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ABSTRACT. We determine the function fields of varieties of dimension
≥ 2 defined over the algebraic closure of Fp, modulo purely inseparable
extensions, from the quotient by the second term in the lower central series
of their pro-` Galois groups.
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INTRODUCTION

Fix two distinct primes p and `. Let k = Fp be an algebraic closure of the
finite field Fp. Let X be an algebraic variety defined over k and K = k(X) its
function field. We will refer to X as a model of K; we will generally assume
that X is normal and projective. Let Ga

K be the abelianization of the pro-`-
quotient GK of the absolute Galois group of K. Under our assumptions on
k, Ga

K is a torsion-free Z`-module isomorphic to ZN
` . Let Gc

K be its canonical
central extension - the second lower central series quotient of GK . It deter-
mines a set ΣK of distinguished (primitive) finite-rank subgroups of Ga

K : a
topologically noncyclic subgroup σ ∈ ΣK iff

• the inverse image of σ in Gc
K is abelian;
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• σ is maximal: there are no subgroups σ′ ⊂ Ga
K whose preimages in

Gc
K are abelian and which contain σ as a proper subgroup.

Our main theorem is

Theorem 1. Let K and L be function fields over algebraic closures of finite
fields k, resp. l, of characteristic 6= `. Assume that the transcendence degree
of K over k is at least two and that there exists an isomorphism

(1.1) Ψ = ΨK,L : Ga
K

∼−→ Ga
L

of abelian pro-`-groups inducing a bijection of sets ΣK and ΣL. Then k is
isomorphic to l and there exists a constant ε ∈ Z∗` such that ε−1 ·Ψ is induced
from a unique, up to the composition with a power of the absolute Frobenius
automorphism on K̄, isomorphism of perfect closures

Ψ̄∗ : L̄
∼−→ K̄.

In this paper we implement the program outlined in [1] and [2] describ-
ing the correspondence between higher-dimensional function fields and their
abelianized Galois groups. We follow closely our paper [4], where we treated
in detail the case of surfaces: The isomorphism (1.1) of abelianized Galois
groups induces canonically an isomorphism

Ψ∗ : L̂∗
∼−→ K̂∗

between pro-`-completions of multiplicative groups. One of the steps in the
proof is to show that under the assumptions of Theorem 1, Ψ∗ induces by
restriction canonically an isomorphism

(1.2) Ψ∗ : L∗/l∗⊗Z(`)
∼−→

(
K∗/k∗ ⊗ Z(`)

)ε ⊂ K̂∗, for some ε ∈ Z∗` ,

Here Z(`) is the additive group of rational numbers with denominators coprime
to ` and the exponent ε indicates the scaling of the lattice K∗/k∗ by ε.

The proof of Theorem 1 proceeds by induction on the transcendence de-
gree, using [4] as the inductive assumption. We first recover abelianized in-
ertia and decomposition subgroups of divisorial valuations using the theory
of commuting pairs developed in [3]. Then we apply the inductive assump-
tion (1.2) to residue fields of divisorial valuations. This allows to prove that
for every normally closed one-dimensional subfield F = l(f) ⊂ L there
exists a one-dimensional subfield E ⊂ K such that

Ψ∗(F ∗/l∗ ⊗ Z(`)) ⊆
(
E∗/k∗ ⊗ Z(`)

)ε
,
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for some constant ε ∈ Z∗` , depending on F . The proof that ε is independent of
F and, finally, the proof of Theorem 1 are then identical to those in dimension
two in [4].

Acknowledgments. We are grateful to M. Rovinsky and the referee for their
helpful remarks which improved the exposition. The first author was partially
supported by NSF grant DMS-0701578. The second author was partially sup-
ported by NSF grants DMS-0739380 and 0901777.

2. BASIC ALGEBRA AND GEOMETRY OF FIELDS

Here we state some auxiliary facts used in the proof of our main theorem.

Lemma 2.1. Every function field over an algebraically closed ground field
admits a projective normal model.

Lemma 2.2. For every one-dimensional subfield E ⊂ K there is a canonical
sequence of maps from a sufficiently large normal projective model X of K

X
πE−→ C ′

µE−→ C,

where
• C ′ and C are normal projective curves;
• πE is dominant with irreducible generic fiber;
• µE is quasi-finite and dominant;
• k(C ′) is the normal closure of E in K, and k(C) = E.

Note that C ′ and C do not depend on the choice of suitable X .

A divisor D on a normal variety X is called p-irreducible if there exists an
irreducible divisor D′ ⊂ X such that D = pnD′, for some n ∈ N ∪ {0}.
Lemma 2.3. Let C be a curve, π : X → C a surjective map with irreducible
generic fiber, and R ⊂ X an irreducible divisor surjecting onto C. Then the
intersection R ·π−1(c) is a sum of p-irreducible divisors with disjoint support,
for all but finitely many c ∈ C.

Proof. This is a positive-characteristic version of Bertini’s theorem (see, e.g.,
[7]). �

Lemma 2.4. Let π : T → C be a separable map of degree m with branch
locus {c1, . . . , cN} ⊂ C. Write

π−1(cj) =

mj∑
r=1

ej,rtj,r, tj,r ∈ T, ej,r ∈ N, and
mj∑
r=1

ej,r = m.
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Let e′j,r be the maximal prime-to-p divisor of ej,r. Assume that
mj∑
r=1

(e′j,r − 1) > m/2,

for all j = 1, . . . , N . Then

g(T ) > N − 3.

Proof. Hurwitz formula (for curves over a field of finite characteristics). �

Let X ⊂ PN be a normal projective variety of dimension n ≥ 2 over k.
Consider the moduli space M(d) of complete intersection curves on X of
multidegree d = (d1, . . . , dn−1). For |d| � 0 we have:

• for any codimension ≥ 2 subvariety Z ⊂ X there is a Zariski open
subset of M(d) such that every curve C parametrized by a point in
this subset avoids Z and intersects every irreducible divisor D ⊂ X .

Such families will be called families of flexible curves.

A Lefschetz pencil is a surjective map

λ : X → P1

from a normal variety with irreducible fibers and normal generic fiber.

Lemma 2.5. Let λ : X → P1 be a Lefschetz pencil on a normal projective
variety. Then there exists an m ∈ N such that every irreducible normal fiber
Dt := λ−1(t) contains a family of flexible curves of genus ≤ m.

Proof. There is a very ample line bundle H on X which has the same degree
on all fibers Dt. We consider complete intersection curves on Dt with respect
to the restriction of H . These curves are flexible on Dt and admit a uniform
genus estimate from above. �

3. GALOIS GROUPS

Let Ga
K the abelianization of the pro-`-quotient GK of the Galois group of a

separable closure of K = k(X),

Gc
K = GK/[[GK ,GK ],GK ]

pr−→ Ga
K

its canonical central extension and pr the natural projection. By our assump-
tions, Ga

K is a torsion-free Z`-module.



FUNCTION FIELDS 5

Definition 3.1. We say that γ, γ′ ∈ Ga
K form a commuting pair if for some

(and therefore any) of their preimages γ̃ ∈ pr−1(γ), γ̃′ ∈ pr−1(γ′) ∈ Gc
K , one

has [γ̃, γ̃′] = 0. A subgroup H of Ga
K is called liftable if any two elements in

H form a commuting pair. A liftable subgroup is called maximal if it is not
properly contained in any other liftable subgroup.

Definition 3.2. The fan ΣK = {σ} on Ga
K is the set of all topologically non-

cyclic maximal liftable subgroups σ ⊂ Ga
K .

Notation 3.3. Let
µ`n := { `n√

1 }
the group of `n-th roots of unity, the collection of these groups forms a pro-
jective system under the map x 7→ x`. Its projective limit

Z`(1) = lim←−µ`n

is called the Tate twist of Z`. Write

K̂∗ := lim←−K∗/(K∗)`n

for a similar projective limit of the multiplicative group K∗.

Theorem 3.4 (Kummer theory). For every n ∈ N we have a pairing

[·, ·]n : Ga
K/`n ×K∗/(K∗)`n → µ`n

(µ, f) 7→ [µ, f ]n := µ( `n√
f)/ `n√

f

which extends to a nondegenerate pairing

[·, ·] : Ga
K × K̂∗ → Z`(1).

Since k is algebraically closed of characteristic 6= ` we can choose a non-
canonical isomorphism of topological Galois-modules

Z` ' Z`(1).

From now on we will fix such a choice.

4. VALUATIONS

In this section we recall basic definitions and facts concerning valuations,
and their inertia and decomposition subgroups of Galois groups (see [5] and
[8]).

A (nonarchimedean) valuation ν = (ν, Γν) on K is a pair consisting of a
totally ordered abelian group Γν = (Γν , +) (the value group) and a map

ν : K → Γν,∞ := Γν ∪ {∞}
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such that
• ν : K∗ → Γν is a surjective homomorphism;
• ν(κ + κ′) ≥ min(ν(κ), ν(κ′)) for all κ, κ′ ∈ K;
• ν(0) =∞.

Every valuation of K = k(X) restricts to the trivial valuation on k = Fp.
Let oν , mν and Kν be the ring of ν-integers in K, the maximal ideal of oν

and the residue field
Kν := oν/mν .

Basic invariants of valuations are: the Q-rank rkQ(Γν) of the value group Γν

and the transcendence degree tr degk(Kν) of the residue field. We have:

(4.1) rkQ(Γν) + tr degk(Kν) ≤ tr degk(K).

A valuation on K has an algebraic center cν,X on every projective model X of
K, i.e., the irreducible subvariety whose trace on every affine chart U ⊂ X is
defined by the prime ideal mν∩k[U ]. There exists a projective model X where
the dimension of cν,X is maximal, and equal to tr degk(Kν). A valuation ν is
called divisorial if

tr degk(Kν) = dim(X)− 1;

it can be realized as the discrete rank-one valuation arising from a divisor on
some normal model X of K. We let VK be the set of all nontrivial (nonar-
chimedean) valuations of K and DVK the subset of its divisorial valuations.

It is useful to keep in mind the following exact sequences:

(4.2) 1→ o∗ν → K∗ → Γν → 1

and

(4.3) 1→ (1 + mν)
∗ → o∗ν →K∗

ν → 1.

For every ν ∈ VK we have the diagram

Ic
ν ⊆ Dc

ν ⊂ Gc
K

↓ ↓ ↓
Ia

ν ⊆ Da
ν ⊂ Ga

K ,

where Ic
ν , Ia

ν ,Dc
ν ,Da

ν are the images of the inertia and the decomposition
group of the valuation ν in Gc

K , respectively, Ga
K ; the left arrow is an isomor-

phism and the other arrows surjections. There are canonical isomorphisms

Dc
ν/Ic

ν ' Gc
Kν

and Da
ν/Ia

ν ' Ga
Kν

.

The group Dc
ν is the centralizer of Ic

ν = Ia
ν in Gc

ν , i.e., Ia
ν is the subgroup of

elements forming a commuting pair with every element of Da
ν .
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For divisorial valuations ν ∈ DVK , we have

(4.4) Ic
ν = Ia

ν ' Z`.

Kummer theory, combined with equations (4.2) and (4.3) yields

(4.5) Ia
ν = {γ ∈ Hom(K∗, Z`) | γ trivial on o∗ν} = Hom(Γν , Z`)

and

(4.6) Da
ν = {γ ∈ Hom(K∗, Z`) | γ trivial on (1 + mν)

∗}.

In particular,

(4.7) rkZ`
(Ia

ν ) ≤ rkQ(Γν) ≤ tr degk(K).

Two valuations ν1, ν2 are dependent if there exists a common coarsening val-
uation ν (i.e., mν is contained in both mν1 , mν2), in which case

Da
ν1

,Da
ν2
⊂ Da

ν .

For independent valuations ν1, ν2 we have

K∗ = (1 + mν1)
∗(1 + mν2)

∗;

it follows that their decomposition groups have trivial intersection.
In [3, Proposition 6.4.1, Lemma 6.4.3 and Corollary 6.4.4] we proved:

Proposition 4.1. Every topologically noncyclic liftable subgroup σ of Ga
K

contains a subgroup σ′ ⊆ σ such that there exists a valuation ν ∈ VK with

σ′ ⊆ Ia
ν , σ ⊆ Da

ν ,

and σ/σ′ topologically cyclic.

Corollary 4.2. For every σ ∈ ΣK one has

rkZ`
(σ) ≤ tr degk(K).

Proof. By (4.7),
rkZ`

(Ia
ν ) ≤ tr degk(K).

We are done if σ = σ′. Otherwise, Da
ν/Ia

ν is nontrivial and tr degk(Kν) ≥ 1.
In this case, (4.7) and (4.1) yield that

rkZ`
(σ′) ≤ tr degk(K)− 1,

and the claim follows. �
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Corollary 4.3. Assume that for σ1, σ2 ∈ ΣK one has

σ1 ∩ σ2 6= 0.

Then there exists a valuation ν ∈ VK such that

σ1, σ2 ⊂ Da
ν .

Proof. The valuations cannot be independent. Thus there exists a common
coarsening. �

This allows to recover the abelianized decomposition and inertia groups of
valuations in terms of ΣK . Here is one possible description for divisorial val-
uations, a straightforward generalization of the two-dimensional case treated
in [4, Proposition 8.3]:

Lemma 4.4. Let K = k(X) be the function field of an algebraic variety of
dimension n ≥ 2. Let σ1, σ2 ∈ ΣK be liftable subgroups of rank n such that
I := σ1 ∩ σ2 is topologically cyclic. Then there exists a unique divisorial
valuation ν such that I = Ia

ν . The corresponding decomposition group Da
ν ⊂

Ga
K is the subgroup of elements forming a commuting pair with a topological

generator of Ia
ν .

Proof. Let ν1, ν2 ∈ VK be the valuations associated to σ1, σ2 in Proposi-
tion 4.1. By Corollary 4.3, there exists a valuation ν ∈ VK such that

σj ⊂ Da
νj
⊂ Da

ν , for j = 1, 2.

Let Ia
ν be the corresponding inertia subgroup, the subgroup of elements com-

muting with all of Da
ν . In particular, Ia

ν commutes with all elements of σ1 and
σ2. Since σ1, σ2 are maximal liftable subgroups of Ga

K , we obtain that

Ia
ν ⊆ σ1 ∩ σ2 = I ' Z`.

Note that Ia
ν cannot be trivial; otherwise, the residue field Kν would contain

a liftable subgroup of rank n, and have transcendence degree n, by Corol-
lary 4.2, which is impossible. It follows that rkZ`

(Ia
ν ) = 1 and tr degk(Kν) ≤

n− 1.
Now we apply Corollary 4.2 to

σ̄j := σj/Ia
ν ⊂ Ga

Kν
, for j = 1, 2,

liftable subgroups of rank n − 1. It follows that tr degk(Kν) ≥ n − 1, thus
equal to n− 1, i.e., ν is a divisorial valuation.

Conversely, an inertia subgroup Ia
ν can be embedded into maximal liftable

subgroups σ1, σ2 as above, e.g., by considering “flag” valuation with value
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group Zn, with disjoint centers supported on the corresponding divisor D =
Dν ⊂ X . �

The following is useful for the visualization of composite valuations:

Lemma 4.5. Let ν ∈ DVK be a divisorial valuation. There is a bijection
between liftable subgroups σ ∈ ΣK with the property that

Ia
ν ⊂ σ ⊆ Da

ν

and liftable subgroups σν ∈ ΣKν .

Proof. We apply [4, Corollary 8.2] (whose proof is valid for arbitrary function
fields): Let ν be a valuation of K and ιν ∈ Ia

ν . Let γ ∈ Ga
K be such that ιν

and γ form a commuting pair. Then γ ∈ Da
ν . �

In summary, under the assumptions of Theorem 1, we have obtained:
• an isomorphism of completions Ψ∗ : L̂∗

∼−→ K̂∗ canonically in-
duced, by Kummer theory, from the isomorphism Ψ : Ga

K
∼−→ Ga

L;
• a bijection on the set of inertia (and decomposition) subgroups of di-

visorial valuations

Ga
K ⊃ Ia

ν
Ψ−→ Ia

ν ⊂ Ga
L.

Note that K∗/k∗ ⊂ K̂∗ determines a canonical (up to a sign) topological
generator δν,K ∈ Ia

ν , for all ν ∈ DVK , by the condition that the restriction
takes all integer values

δν,K : K∗/k∗ → Z ⊂ Z`

i.e., that there exist elements f ∈ K∗/k∗ such that δν,K(f) = 1. A topological
generator of the procyclic group Ia

ν ' Z` is defined up to the action of Z∗` .
We conclude that there exist constants

εν ∈ Z∗` , ν ∈ DVK = DVL

such that

(4.8) Ψ(δν,K) = εν · δν,L, ∀ ν ∈ DVK .

The main difficulty is to show that there exists a conformally unique Z(`)-
lattice, i.e., a constant ε ∈ Z∗` , unique modulo Z∗(`), such that

εν = ε, ∀ν ∈ DVK .

A proof of this fact will be carried out in Section 6.



10 FEDOR BOGOMOLOV AND YURI TSCHINKEL

Let ν be a divisorial valuation. Passing to `-adic completions in sequence
(4.2) we obtain an exact sequence

1→ ô∗ν → K̂∗
ν̂−→ Z` → 0.

The sequence (4.3) gives rise to a surjective homomorphism

ô∗ν → K̂
∗
ν .

Combining these, we obtain a surjective homomorphism

(4.9) resν : Ker(ν̂)→ K̂
∗
ν .

This homomorphism has a Galois-theoretic description, via duality arising
from Kummer theory: We have

Ia
ν ⊂ Da

ν ⊂ Ga
K ,

and
K̂
∗
ν = Hom(Ga

Kν
, Z`) = Hom(Da

ν/Ia
ν , Z`);

each f̂ ∈ Ker(ν) ⊂ K̂∗ = Hom(Ga
K , Z`) gives rise to a well-defined element

in Hom(Da
ν/Ia

ν , Z`).

5. `-ADIC ANALYSIS: GENERALITIES

Here we recall the main issues arising in the analysis of `-adic completions
of functions, divisors, and Picard groups of normal projective models X of
function fields K = k(X) (see [4, Section 11] for more details).

We have an exact sequence

(5.1) 0→ K∗/k∗
divX−→ Div(X)

ϕ−→ Pic(X)→ 0,

where Div(X) is the group of Cartier divisors of X and Pic(X) is the Picard
group. Write Div0(X) for the group of divisors algebraically equivalent to
zero, in particular, of degree zero upon restriction to every curve C → X . We
will identify an element f ∈ K∗/k∗ with its image under divX . Let

D̂iv(X)

be the pro-`-completion of Div(X) and put

Div(X)` := Div(X)⊗Z Z` ⊂ D̂iv(X).

Every element f̂ ∈ K̂∗ has a representation

f̂ = (fn)n∈N or f̂ = f0f
`
1f

`2

2 · · · ,
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with fn ∈ K∗. We have homomorphisms

divX : K̂∗ → D̂iv(X),

f̂ 7→ divX(f̂) :=
∑

n∈N∪{0} `
n · divX(fn) =

∑
m âmDm,

where Dm ⊂ X are irreducible divisors,

âm =
∑

n∈N∪{0}

anm`n ∈ Z`, anm ∈ Z.

Equation (5.1) gives rise to an exact sequence

(5.2) 0→ K∗/k∗ ⊗ Z`
divX−→ Div0(X)`

ϕ`−→ Pic0(X){`} → 0,

where

Div0(X)` := Div(X)0 ⊗ Z`, and Pic0(X){`} = Pic0(X)⊗ Z`

is the `-primary component of the torsion group Pic0(X). The assignment

T`(X) := lim
←−

Tor1(Z/`n, Pic0(X){`}).

is functorial:

(5.3) Y → X ⇒ T`(X)→ T`(Y ).

We have T`(X) ' Z2g
` , where g is the dimension of Pic0(X). Let D̂iv0(X)

be the `-completion of Div0(X). Note that D̂iv0(X) embedds into D̂iv(X)
since the Néron-Severi group NS(X) is finitely-generated. Passing to pro-`-
completions in (5.2) we obtain an exact sequence:

(5.4) 0→ T`(X)→ K̂∗
divX−→ D̂iv0(X) −→ 0,

since Pic0(X) is an `-divisible group. Note that all groups in this sequence
are torsion-free. We have a diagram
(5.5)

0 → K∗/k∗ ⊗ Z`
divX−→ Div0(X)`

ϕ`−→ Pic0(X){`} → 0
↓ ↓ ↓

0 → T`(X) → K̂∗
divX−→ D̂iv0(X)

ϕ̂−→ 0.

Every ν ∈ DVK gives rise to a homomorphism

ν̂ : K̂∗ → Z`.

On a normal model X , where ν = νD for some divisor D ⊂ X , ν̂(f̂) is the
`-adic coefficient at D of div(f̂).
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The following lemma generalizes [4, Lemmas 11.2 and 11.4] to normal
varieties.

Lemma 5.1. Let K be a function field over k. Then there exists a normal
projective model X of K such that for all birational maps X̃ → X from a
normal variety X̃ one has a canonical isomorphism

T`(X)→ T`(X̃).

In particular, T`(X) is an invariant of K. Moreover, we have

(5.6) T`(X) = T`(K) = ∩ν∈DVK
Ker(ν̂) ⊂ K̂∗.

Proof. For any projective X , its Albanese Alb(X) is an abelian variety en-
dowed with a universal morphism alb : X → Alb(X), i.e., for any map
α : X → A to an abelian variety there exists a map h : Alb(X) → A such
that h ◦ alb = α (see [6, Chapter II, pp. 41–50] for the background). This
construction is functorial with respect to morphisms between projective vari-
eties. Thus, given a function field K there exits a natural tower Alb(Xi) of
such varieties for a projective system of projective normal models. This tower
is bounded since all Alb(Xi) are dominated by the Jacobian of a sufficiently
general curve C ⊂ Xi. Thus there exists a maximal abelian variety Alb(K)
dominating all Alb(X). It suffices to observe that T`(X) = T`(Alb(K)).

The second claim follows from the exactness of the sequence (5.4) and the
fact that every divisorial valuation can be realized as a divisor on a normal
model X of K. �

Lemma 5.2. Let K = k(X) be the function field of a normal projective vari-
ety X ⊂ PN of dimension ≥ 3. For every divisorial valuation ν ∈ DVK there
is a canonical homomorphism:

ξν,` : T`(K)→ T`(Kν).

Assume that ν corresponds to an irreducible normal hyperplane section of X .
Then ξν,` is an isomorphism.

Proof. The map is induced from a canonical map of Albanese varieties (see
[4, Lemma 11.2]). It suffices to apply Lefschetz’ theorem. �

Lemma 5.3. Let λ : X → P1 be a Lefschetz pencil on a normal variety of
dimension ≥ 3 and Dt = λ−1(t). Then:

(1) For all but finitely many t ∈ P1,

ξDt,` : T`(X)
∼−→ T`(Dt),

is an isomorphism.
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(2) For any t ∈ P1 and any surjection Dt → Ct onto a smooth projective
curve we have g(Ct) ≤ rkZ`

(T`(X)).

Proof. Follows from standard facts for general hyperplane sections of normal
varieties (see Lemma 5.2). �

Lemma 5.4. Let X be a normal variety, C a curve, and π : X → C a
surjective map with irreducible fibers. Assume that f̂ ∈ Ker(ν̂) and that
resν(f̂) = 1 ∈ K̂

∗
ν , for infinitely many ν ∈ DVK corresponding to fibers of

π. Then f̂ is induced from k̂(C)
∗
.

Proof. Assume that f̂ mod `n, for some n ∈ N, contains a summand corre-
sponding to a horizontal divisor R. By Lemma 2.3, R intersects all but finitely
many fibers pm-transversally. In particular, divX(f̂) intersects infinitely many
fibers nontrivially, contradiction to the assumption. Thus divX(f̂) is a sum of
vertical divisors.

Hence f̂ = τ + ĝ, where ĝ ∈ k̂(C)
∗
, and τ ∈ T`(K). The triviality

of τ on fibers Dc = π−1(c) implies that τ is induced from the image of X in
Alb(X)/Alb(Dc). In particular, the triviality on infinitely many fibers implies
that it is induced from the Jacobian J(C) and hence f̂ ∈ k̂(C)

∗
. �

Notation 5.5. Let X be a normal projective model of K. For f̂ ∈ K̂∗ with

divX(f̂) =
∑
m

âmDm

we put

suppK(f̂) := { ν ∈ DVK | f̂ nontrivial on Ia
ν };

suppX(f̂) := { Dm ⊂ X | âm 6= 0 };
fibr(f̂) := { ν ∈ DVK | f̂ ∈ Ker(ν̂) and resν(f̂) = 1 ∈ K̂

∗
ν },

where resν is the projection from Equation (4.9). Note that the finiteness of
suppX(f̂) does not depend on the choice of the normal model X . Put

supp′K(f̂) := fibr(f̂) ∪ suppK(f̂).

If X is a normal model of K write

supp′X(f̂) ⊂ supp′K(f̂)

for the subset of divisorial valuations realized by divisors on X . We have

supp′K(f̂) = ∪X supp′X(f̂).
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Definition 5.6. A K-divisor is a function

DVK → Z`.

Each f̂ ∈ K̂∗ defines a K-divisor by

divK(f̂) : ν 7→ [δν,K , f̂ ].

The different notions of support for elements in K̂∗ introduced in Nota-
tion 5.5 extend naturally to K-divisors. The divisor of f̂ on a normal model
X of K coincides with the restriction of divK(f̂) to the set of divisorial val-
uations of K which are realized by divisors on X . In particular, it has finite
support on X modulo `n, for any n ∈ N. (This fails for general K-divisors.)

Let E ⊂ K be a one-dimensional subfield and πE : X → C the cor-
responding surjective map with irreducible generic fiber. For all nontrivial
f̂1, f̂2 ∈ Ê∗, we have

supp′K(f̂1) = supp′K(f̂2).

This gives a well-defined invariant of Ê∗. We have a decomposition

(5.7) supp′K(Ê∗) = tc∈C supp′K,c(Ê
∗),

where supp′K,c(Ê
∗) are minimal nonempty subsets of the form

suppK(f̂1) ∩ suppK(f̂2)

contained in supp′K(Ê∗); these correspond to sets of irreducible divisors sup-
ported in π−1

E (c), for c ∈ C(k). Note that supp′K(Ê∗) depends only on the
normal closure of E in K. On the other hand, the decomposition (5.7) is
preserved only under purely inseparable extensions of E. We formalize this
discussion in the following definition.

Definition 5.7. A formal projection is a triple

πÊ = (C, {Rc}c∈C , Q),

where C is an infinite set, {Rc}c∈C is a set of K-divisors, and Q ⊂ K̂∗ a
subgroup of Z`-rank at least two satisfying the following properties:

(1) for all f̂1, f̂2 ∈ Q one has supp′K(f̂1) = supp′K(f̂2);
(2) suppK(Rc1) ∩ suppK(Rc2) = ∅, for all pairs of distinct c1, c2 ∈ C;
(3) for all nontrivial f̂ ∈ Q one has

divK(f̂) =
∑
c∈C

acRc, ac ∈ Z`,
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and
∪c∈CsuppK(Rc) = supp′K(f̂);

(4) for all c1, c2 ∈ C there exists an m ∈ N such that

m(Rc1 −Rc2) = divK(f̂),

for some f̂ ∈ Q.

Example 5.8. A one-dimensional subfield E = k(C) ⊂ K defines a formal
projection πÊ = (C, {Rc}c∈C , Q), with C the set of k-points of the image of
πE , Rc the intrinsic K-divisors over c ∈ C, and Q = Ê∗.

Note that for normally closed subfields E ⊂ K, the corresponding sub-
group Q is maximal, for subgroups of K̂∗ appearing in formal projections.

Lemma 5.9. For any model X of K, the support of the formal divisor Rc on
X is finite mod `n.

Proof. The support of divX(f̂) mod `n is finite for all n ∈ N. Now ob-
serve that the K-divisors Rc have disjoint support in supp′K(Q), thus have no
components in common. �

6. ONE-DIMENSIONAL SUBFIELDS

We recall the setup of Theorem 1:

Ψ : Ga
K → Ga

L.

Our goal here is to show:

L̂∗
Ψ∗

// K̂∗

L∗/l∗ //

OO

(K∗/k∗)ε

OO

for some constant ε. We know that g ∈ K∗/k∗ ⊗ Z` have finite support
suppX(g), on every normal model X of K. In the second half of this section
we will prove:

Proposition 6.1 (Finiteness of support). For all f ∈ L∗/l∗ and all normal
models X of K the support suppX(Ψ∗(f)) is finite.

Assuming this, we will prove:

Proposition 6.2 (Image of Ψ∗). For all f ∈ L∗/l∗ there exist a function g ∈
K∗/k∗ and constants N ∈ N, α ∈ Z` such that

(6.1) Ψ∗(f)N = gα.



16 FEDOR BOGOMOLOV AND YURI TSCHINKEL

Moreover, there exists a constant ε ∈ Z∗` such that

Ψ∗(l(f)∗/l∗ ⊗ Z(`)) ⊆
(
k(g)∗/k∗ ⊗ Z(`)

)ε
.

Considerations in Section 4 imply that under the assumptions of Theorem 1
we have a canonical commutative diagram, for every ν ∈ DVK :

0 // T`(L)

Ψ∗

��

// Ker(ν̂)

Ψ∗
ν

// L̂
∗
ν

Ψ∗
ν

��

⊃ L∗ν/l
∗ ⊗ Z(`)

Ψ∗
ν

��

0 // T`(K) // Ker(ν̂) // K̂
∗
ν

⊃
(
K∗

ν/k
∗ ⊗ Z(`)

)ε
,

for some constant ε ∈ Z∗` , depending on ν. By [4, Proposition 12.10], the
left vertical map is an isomorphism canonically induced by Ψ. In both proofs
(Finiteness of support and Image of Ψ∗) we will apply the inductive assump-
tion (1.2) to residue fields of appropriate divisorial valuations.

Proof of Proposition 6.2. Let X be a normal projective model of K and put
f̂ := Ψ∗(f). By Proposition 6.1, we may assume that suppX(f̂) is finite, i.e.,

div(f̂) =
∑
j∈J

djDj,

where J is a finite set, dj ∈ Z` and Di are irreducible divisors on X . A priori,
we do not know that div(f̂) ∈ Div0(X)`. Since the support of f̂ on X is
finite, divX(f̂) ∈ Div0(X)` ⊂ D̂iv0(X), as D̂iv0(X)∩Div(X)` = Div0(X)`.
Furthermore, since Pic0(X) is torsion, there exists an N ∈ N such that

divX(f̂N) ∈ K∗/k∗ ⊗ Z` ⊆ Div0(X)`.

By (5.5), we have
f̂N = tf̂ ·

∏
i∈I

gai
i ,

with I a finite set, ai ∈ Z` linearly independent over Z(`), gi ∈ K∗/k∗ multi-
plicatively independent, and tf̂ ∈ T`(K).

The projective model X contains a hyperplane section D ⊂ X such that

T`(K) = T`(X) = T`(D),

under the natural restriction isomorphism ξD,` from Lemma 5.3, and the re-
strictions of gi to D are multiplicatively independent in k(D)∗/k∗ = K∗

ν/k
∗,

where ν = νD.
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By the construction and the inductive assumption, we have resν(f̂
N) = gbν

ν ,
where bν ∈ Z`, gν ∈K∗

ν :

resν(f̂
N) = resν(tf̂ ) ·

∏
i∈I

resν(gi)
ai = gbν

ν .

In particular, resν(tf̂ ) = 1 and hence tf̂ = 1. Since resν(gi) ∈ K∗
ν are

independent, it follows that #I = 1 and

f̂N = ga, g ∈ K∗/k∗, a ∈ Z`.

This proves the first claim.
The function g ∈ K∗/k∗ defines a map π : X → C from some normal

model of K onto a curve, with generically irreducible fibers. For each h ∈
l(f)∗/l∗, consider divX(Ψ∗(h)) ∈ D̂iv0(X). Then divisors in divX(Ψ∗(h))
are π-vertical. Indeed, the restriction of g to a π-horizontal component D
would be defined and nontrivial. On the other hand, the restriction of f to
D is either not defined or trivial, contradiction. By Lemma 5.4, Ψ∗(h) ∈
k̂(C)

∗
⊇ k̂(g)

∗
.

Let ν = νD be a divisorial valuation such that f is defined and nontrivial
on D. Then

f ∈ L∗ν/l
∗ and g ∈K∗

ν/k
∗,

and
L̂
∗
ν ⊃ l̂(f)

∗ Ψ∗
ν−→ k̂(g)

∗
⊂ K̂

∗
ν .

By the inductive assumption, this implies that there exists a constant ε ∈ Z∗`
such that

Ψ∗ν(l(f)∗/l∗ ⊗ Z(`)) ⊆
(
k(g)∗/k∗ ⊗ Z(`)

)ε
,

(see, e.g., [4, Proposition 13.1]). �

We now prove Proposition 6.1. Fix a normal projective model Y of L. The
subfield F = l(f) determines a surjective map πF : Y → C with irreducible
generic fibers. For each c ∈ C we have an intrinsically defined formal sum

(6.2) Rc =
∑

ν∈DVL,c

ac,νRc,ν , ac,ν ∈ N ∪ {0},

where DVL,c ⊂ DVL = DVK is the subset of divisorial valuations supported
in the fiber over c, Rc,ν is a divisor on some model Ỹ → Y realizing ν, and
ac,ν are local degrees. Note that Rc do not depend on the model Y , and that
Rc1 and Rc2 have no common components, for c1 6= c2. Furthermore, the
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sets DVL,c have an intrinsic Galois-theoretic characterization in terms of F̂ ∗:
these are minimal nonempty subsets of the form

suppK(f̂1) ∩ suppK(f̂2), f1, f2 ∈ F̂ ∗,

contained in supp′K(F̂ ∗).
For each model Ỹ → Y we have a map

Rc 7→ RỸ ,c :=
∑

ν : Dν∈Div(Ỹ )

ac,νRc,ν ,

the fiber over c. The divisor of a function f ∈ F ∗/l∗ on this model can be
written as a finite sum

divỸ (f) =
∑

ncRỸ ,c, nc ∈ Z.

Given {δν,L} as in Section 4, each f̂ ∈ L̂∗ defines a Z`-valued function on
DVL by the Kummer-pairing from Theorem 3.4

(6.3)
DVL → Z`

ν 7→ [δν,L, f̂ ].

Similarly, each Rc defines a function on DVL by setting

ν 7→ δν,L ·Rc = δν,L(t),

where t is a local parameter along c if ν is supported over c, and ν 7→ 0,
otherwise.

For f̂ ∈ F̂ ∗ ⊂ L̂∗ write

divC(f̂) =
∑
c∈C

bf̂ ,cc, bf,c ∈ Z`,

with “decreasing” coefficients bf̂ ,c. Then (6.3) is given by

ν 7→ bf̂ ,caν,c.

We face the following difficulty: we don’t know the image Ψ∗(F ∗/l∗) in
K̂∗, and in particular, we don’t know that Ψ∗(Rc), resp. Ψ∗(RỸ ,c), as func-
tions onDVK , correspond to fibers of any fibration on a model X of K. How-
ever, as explained in Section 4, we know the “action” of Ψ∗ on the coefficients
in Equation (6.2):

ac,ν 7→ ε−1
ν ac,ν .
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Lemma 6.3. Either there is a nonconstant f ∈ F ∗/l∗ such that suppX(Ψ∗(f))
is finite or there is at most one c ∈ C, where C corresponds to F , such that
Ψ∗(Rc) has finite support on every model X of K.

Proof. Let c1, c2 ∈ C be distinct points such that

suppX(Ψ∗(Rc)) ∪ suppX(Ψ∗(Rc′))

is finite. Then there is a function f with divisor supported in this set, thus
finite suppX(Ψ∗(f)). �

Proof of Proposition 6.1. By contradiction. Assume that suppX(Ψ∗(f)) is in-
finite. An argument as in the proof of Proposition 6.2 shows that the same
holds for every nonconstant h ∈ l(f)∗/l∗.

Fix a Lefschetz pencil λ : X → P1 such that for almost all fibers Dt of λ
we have a well-defined

resν : l(f)∗/l∗ → L∗νt

Ψ∗
−→ K̂

∗
νt

,

where νt is the divisorial valuation corresponding to Dt. By the inductive
assumption, there exist one-dimensional closed subfields Et = k(Ct) ⊂
k(Dt) = Kνt such that

Ψ∗(resνt(l(f)∗/l∗)⊗ Z(`)) ⊆
(
E∗t ⊗ Z(`)

)εt
, εt ∈ Z∗` .

We have an induced surjective map

πt : Dt → Ct

as in Lemma 2.2. Passing to a finite purely-inseparable cover of Ct we may
assume that πt is separable (this effects the constant ε by multiplication by
a power of p which is in Z∗` ). We identify the sets C(k) and Ct(k), set-
theoretically.

Fix a family of flexible curves {Tt} uniformly on all but finitely many Dt

as in Lemma 2.5 and let m be the bound on the genus of these curves obtained
in this Lemma. Put N := m + 4 and choose c1, . . . , cN ∈ Ct(k) = C(k) such
that suppX(Rcj

) is infinite for all j, this is possible by Lemma 6.3.
For each cj express the fiber over cj as

Rcj
:=

∞∑
e=0

`eRcj ,e, Rcj ,e :=
∑
i∈Ie,j

εi,e,jRi,e,j,

where Ie,j are finite, and Ri,e,j irreducible divisors over cj , and εi,e,j ∈ Z∗` (see
Lemma 5.9). Let Scj ,e = ∪Ri,e,j be the support of Rcj ,e. Note that Tt intersect
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all Scj ,e and write dj,e := deg(Scj ,e · Tt) for the degree of the intersection.
Choose M such that for all j = 1, . . . , N one has

(6.4) dj,0 <
M∑

e=1

dj,e,

this is possible since the number of components over all cj is infinite. Using
Lemma 2.3 choose t so that the intersections

Ri,e,j,t := Dt ·Ri,e,j

are p-irreducible and pairwise distinct, this holds for all but finitely many t.
Choose a flexible curve Tt ⊂ Dt such that

• Tt does not pass through the points of indeterminacy of πt : Dt → Ct;
• Tt is not contained in any of the Ri,e,j,t;
• Tt does not pass through pairwise intersections of these divisors.

Consider the restriction
πt : Tt → Ct.

By the choice of Tt, the number of nonramified points over each cj is at most
dj,0. On the other hand, the ramification index over cj is at least ` ·

∑m
e=1 dj,e.

By the choice (6.4), combined with Hurwitz formula in Lemma 2.4, we obtain
that g(Tt) > m, contradicting the universal bound. �

Proposition 6.4. There exists a constant ε ∈ Z∗` such that

(6.5) Ψ∗(L∗/l∗ ⊗ Z(`)) = (K∗/k∗ ⊗ Z(`))
ε.

Proof. By Proposition 6.2, for each one-dimensional subfield F = l(f) ⊂ L
there exists a one-dimensional subfield E = k(g) and a constant εF ∈ Z∗`
such that

Ψ∗(F ∗/l∗ ⊗ Z(`)) ⊆ (E∗/k∗ ⊗ Z(`))
εF .

We claim that εF does not depend on F , modulo Z∗(`). For f1, f2 ∈ L∗/l∗ ⊂ L̂∗

and f3 := f1f2 let Ψ∗(fj) = g
αj

j , for gj ∈ K∗/k∗ ⊂ K̂∗ and αj ∈ Z∗` .
We want to show that αj/αi are rational and hence contained in Z∗(`). We

have an equality of K-divisors:

divK(Ψ∗(f1)) + divK(Ψ∗(f2)) = divK(Ψ∗(f3)),

since f1f2 = f3 ∈ L∗/l∗. We have

αjdivK(gj) = divK(Ψ∗(fj)).

For every model X of K we have

α1divX(g1) + α2divX(g2) = α3divX(g3),
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where divX is obtained from divK by removing contributions from all divi-
sorial valuations which are not represented by divisors on a normal projective
model X . This can be rewritten as an equality between coefficients for irre-
ducible divisors Dr on such models X:

(6.6) α1n1,r + α2n2,r = α3n3,r,

where nj,r is the multiplicity of a component Dr in the divisor of gj on X .
The rank of the matrix (nj,r) cannot be equal to 3, due to the relation (6.6). If
the rank is 2, then the ratios αj/αi are all Q-rational, and hence are contained
in Z∗(`). If the rank is one, all gj are powers of the same element, and the same
property holds for fj; hence αi = αj .

Applying the same arguments to the inverse isomorphism (Ψ∗)−1 we obtain
the claim.

�

7. PROOF

In this section we prove our main theorem.

Step 1. We have a nondegenerate pairing

Ga
K × K̂∗ → Z`(1).

This induces canonically an isomorphism

Ψ∗ : L̂∗ → K̂∗.

Step 2. By assumption, Ψ : Ga
K → Ga

L is bijective on the set of liftable
subgroups, in particular, it maps liftable subgroups σ ∈ ΣK to a liftable sub-
groups of the same rank. In Section 4 we identify intrinsically the inertia and
decomposition groups of divisorial valuations:

Ia
ν ⊂ Da

ν ⊂ Ga
K :

every liftable subgroup σ ∈ ΣK contains an inertia element of a divisorial
valuation (which is also contained in at least one other σ′ ∈ ΣK). The cor-
responding decomposition group is the “centralizer” of the (topologically)
cyclic inertia group (the set of all elements which “commute” with inertia).
This identifies DVK = DVL.



22 FEDOR BOGOMOLOV AND YURI TSCHINKEL

Step 3. By [4, Section 17, Step 7 and 8], when K = k(X) and L =
l(Y ) are function fields of surfaces over algebraic closures of finite fields of
characteristic 6= `, the existence of an isomorphism

Ψ : Ga
K → Ga

L

identifying ΣK and ΣL, implies the existence of a constant ε ∈ Z∗` such that
Ψ∗ restricts to an isomorphism

L∗/l∗ ⊗ Z` ⊃ ∪n∈N(L∗/l∗)1/pn ' ∪n∈N(K∗/k∗)ε/pn ⊂ K∗/k∗ ⊗ Z`.

By the induction hypothesis, we may assume that this isomorphism holds for
all function fields of transcendence degree ≤ n− 1: Once we have identified
decomposition and inertia subgroups of divisorial valuations, we have, for
each ν ∈ DVK , an intrinsically defined sublattice

(7.1) Ψ∗(L∗ν/l
∗ ⊗ Z[

1

p
]) = (K∗

ν/k
∗)ε ⊗ Z[

1

p
] ⊂ K̂

∗
ν

of elements of the form gε, with g ∈ K∗
ν/k

∗ and ε ∈ Z∗` in the completion of
the multiplicative group of the residue field.

Step 4. Proposition 6.1 states that for any f ∈ L∗/l∗ the support of Ψ∗(f) is
finite on every projective model of K. The proof of this fact in Section 6 uses
the induction hypothesis formulated in Step 3, for ν corresponding to divisors
in a general Lefschetz pencil, depending on f ∈ L∗/l∗. Then Proposition 6.2
implies that Ψ∗(f) has the form gε, for some g ∈ K∗/k∗, and Proposition 6.4
says that we have an isomorphism:

ε−1 ·Ψ∗ : L∗/l∗ ⊗ Z(`) → K∗/k∗ ⊗ Z(`)

which maps multiplicative groups of one-dimensional subfields L into multi-
plicative groups of one-dimensional subfields of K, modulo Z(`).

Step 5. If f1, f2 ∈ L∗ are algebraically dependent then

supp′L(f1) = supp′L(f2)

(see Section 5 for the definition). Conversely, if f1, f2 are algebraically inde-
pendent then the map

(f1, f2) : Y → P1 × P1

is dominant and hence there is an irreducible divisor D ⊂ Y , e.g., in the
preimage of (P1, 0), such that the restriction of f1 to D is nonconstant in the
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residue field KD of D (modulo a sufficiently high power of `), and in its
completion K̂

∗
D. It follows that

supp′L(f1) 6= supp′L(f2).

This property is preserved under Ψ∗.

Step 6. Assume that f1, f2 ∈ L∗ are algebraically independent elements
and let

gj = ε−1 ·Ψ∗(fj) ∈ K∗/k∗ ⊗ Z(`).

By Step 5, g1, g2 (or rather their integral powers contained in K∗) are also
algebraically independent.

Step 7. Let F = Ff1,f2 be the smallest subfield of L containing l(f1, f2)
and such that for any f ∈ F the normal closure of l(f) in L is contained in F .
The group F ∗/l∗ can be characterized as the minimal subgroup S = S(f1, f2)
of L∗/l∗ containing f1, f2 and closed under the following operation: if f ∈ S
then the multiplicative group of the normal closure of l(f) in L, modulo l∗,
is contained in S. Note that the subgroup S is also closed under “addition”,
in the following sense: if h1, h2 ∈ L∗ are such that h1 + h2 6= 0, and their
images in L∗/l∗ are in S, then the image of h1 + h2 is also in S. Indeed,
the one-dimensional field l(h1/h2) contains (h1/h2) + 1 = (h1 + h2)/h2

and hence h1 + h2, since S is a multiplicative subgroup. This implies that
the preimage of S in L∗ is F ∗. The homomorphism ε−1 · Ψ∗ preserves this
property.

Step 8. We can now apply Proposition 2.13 and Lemma 2.14 in [4] to
multiplicative subgroups of such two-dimensional subfields F = Ff1,f2 , i.e.,
for each such two-dimensional subfield F ⊂ L there exists a two-dimensional
subfield E = Eg1,g2 ⊂ K such that the intersection

ε−1 ·Ψ∗(F ∗/l∗) ∩K∗/k∗

is the multiplicative group of a subfield E ′ ⊆ E, with E/E ′ purely insepara-
ble. It follows that

R := ε−1 ·Ψ∗(L∗/l∗) ∩K∗/k∗

has the same property, i.e., there is a purely inseparable extension K/K ′ such
that the multiplicative group of K ′ is R.

Thus ε−1 ·Ψ∗ defines an isomorphism between perfect closures of K and L.
Since we can modify ε−1 by arbitrary p-primary multiples, the initial map Ψ∗



24 FEDOR BOGOMOLOV AND YURI TSCHINKEL

defines a unique isomorphism between perfect closures of K and L modulo
integral powers of the absolute Frobenius endomorphism.
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