/I*. Then Proposition 6.2
implies that ¥*(f) has the form ¢¢, for some g € K*/k*, and Proposition 6.4
says that we have an isomorphism:

e Ut LY@ Ly — K* k" @ Ly
which maps multiplicative groups of one-dimensional subfields L into multi-

plicative groups of one-dimensional subfields of /', modulo Z).

Step 5. If f1, fo € L* are algebraically dependent then

suppy,(f1) = supp}(f2)

(see Section 5 for the definition). Conversely, if fi, f, are algebraically inde-
pendent then the map
(fi,f2): Y = P' x P!

is dominant and hence there is an irreducible divisor D C Y, e.g., in the
preimage of (P!, 0), such that the restriction of f; to D is nonconstant in the
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residue field K p of D (modulo a sufficiently high power of /), and in its
completion K j,. It follows that

suppy, (f1) # suppy(f2)-

This property is preserved under W*.

Step 6. Assume that fi, fo € L* are algebraically independent elements
and let

9; = 671 . \I/*(fj> € K*/k* X Z([)
By Step 5, g1, g2 (or rather their integral powers contained in K*) are also
algebraically independent.

Step 7. Let F' = FY, y, be the smallest subfield of L containing [( fi, f>)
and such that for any f € F the normal closure of /( f) in L is contained in F'.
The group F™*/I* can be characterized as the minimal subgroup S = S(fi, f2)
of L*/I* containing fi, f, and closed under the following operation: if f € S
then the multiplicative group of the normal closure of /() in L, modulo [,
is contained in S. Note that the subgroup S'is also closed under “addition”,
in the following sense: if hy, hy € L* are such that h; + hy # 0, and their
images in L*/I* are in S, then the image of h; + hs is also in S. Indeed,
the one-dimensional field I(h;/hs) contains (hi/hs) + 1 = (hy + hs)/hs
and hence h; + hs, since S is a multiplicative subgroup. This implies that
the preimage of S in L* is F*. The homomorphism ¢! - U* preserves this

property.

Step 8. We can now apply Proposition 2.13 and Lemma 2.14 in [4] to
multiplicative subgroups of such two-dimensional subfields ' = FY, 4, i.e.,
for each such two-dimensional subfield ' C L there exists a two-dimensional
subfield &' = F,, ,, C K such that the intersection

e U (FF )N Kk
is the multiplicative group of a subfield £’ C F, with E/E’ purely insepara-
ble. It follows that
Ri=¢ ' U (L*/I") N K*/k*
has the same property, i.e., there is a purely inseparable extension K /K’ such
that the multiplicative group of K’ is R.

Thus e~ - ¥* defines an isomorphism between perfect closures of K and L.
Since we can modify ¢! by arbitrary p-primary multiples, the initial map ¥*



24 FEDOR BOGOMOLOV AND YURI TSCHINKEL

defines a unique isomorphism between perfect closures of K and L modulo
integral powers of the absolute Frobenius endomorphism.
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