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1. Introduction

Let Σ be a K3 surface. Any birational map Σ 99K Σ extends to an
automorphism; this follows from the uniqueness of minimal models for
surfaces of non-negative Kodaira dimension. By the Torelli Theorem,
the group of automorphisms of Σ is isomorphic to the group of au-
tomorphisms of H2(Σ,Z) compatible with the intersection pairing 〈, 〉
and the Hodge structure on H2(Σ,C), and preserving the cone of nef
(numerically eventually free) divisors. The nef cone admits an intrinsic
combinatorial description (see, for example, [31]), once we specify a
polarization g: A divisor h on Σ is nef if and only if 〈h,D〉 ≥ 0 for each
divisor class D with 〈D,D〉 ≥ −2 and 〈g,D〉 > 0. This characteriza-
tion of the automorphism group has many interesting applications to
arithmetic and geometric questions.

In this paper, we study certain aspects of the birational geometry
of higher-dimensional analogs of K3 surfaces, i.e., irreducible holomor-
phic symplectic varieties F . These share many geometric properties
with K3 surfaces. For example, the group H2(F,Z) carries a canoni-
cal integral quadratic form (, ), the Beauville-Bogomolov form (see, for
example, [26]). Its definition uses the symplectic form on F but it can
be characterized by the fact that the self-intersection form on H2(F,Z)
is proportional to a power of the Beauville-Bogomolov form [26, 1.11]
[18]

Ddim(F ) = cF (F, F )dim(F )/2 .

Moreover, these varieties satisfy local Torelli theorems [4] and surjectiv-
ity of the period map [26]. In contrast to the surface case, F may have
numerous minimal models and may admit birational self-maps which
are not regular. Furthermore, naive generalizations of the Torelli The-
orem to higher dimensions are false; for counterexamples, consult [14],
[35], and [32, Cor. 1.7, Thm. 4.5].
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Perhaps the best-known examples of irreducible holomorphic sym-
plectic varieties are punctual Hilbert schemes of K3 surfaces and their
deformations [4]. Here we focus on the case of length-two subschemes,
which are isomorphic to the symmetric square of the K3 surface blown-
up along the diagonal. These also arise as varieties of lines on cubic
fourfolds [6]. By [23], given a polarization g on F , a divisor h on F is
nef if (h, ρ) ≥ 0 for each divisor class ρ satisfying

(1) (g, ρ) > 0; and
(2) (ρ, ρ) ≥ −2, or (ρ, ρ) = −10 and (ρ,H2(F,Z)) = 2Z. (These

are called (−10)-classes.)

We have conjectured that these conditions are also necessary [22]. The
main challenge in proving this is to show that the divisors ρ described
above obstruct line bundles from being ample. For example, we expect
extremal (−10)-classes ρ to be Poincaré dual to multiples of lines con-
tained in planes P ⊂ F . The presence of such planes has implications
for the birational geometry of F , as we can take the Mukai flop or
elementary transformation along P [34, 0.7]

BlPF ≃ BlP ′F ′

ւ ց
F F ′.

Indeed, since P is Lagrangian, NP/F ≃ Ω1
P so the exceptional divisor

E ⊂ BlPF is isomorphic to P(Ω1
P ). This admits two P1-bundle struc-

tures over P2, so we can blow down E to obtain a nonsingular variety
F ′ birational to F . This is also an irreducible holomorphic symplectic
variety, deformation equivalent to F [25, 3.4].

One especially interesting case is when there are no (0) or (−2)-
classes (i.e., divisors ρ with (ρ, ρ) = 0,−2) but multiple (−10)-classes.
Here the nef cones of birational models of F should be completely con-
trolled by (−10)-classes. Not only are the integral extremal rays of F
Poincaré dual to (−10)-classes, but this remains true for Mukai flops of
F . In this situation, we expect F to admit infinite sequences of Mukai
flops. However, Morrison [33] and Kawamata [29] have conjectured the
following:

Conjecture (Finiteness of models). Let F be a (simply-connected)
Calabi-Yau manifold. Then there are finitely many minimal models of
F up to isomorphism.

How can this be reconciled with the existence of infinite sequences
of flops? The only possibility is that after a finite sequence of flops of
F , we arrive at a variety isomorphic to F . This gives rise to birational
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maps F 99K F that are not automorphisms. These in turn act on
H2(F,Z), preserving the cone of moving divisors but not the nef cone.

More specifically, consider a general cubic fourfold X containing a
cubic scroll, or equivalently, a hyperplane section with six double points
(see Proposition 23). The Picard lattice Pic(F ) of the corresponding
variety of lines F = F (X) has rank two and the associated quadratic
form represents −10 but not −2 or 0. For such fourfolds we

• compute the ample and moving cone in Pic(F );
• prove that F does not admit biregular automorphisms;
• exhibit a birational automorphism of infinite order explaining

the chamber decomposition of the moving cone.

Our principal results are Theorems 24 and 31. The first exhibits explicit
birational involutions on F and factors their indeterminacy. The second
describes the action of the birational automorphism group onH2(F,Z).

We list some previous results in a similar vein: Miles Reid [36, 6.8]
has offered examples of elliptically-fibered threefolds with an infinite
number of distinct minimal models. Michael Fryers [17] classified iso-
morphism classes of minimal models of the general Horrocks-Mumford
quintic threefold. Morrison [33] and Kawamata [29] have proven finite-
ness results (up to isomorphism!) for Calabi-Yau fiber spaces F → B
where 0 < dim(B) ≤ dim(F ) ≤ 3. The case of Calabi-Yau manifolds
of dimension ≥ 3 remains open.

The first half of the paper is devoted to classical results on cubic
hypersurfaces. In Section 2 we analyze cubic threefolds Y with six
ordinary double points in general position and their varieties of lines
F (Y ). Section 3 establishes a dictionary between determinantal cubic
surfaces and determinantal cubic threefolds, which generally have six
ordinary double points in linear general position. Section 4 develops
this to explain the geometric properties of Y , e.g., a transparent de-
scription of the components of F (Y ) and how they are glued together.
Finally, Section 5 shows that cubic threefolds with six double points
are determinantal.

The second half focuses on applications to the birational geometry
of certain irreducible holomorphic symplectic varieties. Section 6 uses
this information to construct birational involutions on the variety of
lines F on a cubic fourfold containing Y . In Section 7 we explain the
connection to our conjecture on nef cones. We close with an application
to Zariski-density of rational points on F .

Throughout, the base field is algebraically closed of characteristic
zero.
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2. Cubic threefolds with six double points

We assume that Y ⊂ P4 is a cubic hypersurface with ordinary double
points at p1, . . . , p6, which are in linear general position.

Lemma 1. The cubic hypersurface Y contains no planes and the va-
riety of lines F (Y ) has the expected dimension two.

Proof. Let Y ′ denote a cubic threefold containing the plane

Π = {x0 = x1 = 0}.
Suppose G is a homogeneous cubic equation for Y ′. Then we can write

G = x0Q0 + x1Q1

for quadratic forms Q0 and Q1. The singular locus of Y ′ contains the
subscheme defined by

x0 = x1 = Q0 = Q1 = 0

which consists of four coplanar points. Thus the singularities of Y ′ are
not in linear general position.

Suppose that F (Y ) has dimension > 2. As the singularities of Y
are ordinary double points, there is at most a one-parameter family
of lines through each singularity. Thus the generic line ℓ of F (Y ) is
contained in a smooth hyperplane sectionH∩Y . Consider the incidence
correspondence

Z = {(ℓ,H) : ℓ ⊂ Y, ℓ ⊂ H} ⊂ Gr(2, 5) × Gr(4, 5)

in the partial flag variety. Since Z has dimension five the fibers of pro-
jection onto the second factor have dimension one, which is impossible
as smooth cubic surfaces have a finite number of lines. �

Proposition 2. Let Y be a cubic hypersurface with six ordinary double
points p1, . . . , p6 in linear general position. Projection from the point
p6

Y 99K P3

factors
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where γ is the blow up of a complete intersection C6 of a smooth quadric
and a cubic in P3, consisting of two twisted cubic curves meeting in five
nodes.

Proof. The morphism γ blows down all the lines in Y incident to p6;
since p6 is an ordinary double point, these are parametrized by a com-
plete intersection C6 of a smooth quadric Q (the projectivized tangent
cone of Y at p6) and a cubic in P3. Furthermore, an easy computation
using the Jacobian criterion shows that C6 is smooth except at the
points ni = γ(pi), i = 1, . . . , 5. Note that ni corresponds to the line
ℓ(pi, p6) joining pi to p6.

We claim that C6 has two irreducible components E6 and E∨
6 , each

smooth and rational of degree three, and n1, . . . , n5 are nodes of C6.
Since the normalization of C6 has genus −1 it is necessarily reducible.
Consider the alternatives for the combinatorics of components: If C6

were to contain a component of degree one then this would meet the
rest of C6 in three nodes, say n1, n2, n3. Then the ordinary double
points {p6, p1, p2, p3} ∈ Y would all lie in a plane, contradicting our
general position hypothesis. If C6 were to contain a component of
degree two then this would meet the rest of C6 in four coplanar nodes,
say n1, n2, n3, n4. Then {p6, p1, p2, p3, p4} ∈ Y would span a three-
dimensional space, again contradicting our hypothesis. If C6 contained
a component of degree three and arithmetic genus one (i.e., a nodal
plane cubic) then the quadric Q would be degenerate. �

Remark 3. This analysis implies that

n1, n2, n3, n4, n5 ∈ Q ≃ P1 × P1

satisfy the following genericity conditions:

• the ni are distinct;
• no two of the ni lie on a ruling of Q;
• no four of the ni lie on a hyperplane section of Q ⊂ P3.

Hence S = Bln1,...,n5Q is isomorphic to a nonsingular cubic surface.
While we will not prove this, S is isomorphic to the cubic surface
constructed from Y in (7) of Section 5. In particular, S does not
depend on which double point pi ∈ Y we choose for our projection.

Corollary 4. The singular locus F (Y )sing ⊂ F (Y ) is equal to the lines
meeting the singular points p1, . . . , p6 ∈ Y . The irreducible components
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of F (Y )sing consist of twelve smooth rational curves

E1, E
∨
1 , . . . , E6, E

∨
6 ,

where Ej ∪ E∨
j parametrizes the lines through pj. The singularities of

F (Y )sing are the 15 lines ℓ(pi, pj) joining singularities of Y , and

ℓ(pi, pj) = Ei ∩ Ej = Ei ∩ E∨
j = E∨

i ∩Ej = E∨
i ∩E∨

j .

Proof. It is a general fact [1, §1] that for any cubic hypersurface Y ′,
the variety of lines F (Y ′) is smooth at lines avoiding the singularities
of Y ′. Moreover, F (Y ′) is singular at lines passing through an ordinary
double point of Y ′ [11, 7.8]. The structure of the singular locus then
follows from Proposition 2. �

Corollary 5. The pair (Y, p6) is uniquely determined up to isomor-
phism by the isomorphism class of the nodal curve C6.

Proof. The curve C6 is a stable curve of genus four and C6 →֒ P3 is its
canonical embedding. We can characterize Y as the image of P3 under
the linear series of cubics passing through C6. �

3. Determinantal cubic surfaces and threefolds

We review determinantal representations of smooth cubic surfaces.
The story begins with Grassmann [20] who showed that cubic surfaces
arise as the common points of three nets of planes in P3, i.e., the
locus where a 3 × 3 matrix of linear forms on P3 has nontrivial kernel.
Schröter [37] showed that a generic surface admits such a realization
and Clebsch [10] tied these representations to the structure of the lines
on the cubic surface. Dickson [15] addressed the problem of expressing
arbitrary smooth cubic surfaces in determinantal form. See [5, 6.4] and
[8] for modern accounts and [16] for further historical discussion.

Proposition 6. Let S ⊂ P3 be a smooth cubic surface. Then there
exists a 3 × 3 matrix M = (mij) with entries linear forms on P3 such
that

S = {det(M) = 0}.
Up to the left/right action of GL3 × GL3, there are 72 such represen-
tations, corresponding to sextuples of disjoint lines on S.

This was extended by B. Segre [38] (cf. [5, 6.5]) to smooth cubic
surfaces defined over arbitrary fields:

Proposition 7. Let S be a smooth cubic surface defined over an arbi-
trary field k. Then the following conditions are equivalent:
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• There exists a 3 × 3 matrix of linear forms over k such that
S = {det(M) = 0}.

• S contains a rational point and a sextuple of disjoint lines de-
fined over k.

• S admits a birational morphism to P2 defined over k.

We emphasize that each individual line in the sextuple need not be
defined over k.

C. Segre [39, §12-14] analyzed determinantal representations of cubic
threefolds:

Proposition 8. Let Y ⊂ P4 be a generic cubic hypersurface realized as
the determinant of a 3× 3 matrix of linear forms. Then Y has six or-
dinary double points, in linear general position. Conversely, any cubic
hypersurface with six ordinary double points in linear general position
is determinantal.

For completeness, we will provide an argument in Propositions 10 and
19.

Our main goal is to explain how all these classical theorems are
related. Here is the key geometric ingredient: Let W be a vector
space with a nondegenerate bilinear form (, ); taking orthogonal com-
plements, we obtain a natural identification

(1)
Gr(n,W ) = Gr(dim(W ) − n,W )

Λ 7→ Λ⊥.

Let G be a group acting linearly on W , with the natural induced action
on Gr(n,W ) and the action on Gr(dim(W ) − n,W ) induced by (1).

We are especially interested in the case where W = End(V ) for some
vector space V of dimension d, the bilinear form (, ) is the trace pairing

(A,B) = tr(AB),

and GL(V ) × GL(V ) acts on End(V ) by left-right multiplication

(g1, g2) ·M = g1Mgt2.

Here we are using the transpose operator

t : End(V ) → End(V )

obtained by dualizing and then applying the trace pairing. Consider
the semidirect product

(2) 1 → GL(V ) × GL(V ) → G→ S2 → 1

where S2 acts by exchanging the factors. Since

(g1, g2) ·M t = g1M
tgt2 = ((g2, g1) ·M)t
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G also acts naturally on End(V ) and thus on the Grassmannians

Gr(n,End(V )) = Gr(d2 − n,End(V )).

Consider the rank stratification on End(V )

0 ⊂ Σ1 ⊂ Σ2 ⊂ . . . ⊂ Σd−1 ⊂ End(V ),

which is invariant under the group actions. We have the incidence
correspondence

{(W1,W2, A) : W1 ⊂ ker(A), im(A) ⊂W2}
⊂ Gr(d− k, V ) × Gr(k, V ) × End(V ),

a vector bundle of rank k2 over Gr(d−k, V )×Gr(k, V ). The projection
onto End(V ) induces a birational morphism to Σk, invertible away
from Σk−1. In particular, Σk is ruled by k2-dimensional vector spaces;
through each A ∈ Σk \ Σk−1 there passes a unique ruling

RA := {M ∈ End(V ) : ker(A) ⊂ ker(M), im(M) ⊂ im(A)}.
Recall the description of the tangent space of Σk (see, for instance, [3,

pp. 68-69]): When A has rank < k then TAΣk = End(V ); furthermore,
Σk−1 is the singular locus of Σk. If A has rank k then

TAΣk = {M ∈ End(V ) : M(ker(A)) ⊂ im(A)};
note that TA ⊃ RA. We can express

(TAΣk)
⊥ = {N ∈ End(V ) : NA = AN = 0},

which is a linear subspace of dimension (d−k)2 in Σd−k. Thus for each
matrix B satisfying

im(B) = ker(A) and ker(B) = im(A),

we have (TAΣk)
⊥ = RB.

Proposition 9. Assume V is a three-dimensional vector space and
Λ ⊂ End(V ) is a four-dimensional subspace. Let Λ⊥ ⊂ End(V ) denote
the orthogonal complement of Λ with respect to the trace pairing. Then
the following conditions are equivalent:

• Λ is tangent to Σ2 at a smooth point or intersects Σ1 nontriv-
ially;

• Λ⊥ is tangent to Σ1 at a nonzero point or is tangent to Σ2 at a
smooth point.

In other words, Λ is transverse to the rank strata if and only if Λ⊥

is transverse to the rank strata.



FLOPS AND CUBICS 9

Proof. Suppose that Λ is tangent to Σ2 at a rank-two matrix A0, i.e.,

(3) A0 ∈ Λ ⊂ TA0Σ2.

Let B0 be a matrix with ker(B0) = im(A0) and im(B0) = ker(A0),
which is unique up to scalars; it follows that

(TA0Σ2)
⊥ = RB0 , (TB0Σ1)

⊥ = RA0 .

Dualizing (3) we obtain

RB0 = (TA0Σ2)
⊥ ⊂ Λ⊥ ⊂ A⊥

0 .

We also have

RB0 ⊂ TB0Σ1 = R⊥
A0

⊂ A⊥
0 .

Since

dimRB0 = 1, dimTB0Σ1 = dim Λ⊥ = 5, dimA⊥
0 = 8,

we deduce

span(B0) ( Λ⊥ ∩ TB0Σ1.

Thus Λ⊥ fails to intersect Σ1 transversely at B0.
Now suppose Λ is incident to Σ1 at a rank-one matrix B0, i.e.,

RB0 ⊂ Λ.

Again, let A0 be a matrix with ker(A0) = im(B0) and im(A0) =
ker(B0). Dualizing, we have Λ⊥ ⊂ B⊥

0 = TA0Σ2 and the intersection

Λ⊥ ∩RA0 ⊂ TA0Σ2

is nonzero. Pick a nonzero matrix

C ∈ Λ⊥ ∩RA0 .

If C has rank two then im(C) = im(A0) and ker(C) = ker(A0), thus
RC = RA0 and TCΣ2 = TA0Σ2. Here Λ⊥ fails to be transverse to Σ2 at
C. If C has rank one then

TCΣ1 = {M ∈ End(V ) : M(ker(C)) ⊂ im(C)}
⊂ {M ∈ End(V ) : M(ker(A0)) ⊂ im(A0)}
= TA0Σ2 = B⊥

0 .

Since Λ⊥ ⊂ B⊥
0 as well, the intersection

TCΣ1 ∩ Λ⊥ ⊂ B⊥
0

has dimension at least two, i.e., Λ⊥ meets Σ1 nontransversely at C.
Conversely, suppose that Λ⊥ is tangent to Σ1 at B0, i.e.,

span(B0) ( Λ⊥ ∩ TB0Σ1.
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Let A0 denote a matrix with im(A0) = ker(B0) and ker(A0) = im(B0).
Dualizing, we find that

Λ + RA0 ( B⊥
0 and Λ ∩RA0 6= 0.

Let C be a nonzero matrix in this intersection. If C has rank one then
Λ meets Σ1 nontrivially and we’re done. If C has rank two then it has
the same image and kernel as A0, whence TCΣ2 = B⊥

0 and Λ ⊂ TCΣ2,
i.e., Σ2 and Λ fail to be transverse at C.

Now suppose Λ⊥ is tangent to Σ2 at a matrix A0 of rank two, i.e.,

A0 ⊂ Λ⊥ ⊂ TA0Σ2.

Again, choose B0 to be a matrix with im(B0) = ker(A0) and ker(B0) =
im(A0) so that B0 ∈ RB0 = TA0Σ

⊥
2 . Dualizing yields B0 ∈ Λ, i.e., Λ

intersects Σ1. �

We use this to interpret our determinantal expressions for cubic hy-
persurfaces. Recall that dim(V ) = 3. Tensor multiplication

V × V ∨ → End(V )

gives the Segre embedding

P(V ) × P(V ∨) →֒ P(End(V )),

whose image has degree six and coincides with P(Σ1). Given a four-
dimensional subspace

Λ ⊂ End(V )

the intersection

(4) S := P(Λ ∩ Σ2) ⊂ P(Λ) ≃ P3

is a determinantal cubic surface. It is smooth precisely when Λ meets
Σ2 transversely at smooth points. Then we obtain an embedding

S →֒ P(V ) × P(V ∨)
s 7→ (ker(s), im(s))

such that the projections induce the blow-up realizations of S (cf.
Proposition 6)

β : S → P(V ), β∨ : S → P(V ∨).

Let Λ⊥ be the orthogonal complement to Λ with respect to the trace
pairing. Then

(5) Y := P(Λ⊥ ∩ Σ2) ⊂ P(Λ⊥) ≃ P4

is a determinantal cubic threefold. It is necessarily singular along the
points of P(Λ⊥ ∩Σ1). If P(Λ⊥) intersects P(Σ1) and the smooth points
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of P(Σ2) transversely then the Bezout theorem implies that the singular
locus of Y is

{p1, . . . , p6} := P(Σ1 ∩ Λ⊥).

Note that these give a sextuple of points in P(V ) × P(V ∨) ≃ P2 × P2;
a straightforward cohomology computation shows these are in linear
general position in P(End(V )).

Proposition 10. Let S and Y be determinantal cubic hypersurfaces
defined by Equations 4 and 5 above. Then Y is a cubic threefold with
six ordinary double points in linear general position if and only if S is
a smooth cubic surface. We thus obtain a identification














determinantal cubic
threefolds with six

ordinary double points
in linear general position















≃
{

determinantal cubic surfaces
without singularities

}

that is equivariant with respect to the action of G.

Indeed, Proposition 9 says we can identify the open subsets in

Gr(4,End(V )) = Gr(5,End(V ))

where our transversality conditions hold.

4. Geometric applications of the determinantal

description

In this section, we assume that S and Y satisfy the conclusions of
Proposition 10. The determinantal description allows a transparent
derivation of many of the key properties of Y .

Proposition 11. Let F (Y ) denote the variety of lines on Y . We have
a natural surjective morphism

ν : P(V ) ⊔ S ⊔ P(V ∨) → F (Y )

that maps each component birationally onto its image.

Proof. For each point [v] ∈ P(V ), let

ℓ[v] = {y = [φ] : φ(v) = 0} = {y = [φ] : v ∈ ker(φ)} ⊂ Y

where φ ∈ End(V ) represents y ∈ Y ⊂ P(Λ⊥). This is a linear subspace
of codimension at most three in P(Λ⊥). Indeed, elements of

Λ⊥ ∩ {M : v ⊂ ker(M)}
automatically have vanishing determinants. Lemma 1 guarantees Y
does not contain any planes, so we conclude that ℓ[v] is a line.
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Similarly, for [v∨] ∈ P(V ∨) we also get lines

ℓ[v∨] = {y = [φ] : v∨ ◦ φ = 0} = {y = [φ] : v∨ ∈ ker(φt)} ⊂ Y.

Given s = [σ] ∈ S with σ ∈ Λ, we have the locus

ℓs = {y = [φ] : σφσ = 0} ⊂ Y.

Since σ has rank two, this condition translates into the vanishing of
the 2 × 2 matrix of the induced map

im(σ)
φ→ V/ker(σ).

However, the orthogonality assumption tr(σφ) = 0 implies that there
are only three independent linear conditions. In particular, ℓs is a line
in Y .

Combining these three constructions, we obtain the morphism ν.
We next show that ν is surjective. Lemma 1 implies that F (Y ) is two-
dimensional. A standard intersection theory computation [19, 14.7.13]
shows that degF (Y ) = 45 (with respect to the Plücker embedding of
the Grassmannian). However, we can compute the pull back

ν∗OF (Y )(1) = (OP(V )(3),OS(3),OP(V ∨)(3))

which means that

deg(P(V )) = deg(P(V ∨)) = 9, deg(S) = 27.

Thus all the components of F (Y ) are in the image of ν; furthermore,
ν maps each component birationally onto its image. �

Corollary 12. Retain the notation of Proposition 11 and let y ∈ Y
be a nonsingular point. The components of F (Y ) dominated by P(V )
and P(V ∨) each admit a unique line passing through y. The component
dominated by S admits four lines passing through y.

Proof. The first statement is easily verified using linear algebra. The
second can be deduced from the fact that a generic y ∈ Y lies on six
lines in Y . �

Proposition 13. The morphism

ν : P(V ) ⊔ S ⊔ P(V ∨) → F (Y )

induces the following identifications: Consider the distinguished double-
six on S

{E1, . . . , E6;E
∨
1 , . . . , E

∨
6 },

with each 6-tuple blowing down to a collections of points

{q1, . . . , q6} ⊂ P(V ), {q∨1 , . . . , q∨6 } ⊂ P(V ∨).
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Let {ℓ1, . . . , ℓ6} and {ℓ∨1 , . . . , ℓ∨6 } be the lines in P(V ∨) and P(V ) dual
to these points. We have natural isomorphisms for each i:

ψi : ℓi
∼→ Ei, ψi(ℓi ∩ ℓj) = Ei ∩E∨

j ⊂ S,

ψ∨
i : ℓ∨i

∼→ E∨
i , ψi(ℓ

∨
i ∩ ℓ∨j ) = E∨

i ∩ Ej ⊂ S.

Proof. We break up the argument into two lemmas:

Lemma 14. The morphism ν maps Ei, E
∨
i ⊂ S, ℓi ⊂ P(V ∨) and ℓ∨i ⊂

P(V ) to the locus Ci of lines passing through pi. Furthermore, Ei and
ℓi parametrize y = [φ] ∈ Y such that im(φ) ⊃ im(pi); E

∨
i and ℓ∨i

parametrize y = [φ] such that ker(φ) ⊂ ker(pi). Here we regard the
singularity pi ∈ Y as an element Λ⊥ ∩ Σ1.

Proof. The determinantal description of S identifies

Ei = {s ∈ Λ : ker(s) = im(pi)}.
Similarly, we have

E∨
i = {s ∈ Λ : im(s) = ker(pi)}.

On the other hand,

ℓi = {im(s) : s ∈ Λ with ker(s) = im(pi)} ⊂ P(V ∨)

and
ℓ∨i = {ker(s)) : s ∈ Λ with im(s) = ker(pi)} ⊂ P(V ).

Thus for si = [σ] ∈ Ei

ν(si) = [{y = [φ] : φ(im(σ)) ⊂ ker(σ) = im(pi)}]
which is a line through pi. On the other hand, for v∨i ∈ ℓi (where
v∨i ∈ V ∨ satisfies v∨i (im(pi)) = 0) we have

ν(v∨i ) = [{y = [φ] : v∨i (im(φ)) = 0}]
which is also a line through pi. As we vary si ∈ Ei and v∨i ∈ ℓi, we get
the locus of y = [φ] such that im(φ) ⊃ im(pi).

The analogous statements for E∨
i and ℓ∨i are proven similarly. �

There is an obvious identification

(6)
ℓi = P(q⊥i ) = P((V/qi)

∨) = P(V/qi) = P(Hom(qi, V/qi))
= P(TqiP(V )) = Ei;

note that if W is a two-dimensional vector space then the isomorphism
W = W∨⊗∧2W induces a natural isomorphism P(W ) = P(W∨). This
is not the gluing inducing ν. However, note that this takes the points
ℓi ∩ ℓj to the intersections Ei ∩ lij , where lij is the proper transform of
the line joining qi and qj . Using (6), it suffices to express ψi and ψ∨

i as
automorphisms of Ei and E∨

i .
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The gluings ℓi ≃ Ei and ℓ∨i ≃ E∨
i will be obtained from the following:

Lemma 15. There exists a projectivity ψi : Ei → Ei mapping Ei ∩ lij

to Ei ∩ E∨
j for each j 6= i. The analogous statement holds for E∨

i .

Proof. For notational simplicity we take i = 1. Consider the conic
bundle S → P1 given by the pencil of cubics on P(V ) double at q1 and
containing q2, . . . , q6. The degenerate fibers are

l1j ∪ E∨
j , j = 2, . . . , 6.

The curve E1 is a bi-section of this conic bundle, so there is a covering
involution ψ1 : E1 → E1 taking l1j ∩ E1 to E∨

j ∩E1. �

It remains to check that this is in fact the identification induced by
ν. However, we know from Corollary 4 that ν glues the points Ei∩E∨

j ,
E∨
i ∩ Ej, to [ℓ(pi, pj)], the line in Y joining pi and pj . Now ℓi and ℓj

meet in P(V ∨), and ℓ∨i and ℓ∨j meet in P(V ); thus these points must
also be mapped by ν to [ℓ(pi, pj)]. In general, the isomorphisms ψi and
ψ∨
i are the unique ones identifying all these points. This finishes the

proof of Proposition 13. �

Proposition 16. The morphism ν is obtained by gluing P(V ), S, and
P(V ∨) using the identifications described in Proposition 13.

Proof. Let F ′ denote the surface obtained by gluing P(V ), S, and P(V ∨)
using the identifications ψi and ψ∨

i . Again, F ′ contains twelve distin-
guished rational curves

ℓi = Ei, ℓ
∨
i = Ei, i = 1, . . . , 6

and fifteen distinguished points

ℓi ∩ ℓj = Ei ∩ E∨
j = ℓ∨i ∩ ℓ∨j = E∨

i ∩Ej ,
which map surjectively onto F (Y )sing (by Corollary 4).

We have already seen that ν factors through F ′; it only remains to
prove that the induced morphism F ′ → F (Y ) is an isomorphism. Our
analysis of the gluings over F (Y )sing shows that ξ is a bijection over
F (Y )sing.

We first check that ν is the normalization of F (Y ). Proposition 11
shows that ν maps each irreducible component birationally onto its
image. It follows that the restrictions

P(V ) → ν(P(V )), P(V ∨) → ν(P(V ∨))

are normalization maps. Consider the factorization of ν|S through the
normalization of its image

S → ν(S)′ → ν(S);
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this reverses the identifications induced by the ψi and ψ∨
i . The im-

ages of the six lines E1, . . . , E6, (and E∨
1 , . . . , E

∨
6 ) in ν(S)′ are pairwise

disjoint. Hence S → ν(S)′ contracts no curves and thus is an isomor-
phism; S is the normalization of ν(S).

This analysis implies F ′ → F (Y ) is bijective.
The Fano scheme F (Y ) is defined by the degeneracy locus of a vector

bundle over the Grassmannian Gr(2, 5), with the expected dimension
(by Lemma 1). Thus F (Y ) is a local complete intersection scheme and
is Cohen-Macaulay; hence it has no embedded points and is seminor-
mal. The universal property of seminormalization then implies that
F ′ → F (Y ) is an isomorphism. �

The determinantal description offers a transparent construction for
the cubic scrolls on Y . Each point [v] ∈ P(V ) determines a line in
P(V ∨), which may be interpreted as a ruled surface Tv ⊂ Y using the
analysis of the components of F (Y ) in Proposition 11:

Proposition 17. For each [v] ∈ P(V ), the locus

Tv = {y ∈ Y : v ∈ im(y)}
is a cubic scroll. The ruling arises from the morphism

Tv → P(V/span(v))
y 7→ im(y)

with fibers ℓ[v∨], where v∨ 6= 0 ∈ V ∨ with v∨(v) = 0.
Similarly, for [v∨] ∈ P(V ∨) the locus

Tv∨ = {y ∈ Y : v∨(ker(y)) = 0}
is a cubic scroll. Each union

Tv ∪ Tv∨ = Y ∩Q
where Q is a quadric hypersurface.

If s ∈ S and ℓs denotes the corresponding line in Y then ℓs ⊂ Tβ(s)

(resp. Tβ∨(s)) is a section of the ruling.

Proof. Choose a basis v, v′, v′′ of V such that v∨(v′) = v∨(v′′) = 0. The
matrices in the closure of the locus of rank-two matrices with image
containing v can be written

B =





b11 b12 b13
b21 b22 b23
b31 b32 b33





where the bottom two rows are linearly dependent. This defines a
closed subset in P(End(V )). Geometrically, this is a cone over the
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Segre embedding

P1 × P2 ⊂ P5

with a vertex a projective plane. Intersecting this with Λ⊥ yields a
hyperplane section of P1 × P2, which is a cubic scroll.

On the other hand, the closure of the locus of rank-two matrices with
kernel annihilated by v∨ are those whose right two columns are linearly
dependent. The union of these two loci is given by the intersection

{det(B) = 0} ∩ {b22b33 − b23b32 = 0} ⊂ P(End(V )),

i.e., the intersection of P(Σ2) with a quadric hypersurface.
Recall that ℓs was defined in the proof of Proposition 11

ℓs = {y = [φ] : σφσ = 0}.
Fix a ruling in Tβ(s): Regarding β(s) = ker(σ) as a line in V , we choose
a two-dimensional subspace ker(σ) ⊂ U ⊂ V , and consider the matrices
φ with image U . This imposes one additional linear constraint on the
matrix entries of φ, so each ruling meets ℓs in one point.

�

Proposition 18. For each s ∈ S,

Tβ(s) ∩ Tβ∨(s) = ℓs ∪Rs

where Rs ⊂ Y is a twisted quartic curve passing through the singulari-
ties p1, . . . , p6.

Proof. Generically, the cubic scrolls are nonsingular and isomorphic to
P2 blown up at one point, in which case ℓs ⊂ Tβ(s) is the exceptional
curve. Let Rs denote the union of components of the intersection other
than ℓs. We have shown that Tβs∪Tβ∨(s) is a complete intersection of a
quadric and cubic in P4, and thus is a singular K3 surface. Adjunction
shows that

KTβ(s)
+Rs + ℓs ≡ 0;

hence Rs has degree four and genus zero. �

5. Cubic threefolds with six double points are

determinantal

Here we complete C. Segre’s determinantal construction of cubic
threefolds with six double points:

Proposition 19. Each cubic threefold with six ordinary double points
in linear general position is determinantal.
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We prove Proposition 19 using the geometry of the twisted quartic
curves in a determinantal cubic threefold, following [12, 3.2-3.4]. One
key tool is the Segre threefold S ⊂ P4; we recall its basic properties:

• Given p1, . . . , p6 ∈ P4 in linear general position, the linear series
of cubics double at these points induces a morphism

̟ : Blp1,...,p6P
4 → P4

with image S and fibers twisted quartic curves containing the
points p1, . . . , p6. If we choose p1 = [1, 0, 0, 0, 0],p2 = [0, 1, 0, 0, 0],
p3 = [0, 0, 1, 0, 0], p4 = [0, 0, 0, 1, 0],p5 = [0, 0, 0, 0, 1], and p6 =
[1, 1, 1, 1, 1] then the cubics double at these points are

y0 = (x3 − x4)x0(x1 − x2), y1 = (x4 − x0)x1(x2 − x3),
y2 = (x0 − x1)x2(x3 − x4), y3 = (x1 − x2)x3(x4 − x1),

y4 = (x2 − x3)x4(x0 − x1)

which satisfy

y0y1y2 + y1y2y3 + y2y3y4 + y3y4y0 + y4y0y1 = 0.

• S contains 10 ordinary double points and 15 planes.
• The nonsingular twisted quartic curves map to an open subset

of S that is isomorphic to M0,6, the moduli space of genus-
zero curves with six marked points. The morphism ̟ is the
universal family over M0,6.

• The inclusion M0,6 →֒ S extends to an isomorphism [24]

(P1)6//SL2
∼→ S

from the GIT quotient of six points in P1 with the symmetric
linearization.

Thus we have a morphism

(7)







cubic threefolds with
ordinary double points

at p1, . . . , p6







→







smooth cubic surfaces
arising as hyperplane

sections of S ⊂ P4







Remark 20. In general, M. Kapranov [28] [27, 4.3] has shown that
M0,n−1 can be identified with the rational normal curves in Pn−3 pass-
ing through points p1, . . . , pn−1 ∈ Pn−3 in linear general position. The
rational normal curves are the universal curve, with p1, . . . , pn−1 trac-
ing out the marked points. Identifying the universal curve over M0,n−1

with M0,n, there is a morphism

M0,n → Pn−3

(C, p1, . . . , pn) 7→ pn,

factoring through Blp1,...,pn−1P
n−3.
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Recall our previous notation: Let

{E1, . . . , E6;E
∨
1 , . . . , E

∨
6 }

denote the double-six on S, β : S → P(V ) and β∨ : S → P(V ∨) the
associated contractions, and

{q1, . . . , q6; q∨1 , . . . , q∨6 }
the images of the exceptional divisors. There is an involution of the
Picard lattice taking Ei to E∨

i for i = 1, . . . , 6. If the Picard lattice is
presented

ZL+ ZE1 + . . .+ ZE6, E2
i = −1, EiEj = δij, L

2 = 1, LEi = 0,

the involution takes the form

(8) Ei 7→ 2L−Ej − Ek −Ea − Eb −Ec = E∨
i ,

where {i, j, k, a, b, c} is a permutation of the indices {1, . . . , 6}.
We shall need a version of Cremona’s hexahedral construction [13,

16]:

Proposition 21. Let S◦ ⊂ S denote the complement to the lines in S.
For s ∈ S◦ consider the images of q1, . . . , q6 and q∨1 , . . . , q

∨
6 under the

projections

(9) P(V ) 99K P(V/β(s)) P(V ∨) 99K P(V ∨/β∨(s)),

which determine elements j(s), j∨(s) ∈ M0,6. Then we have the fol-
lowing:

• j(s) = j∨(s) for each s ∈ S◦;
• there exists an extension j : S → S;
• the image of j is a hyperplane section of S ⊂ P4;
• conversely, each smooth hyperplane section S ⊂ S is a cubic

surface with a distinguished ordered double-six.

Thus we obtain an identification






smooth cubic surfaces
with a double-six of

ordered lines







≃
{

smooth hyperplane
sections of S ⊂ P4

}

.

Proof. Fix s ∈ S◦ and consider the degree-two Del Pezzo surface S ′ :=
Bls(S) = Blq1,...,q7(P(V )). The projections (9) induce conic bundles

ϕ : S ′ → P1, ϕ∨ : S ′ → P1

with degenerate fibers corresponding to the images of q1, . . . , q6 and
q∨1 , . . . , q

∨
6 respectively. However, each degree-two Del Pezzo admits a

canonical involution, i.e. the covering involution of the anticanonical
morphism S ′ → P2. Moreover, ϕ and ϕ∨ are conjugate under this
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involution and thus have the same degenerate fibers. We conclude that
j(s) = j∨(s) in M0,6.

We extend j to S: Assume first that β(s) 6= q1, . . . , q6. We still have
a conic bundle ϕ : S ′ → P1 but the images of qi and qj in P1 coincide if
β(s) ∈ lij, the line joining qi and qj . However, since no three of the qi are
collinear at most two points may coincide, so the image of (q1, . . . , q6)
is a GIT-semistable point of (P1)6; this yields a well-defined point on
S. If β(s) = q1 then we can identify E1 = P(Tq1P(V )) = P(V/q1) and
the images of the qj, j = 2, . . . , 6 in P(V/q1) with the intersections of
the proper transforms of the l1j with E1. The rule

j(s) = (s, l12 ∩E1, . . . , l16 ∩ E1)

extends the definition of j over E1 ⊂ S. (This argument is very similar
to the proof of Lemma 15.)

A straightforward degree computation shows that j maps S to a
hyperplane section of S.

For the final statement, the fifteen planes of S cut out fifteen ordered
lines of S. The remaining lines form a double-six. �

Let Y ′ be a cubic threefold with ordinary double points at p1, . . . , p6;
̟ induces a rational map Y ′

99K S contracting the twisted quartic
curves in Y ′ to points of a smooth hyperplane section i : S →֒ S with
a distinguished double-six. After ordering the two sextuples of disjoint
lines, Proposition 10 yields a determinantal cubic hypersurface Y with
ordinary double points at p1, . . . , p6 corresponding to the marked cubic
surface S. By Proposition 18, the image of Y under ̟ is a hyperplane
section i2 : S →֒ S with the planes of S tracing out the corresponding
15 lines of S. Proposition 21 implies i1(S) = i2(S) and thus Y ≃ Y ′;
this yields an inverse to the morphism (7).

Remark 22. The natural map






determinantal cubic threefolds
with ordinary double points

at p1, . . . , p6







→







cubic threefolds with
ordinary double points

at p1, . . . , p6







is not an isomorphism. Under our identifications, these correspond to






determinantal cubic surfaces
with a sextuple of ordered

lines







→







cubic surfaces with a
double-six of ordered

lines







which has degree two. Indeed, this reflects the involution (8) inter-
changing the sextuples of our double-six.
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6. Constructing flops

Let X be a smooth cubic fourfold with hyperplane class h.

Proposition 23. Assume that X admits a hyperplane section Y ⊂ X
with six ordinary double points in linear general position. Then X
contains two families of cubic scrolls T and T∨, whose cycle classes
satisfy

[T ] + [T∨] = 2h2.

Conversely, if X is a smooth cubic fourfold containing a smooth cubic
scroll T then the hyperplane section

Y = X ∩ span(T )

has at least six double points, counted with multiplicities.

Proof. Assume that X admits a hyperplane section Y as above. We
may assume that Y is determinantal by Proposition 8. Proposition 17
guarantees that X contains two families of cubic scrolls, each parame-
trized by P2. Given T and T∨ from different families, we have

T ∪ T∨ = Y ∩Q
for some quadric hypersurface in P3. The equation on cycle classes
follows.

Now suppose that X contains a smooth cubic scroll T spanning the
hyperplane section Y . In suitable coordinates,

T = {[x0, . . . , x4] : rank

(

x0 x1 x2

x2 x3 x4

)

= 1}

and thus there exist linear forms y0, y1, y2 in x0, . . . , x4 such that

Y = {[x0, . . . , x4] : det





x0 x1 x2

x2 x3 x4

y0 y1 y2



 = 0},

i.e., Y is determinantal. The double points correspond to the matrices
of rank one (cf. Proposition 9). �

Theorem 24. Let X be a smooth cubic fourfold not containing a plane,
and F its variety of lines. Assume that X admits a hyperplane section
Y with six ordinary double points in linear general position. Write

F (Y ) = P ∪ S ′ ∪ P ∨

with normalization P2 ⊔ S ⊔ P2. Then there exist birational involutions

ι, ι∨ : F 99K F

which are regular away from P ∪ S ′ and P ∨ ∪ S ′ respectively.
Precisely, ι is factored as follows:
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(1) Flop P to get a new holomorphic symplectic fourfold F1; the
proper transform S1 of S is a plane in F1.

(2) Flop the S1 in F1 to get F2, which is isomorphic to F .

Proof. We construct ι: Let [m] ∈ F be a line not contained in F (Y ).
Then m ∩ Y = {y}, a nonsingular point of Y . By Corollary 12, there
exists a unique line ℓ∨ ∈ P ∨ containing y. Let Π denote the plane
spanned by ℓ∨ and m; by assumption, Π 6⊂ X. Thus we have

(10) Π ∩X = m ∪ ℓ∨ ∪ m̄
for some line m̄ ∈ F . Setting ι(m) = m̄, we get a morphism

ι : F \ F (Y ) → F.

Since (10) is symmetric in m and m̄, ι is an involution.
As constructed, ι is not well-defined along F (Y ). It remains to show

that it extends to m ∈ P ∨ \ (P ∪ S). Proposition 13 implies that m
does not contain any singularities of Y . The normal bundle to m in X
is one of the following [11, Proposition 6.19]

Nm/X ≃ O⊕2 ⊕O(1),O(−1) ⊕O(1)⊕2.

Since m does not contain any of the singularities of Y , Corollary 12
implies that we have the first case. But then there exists a distinguished
plane Π with

Π ∩X = 2m ∪ m̄,
i.e., Π corresponds to the directions associated with the O(1)-summand.
Consider the correspondence

Z = {(m, ℓ∨,Π) : Π ∩X ⊃ m ∩ ℓ∨} ⊂ F × P ∨ × Gr(2, 5);

the normal bundle computation guarantees that the projection

Z → F

is an isomorphism along P ∨ \ (P ∪ S). By definition, ι is regular on Z
and thus at the generic point of P ∨.

We will use the following notation for our factorization

F01 F12
β10

ւ
β01

ց
β21

ւ
β12

ց
F = F0 F1 F2

γ10

ց
γ01

ւ
γ21

ց
γ12

ւ
F̄01 F̄12

where β10 blows up P , β01 blows down the exceptional divisor of β10,
β21 blows up S1 (the proper transform of S), and β12 blows down
the exceptional divisor of β12. Here F̄01 and F̄12 denote the singular
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varieties obtained by contracting P and S1 to a point. In other words,
F2 is obtained from F0 by two Mukai flops. Moreover, we will show
that ι : F 99K F is resolved on passage to F2, so the induced

(11) ι2 : F2 → F

is necessarily an isomorphism.
Let P1 ⊂ F1 denote the plane that results from flopping P .

Lemma 25. S1 is isomorphic to P2 and meets P1 transversely at six
points.

Proof. Proposition 13 describes how S ′ and P intersect: S ′ has two
smooth branches meeting transversely in F , each of which meets P ≃
P2 in a line. If S◦ is the smooth locus of S ′ then

P ∩ S◦ ⊂ S◦

is Cartier, hence β−1
10 (S◦) ≃ S◦. However, S ′ fails to be Cohen-Macaulay

at the points of S ′ \ S◦, so any Cartier divisor through these points
would necessarily have an embedded point. In particular,

P ∩ S ′ ⊂ S ′

is not Cartier at singular points of S ′ and β10 necessarily modifies S ′

at these points.
We claim that the proper transform S01 of S ′ in F01 is just S. The

easiest way to see this is through a local computation. At each singu-
larity of S ′ choose local coordinates {x1, x2, x3, x4} such that

S ′ = {x1 = x2 = 0} ∪ {x3 = x4 = 0}, P = {x2 = x3 = 0}.
The blow-up of P has homogeneous equation

Ax3 = Bx2

and thus the proper transforms of the components of S ′ are disjoint
and mapped isomorphically onto their images.

We next show that β01 contracts the double-six in S corresponding to
the intersection of P with S ′. The key ingredient is the local description
of proper-transforms of Lagrangian submanifolds under Mukai flops
given in [30, §4.2]: Locally, a holomorphic-symplectic fourfold contain-
ing a plane looks like the total space of the cotangent-bundle of P2. In
the cotangent bundle, a complex Lagrangian submanifold is modelled
locally as the conormal sheaf N ∗

V of a complex submanifold V ⊂ P2.
The Mukai flop is realized as the cotangent bundle of the dual plane
P̌2; the proper transform of the Lagrangian submanifold looks locally
like the conormal sheaf N ∗

V̌
of the projective dual V̌ ⊂ P̌2. Since each
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branch of S ′ looks locally like N ∗
ℓ for a line ℓ ⊂ P2, its proper trans-

form looks locally like N ∗
[ℓ], where [ℓ] ∈ P̌2 classifies ℓ. In particular, the

proper transform S1 meets P1 in six points and β01 : S01 → S1 blows
down the double-six (corresponding to S ′ ∩ P ) to these points.

The analysis in Proposition 13 implies S1 ≃ P2, and thus is a La-
grangian plane in F1. �

We define F2 as the Mukai flop of this plane and let S2 denote the
resulting plane, P2 the proper transform of P1, and

φ : F2 99K F

the composition of Mukai flops. Now P2 is isomorphic to a cubic sur-
face, meeting S2 along a double-six as described before.

It remains to show that ι is resolved on F2. Let g denote the po-
larization on F ⊂ Gr(2, 5) induced by the hyperplane class on the
Grassmannian. The pull back ι∗g is globally generated away S∪P , the
indeterminacy of ι. We shall use the following result of Boucksom [7]:
Let Z be an irreducible holomorphic symplectic variety and f a divisor
class on Z; then f is ample if and only if f meets each rational curve on
Z positively. In particular, ι∗g necessarily meets some rational curves
supported in S∪P negatively. Consider the map on one-cycles modulo
homological equivalence induced by normalization and inclusion

j∗ : N1(S̃,Z) ⊕N1(P,Z) → N1(F,Z).

This has a nontrivial kernel: The description in Proposition 13 implies
that

j∗(Ei, 0) = j∗(0, [line]), i = 1, . . . , 6,

hence j∗ has rank two, and the image of the effective curve classes is
spanned by λ1 = j∗(0, [line]) and λ2 = j∗(β

∗
01[line], 0). In particular,

all the effective curve classes where ι∗g is negative can be expressed as
linear combinations of λ1 and λ2 with nonnegative coefficients.

We now analyze the pull-back f = φ∗ι∗g. Since φ is an isomorphism
away from P2 ∪ S2, any curve of F2 not contained in P2 ∪ S2 meets f
positively. Just as before, the image of the effective curve classes in
P2 ∪ S2 are a cone generated by two classes λ′1 and λ′2. However, using
the identifications

H2(F2,Q)
∼−→ H2(F2,Q)

ι∗−→ H2(F,Q)
∼−→ H2(F,Q)

we see that λ′1 = −λ1 and λ′2 = −λ2. It follows that f is positive along
all curves classes in F2 and thus is ample.
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To reiterate, the composition (cf. Equation 11)

ι2 = ι ◦ φ : F2 99K F

is a birational map of smooth projective varieties, and takes the ample
divisor g to an ample divisor f . It follows that φ is an isomorphism. �

Remark 26. The strategy of our argument is due to Burns-Hu-Luo
[9], who prove that any birational morphism of irreducible holomorphic
symplectic varieties with normal exceptional loci is a sequence of Mukai
flops. The normality assumption can be eliminated (cf. [40, 1.2]).

Proposition 27. Retain the notation of Theorem 24. Let [v] ∈ P(V )
and T∨ := Tv ⊂ Y denote one of the cubic scrolls described in Propo-
sition 17. The divisor

τ∨ = {[m] ∈ F : m ∩ T∨ 6= ∅} ⊂ F

is invariant under ι.

Proof. By Proposition 17, the ruling of T∨ is the rational curve

λ∨1 = {[v∨] : v∨(v) = 0} ⊂ P ∨ ⊂ F (Y ) ⊂ F.

If m is incident to T∨ then m meets some ruling ℓ[v∨] ⊂ T∨ where [v∨] ∈
λ∨1 . Thus ℓ[v∨] coincides with the line ℓ∨ used in the construction of ι.
Since the lines {m, ℓ[v∨], ι(m)} are coplanar, we have ι(m) ∩ ℓ[v∨] 6= ∅
and ι(m) ∈ τ∨. �

7. Cones of moving and ample divisors

Let X be a smooth cubic fourfold and F its variety of lines. The
incidence correspondence

Z
π

ւ
ψ

ց
X F

induces the Abel Jacobi map of integral Hodge structures [6]

α = ψ∗φ
∗ : H4(X) → H2(F ).

This is compatible with quadratic forms: Writing g = α(h2) we have

(g, g) = 2
〈

h2, h2
〉

= 6

and
(α(z1), α(z2)) = −〈z1, z2〉 for all z1, z2 ∈ (h2)⊥.

For general cubic fourfolds we have

H4(X,Z) ∩H2,2(X,C) = Zh2,

but special cubic fourfolds admit additional algebraic cycles [21]:
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Proposition 28. Let C denote the moduli space of smooth cubic four-
folds and Cd ⊂ C the cubic fourfolds X admitting a rank-two saturated
lattice of Hodge cycles

h2 ∈ Kd ⊂ H4(X,Z) ∩H2,2(X,C)

of discriminant d. Then Cd is nonempty if and only if

d ≡ 0, 2 (mod 6), d > 6.

In this case, Cd is an irreducible divisor in C.

Assume that X contains a smooth cubic scroll T and let Y denote
the hyperplane section of X containing T . The intersection form 〈, 〉
on the middle cohomology of X restricts to

K12 :=
h2 T

h2 3 3
T 3 7

a lattice of discriminant 12. Moreover, C12 is the closure of the locus of
cubic fourfolds containing a cubic scroll or a hyperplane section with
six double points in general position.

Let τ = α(T ) so that the Beauville-Bogomolov form restricts to

J12 :=
g τ

g 6 6
τ 6 2

a lattice of discriminant −24. We summarize elementary properties of
this lattice:

(1) The elements of J12 ⊗Z R with nonnegative Beauville form are
a union of convex cones P ∪−P where

P = Cone
(

g − (3 −
√

6)τ, (3 +
√

6)τ − g
)

.

(2) J12 does not represent −2 or 0.
(3) The automorphism group of J12 is isomorphic to the direct prod-

uct of 〈±1〉 and the infinite dihedral group

Γ :=
〈

R1, R2 : R2
1 = R2

2 = 1
〉

where the reflections R1, R2 can be written

R1(g) = g R1(τ) = 2g − τ
R2(g) = −g + 6τ R2(τ) = τ.

Γ consists of the automorphisms taking P to itself.
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(4) J12 represents −10. We list (−10)-classes with positive inter-
section with g:

class intersection with g
...

...
ρ∨3 = 16τ − 3g (ρ∨3 , g) = 78
ρ∨2 = 4τ − g (ρ∨2 , g) = 18
ρ∨1 = 2τ − g (ρ∨1 , g) = 6
ρ1 = 3g − 2τ (ρ1, g) = 6
ρ2 = 7g − 4τ (ρ2, g) = 18
ρ3 = 29g − 16τ (ρ3, g) = 78

...
...

For j ≥ 3 we define recursively

ρj = (R1R2)ρj−2 and ρ∨j = (R2R1)ρ
∨
j−2.

(5) The element R1R2 has infinite order and acts on the (−10)-
classes with orbits:

{. . . , ρ∨3 , ρ∨1 ,−ρ2, . . .} {. . . ,−ρ∨3 ,−ρ∨1 , ρ2, . . .}
{. . . ,−ρ∨2 , ρ1, ρ3 . . .} {. . . , ρ∨2 ,−ρ1,−ρ3 . . .}.

The element R1 has order two and acts via

R1(ρi) = ρ∨i

for each i.

Proposition 29. Let X be a smooth cubic fourfold with variety of lines
F . Assume that X contains a smooth cubic scroll T with

H4(X,Z) ∩H2,2(X,C) = Zh2 + ZT

or equivalently

H2(F,Z) ∩H1,1(F,C) = Zg + Zτ.

The nef cone of F equals the cone dual to Cone(ρ1, ρ
∨
1 ), i.e., Cone(α1, α

∨
1 )

where α1 = 7g − 3τ and α∨
1 = g + 3τ .

Proof. The main theorem of [23] asserts that a divisor class f on F is
nef if (f, ρ) ≥ 0 for each divisor class ρ on F satisfying (g, ρ) > 0 and
either (ρ, ρ) ≥ −2 or (ρ, ρ) − 10 and (ρ,H2(F,Z)) = 2Z. Thus the nef
cone contains Cone(α1, α

∨
1 ).

It remains to show that α1 and α∨
1 are at the boundary of the nef

cone. We show they induce nontrivial contractions of F . It suffices to
prove this for a generic cubic fourfold containing a cubic scroll, so we
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may assume Y has exactly six ordinary double points in linear general
position. It follows that there exist Lagrangian planes

P, P ∨ ⊂ Y ⊂ F

such that lines λ1 ⊂ P and λ∨1 ⊂ P ∨ both have degree three. The
classes of these lines are dual to ρ1 and ρ∨1 respectively. The divisors
α1 and α∨

1 induce small contractions

γ10 : F = F0 → F̄01, γ∨01 : F0 → F̄∨
10

of P and P ∨ respectively. �

We may flop the plane P (resp. P ∨) in F to obtain new holomorphic
symplectic fourfold F1 (resp. F∨

1 ). The birational maps between F, F1,
and F∨

1 induce identifications of their Picard groups. The first step in
analyzing their nef cones is to enumerate the orbit of α1 under Γ:

class intersection with g
...

...
α∨

2 = R2R1(α1) = 9τ − g (α∨
2 , g) = 48

α∨
1 = R1(α1) = g + 3τ (α∨

1 , g) = 24
α1 = 7g − 3τ (α1, g) = 24
α2 = R1R2(α

∨
1 ) = 17g − 9τ (α2, g) = 48

...
...

For j ≥ 3 we define recursively

αj = R1R2(αj−2) and α∨
j = R2R1(α

∨
j−2).

Observe that (α∨
i , ρ

∨
i ) = (αi, ρi) = 0 for each i ≥ 1.

Proposition 30. The nef cone of F1 (resp. F∨
1 ) equals Cone(α1, α2)

resp. Cone(α∨
2 , α

∨
1 ).

Figure 1 illustrates the relative positions of the nef cones of F and
its flop F1.

Proof. Since F1 is the flop of F along P , it is clear that α1 (which
induces the contraction of P ) is one generator of the nef cone. The fac-
torization given in Theorem 24 shows that ι induces a regular involution
on F1. Proposition 27 implies that ι fixes the divisor

τ∨ = α(T∨) = α(2h2 − T ) = 2g − τ,

where the middle equality uses Proposition 23. Consequently, ι acts on
J12 via the reflection R3 through the line orthogonal to 2g − τ

R3(g) = 11g − 6τ, R3(τ) = 20g − 11τ.
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positive cone P
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τ nef cone of flop of F

g

Figure 1. The nef cones of F and F∨
1

The second generator of the nef cone of F1 is thus

R3(α1) = 17g − 9τ = α2.

�

Theorem 24 gives isomorphisms between every second model, so
Proposition 29 and 30 suffice to describe the nef cone of every model
of F (see Figure 2). We summarize our whole discussion:

Theorem 31. Suppose that X is a smooth cubic fourfold containing a
smooth cubic scroll T with

H4(X,Z) ∩H2,2(X,C) = Zh2 + ZT

and let F = F0 denote the variety of lines on X. Then we have an
infinite sequence of Mukai flops

· · ·F∨
2 99K F∨

1 99K F0 99K F1 99K F2 · · ·
with isomorphisms between every other flop in this sequence

· · ·F∨
2

∼→ F0
∼→ F2 · · · and · · ·F∨

1
∼→ F1 · · ·

The positive cone of F can be expressed as the union of the nef cones
of the models {· · · , F∨

1 , F0, F1, · · · }:
· · · ,Cone(α∨

2 , α
∨
1 ), Cone(α∨

1 , α1), Cone(α1, α2), · · ·
The isomorphisms induce an action of Z ≃ 〈R1R2〉 ⊂ Γ on the Picard
group of F .
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Figure 2 is a schematic illustration of the partition of the posi-
tive cone into ample cones for isomorphism classes of minimal models.
This verifies the conjectures of [22] for the birational models of F . It
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Figure 2. Partition of the positive cone into ample
cones for various minimal models

also illustrates the Finiteness of Models Conjecture of Kawamata and
Morrison–here we have two birational models up to isomorphism.

Remark 32 (Application to rational points). Let F be the variety of
lines of a cubic fourfold X containing a cubic scroll T , both defined
over a field k. Assume that the hyperplane section containing T has
precisely six ordinary double points in linear general position and X
does not contain a plane. Then k-rational points on F are Zariski
dense. Indeed, the infinite collection of Lagrangian planes defined over
k is Zariski dense.

If the Picard group of F has rank two then

• F does not admit regular automorphisms, and
• F is not birational to an abelian fibration.

Potential density of rational points on varieties of lines on generic
cubic fourfolds over number fields has recently been established in [2].
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