APPROXIMATION AT PLACES OF BAD REDUCTION
FOR RATIONALLY CONNECTED VARIETIES

BRENDAN HASSETT AND YURI TSCHINKEL

ABSTRACT. This paper addresses weak approximation for rationally
connected varieties defined over the function field of a curve, espe-
cially at places of bad reduction. Our approach entails analyzing
the rational connectivity of the smooth locus of singular reductions
of the variety. As an application, we prove weak approximation for
cubic surfaces and Fano hypersurfaces of dimension at least three,
with square-free discriminant.
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1. INTRODUCTION

In number theory, many results and techniques rely on approximating
adelic points by rational points. In this paper, we study geometric ver-
sions of these notions for rationally connected varieties over the function
field of a curve. In this context, rational points correspond to sections
of rationally-connected fibrations over the curve. We are looking for sec-
tions with prescribed jet data in finitely many fibers.

Let k be an algebraically closed field of characteristic zero, B a smooth
curve over k with function field F' = k(B). Let B be the smooth projec-
tive model of F and put S := B\ B.
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Theorem 1. Let X be a smooth proper rationally connected variety over
F, and m : X — B a proper model of X. (A model of X is an algebraic
space flat over B with generic fiber X.) Let X*™ be the locus where m is
smooth and X* C X*™ be an open subset such that

(1) there exists a section s : B — X'*;
(2) for each b € B and x € X, there exists a rational curve f : P! —
Xy containing x and the generic point of X .

Then sections of X* — B satisfy approximation away from S (see Sec-
tion 2).

We shall actually prove a stronger result, Theorem 15, that is ap-
plicable in positive characteristic. Rationally-connected fibrations over
curves have sections by [8]. The existence of a section through a finite
set of prescribed points is addressed [16] 2.13 and [15] IV.6.10.1. Weak
approximation is known in fibers of good reduction [10], so we take si-
multaneous resolutions of singular fibers of X whenever possible. (For
example, for rational double points on surfaces, simultaneous resolution
is possible provided the local monodromy is trivial [3, 4].) Consequently,
when X — B admits a simultanteous resolution over some étale neigh-
borhood of b, we replace X by this resolution. However, the resolved
family may be an algebraic space, rather than a scheme, over B. This is
why Theorem 1 is stated in this generality.

There are very few instances where weak approximation over function
fields is known at all places: stably rational varieties; connected linear
algebraic groups and their homogeneous spaces; homogeneous space fi-
brations over varieties that satisfy weak approximation, including conic
bundles over rational varieties; and Del Pezzo surfaces of degree at least
four [5]. Recently, the case of smooth hypersurfaces of degree d in P* with
d?> < n has been resolved [6], as an application of the notion of ‘rational
simply connectedness’. Even the case of cubic surfaces remains open, in
general. Madore established weak approximation for cubic surfaces at
places of good reduction [18]. His proof uses the abundance of distinct
unirational parametrizations, and builds on ideas of Swinnerton-Dyer
[21].

When is Theorem 1 applicable? Let X be a smooth projective ratio-
nally connected variety over F' = k(B), with B projective. There exists
a regular proper model 7 : X — B, and any section s : B — X is
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contained in X*™. For each singular fiber A&}, fix an irreducible compo-
nent A C A;™; these determine an open subset X* C X*". To prove
weak approximation for X, it suffices to prove approximation for each
X' obtained in this way. We do not know how to verify (1) in general:
Is there any section meeting a prescribed irreducible component of ;™7
Further, there is no general result giving a regular proper model X — B
such that each irreducible component of X has the property (2).
Section 5 is devoted to applications to cubic surfaces:

Theorem 2. Let X be a smooth cubic surface over F' and m: X — B a
proper model whose singular fibers are cubic surfaces with rational double
points. Suppose there exists a section s : B — X*™. Then sections of
X" — B satisfy approximation away from S.

When the model is regular all sections are contained in the smooth
locus, so we conclude:

Corollary 3. Let X be a smooth cubic surface over F'. Suppose X admits
a reqular proper model m : X — B whose singular fibers are cubic surfaces

with rational double points. Then weak approrimation holds for X away
from S = B\ B.

There exist cubic surfaces which do not admit models with at most
rational double points in a given fiber, e.g., the isotrivial family

2+ + 2 =t
over the t-line. Nonetheless, Corollary 3 proves weak approximation for
‘generic’ cubic surfaces.

Corollary 4. Let Hilb = P(I'(Ops(3))) ~ P denote the Hilbert scheme
of cubic surfaces, U — Hilb the universal family, and D C Hilb the
discriminant divisor. Let B C Hilb be a smooth curve transverse to each
branch of D and

X =U XHilb B— B
the corresponding family. Then X = U X4 Spec(F') satisfies weak ap-
prozimation away from S = B \ B.

Note that meeting the discriminant transversally is an open condition
on the classifying map to the Hilbert scheme. This can be expressed
in number-theoretic terms: The discriminant of X — B is square-free.
Generalizations to degree-two del Pezzo surfaces have been proven by
Knecht [12].
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Finally, in Section 6 we offer extensions of these Corollaries. We gen-
eralize Corollary 3 to the case where the fibers have isolated complete-
intersection terminal singularities. Corollary 4 extends to generic hyper-
surfaces X C P" of degree d < n provided n > 4.

In our approach to approximation, we require precise control over
proper rational curves in the smooth locus of a singular variety. One
focus of this paper is to extend standard results on smooth proper ra-
tionally connected varieties to the non-proper case (see Section 4). The
application to cubic surfaces and higher-dimensional hypersurfaces in-
volves refining rational connectivity results of [11] (see Sections 5 and
6).

Acknowledgments: We are grateful to J. L. Colliot-Thélene for nu-
merous discussions about the problems considered here; the ideas here
were developed during visits to Orsay by both authors. J. M®Kernan
suggested the extensions to higher-dimensional hypersurfaces. We also
benefitted from conversations with S. Keel, A. Knecht, and J. Kollar.
The first author was partially supported by the Sloan Foundation and
NSF Grants 0134259 and 0196187. The second author was partially sup-
ported by National Science Foundation Grants 0554280 and 0602333.

2. NOTIONS OF APPROXIMATION

Let F' be a global field, i.e., a number field or the function field of a
curve B defined over an algebraically closed field k. Let S a finite set
of places of F' containing the archimedean places, 0p g the corresponding
ring of integers, and Apg the restricted direct product over all places
outside S.

Let X be an algebraic variety over F, X(F') the set of F-rational
points and X(Aps) C [[,45 X (F,) the set of Apg-points of X. The set
X (Apg) carries a natural direct product topology. One says that weak
approximation holds for X away from S if X (F) is dense in this topology.

The set X (Ap ) also carries a natural adelic topology: The basic open

subsets are
H U, X H X(0,),
)

veSs’ v (SUS’

where S’ is a finite set of nonarchimedean places disjoint from S, X —
Spec(ops) is a model of X (i.e., flat with generic fiber X), o, is the
completion of opg at v, and u, C X(F,) an open subset in the v-adic
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analytic topology on X (F,). This depends only on X not on the choice of
model. Strong approzimation holds for X away from S if X (F') is dense in
X (Aps). Note that strong approximation implies weak approximation.
Conversely, for X — Spec(ors) flat and proper, weak approximation
implies strong approximation, since X(0,) = X (F,); in these cases, we
will use the term weak approximation for the sake of consistency.

Finally, there is a formulation which is sensitive to the choice of model.
Consider the topology on H%é s X (0,) with basic open subsets

[Tex T ¥

veS’ vg(SUS’)

with u, C X'(0,) an open subset. We say that approzimation holds for S-
integral points of X if X (op ) is dense in this product. This is a version
of strong approximation for integral points.

We now focus on the function field case: Let B be a smooth projective
model of B with S = B\ B; places v correspond to points b € B. Let X
be a smooth variety proper over F' = k(B), 7 : X — B a model proper
and flat over B (which exists by [20]), and X* C X*™ an open subset
surjecting onto B. Since 7 is proper, F-rational points of X correspond
to sections s : B — X. If X is regular s factors through X*™.

Definition 5. An admissible section of m: X — B is a section s : B —
X An admissible N-jet of 7 at b is a section of

X" x g Spec(Opp/my ') — Spec(Opp/my ).
An approximable N-jet of m at b is a section of

X % Spec(Opp/myt') — Spec(Opp/mp;t)

that may be lifted to a section of )?b — Eb, with Eb = Spec(@B,b) and
Xb =X XB Bb.

Hensel’s lemma guarantees that every admissible N-jet is approximable.
Let {b;};c; be a finite set of points and j; an admissible N-jet of 7 at
b;. We write J = {j;}ies for the corresponding collection of admissible
N-jets.

The notions of weak and strong approximation introduced above have
geometric interpretations



6 BRENDAN HASSETT AND YURI TSCHINKEL

e Weak and strong approximation hold for X away from S if any
finite collection of approximable jets of m can be realized by a
section s : B — X.

e This is equivalent to weak approximation holding for X* (the
generic fiber of X'*) away from S: Every jet in X at b can be
realized by a section X X pg Eb — Eb meeting )?b'.

o If X is regular these are equivalent to the condition that any
collection of admissible jets of m can be realized by a section
s: B — &x°m.

There is an analogous formulation of approximation for integral points:

e Approximation holds for sections of X* — B away from S if
each collection of jet data in X* can be realized by a section
s: B— X°.

o If X is regular and X'®* = X*™ this is equivalent to weak approxi-
mation for X.

3. CURVES, COMBS, AND DEFORMATIONS

The dual graph associated with a nodal curve C' has vertices are in-
dexed by the irreducible components of C' and its edges indexed by the
intersections of these components. A projective nodal curve C'is tree-like
if

e cach irreducible component of C' is smooth;
e the dual graph of C' is a tree.

Definition 6. A comb with m reducible teeth is a projective nodal curve
C with m + 1 subcurves D, Ti,...,T,, such that

D is smooth and irreducible;

TiNTy =0, for all [ #1';

each T} meets D transversally in a single point; and

each 7; is a chain of P's.

Here D is called the handle and the T; the reducible teeth.

Let C' be a nodal curve and h : C' — W an immersion into a smooth
algebraic space with nodal image. (In particular, h is an embedding at
nodes of C.) Let N, denote the normal bundle (or sheaf), i.e., the dual
to the kernel of the restriction h*Qi;, — QF.

We will use the following lemma, which has the same proof as Propo-
sition 24 of [10]:
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Lemma 7. Let C be a tree-like curve, W a smooth algebraic space,
h : C — W an immersion with nodal image. Suppose that for each
irreducible component C; of C', H'(C;, N, @ O¢,) = 0 and N}, @ O, is
globally generated. Then h deforms to an immersion of a smooth curve
winto W.

Suppose furthermore that v = {wy,...,wy} C C is a collection of
smooth points such that for each component Cy, H' (N}, ® O¢,(—t)) =0
and the sheaf Njy @ Oc,(—1) admits a section nonvanishing at each point
of the support of

(M ® Oc,) [N,
Then h : C — W deforms to an immersion of a smooth curve into W
containing h(v).

4. STRONG RATIONAL CONNECTIVITY

Definition 8. A variety X is rationally connected (resp. separably ratio-
nally connected) if there is a family of proper irreducible rational curves
g:U — Z (resp. my: U =P'xZ — Z) and a cycle morphism u : U — X
such that

W UxzU— X x X

is dominant (resp. smooth over the generic point)).

Intuitively, two generic points of X can be joined by an irreducible
projective rational curve. Over fields of characteristic zero, rational con-
nected varieties are also separably rationally connected [15] IV.3.3.1.

The notion of rational connectedness is a bit subtle over countable
fields [2]. For convenience, we work over an uncountable algebraically
closed field. Over such a field, rational connectivity is equivalent to the
condition that two very general points of X can be joined by such a
rational curve.

Definition 9. Let X be a smooth algebraic space of dimension d and
f: P! — X a nonconstant morphism, so we have an isomorphism

f*TX ~ O]pl (al) D...D O]pl (ad)
for suitable integers ai,...,aq. Then f is free (resp. wvery free) if each
a; >0 (resp. a; > 1).

We refer the reader to [15] IV.3 for further facts about rationally con-
nected varieties.
One technical result will play a prominent role in our analysis.
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Proposition 10 ([15] IV.3.9.4). Let V be a smooth separably rationally
connected (not necessarily proper) variety. Then there exists a nonempty
subset VO C 'V characterized as the largest open subset such that if
V1, ..., € VO are distinct closed points, then there is a very free curve
in VO containing these as smooth points. Moreover, any rational curve
C C V that meets V° is contained in V°.

No example where V° # V is known.

Remark 11. Let V5 be a smooth variety, V; C V5 a rationally connected
dense open subvariety, and V)’ C V5 the largest open set satisfying the
conditions of Proposition 10 . Then V> C V3. Thus a point v € V5 is in
V) provided there is a rational curve f : P* — V5, through v and meeting
vy

Proposition 12. Let V' be a smooth separably rationally connected vari-
ety, and 3 : W — V an iterated blow-up of V along smooth subvarieties.
Then ~1(V0) = WP,

Proof. The inclusion W° c B74(V?) is straightforward: Given points
wy, ..., w, € WO there is a very free curve g : P! — WO containing
them; we may choose this to be transversal to the exceptional divisor of
(. The inclusion of sheaves

Ty — 31y

remains an inclusion after pull-back via g, as the support of the cokernel
does not contain g(P!). The positivity of g*7Zy implies the positivity of
(80 g)*Ty, which means that 3o g: P! — V is also very free.

For the reverse direction, we may restrict to the case where W is the
blow-up of V' along a smooth subvariety Z of codimension r > 1, with
exceptional divisor E. It is clear that 37'(V°\ Z) C Wy, so consider
some w € 37(z) with z € ZN VY Tt suffices to construct a rational
curve containing w and the generic point of W.

There exists a very free curve f': P! — VO with the following proper-
ties:

(1) f'(P') meets Z only at z (we can always deform a very free curve
to a curve passing through z and disjoint from a codimension > 2
subset [15, I1.3.7]);

(2) f'(P') is smooth at z and transverse to Z.

Let ¢’ : P! — W denote the lift to W, which is free in W, and w’ = ¢'(0).
If w' = w then we are done. Otherwise, let ¢ C 371(z) ~ P"~! denote the
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line joining w and w’. Since ¢’ is free, it admits a small deformation to
a free curve ¢” : P! — W with w” := ¢"(0) € £,w” # w'. (See Figure 1.)

g
g'(P')

F1cURE 1. Constructing the comb

We construct a comb h : ¢ — W with handle ¢ C P*~! C W and two
teeth ¢/, ¢"” : P! — W. Since F is exceptional, we compute
Nyp = 05" @ Op (1)
and
NE/W & Og ~ Opl(—l).
The exact sequence of normal bundles
0— Nyg — Nyw = Ngyw @ Op — 0
splits because
Ext'(Op (—1),Op(n)) = 0,n > —2.
Thus we deduce
Nojw = 05 V)™ @ Opi (1)"2 @ Opa (—1)

where the negative summand is in the normal direction to E. Since g'(P!)
and ¢”(P') are transverse to £, we can apply Proposition 23 of [10]. The
key point is that the only negativity in the normal bundle of ¢ is due to
the negativity of the normal bundle of £ C W; however, the components
g'(PY) and ¢”(P') overcome this. Precisely, we have

Ni ® Op = OBV @ 041 (1) 2 @ Opa (1);

the quotient (N}, ® Op)/Nyw lies in the image of the last summand.
Lemma 7 implies that A : C' — W admits a deformation to a rational
curve containing w. 0]
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A similar argument gives the following strengthening of Proposition 10
(cf. Theorem 2.2 of [7])

Proposition 13. Let V' be a smooth separably rationally connected vari-
ety and V° C V be the distinguished open subset characterized in Propo-
sition 10. Then for any finite collection of jets

ji : Spec (kle]/ (")) = VO, i=1,....m

supported at distinct points vy, ..., v, there exists a very free rational
curve smooth at vy, ..., vy, with the prescribed jets.

Proof. There is an iterated blow-up
BW=Wy—...=W,—...=W =V

and points wy, ..., w,, € W so that if g : C' — W is a morphism whose
image contains wq, . .., w,, then the image of f := fog: C — V contains
the given collection of jets. Here is the description: Over each point v;,
we blow up V successively at N points. Given any smooth curve germ C
with the prescribed N-jet at v;, W; is the blowup of W;_; at the points of
the proper transform of C' lying over the v;. Proposition 12 then implies
there exists a very free curve g : P! — W through wy, ... w,,. However,
the image of this curve in V' will be singular at v; if g(P') meets 371 (v;)
in more than one point.

We claim there exists a very free curve g; : P! — W meeting 371 (v;)
only at w;, transversally. We choose this curve so that it is disjoint
from $7'(v;) when j # i. (Again, we are using the fact that a very
free curve can be deformed away from any codimension > 2 subvariety
while passing through a prescribed point in the complement.) Fix generic
points z; € g;(P!) and let go : P! — W be a very free curve intersecting
gi(P!) transversely at x; but not meeting any S~ '(v;). (For example,
take go = (37t o fy), where fy : P! — V is a very free curve through
B(x1),...,B(xy).) Consider the comb h : C — W with handle go(P!)
and m-teeth g;(P'). This deforms to a very free curve b’ : P! — W
meeting each 571 (v;) only at w;, transversally.

The proof of the claim is a refinement of the argument for Propo-
sition 12. We proceed by induction on N. The base case N = 1 is
contained in the proof of Proposition 12, which gives a very free curve
smooth at v; with prescribed tangency. Let E;y o~ PIm()~1 be the
last exceptional divisor of § : W — V over v;, i.e., the exceptional di-
visor of the N-th blow-up. For 1 < j < N, let E;; C Wy denote the
proper transform of the exceptional divisor of W; — W;_; over v;; we
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have E;; ~ Bl,, P9™()=1 where w;; is the intersection of the proper
transform of C' with the exceptional divisor of W; — W;_;.

Suppose that g} : P* — W is a very free curve such that fog} is smooth
with the desired (N — 1)-jet at v;. Let w! = g/(P') N 37!(v;) denote the
unique point of intersection, which we assume is distinct from w;. Let £y
denote the line in E; y ~ P4™(V)=! joining w; and w/, and zy_; its point of
intersection with E; y_1. Let {y_y C E;n_1 ~ Bl,, , P4~ denote
the proper transform of a line containing zy_1, and zy_o its point of
intersection with E; y_,. Continue in this way, until we obtain ¢; C E; 1,
the proper transform of a line containing z;. Finally, let ¢/ : P! — W be
a very free curve meeting the exceptional locus transversally at a generic
point of ¢;. (See Figure 2.)

Fi1GURE 2. Constructing the comb with reducible teeth

Let h : C'— W be the comb with handle /5 and two reducible teeth:

(1) ¢, : Pt - W;
(2) the union of the lines ¢y_1,...,¢; and the curve g/ : P! — W;

By a normal bundle computation similar to that of Proposition 12, we
find that A, |¢y is ample and N}, is nonnegative on each of the remaining
components: Again, Lemma 7 (or Proposition 24 of [10]) implies that h
admits a deformation to an immersed rational curve containg w;.

Here are the details of the computations (cf. [10] Section 5): The
normal bundle of a line in projective space is

MN/Ei,N = /\/’ZN/]}Ddim(V)fl ~ O]Pl(]_)dim(V)—Q
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and the normal bundle for an exceptional divisor is
NEi,N/W ~ Opaimv)-1(—1).
For each 7 we have
(4.1) 0— Mj/Ei,j - Mj/W - NEi,j/WVj —0
which for 7 = N yields
Noyyw 2 Op1 (1) V)72 @ Opi (—1),

with the negative component in the direction normal to £; . We also
have an extension

(4.2) 0 — No,yw — Nale, — Q(€5) — 0,

where ()(¢;) is a torsion sheaf supported at the points where ¢; meets the
adjacent components. For j = N these are ¢/(P!) and {y_;, and since
the tangent vectors to these curves are normal to E; y, we find

Niley = Op (1372 g Opa (1),

The normal bundle of the proper transform of a line in the blow-up of
projective space at a point of the line is

-  Adim(V)—2
MJ/El,] — /\/‘Zj/Bl’UJi,j pdim(V)—1 —= OP1

for j=1,..., N — 1. Similarly, we can compute
NEi,h/W‘fj = O]Pl(_2)
so the exact sequence analogous to (4.1) yields
Niypw = 0572 @ O (<2),

with the negative component in the direction normal to E; ;. Using (4.2)
and the fact that ¢; is adjacent to ¢;11 and ¢;_; (or g/'(P') when j = 1),
we find .
Nile, = 0B 72 @ Op1.
O

Definition 14. A smooth separably rationally connected variety Y is
strongly rationally connected if any of the following conditions hold:
(1) for each point y € Y, there exists a rational curve f : P! — Y
joining y and a generic point in Y;
(2) for each point y € Y, there exists a free rational curve containing
Y;
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(3) for any finite collection of points yi,...,y, € Y, there exists a
very free rational curve containing the y; as smooth points;
(4) for any finite collection of jets

Spec(kle]/ (")) CYi=1,....m

supported at distinct points yi,...,¥mn, there exists a very free
rational curve smooth at ¥, ..., y,, and containing the prescribed
jets.

The implications
4) = (3) = (2) = 1)
are obvious. By Proposition 10, assertions (1)-(3) are each equivalent to
the condition Y = Y°. Property (4) is analogous to Theorem 2.2 of [7],
which is stated for proper varieties. It follows from (1) by Proposition 13.

With basic properties of strongly rationally connected varieties estab-
lished, Theorem 1 follows from the general result (cf. [15] IV.6.10.1):

Theorem 15. Let m : Y — B be a smooth morphism whose fibers are
strongly rationally connected. Assume that m has a section. Then sections
of Y — B satisfy approximation away from S.

Proof. Let ™ : Y — B be a proper model of ) — B, which exists by [20].

The section extends to a section 5 of T. By a result of Artin and Néron

[1] Corollary 4.6, there exists a blow-up with center supported in 71(5)
y—=)y

such that the proper transform of 5(B) in Y is contained in Y.

Recall the proof of weak approximation at places of good reduction in
Section 5 of [10]. This is a bootstrap argument, using the existence of
a section in the smooth locus to construct sections with prescribed jets
of successively higher order. For the base case, suppose we are given an
arbitrary section t : B — Y. When ) — B is proper, Kolldar-Miyaoka-
Mori [16] first demonstrated how to get a section with prescribed values
Yi,---,Yr at by, ..., b. € B. The key is to construct a comb with handle
t(B) and teeth very free curves in the fibers ), joining t(b;) to y;, which
deforms to a section passing through the y;. For the inductive step,
suppose we have a section with prescribed jets to order < N — 1 at a
finite set of points by,...,b.. Blow up the total space N times along
the jet data at each of by,...,b, to get a new model with (admittedly
very special) reducible fibers over by, ..., b.. The Nth-order jet conditions
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in the original model translate into point conditions in the new model.
There we produce an explicit comb with reducible teeth, based on the
proper transform of the section obtained by the inductive hypothesis,
that deforms to the desired section. This only requires the existence of
very free curves in ), passing through y; with prescribed tangency.
Properness is used twice. At the the zeroth-order step, it is used to
exhibit the very free fibral curves joining t(b;) to y;. In the inductive
step, it is used to find a very free fibral curve with prescribed tangency
at y;. In our situation, these are guaranteed by the hypothesis that the
fibers are strongly rationally connected. O

5. CUBIC SURFACES

We work over an algebraically closed field of characteristic zero.

Definition 16. A log Del Pezzo surface is a pair (X, A) consisting of a
normal projective surface X and an effective Q-divisor A = > a;A;,0 <
a; < 1 on X, with log terminal singularities, such that —(Kx + A) is
ample. When A is empty, this is equivalent to saying that X has quotient
singularities and ample anticanonical class.

Theorem 17 ([11] 1.6). The smooth locus of a log Del Pezzo surface
(X, A) is rationally connected, i.e., two generic points in X°™ can be
joined by an irreducible projective rational curve contained in X°™.
Example 18 ([23]). There exist projective rational surfaces with rational
double points whose smooth locus is not rationally connected. Consider
X=ExP!
where (E,0) is an elliptic curve and the involution
X — X

(e,[ro, 71]) = (—e, [z1,20)).
The involution has eight isolated fixed points q C X. The quotient
X = X/ (1) has eight A; singularities and is rational: X — E/ (1) ~ P*
is a conic bundle. Since X —q — X*" is a covering space, m (X*™) C
m (X — q) with index two. Thus

(X —q)~7(X)~7(E)~Zx7Z

and X*™ has infinite fundamental group. However, rationally connected
varieties (even non-proper ones) have finite fundamental groups (see
Lemma 7.8 of [11] and Proposition 2.10 of [14], for example).
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The following conjecture would allow us to apply Theorem 1 to prove
weak approximation for many log Del Pezzo surfaces:

Conjecture 19. The smooth locus of a log Del Pezzo surface is strongly
rationally connected.

We prove this for cubic surfaces:

Theorem 20. Let X C P? be a cubic surface with rational double points.
Then X*™ is strongly rationally connected.

Proof. Let x1 € X*™ be a point. We produce a rational curve R C X*™
joining ;1 and a generic point o € X5,
We start with an elementary lemma:

Lemma 21. Let Y C P" be an irreducible hypersurface such that the
Gauss map

Y --» P»

y +— [Iv])]
is generically finite. Then a generic tangent hyperplane section to Y
has an isolated singularity of multiplicity two with smooth projectivized
tangent cone.

Proof. Since the Gauss map is generically finite, its differential is gener-
ically of maximal rank. However, the differential at y € Y can be iden-
tified with the dual to the second fundamental form (see [9, 17.11])

I, : Sym2(TY|y) - NY/IP"|y'

This is nondegenerate precisely when the quadratic term of the Taylor
expansion of the defining equation of the tangent hyperplane section H,
has maximal rank. 0

This is applicable to cubic surfaces X with rational double points. It
is a classical fact that X contains a finite number of lines. However, if
the image of the Gauss map of X is a curve C' then X is dual to C' and
thus ruled by lines.

Now we will make explicit how xy must be chosen. Applying the
lemma, we may assume

(1) The tangent hyperplane section Hy at x9 is irreducible and nodal.
In particular, Hy C X*™ and there are no lines ¢ C X containing x».
Projection from x5 then gives a double cover

Bl,, X — P?
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the covering transformation interchanges the exceptional divisor and the
proper transform. We obtain a birational involution

lyy 0 X ——» X

r =

where {x,2’, xo} are collinear. This factors as the blow-up of x5 followed
by the blow-down of the proper transform of H,. Note that ¢,, fixes the
singularities of X and thus takes X*™ to itself.

We also assume:

(2) H, does not contain z;.

It follows that Hy does not contain x] = t,,(x1). Moreover, z; and z}
are in the open subset on which ¢,, is an isomorphism.
We assume furthermore:

(3) x5 is not contained in Hy, the tangent hyperplane to X at ;.

It follows that x5 ¢ Hj, the tangent hyperplane section at z/. Indeed,
suppose that zo € Hj. We know that xo # 2/ (because 2| ¢ Hj), so
consider the line joining x5 and x}. This meets X only at xs and 2, so
x] = xy and x9 € Hy, a contradiction.

Finally, we assume:

(4) Hj is irreducible and nodal.

In particular, H; C X*™.

Since o & Hj, i, is regular along H;. We verify that the rational

curve R = 1,,(H}) has the desired properties. Since zo ¢ H{, Hy and H]
intersect at a point z # xo; thus the curve

R=1,,(H]) 3 t4,(2) = za.

We know H{ C X*™ and ¢,,(X*™) C X", hence R C X*™. We have
xy € Hi, s0 1 = 14,(2}) € R. Since H{ meets Hy in a point z # xo,
Ty = L4, (y) € R. O

We now prove Theorem 2: For each singular fiber &}, X is strongly
rationally connected by Theorem 20. Approximation follows from Theo-
rem 1.

Example 22. Here is another case where Conjecture 19 is easily verified.
Let X be a partial resolution of a cubic surface ¥ with at most A;-
singularities, i.e., we have a factorization of the minimal resolution

SToxL2y
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Then X*™ is strongly rationally connected.

Theorem 2 implies that ™ is strongly rationally connected, hence
BHF™) < (X*™)° The locus X*™\ f~1(2*™) is a union of (—2)-curves
{E;}, corresponding to the resolved singularities {p;} of X. If (X*™)°
meets F;, it must also contain E;. Hence it suffices to show that for each
E; there exists a rational curve in X*™ meeting F; and 371(X5™) (see
Remark 11).

To find this rational curve, consider the projection from p;

T s P?

which induces a morphism 7/ : X — P2. The image of E; is a plane conic
and the image of the singularities of X has codimension two in P?, so
there exists a rational curve

f Pt — P?\ (Sing (X))

meeting the image of F;.
The same argument applies if X is obtained from a cubic surface X
with A; and A, singularities by resolving some subset of Sing(3J).

Corollary 4 is an immediate consequence of Corollary 3 and the fol-
lowing:

Lemma 23. Let Hilb = P(I'(Opn(d))) denote the Hilbert scheme of
degree-d hypersurfaces, U — Hilb the universal family, and D C Hilb
the discriminant divisor. Suppose B C Hilb is a smooth curve with cor-
responding family

yZZUXHile%B.

Then B is transversal to each branch of the discriminant iff Y is reqular
and the fibers have ordinary double points.

Our transversality condition means that each branch of D at b is
smooth and transverse to B.

Proof. Let b€ BN D and y € Y, a singularity corresponding to a branch
D' C D at b. First suppose that y is an isolated singularity of )),. Then
we have the formula [22, 2.8.3]

multy(BN D) = u(Vs, y) + 1Y, ),

the sum of the corresponding Milnor numbers. Thus the multiplicity is
one if u(Yy,y) =1 and p(Y,y) =0, i.e., y € Y is nonsingular and y € ),
is an ordinary double point.
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Now suppose y fails to be isolated. If d = 2 then the quadratic form
defining ), has rank < n — 1; the discriminant is defined by the de-
terminant of an (n + 1) X (n 4+ 1) symmetric matrix and thus is sin-
gular when the matrix has rank < n. Otherwise, let ¥ C )} denote
the irreducible component of the singular locus containing y. Choose
generic 3 y" € X,y # y”, and consider the hypersurfaces singular
at both 3" and y”, which form a codimension-2(n + 1) linear subspace
L C Hilb = P(I'(Opn(d))). The generic hypersurface singular at y" (or
y") is contained in D’ thus L is contained in the singular locus of D’'. [

6. HIGHER-DIMENSIONAL FANO HYPERSURFACES

Here we work over an uncountable algebraically closed field k of char-
acteristic zero.

We are grateful to James M°Kernan for pointing out the following
amplification of [11, 5.9]

Proposition 24. Let X be a projective rationally connected variety with
1solated terminal local complete intersection singularities. Then X°™ is
strongly rationally connected.

Proof. Let p : X — X denote a resolution of singularities of X, such
that p~'(X*™) — X*™ is an isomorphism and X \ p~'(X*™) is a normal
crossings divisor with components Fy, ..., E,,.

We first show that X* is rationally connected. Suppose that (21, x2) €
XM x X*®™ is general, in the sense that it lies in the complement of a
countable union of proper subvarieties. (Here we are using the fact that
the base field is uncountable.) Then any morphism

h:P'— X, h(0) = 1, h(c0) = 25
is necessarily very free (cf. [15, 3.11]).

Choose a very free imbedding f : P! — X with f(O) = X1, f(oo) = Zo,
and image meeting p~!'(X*™). The induced curve in X is denoted f =
po f : P! — X. We may assume that f(P') meets the singularities of X;

otherwise there is nothing to prove. Consequently, f(P') meets at least
one of the F;.
We compare dimensions of deformation spaces

Def(f) := Hom(P', X;0 — 21,00 — )

and
Def(f) := Hom(P', X;0 — 21,00 — x3).
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The first space has dimension
—deg f*K ; — 2dim(X)

at f. By Theorem 2.10 of [13], the second space has dimension at least
—deg f*Kx — 2dim(X);

the discrepancy formula

then guarantees

dim Def(f) < dim Def(f).
Composition by p gives a morphism of deformation spaces

o : Def(f) — Def(f)
g — pog
which is not dominant by dimension considerations. Let ¢, : P* — X be
a one-parameter deformation of f such that

;grolgt = f,

and ¢,(0) = 21, g;(00) = x5 for each t. Assume that g, is generic on the
maximal-dimension irreducible component of Def(f) passing through f.
For generic ¢, write

G P'— X
is the lift of g; to X, which is also very free.

We claim g¢;(P') C X*™. If not then we could repeat the argument
above, finding a component of Def(g;) with dimension strictly larger than
the dimension of Def(g;), contradicting our assumption.

We now prove that X*™ is strongly rationally connected, by exhibiting
a free curve in X*™ through each point r; € X*™. As above, let f : P! —
X denote a free curve with f(0) = x; and passing through a general point
of X. Write f = po f and repeat our dimension analysis, applied to the
deformation spaces

Def(f) := Hom(P!, X;0 — 1)
and

Def(f) := Hom(P', X;0 — z).
If f(P') is not contained in X*™ then

dim Def(f) < dim Def(f)
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and we can choose ¢; : P! — X generic on the component of maximal
dimension. The lift §, : P! — X remains free because it passes through
a general point of X. Thus if g:(P') were not in X*™ then we could
exhibit a component of Def(g;) with dimension strictly larger than the
dimension of Def(g,), a contradiction. O

Remark 25. The classification of terminal singularities in dimension
three [19] shows they are quotients of isolated complete intersection sin-
gularities by the action of Z/rZ, where r is the index of the singularity.
Thus the hypotheses of Proposition 24 are quite natural.

With further technical hypotheses, the proof of Proposition 24 can be
extended to r > 1.

Example 26. Examples of three-dimensional terminal singularities of
index one include ordinary threefold double points

w? =2 +y* + 2%
For a complete list see [17, 6.4].
Theorem 1 then gives

Corollary 27. Let X be a smooth rationally connected variety over F' =
k(B). Suppose X admits a regular proper model 7 : X — B whose
singular fibers have isolated terminal complete-intersection singularities.
Then weak approzimation holds for X away from S = B\ B.

Applying Lemma 23 we obtain
Corollary 28. Let Hilb = P(I'(Opn(d))) ~ P("i)1 denote the Hilbert
scheme of hypersurfaces of degree d < n,n > 4, U — Hilb the universal
family, and D C Hilb the discriminant divisor. Let B C Hilb be a smooth
curve transverse to each branch of D and

X:IZ/{XHM,B%B

the corresponding family. Then X = U X Spec(F') satisfies weak ap-
proximation away from S = B\ B.
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