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1. Introduction

Let A be an abelian variety over a finite field k of characteristic p,
and A[`n] ⊂ A(k̄) the subgroup of `n-torsion points on A. Let

T`(A) := lim←−A[`n], ` 6= char(k),

be the Tate module of A. It carries a natural action of the k-Frobenius
automorphism. A classical theorem of Tate [6] linearizes the study of
morphisms between abelian varieties defined over k:

Homk(A, Ã)⊗ Z` = HomZ[Fr](T`(A), T`(Ã)).

A far-reaching generalization of this result is the Tate conjecture, as-
serting algebraicity of Tate classes, i.e., `-adic cohomology classes con-
formally invariant under the action of Frobenius.

In this note we provide an alternative condition for the existence
of surjective morphisms between abelian varieties and, more generally,
Tate classes in the cohomology of products of arbitrary algebraic vari-
eties. It is formulated in terms of divisibility properties for the number
of points over infinite sequences of finite field extensions.

Let X be a smooth projective algebraic variety of dimension d defined
over k. Let

FX := ∪d
i=1FX,i,
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where FX,i = {ρij} is the set of Frobenius eigenvalues (roots of the
characteristic polynomial) on the torsion-free part of the étale cohomo-
logy group H i

et(X, Z`). Let ΓX ⊂ C∗ be the multiplicative subgroup
generated by FX . Our main results are:

Theorem 1. Let X, resp. X̃, be a smooth projective variety over a
finite field k1, resp. k̃1. Let kn/k1, resp. k̃n/k̃1, be the unique extension
of degree n. Assume that

#X̃(k̃i) | #X(ki),

for infinitely many n ∈ N. Then char(k̃1) = char(k1) and

(1.1) ΓX̃ ⊗Q ⊆ ΓX ⊗Q.

Theorem 2. Let X and X̃ be abelian varieties satisfying the conditions
of Theorem 1. Then there exists a morphism X → X̃, which induces
the embedding (1.1). In particular, if dim(X) = dim(X̃) then X and
X̃ are isogenous.

Acknowledgments: The first author was partially supported by NSF
grant DMS-0701578. The second author was partially supported by
NSF grant DMS-0602333.

2. Recurrences and divisibility

A function R : N→ C is called a simple linear recurrence if

R(n) =
∑
γ∈Γ0

cγγ
n,

where cγ ∈ C∗ and Γ0 ⊂ C∗ is a finite set of roots of R. Such a function
satisfies a recurrence equation:

R(n + r) =
r−1∑
i=0

aiR(n + i),

for some ai ∈ C and all n ∈ N.
Assume that the multiplicative group Γ ⊂ C∗ generated by the set

of roots Γ0 is torsion-free. Fix a basis {γ1, . . . , γr} of Γ. Let C[Γ]
be the corresponding algebra of Laurent polynomials, i.e., finite linear
combinations of monomials xγ =

∏r
j=1 x

gj

j , where

γ =
r∑

i=1

giγi ∈ Γ.
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Let RΓ be the ring of simple linear recurrences with roots in Γ. It
is isomorphic to the unique factorization domain C[Γ] (see [2, Lemma
2.1]). The element in C[Γ] corresponding to a linear recurrence R will
be denoted by FR.

Lemma 3. Assume that Γ is torsion-free. Let

F (x) =
∑
γ∈Γ0

cγx
γ, F̃ (x) =

∑
γ̃∈Γ̃0

c̃γ̃x
γ̃ ∈ C[Γ]

be Laurent polynomials. Assume that

• c0 and c̃0 are not equal to zero,
• F̃ | F in C[Γ].

Then the Q-subspace of Γ ⊗ Q generated by Γ̃0 is contained in the Q-
subspace generated by Γ0.

Proof. Let Π ⊂ Γ⊗Q be the Q-subspace generated by γ ∈ Γ0 and let
Γ̄ := Π∩Γ. Then F is a regular function on the torus T = Hom(Γ, C∗)
which is lifted from the quotient torus T̄ = Hom(Γ̄, C∗). In particular,
F is constant on the fibers of projection T→ T̄. The zero-divisor of F̃
is induced from T̄. Hence F̃ is a product of a unit in C[Γ] (a monomial)
and an element of C[Γ̄]. Since both F and F̃ have nontrivial constant
term it follows that F̃ ∈ C[Γ̄], contradiction. �

Lemma 4. [1, Lemma 6.2] Assume that Γ is torsion-free and let γ =∑r
i=1 giγi be a primitive element in Γ, i.e., gcd(g1, . . . , gr) = 1. Then

xγ−λ is irreducible in C[Γ], for all λ ∈ C∗. If γ, γ′ generate a noncyclic
subgroup in Γ then xγ − λγ and xγ′ − λγ̃ are coprime in C[Γ].

Lemma 5. Let R and R̃ be simple linear recurrences such that

(1) R(n), R̃(ñ) 6= 0, for all sufficiently large positive integers n, ñ.
(2) The subgroup Γ ⊂ C∗ generated by the roots of R and R̃ is

torsion-free.
(3) There is a finitely-generated subring A ⊂ C with R(n)/R̃(n) ∈

A, for infinitely many n ∈ N.

Then
Q : N → C

n 7→ R(n)/R̃(n)

is a simple linear recurrence. In particular, FQ ∈ C[Γ] and

FQ · FR̃ = FR.

Proof. See [2, p. 434] and [1, Proposition 6.1]. �
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More generally, let Γ′ ⊂ C∗ be any finitely-generated group. Fix a
splitting Γ′ = Γ⊕Z/m, where Z/m = {ζj

m} is the group of m-th roots
of 1. A simple linear recurrence R with roots in Γ′ defines m Laurent
polynomials FR,j ∈ C[Γ]. Indeed, each root has the form

γ′ = ζd(γ′)
m γ, for some d(γ′) ∈ N,

and we have
R(n) =

∑
γ′

cγ′ζnd(γ′)
m γn.

Put
cγ,j := cγ′ζjd(γ′)

m

and
Rj :=

∑
γ

cγ,jγ
n, j = 1, . . . ,m.

This gives rise m recurrences and corresponding elements in C[Γ]. We
have Rj(n) = R(n), for n ≡ j mod m. Lemma 5 can be extented to

R and R̃ as follows:

Lemma 6. Let R, R̃ be simple linear recurrences satisfying the con-
ditions (1) and (3) of Lemma 5. Assume that the subgroup Γ′ ⊂ C∗

generated by the roots of R and R̃ has torsion Z/m. Fix a presentation
Γ′ = Γ⊕ Z/m. Then there exists a j ∈ {1, . . . ,m} and subrecurrences
Rj, resp. R̃j, such that

R̃j(n) | Rj(n)

for infinitely many n. In particular,

FR̃j
| FRj

in C[Γ].

Proof. If suffices to observe that at least one of the congruence classes
mod m contains infinitely many n such that R̃(n) | R(n) and to apply
Lemma 5. �

3. Weil numbers

Let Q(ζ∞) be the cyclotomic field containing all roots of 1. Let

Wp ⊂ Q̄∗

be the multiplicative group Q-generated by all eigenvalues of a p-
Frobenius on `-adic cohomology (` 6= p) of all algebraic varieties over
finite fields of characteristic p. In particular, it contains all rational
powers of p. The group Wp has the following properties:

• Q(ζ∞) ⊆ Wp;
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• it is preserved under the action of the Galois group Gal(Q̄/Q);
• it is Q-generated by p-Frobenius eigenvalues on cohomology of

abelian varieties defined over F̄p (by Honda’s theorem [4], [7]);
• an algebraic integer ω is inWp if and only if for every embedding

ι : Q̄ ↪→ C one has |ω| = pr, for some r ∈ Q [3].

Let L/Q be the (unique) nontrivial quadratic extension of the max-
imal totally-real extension of Q. Then L/Q is normal, with Galois
group G := Gal(L/Q). Note that G acts on Wp, for each p.

Proposition 7. Let α ∈ Q̄ be such that |ι(α)| = 1, for all embeddings
ι : Q̄ ↪→ C. Then it can be factored

α =
∏

p

ωp, with ωp ∈ Wp.

Moreover, this representation is unique, modulo multiplication by ele-
ments in Q(ζ∞).

Proof. If α is an integer satisfying the assumption then it is a root of
1. If α admits a real embedding, then α = ±1, and there is nothing
to prove. Same holds for the Galois-conjugates of α. In particular, the
field K := Q(α) has no real embeddings and 2d := [K : Q]. For every
ι : K ↪→ C, we have 1/ι(α) = cι(α), where cι is the corresponding
complex conjugate. Im m := [K : Q] then {1, α, . . . , αm−1} is a basis
of the m-dimensional Q-vector space K = Q(α) and the Q-linear map
K → K that sends a basis element αi to α−i is an automorphism of
the field K that coincides with the complex conjugation for every field
embedding K ↪→ C. Let K0 be the totally real subfield of K whose
elements are fixed by σ. Let OK be the ring of integers in K. The
group O∗

K/O∗
K0 is 2-torsion, modulo roots of 1. Let h be the class

number of K and NK/Q the norm map.
Choose an n ∈ N so that nα ∈ OK . Since n/α and nα are Galois

conjugated, it follows that n/α ∈ OK . We have |ι(nα)| = n, for all ι.
The principal OK-ideal (nα) has norm n2d. Let p be a prime dividing
n and write n = pmñ, with p - ñ. Put

(nα) = q · ñ,

where q, ñ are coprime OK-ideals and NK/Q(q) = p2dm. We have

qh = (φp), ñh = (ν̃),

principal OK-ideals with integral generators φp, and ν̃, respectively.
We have

(nα)h(σ(nα))h = (φp)(σ(φp))(ν̃)(σ(ν̃))
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and
(p)4dmh(ñ)h = (φp)(σ(φp))(ν̃)(σ(ν̃)),

with coprime p and ñ, resp. (φp)(σ(φp)) and (ν̃)(σ(ν̃)). It follows that
we can write (modulo roots of 1)

φ2
pσ(φp)

2 = p8dmh · u2,

where u is a unit in OK . We may assume that u ∈ O∗
K0 (after raising

both sides of the equation to a sufficiently high 2 power, if necessary).
In particular, u is fixed by σ, and cι for all ι. Put ωp := φ2

p/u. Then

ωpσ(ωp) = p8dmh.

The same holds for ι(ωp), in all embeddings ι : K ↪→ C. Thus ωp is an
algebraic integer such that |ι(ωp)| = p4dmh, i.e., a p-Weil number.

Continuing inductively (over the prime divisors of n), we obtain a
finite product decomposition

n2hα2h =
∏

p

ωp,

modulo roots of 1, where each ωp is a p-Weil number. Thus α ∈
∏

pWp,
as claimed.

To show uniqueness, assume that there are distinct representations∏
p

ωp =
∏

p̃

ωp̃.

Since each Wp is a multiplicative group we can combine elements cor-
responding to the same p and obtain

αS :=
∏
p∈S

ωp =
∏
p̃∈S̃

ωp̃ =: αS̃,

where S, S̃ are (nonempty) disjoint finite sets of primes. We can choose
coprime nS, nS̃ ∈ N (e.g., divisible only by primes in S, resp. S̃), such
that both nSαS and nS̃αS̃ are algebraic integers. Let cS, cS̃ ∈ N be such
that cSnS − cS̃nS̃ = 1. It follows that αS is also an algebraic integer,
necessarily a root of 1. This proves uniqueness. �

4. Tate lattices

Let X be a smooth projective algebraic variety of dimension d over
a finite field k of characteristic p. Let kn/k be the unique extension of
degree n. Then

#X(kn) = tr(Frn) =
d∑

i=1

(−1)icijρ
n
ij,
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where cij ∈ C∗ and FX,i = {ρij} is the set of eigenvalues of Fr on the
étale cohomology H i

et(X, Q`), with ` 6= p. We have #X(kn) 6= 0, for
all n� 0. This gives a simple linear recurrence RX as in Section 2.

Put FX := ∪iFX,i and let ΓX ⊂ C∗ be the multiplicative subgroup
generated by FX . This group was introduced and studied in [8]. It
contains a cyclic subgroup qZ generated by q (arising from the polar-
ization). For γ ∈ FX,i define

ι(γ) := qi/γ ∈ FX,i.

This involution extends to ΓX . Let ΛX ⊂ ΓX be the monoid generated
by FX . This monoid is preserved by the Galois group G of the nontrivial
quadratic extension of the totally-real closure of Q, in particular, by ι.
The cone ΛX,R ⊂ ΓX ⊗ R is strictly convex, rational and polyhedral.

Lemma 8. We have a natural isomorphism

ΓXn ⊗Q = ΓX ⊗Q.

Moreover,

ΛX = ΛXn .

Theorem 9. Let X and X̃ be smooth projective varieties over a finite
field k1, resp. k̃1. Assume that

#X̃(k̃n) | #X(kn)

for infinitely many n ∈ N. Then char(k1) = char(k̃1) and

ΓX̃ ⊗Q ⊆ ΓX ⊗Q.

Proof. Let Γ′ ⊂ C∗ be the group generated by Frobenius eigenvalues
on the cohomology of X and X̃. Applying Lemma 6 and considering
n confined to an arithmetic progression, if necessary, we arrive at two
recurrences RX and RX̃ such that

• the group Γ generated by the roots of RX and R̃X is torsion-free;
• RX̃(n) = #X̃(k̃n) | #X(kn) = RX(n), for infinitely many n.

By Lemma 5, we obtain the divisibility in C[Γ] of the corresponding
Laurent polynomials

FX̃ | FX .

Now we can apply Lemma 3.
Finally, if p = char(k1) 6= char(k̃1) then the group pa ⊂ C∗, with

a ∈ Q, is contained in ΓX but not in ΓX̃ , contradiction. �

Remark 10. Assume that ΓX̃⊗Q ⊆ ΓX⊗Q. Let γ ∈ ΛX̃ ∩ΛX . Then

there exist m, i, j ∈ N and classes cm ∈ H i
et(X

m, Z`), c̃m ∈ H i
et(X̃

m, Z`),
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both with eigenvalue γj. Let ι(c̃m) ∈ H i
et(X̃

m, Z`) be a cohomology
class with eigenvalue qi/γj.

The classes cm and ι(c̃m) define minimal Frobenius-invariant Z`-
subspaces in the corresponding cohomology groups. The tensor product
of these subspaces in H2i

et (X
m× X̃m, Z`) contains a nontrivial subspace

of Tate classes.

5. Abelian varieties

In this section we prove Theorem 2, following an argument in [1].
Let A be an abelian variety of dimension g defined over a finite field

k1 of characteristic p, and let {ρj}j=1,...,2g be the set of eigenvalues of
Frobenius on H1

et(A, Q`), for ` 6= p. Let kn/k1 be the unique extension
of degree n. The sequence

(5.1) R(n) := #A(kn) =

2g∏
j=1

(ρn
j − 1).

is a simple linear recurrence. Assume that the group Γ′ ⊂ C∗ generated
by {ρj}j=1,...,2g has torsion of order m. Choose a splitting Γ′ = Γ⊕Z/m
as in Section 2, with Γ torsion-free. Let Rj be a subrecurrence as in
Lemma 6. The corresponding Laurant polynomial has the form

FRj
=

2g∏
u=1

(zux
αu − 1),

where zu are m-th roots of 1, and αu ∈ Γ. The ρj are q-Weil numbers,
i.e., all Galois-conjugates have absolute value

√
q. Same holds for all

xαu . Thus, for u 6= u′ we have either αu = αu′ or αu, αu′ generate a
sublattice of rank 2 (since Γ is torsion-free). We get a subdivision of
the sequence of αu

{αu} = tt
s=1Is, t ≤ 2g,

into subsets of equal elements. Put ds = #IS and let αs ∈ IS.

Theorem 11. Let A and Ã be abelian varieties of dimension g, respec-
tively g̃, over finite fields k1, respectively k̃1. Let R and R̃ be simple
linear recurrences as in equation (5.1). Assume that R̃(n) | R(n) for

infinitely many n ∈ N. Then char(k1) = char(k̃1) and there exists a
morphism A→ Ã. In particular, if g = g̃ then A and Ã are isogenous.

Proof. Let Γ′ ⊂ C∗ be the group generated by {ρj}j=1,...,2g∪{ρ̃j}j=1,...,2g̃.
Choose a splitting Γ′ = Γ ⊕ Z/m as in Section 2, with Γ torsion-free
of rank r. Let Rj, resp. R̃j be subrecurrences as in Lemma 6, i.e.,
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Rj(n) = R(n) and R̃j = R̃(n) for infinitely many n = j mod m. It
follows that

FR̃j
| FRj

in C[Γ].

The Laurent polynomials have the form

FF̃j
=

t̃∏
s̃=1

(zs̃

r∏
i=1

xãis̃
i − 1)ds̃ , FRj

=
t∏

s=1

(zs

r∏
i=1

xais
i − 1)ds ,

where zs, zs̃ are some m-th roots of 1. Observe, that

gcd(zs

r∏
i=1

xais
i − 1, zs′

r∏
i=1

x
ais′
i − 1) ∈ C∗,

for s 6= s′, by Lemma 4. The same holds for R̃. We conclude that
t̃ ≤ t, that we can order the indices so that #Is ≤ #Ĩs, for s = 1, . . . , t̃;
and so that the multiplicative groups generated by αs ∈ Is and α̃s ∈ Ĩs

have rank 1, for each s = 1, . . . , t̃. For these s we have α̃s = αu
s ,

where u ∈ Q depends only on k1 and k̃1. It follows that there exists
N, Ñ ∈ N such that the Ñth power of each Frobenius eigenvalue of F̃r is
an Nth power of a Frobenius eigenvalue of Fr, with equal multiplicities
of the corresponding eigenvalues. We get a homomorphism of Frobenius
modules, and it suffices to apply Tate’s Theorem to conclude that A→
Ã. �

Remark 12. This result can be made effective. Although we ask
for divisibilty of infinitely many terms in the recurrence sequences,
in fact, results in [2] imply that divisibility of finitely many terms,
depending on A, Ã, will suffice. Actually, it suffices to bound from
below greatest common divisors between finitely many elements of the
recurrence sequences. Applications of these ideas to elliptic curves can
be found in [5].
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