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1. INTRODUCTION

Let X be a K3 surface. Any birational map > --+ 3 extends to an
automorphism; this follows from the uniqueness of minimal models for
surfaces of non-negative Kodaira dimension. By the Torelli Theorem,
the group of automorphisms of ¥ is isomorphic to the group of au-
tomorphisms of H?(X,Z) compatible with the intersection pairing (, )
and the Hodge structure on H?(X, C), and preserving the cone of nef
(numerically eventually free) divisors. The nef cone admits an intrinsic
combinatorial description (see, for example, [31]), once we specify a
polarization ¢g: A divisor h on X is nef if and only if (h, D) > 0 for each
divisor class D with (D, D) > —2 and (g, D) > 0. This characteriza-
tion of the automorphism group has many interesting applications to
arithmetic and geometric questions.

In this paper, we study certain aspects of the birational geometry
of higher-dimensional analogs of K3 surfaces, i.e., irreducible holomor-
phic symplectic varieties F'. These share many geometric properties
with K3 surfaces. For example, the group H?(F,Z) carries a canoni-
cal integral quadratic form (), the Beauville-Bogomolov form (see, for
example, [26]). Its definition uses the symplectic form on F' but it can
be characterized by the fact that the self-intersection form on H?(F,Z)
is proportional to a power of the Beauville-Bogomolov form [26, 1.11]
[18]

Ddim(F) =cp (F, F)dim(F)/2 .

Moreover, these varieties satisfy local Torelli theorems [4] and surjectiv-
ity of the period map [26]. In contrast to the surface case, F' may have
numerous minimal models and may admit birational self-maps which
are not regular. Furthermore, naive generalizations of the Torelli The-
orem to higher dimensions are false; for counterexamples, consult [14],
[35], and [32, Cor. 1.7, Thm. 4.5].
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Perhaps the best-known examples of irreducible holomorphic sym-
plectic varieties are punctual Hilbert schemes of K3 surfaces and their
deformations [4]. Here we focus on the case of length-two subschemes,
which are isomorphic to the symmetric square of the K3 surface blown-
up along the diagonal. These also arise as varieties of lines on cubic
fourfolds [6]. By [23], given a polarization g on F', a divisor h on F' is
nef if (h, p) > 0 for each divisor class p satisfying

(1) (g,p) > 0; and
(2) (p,p) = =2, or (p,p) = =10 and (p, H*(F,Z)) = 2Z. (These
are called (—10)-classes.)

We have conjectured that these conditions are also necessary [22]. The
main challenge in proving this is to show that the divisors p described
above obstruct line bundles from being ample. For example, we expect
extremal (—10)-classes p to be Poincaré dual to multiples of lines con-
tained in planes P C F'. The presence of such planes has implications
for the birational geometry of I, as we can take the Mukai flop or
elementary transformation along P [34, 0.7]

BlpF ~ Blp F’

7 N
F P

Indeed, since P is Lagrangian, Np/p =~ Q) so the exceptional divisor
E C BlpF is isomorphic to P(Q2}). This admits two P'-bundle struc-
tures over P2, so we can blow down F to obtain a nonsingular variety
F’ birational to F'. This is also an irreducible holomorphic symplectic
variety, deformation equivalent to F' [25, 3.4].

One especially interesting case is when there are no (0) or (—2)-
classes (i.e., divisors p with (p, p) = 0, —2) but multiple (—10)-classes.
Here the nef cones of birational models of I’ should be completely con-
trolled by (—10)-classes. Not only are the integral extremal rays of F
Poincaré dual to (—10)-classes, but this remains true for Mukai flops of
F. In this situation, we expect F' to admit infinite sequences of Mukai
flops. However, Morrison [33] and Kawamata [29] have conjectured the
following;:

Conjecture (Finiteness of models). Let F' be a (simply-connected)
Calabi-Yau manifold. Then there are finitely many minimal models of
F' up to isomorphism.

How can this be reconciled with the existence of infinite sequences
of flops? The only possibility is that after a finite sequence of flops of
F', we arrive at a variety isomorphic to F'. This gives rise to birational
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maps F' --» F that are not automorphisms. These in turn act on
H?(F,7Z), preserving the cone of moving divisors but not the nef cone.

More specifically, consider a general cubic fourfold X containing a
cubic scroll, or equivalently, a hyperplane section with six double points
(see Proposition 23). The Picard lattice Pic(F') of the corresponding
variety of lines F' = F(X) has rank two and the associated quadratic
form represents —10 but not —2 or 0. For such fourfolds we

e compute the ample and moving cone in Pic(F);

e prove that F' does not admit biregular automorphisms;

e exhibit a birational automorphism of infinite order explaining
the chamber decomposition of the moving cone.

Our principal results are Theorems 24 and 31. The first exhibits explicit
birational involutions on F' and factors their indeterminacy. The second
describes the action of the birational automorphism group on H?(F,Z).

We list some previous results in a similar vein: Miles Reid [36, 6.8]
has offered examples of elliptically-fibered threefolds with an infinite
number of distinct minimal models. Michael Fryers [17] classified iso-
morphism classes of minimal models of the general Horrocks-Mumford
quintic threefold. Morrison [33] and Kawamata [29] have proven finite-
ness results (up to isomorphism!) for Calabi-Yau fiber spaces F' — B
where 0 < dim(B) < dim(F) < 3. The case of Calabi-Yau manifolds
of dimension > 3 remains open.

The first half of the paper is devoted to classical results on cubic
hypersurfaces. In Section 2 we analyze cubic threefolds Y with six
ordinary double points in general position and their varieties of lines
F(Y). Section 3 establishes a dictionary between determinantal cubic
surfaces and determinantal cubic threefolds, which generally have six
ordinary double points in linear general position. Section 4 develops
this to explain the geometric properties of Y, e.g., a transparent de-
scription of the components of F(Y') and how they are glued together.
Finally, Section 5 shows that cubic threefolds with six double points
are determinantal.

The second half focuses on applications to the birational geometry
of certain irreducible holomorphic symplectic varieties. Section 6 uses
this information to construct birational involutions on the variety of
lines F' on a cubic fourfold containing Y. In Section 7 we explain the
connection to our conjecture on nef cones. We close with an application
to Zariski-density of rational points on F'.

Throughout, the base field is algebraically closed of characteristic
Zero.
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2. CUBIC THREEFOLDS WITH SIX DOUBLE POINTS

We assume that Y C P* is a cubic hypersurface with ordinary double
points at py, ..., ps, which are in linear general position.

Lemma 1. The cubic hypersurface Y contains no planes and the va-
riety of lines F(Y') has the expected dimension two.

Proof. Let Y’ denote a cubic threefold containing the plane
H:{l’():l’l :0}
Suppose G is a homogeneous cubic equation for Y. Then we can write

G = 20Qo + 211G

for quadratic forms @)y and ;. The singular locus of Y’ contains the
subscheme defined by

To=21=Qy =01 =0
which consists of four coplanar points. Thus the singularities of Y are
not in linear general position.

Suppose that F'(Y) has dimension > 2. As the singularities of YV
are ordinary double points, there is at most a one-parameter family
of lines through each singularity. Thus the generic line ¢ of F(Y) is
contained in a smooth hyperplane section HNY . Consider the incidence
correspondence

Z={(,H):tcY,tc H} c Gr(2,5) x Gr(4,5)

in the partial flag variety. Since Z has dimension five the fibers of pro-
jection onto the second factor have dimension one, which is impossible
as smooth cubic surfaces have a finite number of lines. O

Proposition 2. Let Y be a cubic hypersurface with siz ordinary double
points pi,...,pe in linear general position. Projection from the point

DPs
Y --» P3

factors
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~ 0
Y = B, Y —— P*

e
é Phd
-

e

Y
where 7 is the blow up of a complete intersection Cg of a smooth quadric
and a cubic in P?, consisting of two twisted cubic curves meeting in five
nodes.

Proof. The morphism ~ blows down all the lines in Y incident to pg;
since pg is an ordinary double point, these are parametrized by a com-
plete intersection Cg of a smooth quadric @ (the projectivized tangent
cone of Y at pg) and a cubic in P3. Furthermore, an easy computation
using the Jacobian criterion shows that Cg is smooth except at the
points n; = v(p;),i = 1,...,5. Note that n; corresponds to the line
{(pi, pe) joining p; to ps.

We claim that Cy has two irreducible components Eg and Ey, each
smooth and rational of degree three, and nq,...,ns; are nodes of Cg.
Since the normalization of Cs has genus —1 it is necessarily reducible.
Consider the alternatives for the combinatorics of components: If Cy
were to contain a component of degree one then this would meet the
rest of Cg in three nodes, say nq,ng,n3. Then the ordinary double
points {ps, p1,p2,p3} € Y would all lie in a plane, contradicting our
general position hypothesis. If Cg were to contain a component of
degree two then this would meet the rest of Cg in four coplanar nodes,
say ni,ng,n3,ny. Then {pg, p1,p2, p3,pa} € Y would span a three-
dimensional space, again contradicting our hypothesis. If Cs contained
a component of degree three and arithmetic genus one (i.e., a nodal
plane cubic) then the quadric @) would be degenerate. l

Remark 3. This analysis implies that
Ny, N2, N3, Ny, N5 € Q =~ ]Pl X ]Pl
satisfy the following genericity conditions:

e the n; are distinct;

e no two of the n; lie on a ruling of Q;

e no four of the n; lie on a hyperplane section of Q) C P3.
Hence S = Bl,, . n,@ is isomorphic to a nonsingular cubic surface.
While we will not prove this, S is isomorphic to the cubic surface
constructed from Y in (7) of Section 5. In particular, S does not
depend on which double point p; € Y we choose for our projection.

Corollary 4. The singular locus F(Y)¥™9 C F(Y') is equal to the lines
meeting the singular points p1,...,ps € Y. The irreducible components
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of F(Y)%¥™9 consist of twelve smooth rational curves
E\, E/,... Es, Ef,

where E; U E]v parametrizes the lines through p;. The singularities of
F(Y)¥"9 are the 15 lines {(p;, pj) joining singularities of Y, and

g(pi,pj):EmEj:EimEjV:EZ.VmEj:EiVﬂEjV.

Proof. 1t is a general fact [1, §1] that for any cubic hypersurface Y,
the variety of lines F'(Y”) is smooth at lines avoiding the singularities
of Y'. Moreover, F'(Y') is singular at lines passing through an ordinary
double point of Y’ [11, 7.8]. The structure of the singular locus then
follows from Proposition 2. U

Corollary 5. The pair (Y,pg) is uniquely determined up to isomor-
phism by the isomorphism class of the nodal curve Cg.

Proof. The curve Cg is a stable curve of genus four and Cg — P?3 is its
canonical embedding. We can characterize Y as the image of P under
the linear series of cubics passing through Cj. O

3. DETERMINANTAL CUBIC SURFACES AND THREEFOLDS

We review determinantal representations of smooth cubic surfaces.
The story begins with Grassmann [20] who showed that cubic surfaces
arise as the common points of three nets of planes in P3, i.e., the
locus where a 3 x 3 matrix of linear forms on P? has nontrivial kernel.
Schréter [37] showed that a generic surface admits such a realization
and Clebsch [10] tied these representations to the structure of the lines
on the cubic surface. Dickson [15] addressed the problem of expressing
arbitrary smooth cubic surfaces in determinantal form. See [5, 6.4] and
8] for modern accounts and [16] for further historical discussion.

Proposition 6. Let S C P? be a smooth cubic surface. Then there
exists a 3 x 3 matriz M = (my;) with entries linear forms on P* such
that

S = {det(M) = 0}.
Up to the left/right action of GLg x GL3, there are 72 such represen-
tations, corresponding to sextuples of disjoint lines on S.

This was extended by B. Segre [38] (cf. [5, 6.5]) to smooth cubic
surfaces defined over arbitrary fields:

Proposition 7. Let S be a smooth cubic surface defined over an arbi-
trary field k. Then the following conditions are equivalent:
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e There exists a 3 X 3 matrix of linear forms over k such that
S = {det(M) = 0}.

e S contains a rational point and a sextuple of disjoint lines de-
fined over k.

e S admits a birational morphism to P? defined over k.

We emphasize that each individual line in the sextuple need not be
defined over k.

C. Segre [39, §12-14] analyzed determinantal representations of cubic
threefolds:

Proposition 8. Let Y C P* be a generic cubic hypersurface realized as
the determinant of a 3 X 3 matrix of linear forms. Then'Y has sixz or-
dinary double points, in linear general position. Conversely, any cubic
hypersurface with sixz ordinary double points in linear general position
15 determinantal.

For completeness, we will provide an argument in Propositions 10 and
19.

Our main goal is to explain how all these classical theorems are
related. Here is the key geometric ingredient: Let W be a vector
space with a nondegenerate bilinear form (, ); taking orthogonal com-
plements, we obtain a natural identification

(1) Gr(n,WK : ](ii(.dim(W)—n,W)

Let G be a group acting linearly on W, with the natural induced action

on Gr(n, W) and the action on Gr(dim(W) —n, W) induced by (1).
We are especially interested in the case where W = End(V') for some

vector space V' of dimension d, the bilinear form (, ) is the trace pairing

(A, B) = tr(AB),
and GL(V') x GL(V) acts on End(V') by left-right multiplication
(91.92) - M = g1 Mg,
Here we are using the transpose operator
t: End(V) — End(V)

obtained by dualizing and then applying the trace pairing. Consider
the semidirect product

(2) 1 - GL(V)xGL(V) -G — 6y — 1
where G, acts by exchanging the factors. Since
(91,92) - M' = 1 M' g5 = (92, 1) - M)'
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G also acts naturally on End(V') and thus on the Grassmannians
Gr(n, End(V)) = Gr(d* — n, End(V)).
Consider the rank stratification on End(V)
0C¥ CXC...C %41 CEnd(V),

which is invariant under the group actions. We have the incidence
correspondence
{(Wl,WQ,A) Wy C ker(A), 1m(A) C WQ}
C Gr(d—k,V) x Gr(k,V) x End(V),
a vector bundle of rank k? over Gr(d—k, V) x Gr(k, V). The projection
onto End(V') induces a birational morphism to X, invertible away

from ¥j_;. In particular, ¥ is ruled by k-dimensional vector spaces;
through each A € ¥ \ ¥j_; there passes a unique ruling

Ra:={M € End(V) : ker(A) C ker(M), im(M) C im(A)}.

Recall the description of the tangent space of ¥, (see, for instance, |3,
pp. 68-69]): When A has rank < k then 74%; = End(V); furthermore,
Y_1 is the singular locus of ;. If A has rank k£ then

TaYy ={M € End(V) : M(ker(A)) C im(A)};
note that Ty D R4. We can express
(TAXr)" ={N € End(V): NA = AN = 0},

which is a linear subspace of dimension (d — k)? in ¥4_;. Thus for each
matrix B satisfying

im(B) = ker(A) and ker(B) =im(A),
we have (TxX;)*t = Rp.

Proposition 9. Assume V is a three-dimensional vector space and
A C End(V) is a four-dimensional subspace. Let A+ C End(V) denote
the orthogonal complement of A with respect to the trace pairing. Then
the following conditions are equivalent:

e A is tangent to Yo at a smooth point or intersects ¥, nontriv-
ally;

o AL is tangent to ¥y at a nonzero point or is tangent to Xy at a
smooth point.

In other words, A is transverse to the rank strata if and only if A+
is transverse to the rank strata.
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Proof. Suppose that A is tangent to Xy at a rank-two matrix Ay, i.e.,
(3) Ag € A C TyyYs.
Let By be a matrix with ker(By) = im(Ap) and im(Bj) = ker(Ay),
which is unique up to scalars; it follows that
(TaX2)" =Rpy, (Tp,E1)" = R,

Dualizing (3) we obtain

R, = (Ta,X2)" C A C Ay,
We also have

Rp, C Tp,S1 =Ry, C A
Since
dimRp, =1, dimTp,Y; =dimAt =5 dim Ay =8,
we deduce
span(By) € At NTp,2,.

Thus A* fails to intersect ¥, transversely at Bj.
Now suppose A is incident to »; at a rank-one matrix By, i.e.,

RBO C A.

Again, let Ay be a matrix with ker(4p) = im(By) and im(A4)) =
ker(By). Dualizing, we have A+ C By = T)4,%, and the intersection

At N RAO C TAOEQ
is nonzero. Pick a nonzero matrix
Ce AJ' N RAO-

If C' has rank two then im(C) = im(Ap) and ker(C') = ker(Ay), thus
Re = Ra, and TeXg = Ty, X,. Here A* fails to be transverse to 2o at
C'. If C has rank one then

TeY {M € End(V) : M(ker(C)) C im(C)}
{M € End(V) : M(ker(Ap)) C im(Ap)}
TAOZQ - Bd‘

Nl

Since At C By as well, the intersection
TcX N At C Bd‘

has dimension at least two, i.e., A+ meets ¥; nontransversely at C.
Conversely, suppose that A is tangent to Y, at By, i.e.,

span(By) € At NTp,2,.



10 BRENDAN HASSETT AND YURI TSCHINKEL

Let Ay denote a matrix with im(Ag) = ker(By) and ker(Ay) = im(By).
Dualizing, we find that

A+Ry C By and ANTRy #0.

Let C' be a nonzero matrix in this intersection. If C' has rank one then
A meets ¥ nontrivially and we're done. If C' has rank two then it has
the same image and kernel as Ay, whence Ty = BOL and A C T,
i.e., Yo and A fail to be transverse at C.

Now suppose A' is tangent to Y, at a matrix Ay of rank two, i.e.,

Ay C A C Ty, %o

Again, choose By to be a matrix with im(Bj) = ker(Ay) and ker(By) =
im(Ap) so that By € Rp, = Ta,Y5. Dualizing yields By € A, i.e., A
intersects >;. ]

We use this to interpret our determinantal expressions for cubic hy-
persurfaces. Recall that dim(V') = 3. Tensor multiplication

V x VY — End(V)
gives the Segre embedding
P(V) x P(VY) — P(End(V)),

whose image has degree six and coincides with P(X;). Given a four-
dimensional subspace
A C End(V)

the intersection
(4) S:=P(ANY,) C P(A) ~P?
is a determinantal cubic surface. It is smooth precisely when A meets
Ys transversely at smooth points. Then we obtain an embedding
S = P(V)xP(VY)
s +— (ker(s),im(s))
such that the projections induce the blow-up realizations of S (cf.
Proposition 6)
B:S—=PV), BY:S—=PVY).
Let A+ be the orthogonal complement to A with respect to the trace
pairing. Then
(5) Y :=P(AtNY,) C P(AY) ~ P*

is a determinantal cubic threefold. It is necessarily singular along the
points of P(A* NY). If P(A+) intersects P(3;) and the smooth points
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of P(X5) transversely then the Bezout theorem implies that the singular
locus of V' is

{p1, 0} = P(E N AS).
Note that these give a sextuple of points in P(V) x P(VV) ~ P? x P?
a straightforward cohomology computation shows these are in linear
general position in P(End(V)).

Proposition 10. Let S and Y be determinantal cubic hypersurfaces
defined by FEquations 4 and 5 above. ThenY is a cubic threefold with
sixz ordinary double points in linear general position if and only if S is
a smooth cubic surface. We thus obtain a identification

determinantal cubic
threefolds with six  J determinantal cubic surfaces
ordinary double points - without singularities
in linear general position

that is equivariant with respect to the action of G.
Indeed, Proposition 9 says we can identify the open subsets in
Gr(4,End(V)) = Gr(5,End(V))
where our transversality conditions hold.

4. GEOMETRIC APPLICATIONS OF THE DETERMINANTAL
DESCRIPTION

In this section, we assume that S and Y satisfy the conclusions of
Proposition 10. The determinantal description allows a transparent
derivation of many of the key properties of Y.

Proposition 11. Let F(Y') denote the variety of lines on'Y. We have
a natural surjective morphism

v:PV)USUPR(VY) — F(Y)
that maps each component birationally onto its image.

Proof. For each point [v] € P(V), let

lyy ={y=1¢]: 0(v) =0} ={y =[g] s v € ker(¢)} CY

where ¢ € End(V) represents y € Y C P(A+). This is a linear subspace
of codimension at most three in P(A*). Indeed, elements of

AN {M v C ker(M)}

automatically have vanishing determinants. Lemma 1 guarantees Y
does not contain any planes, so we conclude that £}, is a line.
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Similarly, for [v¥] € P(VY) we also get lines
lpy={y=1[¢]: v 0¢ =0} ={y =[] : v" Eker(¢")} C V.
Given s = [o] € S with 0 € A, we have the locus

ti=1{y=16]: cpo =0} C Y.
Since ¢ has rank two, this condition translates into the vanishing of
the 2 x 2 matrix of the induced map

im(o) 2, V/ker(o).

However, the orthogonality assumption tr(c¢) = 0 implies that there
are only three independent linear conditions. In particular, ¢, is a line
inY.

Combining these three constructions, we obtain the morphism v.
We next show that v is surjective. Lemma 1 implies that F(Y") is two-
dimensional. A standard intersection theory computation [19, 14.7.13]
shows that deg F'(Y) = 45 (with respect to the Pliicker embedding of
the Grassmannian). However, we can compute the pull back

V' Opry(1) = (Opr)(3), Os(3), Opervy(3))
which means that
deg(P(V)) = deg(P(VY)) =9, deg(S) = 27.
Thus all the components of F(Y') are in the image of v; furthermore,

v maps each component birationally onto its image. O

Corollary 12. Retain the notation of Proposition 11 and let y € Y
be a nonsingular point. The components of F'(Y) dominated by P(V)
and P(VY) each admit a unique line passing through y. The component
dominated by S admits four lines passing through y.

Proof. The first statement is easily verified using linear algebra. The
second can be deduced from the fact that a generic y € Y lies on six
lines in Y. O

Proposition 13. The morphism
v:P(V)USUP(VY) — F(Y)

induces the following identifications: Consider the distinguished double-
siz on S
{El,...,Eﬁ;EI/,...,Eg/},

with each 6-tuple blowing down to a collections of points

{a- a6} CP(V), A{ars-- 051 CP(VY).
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Let {ty,...,ls} and {¢Y,... 0{} be the lines in P(VY) and P(V') dual
to these points. We have natural isomorphisms for each i:
VY 0y S EY, Vil N ) =B/ NE; C8S.

Proof. We break up the argument into two lemmas:

Lemma 14. The morphism v maps E;, EY C S,0; C P(VY) and ¢} C
P(V') to the locus C; of lines passing through p;. Furthermore, E; and
U; parametrize y = [¢p| € Y such that im(p) D im(p;); E; and ¢}
parametrize y = [¢] such that ker(¢) C ker(p;). Here we regard the
singularity p; €Y as an element At NY;.

Proof. The determinantal description of S identifies
E; ={s € A:ker(s) =im(p;)}.
Similarly, we have
EY ={s € A :im(s) = ker(p;)}.
On the other hand,
(; = {im(s) : s € A with ker(s) = im(p;)} C P(V")
and
¢! = {ker(s)) : s € A with im(s) = ker(p;)} C B(V).
Thus for s; = [0] € E;

v(si) = [{y = [¢] : ¢(im(0)) C ker(o) = im(p;)}]

Y € (; (where

(2

which is a line through p;. On the other hand, for v
vy € V'V satisfies v,/ (im(p;)) = 0) we have

v(v) = {y = [¢] : v} (im(¢)) = 0}]
which is also a line through p;. As we vary s; € F; and v,” € {;, we get
the locus of y = [¢] such that im(¢) D im(p;).
The analogous statements for E} and ¢} are proven similarly. U

There is an obvious identification

(©) l; =P(g") =P((V/@:)") = P(V/q;) = P(Hom(q;, V/;))
=P(T,,P(V)) = E;;

note that if W is a two-dimensional vector space then the isomorphism
W =WY®A® W induces a natural isomorphism P(W) = P(WV). This
is mot the gluing inducing v. However, note that this takes the points
¢; N {; to the intersections £; N 1;;, where [;; is the proper transform of
the line joining ¢; and ¢;. Using (6), it suffices to express ; and 1), as
automorphisms of F; and E’.
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The gluings ¢; ~ E; and ¢} ~ E_ will be obtained from the following:

Lemma 15. There exists a projectivity ¢; : E; — E; mapping E; N 1;
to E; N EY for each j # i. The analogous statement holds for E .

Proof. For notational simplicity we take ¢ = 1. Consider the conic
bundle S — P! given by the pencil of cubics on P(V') double at ¢; and
containing ¢, ..., qs. The degenerate fibers are

[jUEY, j=2,...,6.

The curve Ej is a bi-section of this conic bundle, so there is a covering
involution ¢y : £y — E4 taking [;; N E; to EJV N E;. O

It remains to check that this is in fact the identification induced by
v. However, we know from Corollary 4 that v glues the points E; N EJv ,
E/ N Ej, to [{(pi,pj)], the line in Y joining p; and p;. Now ¢; and ¢;
meet in P(V"), and ¢} and £ meet in P(V'); thus these points must
also be mapped by v to [¢(p;, p;)]. In general, the isomorphisms 1; and
¥, are the unique ones identifying all these points. This finishes the
proof of Proposition 13. O

Proposition 16. The morphism v is obtained by gluing P(V), S, and
P(VY) using the identifications described in Proposition 13.

Proof. Let F’" denote the surface obtained by gluing P(V'), S, and P(V')
using the identifications 1; and ;. Again, F’ contains twelve distin-
guished rational curves

G;=FE; 0 =E;, i=1,...,6
and fifteen distinguished points

which map surjectively onto F(Y)*"9 (by Corollary 4).

We have already seen that v factors through F’; it only remains to
prove that the induced morphism F" — F(Y') is an isomorphism. Our
analysis of the gluings over F(Y)*" shows that £ is a bijection over
F(y)sing.

We first check that v is the normalization of F(Y). Proposition 11
shows that v maps each irreducible component birationally onto its
image. It follows that the restrictions

P(V) = v(P(V)), P(VY) = v(P(VY))

are normalization maps. Consider the factorization of v|S through the
normalization of its image

S = v(8) — v(9);
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this reverses the identifications induced by the v¢; and v;. The im-
ages of the six lines E, ..., Eg, (and EY, ..., EY) in v(S)" are pairwise
disjoint. Hence S — v(S)" contracts no curves and thus is an isomor-
phism; S is the normalization of v(S).

This analysis implies F' — F(Y') is bijective.

The Fano scheme F'(Y) is defined by the degeneracy locus of a vector
bundle over the Grassmannian Gr(2,5), with the expected dimension
(by Lemma 1). Thus F(Y) is a local complete intersection scheme and
is Cohen-Macaulay; hence it has no embedded points and is seminor-
mal. The universal property of seminormalization then implies that
F' — F(Y) is an isomorphism. O

The determinantal description offers a transparent construction for
the cubic scrolls on Y. Each point [v] € P(V) determines a line in
P(VY), which may be interpreted as a ruled surface T, C Y using the
analysis of the components of F(Y') in Proposition 11:

Proposition 17. For each [v] € P(V), the locus
T,={yeY :veim(y)}
1s a cubic scroll. The ruling arises from the morphism
T, — P(V/span(v))
y — im(y)
with fibers Lp,v), where v¥ # 0 € VY with v¥(v) = 0.
Similarly, for [v¥] € P(VY) the locus
Ty ={y €Y :v'(ker(y)) = 0}
s a cubic scroll. Each union
T,UTw =Y NQ

where Q) is a quadric hypersurface.
If s € S and {, denotes the corresponding line in'Y then £, C Tp()
(resp. Tpv(s)) s a section of the ruling.

Proof. Choose a basis v, v',v” of V' such that v¥(v') = v¥(v”) = 0. The
matrices in the closure of the locus of rank-two matrices with image
containing v can be written

bii bz big
B = by by bos
bsi b3z bss

where the bottom two rows are linearly dependent. This defines a
closed subset in P(End(V)). Geometrically, this is a cone over the
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Segre embedding
P! x P? Cc P°
with a vertex a projective plane. Intersecting this with At yields a
hyperplane section of P! x P2, which is a cubic scroll.
On the other hand, the closure of the locus of rank-two matrices with

kernel annihilated by v" are those whose right two columns are linearly
dependent. The union of these two loci is given by the intersection

{det(B) = 0} N {bazbsz — bazbzy = 0} C P(End(V)),

i.e., the intersection of P(3;) with a quadric hypersurface.
Recall that ¢, was defined in the proof of Proposition 11

t,={y=1[6]: cpo = 0}.

Fix a ruling in T(,): Regarding ((s) = ker(c) as a line in V', we choose
a two-dimensional subspace ker(¢) C U C V, and consider the matrices
¢ with image U. This imposes one additional linear constraint on the
matrix entries of ¢, so each ruling meets ¢, in one point.

O
Proposition 18. For each s € 9,
Tos) N Tpv(s) = €5 U Ry

where Ry CY is a twisted quartic curve passing through the singulari-
lies P1y---,P6-

Proof. Generically, the cubic scrolls are nonsingular and isomorphic to
P? blown up at one point, in which case £, C Ty is the exceptional
curve. Let R, denote the union of components of the intersection other
than /,. We have shown that Tjg, UT}sv(,) is a complete intersection of a
quadric and cubic in P4, and thus is a singular K3 surface. Adjunction
shows that

KTﬁ(s) + RS + Es = 07

hence R, has degree four and genus zero. O

5. CUBIC THREEFOLDS WITH SIX DOUBLE POINTS ARE
DETERMINANTAL

Here we complete C. Segre’s determinantal construction of cubic
threefolds with six double points:

Proposition 19. Each cubic threefold with six ordinary double points
in linear general position is determinantal.
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We prove Proposition 19 using the geometry of the twisted quartic
curves in a determinantal cubic threefold, following [12, 3.2-3.4]. One
key tool is the Segre threefold & C P*; we recall its basic properties:

e Given py,...,ps € P* in linear general position, the linear series
of cubics double at these points induces a morphism

@ : Bl Pt — P!

with image & and fibers twisted quartic curves containing the
points py, ..., pg. If we choose p; = [1,0,0,0,0],p, = [0,1,0,0,0],
P3 = [0? 07 1a 07 0]> Py = [0> Oa 07 1a O]’p5 = [0’ O> Oa 07 1]> and Pe =
[1,1,1,1,1] then the cubics double at these points are

Yo = ($3 - 554)%(%1 - 56’2), Y1 = (554 - Io)fb’l(@ — I3)7
Yo = (o — 21)T2(23 — 24), Y3 = (T1 — T2)T3(T4 — 71),
Ys = (Iz - 933)554(1'0 - 931)

which satisfy

YoUY1Y2 + Y1Y2y3 + YoUy3ya + Y3yayo + Yayoy1 = 0.

e G contains 10 ordinary double points and 15 planes.

e The nonsingular twisted quartic curves map to an open subset
of & that is isomorphic to Mg, the moduli space of genus-
zero curves with six marked points. The morphism w is the
universal family over M.

e The inclusion Mg — & extends to an isomorphism [24]

(PHYeJSLy = &

from the GIT quotient of six points in P! with the symmetric
linearization.

Thus we have a morphism

cubic threefolds with smooth cubic surfaces
(7) ordinary double points — ¢ arising as hyperplane
at pi,..., D6 sections of & C P*

Remark 20. In general, M. Kapranov [28] [27, 4.3] has shown that
M -1 can be identified with the rational normal curves in P"—3 pass-
ing through points p1,...,pn—1 € P73 in linear general position. The
rational normal curves are the universal curve, with pi, ..., p,—1 trac-
ing out the marked points. Identifying the universal curve over My ,,_4
with M ,,, there is a morphism
mO,n — ]Pm—3
<C7p17"'7pn) = Dn,
factoring through Bl,, Pr=3,

yee9Pn—1
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Recall our previous notation: Let
{E\,...,Es;E,...,E{}
denote the double-six on S, f: S — P(V) and Y : S — P(VY) the
associated contractions, and
{on, s a)s a8}

the images of the exceptional divisors. There is an involution of the
Picard lattice taking E; to E; for i = 1,...,6. If the Picard lattice is
presented

ZL+ZFE\+...+ZEs, E}!=-1,EE;=6;L*=1LE; =0,
the involution takes the form
(8) EiHQL—Ej—Ek—Ea—Eb—EC:EiV,

where {1, j, k,a,b, c} is a permutation of the indices {1,...,6}.
We shall need a version of Cremona’s hexahedral construction [13,
16]:

Proposition 21. Let S° C S denote the complement to the lines in S.

For s € S° consider the images of q1,...,q6 and q,,...,q¢ under the
projections
(9) P(V) --» P(V/B(s)) P(VY) -->P(V"/B"(s)),

which determine elements j(s),7"(s) € Mog. Then we have the fol-
lowing:
e j(s) =7Y(s) for each s € S°;
e there exists an extension j : S — &;
e the image of j is a hyperplane section of & C P*;
e conversely, each smooth hyperplane section S C & is a cubic
surface with a distinguished ordered double-six.

Thus we obtain an identification

with a double-siz of

smooth cubic surfaces {
ordered lines

smooth hyperplane
sections of & C P4

Proof. Fix s € S° and consider the degree-two Del Pezzo surface S’ :=
Bli(S) = Bly,....¢»(P(V)). The projections (9) induce conic bundles

0: S8 —-P, .8 P!
with degenerate fibers corresponding to the images of ¢,...,qs and
q/,...,q] respectively. However, each degree-two Del Pezzo admits a

canonical involution, i.e. the covering involution of the anticanonical
morphism S’ — P2. Moreover, ¢ and ¢V are conjugate under this



FLOPS AND CUBICS 19

involution and thus have the same degenerate fibers. We conclude that
J(s) =7Y(s) in Myg.

We extend j to S: Assume first that 3(s) # ¢i, ..., gs. We still have
a conic bundle ¢ : " — P! but the images of ¢; and ¢; in P* coincide if
B(s) € l;, the line joining ¢; and ¢;. However, since no three of the ¢; are
collinear at most two points may coincide, so the image of (qi, ..., q)
is a GIT-semistable point of (P!)%; this yields a well-defined point on
S. If B(s) = ¢1 then we can identify £y = P(T,,P(V)) = P(V/¢1) and
the images of the ¢;,j = 2,...,6 in P(V/¢y) with the intersections of
the proper transforms of the [;; with £;. The rule

](S) = (S, [12 N El, ceey [16 N El)

extends the definition of j over E; C S. (This argument is very similar
to the proof of Lemma 15.)

A straightforward degree computation shows that j maps S to a
hyperplane section of G.

For the final statement, the fifteen planes of & cut out fifteen ordered
lines of S. The remaining lines form a double-six. U

Let Y be a cubic threefold with ordinary double points at py, ..., ps;
w induces a rational map Y’ --» S contracting the twisted quartic
curves in Y’ to points of a smooth hyperplane section ¢ : S <— & with
a distinguished double-six. After ordering the two sextuples of disjoint
lines, Proposition 10 yields a determinantal cubic hypersurface Y with
ordinary double points at pq, ..., pg corresponding to the marked cubic
surface S. By Proposition 18, the image of Y under w is a hyperplane
section 5 : S < & with the planes of G tracing out the corresponding
15 lines of S. Proposition 21 implies i;(S) = i2(S) and thus ¥ ~ Y”;
this yields an inverse to the morphism (7).

Remark 22. The natural map

determinantal cubic threefolds cubic threefolds with
with ordinary double points — ¢ ordinary double points
atplv"'vpﬁ atpla"'vpﬁ

is not an isomorphism. Under our identifications, these correspond to

determinantal cubic surfaces cubic surfaces with a
with a sextuple of ordered — ¢ double-six of ordered
lines lines

which has degree two. Indeed, this reflects the involution (8) inter-
changing the sextuples of our double-six.
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6. CONSTRUCTING FLOPS

Let X be a smooth cubic fourfold with hyperplane class h.

Proposition 23. Assume that X admits a hyperplane section Y C X
with six ordinary double points in linear general position. Then X
contains two families of cubic scrolls T and TV, whose cycle classes
satisfy

[T] + [TV] = 2h°.
Conversely, if X is a smooth cubic fourfold containing a smooth cubic
scroll T then the hyperplane section

Y = X Nspan(7T)
has at least siz double points, counted with multiplicities.
Proof. Assume that X admits a hyperplane section Y as above. We
may assume that Y is determinantal by Proposition 8. Proposition 17

guarantees that X contains two families of cubic scrolls, each parame-
trized by P2. Given T and TV from different families, we have

TUTY=YNQ
for some quadric hypersurface in P3. The equation on cycle classes
follows.

Now suppose that X contains a smooth cubic scroll T" spanning the
hyperplane section Y. In suitable coordinates,

T = {[zo,...,x4] : rank (xo o ?):1}
1

Ty I3
and thus there exist linear forms g, y1, y2 in xg, ..., x4 such that
To T1 T2
Y ={[xg,...,xq4] : det | 22 x3 x4 | =0},
Yo Y1 Y2
i.e., Y is determinantal. The double points correspond to the matrices
of rank one (cf. Proposition 9). O

Theorem 24. Let X be a smooth cubic fourfold not containing a plane,
and F' its variety of lines. Assume that X admits a hyperplane section
Y with sixz ordinary double points in linear general position. Write

FY)=PuS'uPY
with normalization P> LU S UP2. Then there exist birational involutions
L, F-—s F

which are reqular away from P U S’ and PY U S’ respectively.
Precisely, 1 is factored as follows:
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(1) Flop P to get a new holomorphic symplectic fourfold F; the
proper transform S1 of S is a plane in F.
(2) Flop the Sy in Fy to get Fy, which is isomorphic to F.

Proof. We construct ¢: Let [m] € F be a line not contained in F(Y).

Then m NY = {y}, a nonsingular point of Y. By Corollary 12, there

exists a unique line ¢¥ € PV containing y. Let IT denote the plane

spanned by ¢V and m; by assumption, IT ¢ X. Thus we have

(10) INX=mul'um

for some line m € F. Setting ¢(m) = m, we get a morphism
t:F\F(Y)— F.

Since (10) is symmetric in m and m, ¢ is an involution.

As constructed, ¢ is not well-defined along F'(Y). It remains to show
that it extends to m € PY \ (P US). Proposition 13 implies that m
does not contain any singularities of Y. The normal bundle to m in X
is one of the following [11, Proposition 6.19]

Npyx = 02 @ O(1),0(~1) ® O(1)%2.
Since m does not contain any of the singularities of Y, Corollary 12
implies that we have the first case. But then there exists a distinguished
plane II with
INX =2muUnm,
i.e., IT corresponds to the directions associated with the O(1)-summand.
Consider the correspondence

Z={(m, " I):INX D>mnN{'} CF x P xGr(2,5);
the normal bundle computation guarantees that the projection
Z — F

is an isomorphism along P¥ \ (P U S). By definition, ¢ is regular on Z
and thus at the generic point of PV.
We will use the following notation for our factorization

FOl F12
B1o Bo1 B21 B2
/ N / N
F =F, F F
710 o1 Y21 T2
-/ NS
FOl F12

where (319 blows up P, (31 blows down the exceptional divisor of (g,
Bo1 blows up S; (the proper transform of S), and ;2 blows down

the exceptional divisor of 5. Here Fy; and Fi, denote the singular
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varieties obtained by contracting P and S; to a point. In other words,
F5 is obtained from Fj by two Mukai flops. Moreover, we will show
that ¢ : F' --» F' is resolved on passage to F3, so the induced

(11) Ly Fg — F

is necessarily an isomorphism.
Let P, C F; denote the plane that results from flopping P.

Lemma 25. S, is isomorphic to P? and meets P, transversely at siz
points.

Proof. Proposition 13 describes how S’ and P intersect: S’ has two
smooth branches meeting transversely in F', each of which meets P ~
P? in a line. If S° is the smooth locus of S’ then

PNnsccse

is Cartier, hence 34 (S°) ~ S°. However, S’ fails to be Cohen-Macaulay
at the points of S”\ S°, so any Cartier divisor through these points
would necessarily have an embedded point. In particular,

PnsS cys

is not Cartier at singular points of S" and [y necessarily modifies S’
at these points.

We claim that the proper transform Sp; of S" in Fp; is just S. The
easiest way to see this is through a local computation. At each singu-
larity of S’ choose local coordinates {x1, xo, z3, x4} such that

S'={r;=2,=0}U{zs =24 =0}, P={xy=u15=0}
The blow-up of P has homogeneous equation
A[L’g = B[L’g

and thus the proper transforms of the components of S are disjoint
and mapped isomorphically onto their images.

We next show that 3y, contracts the double-six in S corresponding to
the intersection of P with S”. The key ingredient is the local description
of proper-transforms of Lagrangian submanifolds under Mukai flops
given in [30, §4.2]: Locally, a holomorphic-symplectic fourfold contain-
ing a plane looks like the total space of the cotangent-bundle of P2. In
the cotangent bundle, a complex Lagrangian submanifold is modelled
locally as the conormal sheaf Aji of a complex submanifold V' C P2
The Mukai flop is realized as the cotangent bundle of the dual plane
P2 the proper transform of the Lagrangian submanifold looks locally
like the conormal sheaf NV of the projective dual V c P2. Since each
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branch of S’ looks locally like N for a line ¢ C P?] its proper trans-
form looks locally like ./\/'[“2]7 where [(] € P? classifies £. In particular, the
proper transform S; meets P; in six points and (y; : Sp1 — S7 blows
down the double-six (corresponding to S’ N P) to these points.

The analysis in Proposition 13 implies S; ~ P?, and thus is a La-
grangian plane in F}. 0

We define F, as the Mukai flop of this plane and let S5 denote the
resulting plane, P, the proper transform of P;, and

p:Fy--— F

the composition of Mukai flops. Now P, is isomorphic to a cubic sur-
face, meeting Sy along a double-six as described before.

It remains to show that ¢ is resolved on F,. Let g denote the po-
larization on F' C Gr(2,5) induced by the hyperplane class on the
Grassmannian. The pull back ¢*¢ is globally generated away SU P, the
indeterminacy of ¢. We shall use the following result of Boucksom [7]:
Let Z be an irreducible holomorphic symplectic variety and f a divisor
class on Z; then f is ample if and only if f meets each rational curve on
Z positively. In particular, :*g necessarily meets some rational curves
supported in SU P negatively. Consider the map on one-cycles modulo
homological equivalence induced by normalization and inclusion

je : N1(S,Z) ® N,(P,Z) — N,(F, 7).

This has a nontrivial kernel: The description in Proposition 13 implies
that

3.(E;,0) = 7,(0, [line]), i=1,...,6,

hence j, has rank two, and the image of the effective curve classes is
spanned by A; = j,.(0, [line]) and Ay = j.(55;[line],0). In particular,
all the effective curve classes where +*¢ is negative can be expressed as
linear combinations of A; and Ay with nonnegative coefficients.

We now analyze the pull-back f = ¢*1*g. Since ¢ is an isomorphism
away from P, U Sy, any curve of F; not contained in P, U Sy meets f
positively. Just as before, the image of the effective curve classes in
P, U S, are a cone generated by two classes \| and \,. However, using
the identifications

Hy(Fy, Q) = H*(F,Q) - H*(F,Q) =~ Hy(F,Q)

we see that \] = —A; and A\, = —\,. It follows that f is positive along
all curves classes in Fy and thus is ample.
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To reiterate, the composition (cf. Equation 11)
lo=1t10¢: Fy--+F
is a birational map of smooth projective varieties, and takes the ample

divisor g to an ample divisor f. It follows that ¢ is an isomorphism. []

Remark 26. The strategy of our argument is due to Burns-Hu-Luo
[9], who prove that any birational morphism of irreducible holomorphic
symplectic varieties with normal exceptional loci is a sequence of Mukai
flops. The normality assumption can be eliminated (cf. [40, 1.2]).

Proposition 27. Retain the notation of Theorem 2. Let [v] € P(V)
and TV := T, CY denote one of the cubic scrolls described in Propo-
sition 17. The divisor

™={mleF:mnNnT'#0}CF
15 wnvariant under L.
Proof. By Proposition 17, the ruling of T is the rational curve
N ={[v]:v'(v)=0}Cc P CF(Y)CF.
If m is incident to 7" then m meets some ruling ¢,v) C TV where [v"] €
AY. Thus £, coincides with the line ¥ used in the construction of ¢.

Since the lines {m, {,v,c(m)} are coplanar, we have «(m) N £pv) # 0
and «(m) € 7. O

7. CONES OF MOVING AND AMPLE DIVISORS

Let X be a smooth cubic fourfold and F' its variety of lines. The
incidence correspondence

A

7r P
/ N\
X F

induces the Abel Jacobi map of integral Hodge structures [6]

o =1,0" : HY(X) — H*(F).
This is compatible with quadratic forms: Writing g = a(h?) we have

(g,9) =2 <h2, h2> =06
and
(a(z1), (22)) = — (21, 25) for all 21, 2y € (R*)*.

For general cubic fourfolds we have

HY(X,7Z)N H**(X,C) = Zh?

but special cubic fourfolds admit additional algebraic cycles [21]:
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Proposition 28. Let C denote the moduli space of smooth cubic four-
folds and C4 C C the cubic fourfolds X admitting a rank-two saturated
lattice of Hodge cycles

h? € Ky C HY(X,Z)N H**(X,C)
of discriminant d. Then Cq is nonempty if and only if
d=0,2 (mod6), d>6.
In this case, Cq is an irreducible divisor in C.

Assume that X contains a smooth cubic scroll T" and let Y denote
the hyperplane section of X containing 7. The intersection form (,)
on the middle cohomology of X restricts to

h? T
K12 = h 3 3
T3 7

a lattice of discriminant 12. Moreover, Cy» is the closure of the locus of
cubic fourfolds containing a cubic scroll or a hyperplane section with
six double points in general position.

Let 7 = a(T) so that the Beauville-Bogomolov form restricts to

-
J12 = g 6 6
T|6 2

Q

a lattice of discriminant —24. We summarize elementary properties of
this lattice:

(1) The elements of Ji3 ®z R with nonnegative Beauville form are
a union of convex cones P U —P where

P:Cone(g—(?)—\/6)7,(34—\/6)7'—9).

(2) Jy2 does not represent —2 or 0.
(3) The automorphism group of .J15 is isomorphic to the direct prod-
uct of (£1) and the infinite dihedral group

I':=(R,Ry: RI=R;=1)
where the reflections R;, Ry can be written

Ri(g) = ¢ Ry(r) = 29—
Ry(g) = —g+617 Re(r) = T

I' consists of the automorphisms taking P to itself.
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(4) Jio represents —10. We list (—10)-classes with positive inter-
section with g:

class intersection with ¢
py = 167—3g9  (p3,g) = 78
py = 41—y (p3,9) = 18
pl = 2T1—g (pi,g9) = 6
p1 = 3g—21 (p1,9) = 6
py = Tg—A4r (p2,9) = 18
(p3ag)

ps = 29g — 167 = 78

For j > 3 we define recursively
pj = (RiR2)pj—o and p] = (RaRi)p;_,.

(5) The element R;Rs has infinite order and acts on the (—10)-
classes with orbits:

{”'7p§/7p\1/7_p27"'} {---7_/);,/7_@1/7/)27---}
{ o, =pssp,ps---p {.- py,—p1,—p3.. .}

The element R; has order two and acts via

Ri(pi) = p/

for each 1.

Proposition 29. Let X be a smooth cubic fourfold with variety of lines
F. Assume that X contains a smooth cubic scroll T with

HY(X,Z)N H**(X,C) = Zh* + ZT
or equivalently
H*(F,7Z) N H"Y(F,C) = Zg + Z.

The nef cone of F' equals the cone dual to Cone(py, pY), i.e., Cone(ay, o)
where a; = 79 — 37 and af = g+ 37.

Proof. The main theorem of [23] asserts that a divisor class f on F' is
nef if (f, p) > 0 for each divisor class p on F satisfying (g, p) > 0 and
either (p,p) > —2 or (p,p) — 10 and (p, H*(F,Z)) = 27Z. Thus the nef
cone contains Cone(ay, ay).

It remains to show that a; and «f are at the boundary of the nef
cone. We show they induce nontrivial contractions of F'. It suffices to
prove this for a generic cubic fourfold containing a cubic scroll, so we
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may assume Y has exactly six ordinary double points in linear general
position. It follows that there exist Lagrangian planes

PP'CYCF

such that lines A\; C P and A\Y C PY both have degree three. The
classes of these lines are dual to p; and py respectively. The divisors
a7 and o induce small contractions

Yo F=Fy— For, g1 Fo — FY
of P and PV respectively. O

We may flop the plane P (resp. PY) in F' to obtain new holomorphic
symplectic fourfold Fi (resp. F}’). The birational maps between F, F},
and F) induce identifications of their Picard groups. The first step in
analyzing their nef cones is to enumerate the orbit of oy under I":

class intersection with g
ay = RoRi(an) = 97—y (3,9) = 48
af = Ri(a1) = g+37 (af,9) = 24
ay = Tg—31 (1,9) = 24
(062, g)

as = R Ry(af) = 17g—97 = 48

For 7 > 3 we define recursively
Q; = Rle(Oéj_g) and Oé;-/ = RgRl(Oé;-/_2).

Observe that (o, p)') = (i, p;) = 0 for each i > 1.

Proposition 30. The nef cone of Fy (resp. F)') equals Cone(ay, o)
resp. Cone(ay, o).

Figure 1 illustrates the relative positions of the nef cones of F' and
its flop F.

Proof. Since F} is the flop of F' along P, it is clear that «; (which
induces the contraction of P) is one generator of the nef cone. The fac-
torization given in Theorem 24 shows that ¢ induces a regular involution
on Fj. Proposition 27 implies that ¢ fixes the divisor

™ =a(T")=a2h? =T) =29 —,
where the middle equality uses Proposition 23. Consequently, ¢ acts on
J1o via the reflection Rz through the line orthogonal to 2g — 7

Rs(g) =11g — 67, Rs(7) =209 — 117.
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T nef coneof flop of F

nef cone of F

positive cone P

FIGURE 1. The nef cones of F' and F}/

The second generator of the nef cone of F} is thus
Rs(a) =179 — 97 = .
O

Theorem 24 gives isomorphisms between every second model, so
Proposition 29 and 30 suffice to describe the nef cone of every model
of F' (see Figure 2). We summarize our whole discussion:

Theorem 31. Suppose that X is a smooth cubic fourfold containing a
smooth cubic scroll T with

HY(X,7Z) N H**(X,C) = Zh* + ZT

and let ' = Fy denote the variety of lines on X. Then we have an
infinite sequence of Mukai flops

B s B s Fy - By - By
with isomorphisms between every other flop in this sequence
"'F2\/1>F01>F2"' and "'Fl\/:>F1"'

The positive cone of F' can be expressed as the union of the nef cones
of the models {--- | FY, Fo, Fy,--- }:

-+, Cone(ay, o)), Cone(ay,ay), Cone(ay, ay), -+ -

The isomorphisms induce an action of Z ~ (RyRy) C I' on the Picard
group of F.
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Figure 2 is a schematic illustration of the partition of the posi-
tive cone into ample cones for isomorphism classes of minimal models.
This verifies the conjectures of [22] for the birational models of F. Tt

isomorphic

ample cones of models

isomorphic
I

FIGURE 2. Partition of the positive cone into ample
cones for various minimal models

also illustrates the Finiteness of Models Conjecture of Kawamata and
Morrison—here we have two birational models up to isomorphism.

Remark 32 (Application to rational points). Let F' be the variety of
lines of a cubic fourfold X containing a cubic scroll T, both defined
over a field k. Assume that the hyperplane section containing 7" has
precisely six ordinary double points in linear general position and X
does not contain a plane. Then k-rational points on [’ are Zariski
dense. Indeed, the infinite collection of Lagrangian planes defined over
k is Zariski dense.
If the Picard group of F' has rank two then

e I does not admit regular automorphisms, and
e [ is not birational to an abelian fibration.

Potential density of rational points on varieties of lines on generic
cubic fourfolds over number fields has recently been established in [2].
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