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1. INTRODUCTION

Let A be an abelian variety over a finite field k of characteristic p,

and A[¢"] C A(k) the subgroup of ¢"-torsion points on A. Let
Ti(A) := lim A[¢"], ¢ # char(k),

be the Tate module of A. It carries a natural action of the k-Frobenius
automorphism. A classical theorem of Tate [6] linearizes the study of
morphisms between abelian varieties defined over k:

Homy, (A, A) ® Z; = Homye, (To(A), To(A)).

A far-reaching generalization of this result is the Tate conjecture, as-
serting algebraicity of Tate classes, i.e., {-adic cohomology classes con-
formally invariant under the action of Frobenius.

In this note we provide an alternative condition for the existence
of surjective morphisms between abelian varieties and, more generally,
Tate classes in the cohomology of products of arbitrary algebraic vari-
eties. It is formulated in terms of divisibility properties for the number
of points over infinite sequences of finite field extensions.

Let X be a smooth projective algebraic variety of dimension d defined
over k. Let

Sx = ngng,iv
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where Fx; = {p;;} is the set of Frobenius eigenvalues (roots of the
characteristic polynomial) on the torsion-free part of the étale cohomo-
logy group H',(X,Z). Let 'y C C* be the multiplicative subgroup
generated by §x. Our main results are:

Theorem 1. Let X, resp. X, be a smooth projective variety over a
finite field kq, resp. ky. Let ky/ky, resp. k,/ki, be the unique extension
of degree n. Assume that

#X (k) | #X (k).
for infinitely many n € N. Then char(k,) = char(k,) and
(1.1) l;®QCTlx®Q.

Theorem 2. Let X and X be abelian varieties satisfying the conditions
of Theorem 1. Then there exists a morphism X — X, which induces

the embedding (1.1). In particular, if dim(X) = dim(X) then X and
X are 1sogenous.

Acknowledgments: The first author was partially supported by NSF
grant DMS-0701578. The second author was partially supported by
NSF grant DMS-0602333.

2. RECURRENCES AND DIVISIBILITY

A function R : N — C is called a simple linear recurrence if

R(n) = Z "

~€ero

where ¢, € C* and [ ¢ C* is a finite set of roots of R. Such a function
satisfies a recurrence equation:

r—1
Rn+r)= Z a;R(n +1),
i=0

for some a; € C and all n € N.

Assume that the multiplicative group I' C C* generated by the set
of roots T'? is torsion-free. Fix a basis {y1,...,7.} of I'. Let C[T]
be the corresponding algebra of Laurent polynomials, i.e., finite linear

9i

combinations of monomials 27 = H;zl z;’, where

y=> gmeT.
i=1
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Let Rr be the ring of simple linear recurrences with roots in I'. It
is isomorphic to the unique factorization domain C[I'] (see [2, Lemma
2.1]). The element in C[I'] corresponding to a linear recurrence R will
be denoted by Fp.

Lemma 3. Assume that I" is torsion-free. Let

F(z) = Z e, F(x) = Z 527 € C[I

v€lo ’~y€fo
be Laurent polynomials. Assume that

e ¢y and ¢y are not equal to zero,
e ['| Fin C[I.

Then the Q-subspace of I' ® Q generated by Ty is contained in the Q-
subspace generated by I'y.

Proof. Let II C I' ® Q be the Q-subspace generated by v € I'y and let
[ :=TIINT. Then F is a regular function on the torus T = Hom(T", C*)
which is lifted from the quotient torus T = Hom(I', C*). In particular,
F is constant on the fibers of projection T — T. The zero-divisor of F
is induced from T. Hence F is a product of a unit in C[I'] (a monomial)
and an element of C[[']. Since both F and F have nontrivial constant
term it follows that F € C[T], contradiction. O

Lemma 4. [1, Lemma 6.2] Assume that I is torsion-free and let vy =
>or_ 9 be a primitive element in T, i.e., ged(gi,...,9,) = 1. Then
Y=\ is irreducible in C[I'], for all A € C*. If~,~' generate a noncyclic
subgroup in T then x7 — A, and 7" — A5 are coprime in C[L].

Lemma 5. Let R and R be simple linear recurrences such that

(1) R(n), R(7) # 0, for all sufficiently large positive integers n, .
(2) The subgroup I' C C* generated by the roots of R and R is
torsion-free.
(3) There is a finitely-generated subring A C C with R(n)/R(n) €
A, for infinitely many n € N.
Then
Q:N — C
n — R(n)/R(n)

is a simple linear recurrence. In particular, Fgo € C[I'] and
Fg - Fi = Fh.
Proof. See [2, p. 434] and [1, Proposition 6.1]. O
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More generally, let I" € C* be any finitely-generated group. Fix a
splitting IT” = T & Z/m, where Z/m = {(/,} is the group of m-th roots
of 1. A simple linear recurrence R with roots in I defines m Laurent
polynomials F'r; € C[I']. Indeed, each root has the form

v = ¢, for some d(v) € N,

and we have

R(n) =Y ey (piym.
,yl

Put
Cyj = CW’C%(W/)
and
R; = Zc%j’y”, j=1,...,m.
g

This gives rise m recurrences and corresponding elements in C[I']. We
have R;(n) = R(n), for n = j mod m. Lemma 5 can be extented to

R and R as follows:

Lemma 6. Let R, R be simple linear recurrences satisfying the con-
ditions (1) and (3) of Lemma 5. Assume that the subgroup I'" C C*
generated by the roots of R and R has torsion Z/m. Fix a presentation
I"=T@®&Z/m. Then there exists a j € {1,...,m} and subrecurrences
R;, resp. R;, such that i

Rj(n) | R;(n)
for infinitely many n. In particular,

Fp, | g,

in C[I'].
Proof. 1f suffices to observe that at least one of the congruence classes

mod m contains infinitely many n such that R(n) | R(n) and to apply
Lemma 5. U

3. WEIL NUMBERS

Let Q((x) be the cyclotomic field containing all roots of 1. Let
W, C Q*

be the multiplicative group Q-generated by all eigenvalues of a p-
Frobenius on f-adic cohomology (¢ # p) of all algebraic varieties over
finite fields of characteristic p. In particular, it contains all rational
powers of p. The group W, has the following properties:

o Q(C) S Wy
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e it is preserved under the action of the Galois group Gal(Q/Q);

e it is Q-generated by p-Frobenius eigenvalues on cohomology of
abelian varieties defined over F, (by Honda’s theorem [4], [7]);

e an algebraic integer w is in W, if and only if for every embedding
t : Q — C one has |w| = p", for some r € Q [3].

Let L/Q be the (unique) nontrivial quadratic extension of the max-
imal totally-real extension of @Q. Then L/Q is normal, with Galois
group G := Gal(L/Q). Note that G acts on W,, for each p.

Proposition 7. Let o € Q be such that |o(o)| =1, for all embeddings
t: Q— C. Then it can be factored

a = pr, with w, € W,
p

Moreover, this representation is unique, modulo multiplication by ele-
ments in Q((x)-

Proof. If « is an integer satisfying the assumption then it is a root of
1. If o admits a real embedding, then @ = +1, and there is nothing
to prove. Same holds for the Galois-conjugates of «. In particular, the
field K := Q(«) has no real embeddings and 2d := [K : Q. For every
v+ K — C, we have 1/i(a) = ¢,(a), where ¢, is the corresponding
complex conjugate. Im m := [K : Q| then {1,q,...,a™ '} is a basis
of the m-dimensional Q-vector space K = Q(«) and the Q-linear map
K — K that sends a basis element o’ to o~ is an automorphism of
the field K that coincides with the complex conjugation for every field
embedding K < C. Let K° be the totally real subfield of K whose
elements are fixed by 0. Let Ok be the ring of integers in K. The
group Oj /O, is 2-torsion, modulo roots of 1. Let h be the class
number of K and Ng g the norm map.

Choose an n € N so that naw € Og. Since n/a and na are Galois
conjugated, it follows that n/a € Ok. We have |¢(na)| = n, for all ..
The principal Og-ideal (na) has norm n??. Let p be a prime dividing
n and write n = p™n, with p{ . Put

(TLO&) =q- ﬁa
where g, 7 are coprime Og-ideals and Ny/g(q) = p**™. We have
q" = (¢p), "= (D),

principal Ok-ideals with integral generators ¢,, and 7, respectively.
We have

(na)"(o(na))" = (6p)(0(6,))(7) (0 (7))
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and

(p)* ()" = (
with coprime p and 7, resp. (¢,)
we can write (modulo roots of 1)

¢§U(¢p)2 — demh . 'LL2,
where u is a unit in Ox. We may assume that u € O}, (after raising

both sides of the equation to a sufficiently high 2 power, if necessary).
In particular, u is fixed by o, and ¢, for all .. Put w, := ¢§ /u. Then

Pp)(0(0p))(7)(a(7)),
(0(¢p)) and (7)(o(7)). It follows that

wpo (wp) = pgdmh-

The same holds for ¢(w,), in all embeddings ¢ : K < C. Thus w, is an
algebraic integer such that [c(w,)| = p*@™" i.e., a p-Weil number.

Continuing inductively (over the prime divisors of n), we obtain a
finite product decomposition

2h 2h _
n“o —pr,
P

modulo roots of 1, where each w, is a p-Weil number. Thus o € Hp W,
as claimed.
To show uniqueness, assume that there are distinct representations

[Ter = o
p p

Since each W, is a multiplicative group we can combine elements cor-
responding to the same p and obtain

ag = pr = Hwﬁ =: ag,

peS pes

where S, S are (nonempty) disjoint finite sets of primes. We can choose
coprime ng,ng € N (e.g., divisible only by primes in S, resp. S ), such
that both ngag and ngag are algebraic integers. Let cg, cg € N be such
that cgng — cgng = 1. It follows that ag is also an algebraic integer,
necessarily a root of 1. This proves uniqueness. U

4. TATE LATTICES

Let X be a smooth projective algebraic variety of dimension d over
a finite field k of characteristic p. Let k,/k be the unique extension of
degree n. Then
d
#X (ko) = tr(Fr") = Y (=1)'cyp,

=1
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where ¢;; € C* and Fx,; = {pi;} is the set of eigenvalues of Fr on the
étale cohomology H!,(X,Qy), with ¢ # p. We have #X(k,) # 0, for
all n > 0. This gives a simple linear recurrence Rx as in Section 2.

Put §x = U;§x,; and let I'y C C* be the multiplicative subgroup
generated by §x. This group was introduced and studied in [8]. It
contains a cyclic subgroup ¢Z generated by ¢ (arising from the polar-
ization). For v € §x; define

v(7) :=q'/v € Fx-

This involution extends to I'x. Let Ax C I'x be the monoid generated
by §x. This monoid is preserved by the Galois group G of the nontrivial
quadratic extension of the totally-real closure of QQ, in particular, by .
The cone Axr C I'x ® R is strictly convex, rational and polyhedral.

Lemma 8. We have a natural isomorphism

Fxn@Q=Tx®Q.

Moreover,

Theorem 9. Let X and X be smooth projective varieties over a finite
field ky, resp. ki. Assume that

#X (kn) | #X (kn)
for infinitely many n € N. Then char(k;) = char(/%l) and
Ny @QCIlx®Q.

Proof. Let I'" C C* be the group generated by Frobenius eigenvalues
on the cohomology of X and X. Applying Lemma 6 and considering
n confined to an arithmetic progression, if necessary, we arrive at two
recurrences Rx and Rg such that

e the group I' generated by the roots of Ry and Ry is torsion-free;

o Ri(n)=#X(k,) | #X(k,) = Rx(n), for infinitely many n.
By Lemma 5, we obtain the divisibility in C[I'] of the corresponding
Laurent polynomials

Fgs | Fx.
Now we can apply Lemma 3. 3
Finally, if p = char(k;) # char(k;) then the group p* C C*, with

a € Q, is contained in I'x but not in I'g, contradiction. 0

Remark 10. Assume that ' @ Q C 'y ® Q. Let v € A¢NAx. Then
there exist m, i, j € N and classes ¢, € H',(X™, Zy), ¢m € H',(X™, Zy),
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both with eigenvalue v/, Let 1(¢,) € H(X™, Z;) be a cohomology
class with eigenvalue ¢*/~7.

The classes ¢,, and ¢(é,) define minimal Frobenius-invariant Z,-
subspaces in the corresponding cohomology groups. The tensor product
of these subspaces in H%(X™ x X™ 7,) contains a nontrivial subspace
of Tate classes.

5. ABELIAN VARIETIES

In this section we prove Theorem 2, following an argument in [1].

Let A be an abelian variety of dimension g defined over a finite field
ki of characteristic p, and let {p;};=1,. 24 be the set of eigenvalues of
Frobenius on HY (A, Qy), for £ # p. Let k,/k; be the unique extension
of degree n. The sequence

2g
(5.1) R(n) == #A(k,) = [ [ (e} = 1).

j=1
is a simple linear recurrence. Assume that the group I C C* generated
by {p;};=1...2¢ has torsion of order m. Choose a splitting I" = I'dZ/m
as in Section 2, with I' torsion-free. Let R, be a subrecurrence as in
Lemma 6. The corresponding Laurant polynomial has the form

2g
Fr, = [[(zuz™ = 1),

u=1
where z, are m-th roots of 1, and «,, € I'. The p; are g-Weil numbers,
i.e., all Galois-conjugates have absolute value ,/g. Same holds for all
x® . Thus, for u # v we have either a,, = «a, or «a,,a, generate a
sublattice of rank 2 (since I' is torsion-free). We get a subdivision of
the sequence of «,

{ag,} = I, t<2g,
into subsets of equal elements. Put d, = #Ig and let o, € Ig.

Theorem 11. Let A and A be abelian varieties of dimension g, respec-
tively g, over finite fields kq, respectively ki. Let R and R be simple
linear recurrences as in equation (5.1). Assume that R(n) | R(n) for
infinitely many n € N. Then char(k;) = char(ky) and there ezists a
morphism A — A. In particular, if g = g then A and A are isogenous.

Proof. Let I'' C C* be the group generated by {p; }j=1...26U{p;}j=1,. 2
Choose a splitting IV = I" @ Z/m as in Section 2, with I torsion-free
of rank r. Let R;, resp. R; be subrecurrences as in Lemma 6, i.e.,
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R;(n) = R(n) and R; = R(n) for infinitely many n = j mod m. It
follows that
Fy | Fr, in C[D).

The Laurent polynomials have the form

t r
s=1 i=1

where zg, z; are some m-th roots of 1. Observe, that

ged ZSHx“”—l 2y Hac ' —1)eCr,

for s # &', by Lemma 4. The same holds for R. We conclude that
t <t that we can order the indices so that #1I, < #I,, for s = 1,. t;
and so that the multiplicative groups generated by a, € I, and &, € IS
have rank 1, for each s = 1,...,#. For these s we have a, = a¥,
where u € QQ depends only on k:l and k;. It follows that there exists
N, N € N such that the Nth power of each Frobenius eigenvalue of Fr is
an Nth power of a Frobenius eigenvalue of Fr, with equal multiplicities
of the corresponding eigenvalues. We get a homomorphism of Frobenius
modules, and it suffices to apply Tate’s Theorem to conclude that A —
A. O
Remark 12. This result can be made effective. Although we ask
for divisibilty of infinitely many terms in the recurrence sequences,
in fact, results in [2] imply that divisibility of finitely many terms,
depending on A, A, will suffice. Actually, it suffices to bound from
below greatest common divisors between finitely many elements of the

recurrence sequences. Applications of these ideas to elliptic curves can
be found in [5].
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