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FOR RATIONALLY CONNECTED VARIETIES

BRENDAN HASSETT AND YURI TSCHINKEL

Abstract. This paper addresses weak approximation for rationally
connected varieties defined over the function field of a curve, espe-
cially at places of bad reduction. Our approach entails analyzing
the rational connectivity of the smooth locus of singular reductions
of the variety. As an application, we prove weak approximation for
cubic surfaces and Fano hypersurfaces of dimension at least three,
with square-free discriminant.
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1. Introduction

In number theory, many results and techniques rely on approximating
adelic points by rational points. In this paper, we study geometric ver-
sions of these notions for rationally connected varieties over the function
field of a curve. In this context, rational points correspond to sections
of rationally-connected fibrations over the curve. We are looking for sec-
tions with prescribed jet data in finitely many fibers.

Let k be an algebraically closed field of characteristic zero, B a smooth
curve over k with function field F = k(B). Let B be the smooth projec-
tive model of F and put S := B \ B.
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Theorem 1. Let X be a smooth proper rationally connected variety over
F , and π : X → B a proper model of X. (A model of X is an algebraic
space flat over B with generic fiber X.) Let X sm be the locus where π is
smooth and X • ⊂ X sm be an open subset such that

(1) there exists a section s : B → X •;
(2) for each b ∈ B and x ∈ X •

b , there exists a rational curve f : P1 →
X •

b containing x and the generic point of X •
b .

Then sections of X • → B satisfy approximation away from S (see Sec-
tion 2).

We shall actually prove a stronger result, Theorem 15, that is ap-
plicable in positive characteristic. Rationally-connected fibrations over
curves have sections by [8]. The existence of a section through a finite
set of prescribed points is addressed [16] 2.13 and [15] IV.6.10.1. Weak
approximation is known in fibers of good reduction [10], so we take si-
multaneous resolutions of singular fibers of X whenever possible. (For
example, for rational double points on surfaces, simultaneous resolution
is possible provided the local monodromy is trivial [3, 4].) Consequently,
when X → B admits a simultanteous resolution over some étale neigh-
borhood of b, we replace X by this resolution. However, the resolved
family may be an algebraic space, rather than a scheme, over B. This is
why Theorem 1 is stated in this generality.

There are very few instances where weak approximation over function
fields is known at all places: stably rational varieties; connected linear
algebraic groups and their homogeneous spaces; homogeneous space fi-
brations over varieties that satisfy weak approximation, including conic
bundles over rational varieties; and Del Pezzo surfaces of degree at least
four [5]. Recently, the case of smooth hypersurfaces of degree d in Pn with
d2 ≤ n has been resolved [6], as an application of the notion of ‘rational
simply connectedness’. Even the case of cubic surfaces remains open, in
general. Madore established weak approximation for cubic surfaces at
places of good reduction [18]. His proof uses the abundance of distinct
unirational parametrizations, and builds on ideas of Swinnerton-Dyer
[21].

When is Theorem 1 applicable? Let X be a smooth projective ratio-
nally connected variety over F = k(B), with B projective. There exists
a regular proper model π : X → B, and any section s : B → X is
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contained in X sm. For each singular fiber Xb, fix an irreducible compo-
nent X •

b ⊂ X sm
b ; these determine an open subset X • ⊂ X sm. To prove

weak approximation for X, it suffices to prove approximation for each
X • obtained in this way. We do not know how to verify (1) in general:
Is there any section meeting a prescribed irreducible component of X sm

b ?
Further, there is no general result giving a regular proper model X → B
such that each irreducible component of X sm

b has the property (2).
Section 5 is devoted to applications to cubic surfaces:

Theorem 2. Let X be a smooth cubic surface over F and π : X → B a
proper model whose singular fibers are cubic surfaces with rational double
points. Suppose there exists a section s : B → X sm. Then sections of
X sm → B satisfy approximation away from S.

When the model is regular all sections are contained in the smooth
locus, so we conclude:

Corollary 3. Let X be a smooth cubic surface over F . Suppose X admits
a regular proper model π : X → B whose singular fibers are cubic surfaces
with rational double points. Then weak approximation holds for X away
from S = B \ B.

There exist cubic surfaces which do not admit models with at most
rational double points in a given fiber, e.g., the isotrivial family

x3 + y3 + z3 = tw3

over the t-line. Nonetheless, Corollary 3 proves weak approximation for
‘generic’ cubic surfaces.

Corollary 4. Let Hi lb = P(Γ(OP3(3))) ≃ P19 denote the Hilbert scheme
of cubic surfaces, U → Hi lb the universal family, and D ⊂ Hi lb the
discriminant divisor. Let B ⊂ Hi lb be a smooth curve transverse to each
branch of D and

X := U ×Hilb B → B

the corresponding family. Then X = U ×Hilb Spec(F ) satisfies weak ap-
proximation away from S = B \ B.

Note that meeting the discriminant transversally is an open condition
on the classifying map to the Hilbert scheme. This can be expressed
in number-theoretic terms: The discriminant of X → B is square-free.
Generalizations to degree-two del Pezzo surfaces have been proven by
Knecht [12].
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Finally, in Section 6 we offer extensions of these Corollaries. We gen-
eralize Corollary 3 to the case where the fibers have isolated complete-
intersection terminal singularities. Corollary 4 extends to generic hyper-
surfaces X ⊂ Pn of degree d ≤ n provided n ≥ 4.

In our approach to approximation, we require precise control over
proper rational curves in the smooth locus of a singular variety. One
focus of this paper is to extend standard results on smooth proper ra-
tionally connected varieties to the non-proper case (see Section 4). The
application to cubic surfaces and higher-dimensional hypersurfaces in-
volves refining rational connectivity results of [11] (see Sections 5 and
6).

Acknowledgments: We are grateful to J. L. Colliot-Thélène for nu-
merous discussions about the problems considered here; the ideas here
were developed during visits to Orsay by both authors. J. McKernan
suggested the extensions to higher-dimensional hypersurfaces. We also
benefitted from conversations with S. Keel, A. Knecht, and J. Kollár.
The first author was partially supported by the Sloan Foundation and
NSF Grants 0134259 and 0196187. The second author was partially sup-
ported by National Science Foundation Grants 0554280 and 0602333.

2. Notions of approximation

Let F be a global field, i.e., a number field or the function field of a
curve B defined over an algebraically closed field k. Let S a finite set
of places of F containing the archimedean places, oF,S the corresponding
ring of integers, and AF,S the restricted direct product over all places
outside S.

Let X be an algebraic variety over F , X(F ) the set of F -rational
points and X(AF,S) ⊂

∏
v/∈S X(Fv) the set of AF,S-points of X. The set

X(AF,S) carries a natural direct product topology. One says that weak
approximation holds for X away from S if X(F ) is dense in this topology.

The set X(AF,S) also carries a natural adelic topology: The basic open
subsets are ∏

v∈S′

uv ×
∏

v/∈(S∪S′)

X (ov),

where S ′ is a finite set of nonarchimedean places disjoint from S, X →
Spec(oF,S) is a model of X (i.e., flat with generic fiber X), ov is the
completion of oF,S at v, and uv ⊂ X(Fv) an open subset in the v-adic
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analytic topology on X(Fv). This depends only on X not on the choice of
model. Strong approximation holds for X away from S if X(F ) is dense in
X(AF,S). Note that strong approximation implies weak approximation.
Conversely, for X → Spec(oF,S) flat and proper, weak approximation
implies strong approximation, since X (ov) = X(Fv); in these cases, we
will use the term weak approximation for the sake of consistency.

Finally, there is a formulation which is sensitive to the choice of model.
Consider the topology on

∏
v/∈S X (ov) with basic open subsets

∏

v∈S′

uv ×
∏

v/∈(S∪S′)

X (ov),

with uv ⊂ X (ov) an open subset. We say that approximation holds for S-
integral points of X if X (oF,S) is dense in this product. This is a version
of strong approximation for integral points.

We now focus on the function field case: Let B be a smooth projective
model of B with S = B \B; places v correspond to points b ∈ B. Let X
be a smooth variety proper over F = k(B), π : X → B a model proper
and flat over B (which exists by [20]), and X • ⊂ X sm an open subset
surjecting onto B. Since π is proper, F -rational points of X correspond
to sections s : B → X . If X is regular s factors through X sm.

Definition 5. An admissible section of π : X → B is a section s : B →
X sm. An admissible N-jet of π at b is a section of

X sm ×B Spec(OB,b/m
N+1
B,b ) → Spec(OB,b/m

N+1
B,b ).

An approximable N-jet of π at b is a section of

X ×B Spec(OB,b/m
N+1
B,b ) → Spec(OB,b/m

N+1
B,b )

that may be lifted to a section of X̂b → B̂b, with B̂b = Spec(ÔB,b) and

X̂b = X ×B B̂b.

Hensel’s lemma guarantees that every admissible N -jet is approximable.
Let {bi}i∈I be a finite set of points and ji an admissible N -jet of π at
bi. We write J = {ji}i∈I for the corresponding collection of admissible
N -jets.

The notions of weak and strong approximation introduced above have
geometric interpretations
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• Weak and strong approximation hold for X away from S if any
finite collection of approximable jets of π can be realized by a
section s : B → X .

• This is equivalent to weak approximation holding for X• (the
generic fiber of X •) away from S: Every jet in X at b can be

realized by a section X ×B B̂b → B̂b meeting X̂ •
b .

• If X is regular these are equivalent to the condition that any
collection of admissible jets of π can be realized by a section
s : B → X sm.

There is an analogous formulation of approximation for integral points:

• Approximation holds for sections of X • → B away from S if
each collection of jet data in X • can be realized by a section
s : B → X •.

• If X is regular and X • = X sm this is equivalent to weak approxi-
mation for X.

3. Curves, combs, and deformations

The dual graph associated with a nodal curve C has vertices are in-
dexed by the irreducible components of C and its edges indexed by the
intersections of these components. A projective nodal curve C is tree-like
if

• each irreducible component of C is smooth;
• the dual graph of C is a tree.

Definition 6. A comb with m reducible teeth is a projective nodal curve
C with m + 1 subcurves D, T1, . . . , Tm such that

• D is smooth and irreducible;
• Tl ∩ Tl′ = ∅, for all l 6= l′;
• each Tl meets D transversally in a single point; and
• each Tl is a chain of P1’s.

Here D is called the handle and the Tl the reducible teeth.

Let C be a nodal curve and h : C → W an immersion into a smooth
algebraic space with nodal image. (In particular, h is an embedding at
nodes of C.) Let Nh denote the normal bundle (or sheaf), i.e., the dual
to the kernel of the restriction h∗Ω1

W → Ω1
C .

We will use the following lemma, which has the same proof as Propo-
sition 24 of [10]:
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Lemma 7. Let C be a tree-like curve, W a smooth algebraic space,
h : C → W an immersion with nodal image. Suppose that for each
irreducible component Cl of C, H1(Cl,Nh ⊗ OCl

) = 0 and Nh ⊗ OCl
is

globally generated. Then h deforms to an immersion of a smooth curve
into W .

Suppose furthermore that w = {w1, . . . , wM} ⊂ C is a collection of
smooth points such that for each component Cl, H1(Nh ⊗OCl

(−w)) = 0
and the sheaf Nh⊗OCl

(−w) admits a section nonvanishing at each point
of the support of

(Nh ⊗OCl
)/Nh|Cl

.

Then h : C → W deforms to an immersion of a smooth curve into W
containing h(w).

4. Strong rational connectivity

Definition 8. A variety X is rationally connected (resp. separably ratio-
nally connected) if there is a family of proper irreducible rational curves
g : U → Z (resp. π2 : U = P1×Z → Z) and a cycle morphism u : U → X
such that

u2 : U ×Z U → X × X

is dominant (resp. smooth over the generic point)).

Intuitively, two generic points of X can be joined by an irreducible
projective rational curve. Over fields of characteristic zero, rational con-
nected varieties are also separably rationally connected [15] IV.3.3.1.

The notion of rational connectedness is a bit subtle over countable
fields [2]. For convenience, we work over an uncountable algebraically
closed field. Over such a field, rational connectivity is equivalent to the
condition that two very general points of X can be joined by such a
rational curve.

Definition 9. Let X be a smooth algebraic space of dimension d and
f : P1 → X a nonconstant morphism, so we have an isomorphism

f ∗TX ≃ OP1(a1) ⊕ . . . ⊕OP1(ad)

for suitable integers a1, . . . , ad. Then f is free (resp. very free) if each
ai ≥ 0 (resp. ai ≥ 1).

We refer the reader to [15] IV.3 for further facts about rationally con-
nected varieties.

One technical result will play a prominent rôle in our analysis.
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Proposition 10 ([15] IV.3.9.4). Let V be a smooth separably rationally
connected (not necessarily proper) variety. Then there exists a nonempty
subset V 0 ⊂ V characterized as the largest open subset such that if
v1, . . . , vm ∈ V 0 are distinct closed points, then there is a very free curve
in V 0 containing these as smooth points. Moreover, any rational curve
C ⊂ V that meets V 0 is contained in V 0.

No example where V 0 6= V is known.

Remark 11. Let V2 be a smooth variety, V1 ⊂ V2 a rationally connected
dense open subvariety, and V 0

2 ⊂ V2 the largest open set satisfying the
conditions of Proposition 10 . Then V 0

1 ⊂ V 0
2 . Thus a point v ∈ V2 is in

V 0
2 provided there is a rational curve f : P1 → V2 through v and meeting

V 0
1 .

Proposition 12. Let V be a smooth separably rationally connected vari-
ety, and β : W → V an iterated blow-up of V along smooth subvarieties.
Then β−1(V 0) = W 0.

Proof. The inclusion W 0 ⊂ β−1(V 0) is straightforward: Given points
w1, . . . , wm ∈ W 0, there is a very free curve g : P1 → W 0 containing
them; we may choose this to be transversal to the exceptional divisor of
β. The inclusion of sheaves

TW →֒ β∗TV

remains an inclusion after pull-back via g, as the support of the cokernel
does not contain g(P1). The positivity of g∗TW implies the positivity of
(β ◦ g)∗TV , which means that β ◦ g : P1 → V is also very free.

For the reverse direction, we may restrict to the case where W is the
blow-up of V along a smooth subvariety Z of codimension r > 1, with
exceptional divisor E. It is clear that β−1(V 0 \ Z) ⊂ W0, so consider
some w ∈ β−1(z) with z ∈ Z ∩ V 0. It suffices to construct a rational
curve containing w and the generic point of W .

There exists a very free curve f ′ : P1 → V 0 with the following proper-
ties:

(1) f ′(P1) meets Z only at z (we can always deform a very free curve
to a curve passing through z and disjoint from a codimension ≥ 2
subset [15, II.3.7]);

(2) f ′(P1) is smooth at z and transverse to Z.

Let g′ : P1 → W denote the lift to W , which is free in W , and w′ = g′(0).
If w′ = w then we are done. Otherwise, let ℓ ⊂ β−1(z) ≃ Pr−1 denote the
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line joining w and w′. Since g′ is free, it admits a small deformation to
a free curve g′′ : P1 → W with w′′ := g′′(0) ∈ ℓ, w′′ 6= w′. (See Figure 1.)

w

w’

w"

β −1(z) = Pr−1
g"(P  )1

l

g’(P  )1

Figure 1. Constructing the comb

We construct a comb h : C → W with handle ℓ ⊂ Pr−1 ⊂ W and two
teeth g′, g′′ : P1 → W . Since E is exceptional, we compute

Nℓ/E ≃ Odim(V )
P1 ⊕OP1(1)r−2

and
NE/W ⊗Oℓ ≃ OP1(−1).

The exact sequence of normal bundles

0 → Nℓ/E → Nℓ/W → NE/W ⊗Oℓ → 0

splits because

Ext1(OP1(−1),OP1(n)) = 0, n ≥ −2.

Thus we deduce

Nℓ/W ≃ Odim(V )−r
P1 ⊕OP1(1)r−2 ⊕OP1(−1)

where the negative summand is in the normal direction to E. Since g′(P1)
and g′′(P1) are transverse to E, we can apply Proposition 23 of [10]. The
key point is that the only negativity in the normal bundle of ℓ is due to
the negativity of the normal bundle of E ⊂ W ; however, the components
g′(P1) and g′′(P1) overcome this. Precisely, we have

Nh ⊗Oℓ ≃ Odim(V )−r
P1 ⊕OP1(1)r−2 ⊕OP1(1);

the quotient (Nh ⊗Oℓ)/Nℓ/W lies in the image of the last summand.
Lemma 7 implies that h : C → W admits a deformation to a rational

curve containing w. �
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A similar argument gives the following strengthening of Proposition 10
(cf. Theorem 2.2 of [7])

Proposition 13. Let V be a smooth separably rationally connected vari-
ety and V 0 ⊂ V be the distinguished open subset characterized in Propo-
sition 10. Then for any finite collection of jets

ji : Spec
(
k[ǫ]/

〈
ǫN+1

〉)
→֒ V 0, i = 1, . . . , m

supported at distinct points v1, . . . , vm, there exists a very free rational
curve smooth at v1, . . . , vm with the prescribed jets.

Proof. There is an iterated blow-up

β : W = WN → . . . → Wj → . . . → W1 → V

and points w1, . . . , wm ∈ W so that if g : C → W is a morphism whose
image contains w1, . . . , wm then the image of f := β ◦g : C → V contains
the given collection of jets. Here is the description: Over each point vi,
we blow up V successively at N points. Given any smooth curve germ C
with the prescribed N -jet at vi, Wj is the blowup of Wj−1 at the points of
the proper transform of C lying over the vi. Proposition 12 then implies
there exists a very free curve g : P1 → W through w1, . . . wm. However,
the image of this curve in V will be singular at vi if g(P1) meets β−1(vi)
in more than one point.

We claim there exists a very free curve gi : P1 → W meeting β−1(vi)
only at wi, transversally. We choose this curve so that it is disjoint
from β−1(vj) when j 6= i. (Again, we are using the fact that a very
free curve can be deformed away from any codimension ≥ 2 subvariety
while passing through a prescribed point in the complement.) Fix generic
points xi ∈ gi(P

1) and let g0 : P1 → W be a very free curve intersecting
gi(P

1) transversely at xi but not meeting any β−1(vi). (For example,
take g0 = (β−1 ◦ f0), where f0 : P1 → V is a very free curve through
β(x1), . . . , β(xm).) Consider the comb h : C → W with handle g0(P

1)
and m-teeth gi(P

1). This deforms to a very free curve h′ : P1 → W
meeting each β−1(vi) only at wi, transversally.

The proof of the claim is a refinement of the argument for Propo-
sition 12. We proceed by induction on N . The base case N = 1 is
contained in the proof of Proposition 12, which gives a very free curve
smooth at vi with prescribed tangency. Let Ei,N ≃ Pdim(V )−1 be the
last exceptional divisor of β : W → V over vi, i.e., the exceptional di-
visor of the N -th blow-up. For 1 ≤ j < N , let Ei,j ⊂ WN denote the
proper transform of the exceptional divisor of Wj → Wj−1 over vi; we
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have Ei,j ≃ Blwi,j
Pdim(V )−1, where wi,j is the intersection of the proper

transform of C with the exceptional divisor of Wj → Wj−1.
Suppose that g′

i : P1 → W is a very free curve such that β◦g′
i is smooth

with the desired (N − 1)-jet at vi. Let w′
i = g′

i(P
1) ∩ β−1(vi) denote the

unique point of intersection, which we assume is distinct from wi. Let ℓN

denote the line in Ei,N ≃ Pdim(V )−1 joining wi and w′
i, and zN−1 its point of

intersection with Ei,N−1. Let ℓN−1 ⊂ Ei,N−1 ≃ Blwi,N−1
Pdim(V )−1 denote

the proper transform of a line containing zN−1, and zN−2 its point of
intersection with Ei,N−2. Continue in this way, until we obtain ℓ1 ⊂ Ei,1,
the proper transform of a line containing z1. Finally, let g′′

i : P1 → W be
a very free curve meeting the exceptional locus transversally at a generic
point of ℓ1. (See Figure 2.)

l

1

w

w’

i

i

i

i

1

l
g’’ (P  )

g’ (P  )1

N

Figure 2. Constructing the comb with reducible teeth

Let h : C → W be the comb with handle ℓN and two reducible teeth:

(1) g′
i : P1 → W ;

(2) the union of the lines ℓN−1, . . . , ℓ1 and the curve g′′
i : P1 → W ;

By a normal bundle computation similar to that of Proposition 12, we
find that Nh|ℓN is ample and Nh is nonnegative on each of the remaining
components: Again, Lemma 7 (or Proposition 24 of [10]) implies that h
admits a deformation to an immersed rational curve containg wi.

Here are the details of the computations (cf. [10] Section 5): The
normal bundle of a line in projective space is

NℓN/Ei,N
= NℓN /Pdim(V )−1 ≃ OP1(1)dim(V )−2
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and the normal bundle for an exceptional divisor is

NEi,N/W ≃ O
Pdim(V )−1(−1).

For each j we have

(4.1) 0 → Nℓj/Ei,j
→ Nℓj/W → NEi,j/W |ℓj

→ 0

which for j = N yields

NℓN /W ≃ OP1(1)dim(V )−2 ⊕OP1(−1),

with the negative component in the direction normal to Ei,N . We also
have an extension

(4.2) 0 → Nℓj/W → Nh|ℓj
→ Q(ℓj) → 0,

where Q(ℓj) is a torsion sheaf supported at the points where ℓj meets the
adjacent components. For j = N these are g′

i(P
1) and ℓN−1, and since

the tangent vectors to these curves are normal to Ei,N , we find

Nh|ℓN
≃ OP1(1)dim(V )−2 ⊕OP1(1).

The normal bundle of the proper transform of a line in the blow-up of
projective space at a point of the line is

Nℓj/Ei,j
= Nℓj/Blwi,j

Pdim(V )−1 ≃ Odim(V )−2
P1

for j = 1, . . . , N − 1. Similarly, we can compute

NEi,h/W |ℓj
= OP1(−2)

so the exact sequence analogous to (4.1) yields

Nℓj/W ≃ Odim(V )−2

P1 ⊕OP1(−2),

with the negative component in the direction normal to Ei,j. Using (4.2)
and the fact that ℓj is adjacent to ℓj+1 and ℓj−1 (or g′′

i (P
1) when j = 1),

we find
Nh|ℓj

≃ Odim(V )−2

P1 ⊕OP1 .

�

Definition 14. A smooth separably rationally connected variety Y is
strongly rationally connected if any of the following conditions hold:

(1) for each point y ∈ Y , there exists a rational curve f : P1 → Y
joining y and a generic point in Y ;

(2) for each point y ∈ Y , there exists a free rational curve containing
y;
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(3) for any finite collection of points y1, . . . , ym ∈ Y , there exists a
very free rational curve containing the yj as smooth points;

(4) for any finite collection of jets

Spec(k[ǫ]/
〈
ǫN+1

〉
) ⊂ Y, i = 1, . . . , m

supported at distinct points y1, . . . , ym, there exists a very free
rational curve smooth at y1, . . . , ym and containing the prescribed
jets.

The implications
(4) ⇒ (3) ⇒ (2) ⇒ (1)

are obvious. By Proposition 10, assertions (1)-(3) are each equivalent to
the condition Y = Y 0. Property (4) is analogous to Theorem 2.2 of [7],
which is stated for proper varieties. It follows from (1) by Proposition 13.

With basic properties of strongly rationally connected varieties estab-
lished, Theorem 1 follows from the general result (cf. [15] IV.6.10.1):

Theorem 15. Let π : Y → B be a smooth morphism whose fibers are
strongly rationally connected. Assume that π has a section. Then sections
of Y → B satisfy approximation away from S.

Proof. Let π : Y → B be a proper model of Y → B, which exists by [20].
The section extends to a section s of π. By a result of Artin and Néron
[1] Corollary 4.6, there exists a blow-up with center supported in π−1(S)

Ỹ → Y

such that the proper transform of s(B) in Ỹ is contained in Ỹsm.
Recall the proof of weak approximation at places of good reduction in

Section 5 of [10]. This is a bootstrap argument, using the existence of
a section in the smooth locus to construct sections with prescribed jets
of successively higher order. For the base case, suppose we are given an
arbitrary section t : B → Y . When Y → B is proper, Kollár-Miyaoka-
Mori [16] first demonstrated how to get a section with prescribed values
y1, . . . , yr at b1, . . . , br ∈ B. The key is to construct a comb with handle
t(B) and teeth very free curves in the fibers Ybi

joining t(bi) to yi, which
deforms to a section passing through the yi. For the inductive step,
suppose we have a section with prescribed jets to order ≤ N − 1 at a
finite set of points b1, . . . , br. Blow up the total space N times along
the jet data at each of b1, . . . , br to get a new model with (admittedly
very special) reducible fibers over b1, . . . , br. The Nth-order jet conditions
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in the original model translate into point conditions in the new model.
There we produce an explicit comb with reducible teeth, based on the
proper transform of the section obtained by the inductive hypothesis,
that deforms to the desired section. This only requires the existence of
very free curves in Ybi

passing through yi with prescribed tangency.
Properness is used twice. At the the zeroth-order step, it is used to

exhibit the very free fibral curves joining t(bi) to yi. In the inductive
step, it is used to find a very free fibral curve with prescribed tangency
at yi. In our situation, these are guaranteed by the hypothesis that the
fibers are strongly rationally connected. �

5. Cubic surfaces

We work over an algebraically closed field of characteristic zero.

Definition 16. A log Del Pezzo surface is a pair (X, ∆) consisting of a
normal projective surface X and an effective Q-divisor ∆ =

∑
ai∆i, 0 <

ai ≤ 1 on X, with log terminal singularities, such that −(KX + ∆) is
ample. When ∆ is empty, this is equivalent to saying that X has quotient
singularities and ample anticanonical class.

Theorem 17 ([11] 1.6). The smooth locus of a log Del Pezzo surface
(X, ∆) is rationally connected, i.e., two generic points in Xsm can be
joined by an irreducible projective rational curve contained in Xsm.

Example 18 ([23]). There exist projective rational surfaces with rational
double points whose smooth locus is not rationally connected. Consider

X̃ = E × P1

where (E, 0) is an elliptic curve and the involution

ι : X̃ → X̃

(e, [x0, x1]) 7→ (−e, [x1, x0]).

The involution has eight isolated fixed points q ⊂ X̃. The quotient

X = X̃/ 〈ι〉 has eight A1 singularities and is rational: X → E/ 〈ι〉 ≃ P1

is a conic bundle. Since X̃ − q → Xsm is a covering space, π1(X
sm) ⊂

π1(X̃ − q) with index two. Thus

π(X̃ − q) ≃ π(X̃) ≃ π(E) ≃ Z × Z

and Xsm has infinite fundamental group. However, rationally connected
varieties (even non-proper ones) have finite fundamental groups (see
Lemma 7.8 of [11] and Proposition 2.10 of [14], for example).
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The following conjecture would allow us to apply Theorem 1 to prove
weak approximation for many log Del Pezzo surfaces:

Conjecture 19. The smooth locus of a log Del Pezzo surface is strongly
rationally connected.

We prove this for cubic surfaces:

Theorem 20. Let X ⊂ P3 be a cubic surface with rational double points.
Then Xsm is strongly rationally connected.

Proof. Let x1 ∈ Xsm be a point. We produce a rational curve R ⊂ Xsm

joining x1 and a generic point x2 ∈ Xsm.
We start with an elementary lemma:

Lemma 21. Let Y ⊂ Pn be an irreducible hypersurface such that the
Gauss map

Y 99K P̌n

y 7→ [TY |y]

is generically finite. Then a generic tangent hyperplane section to Y
has an isolated singularity of multiplicity two with smooth projectivized
tangent cone.

Proof. Since the Gauss map is generically finite, its differential is gener-
ically of maximal rank. However, the differential at y ∈ Y can be iden-
tified with the dual to the second fundamental form (see [9, 17.11])

Πy : Sym2(TY |y) → NY/Pn|y.

This is nondegenerate precisely when the quadratic term of the Taylor
expansion of the defining equation of the tangent hyperplane section Hy

has maximal rank. �

This is applicable to cubic surfaces X with rational double points. It
is a classical fact that X contains a finite number of lines. However, if
the image of the Gauss map of X is a curve C then X is dual to C and
thus ruled by lines.

Now we will make explicit how x2 must be chosen. Applying the
lemma, we may assume

(1) The tangent hyperplane section H2 at x2 is irreducible and nodal.

In particular, H2 ⊂ Xsm and there are no lines ℓ ⊂ X containing x2.
Projection from x2 then gives a double cover

Blx2X → P2;
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the covering transformation interchanges the exceptional divisor and the
proper transform. We obtain a birational involution

ιx2 : X 99K X

x 7→ x′,

where {x, x′, x2} are collinear. This factors as the blow-up of x2 followed
by the blow-down of the proper transform of H2. Note that ιx2 fixes the
singularities of X and thus takes Xsm to itself.

We also assume:

(2) H2 does not contain x1.

It follows that H2 does not contain x′
1 = ιx2(x1). Moreover, x1 and x′

1

are in the open subset on which ιx2 is an isomorphism.
We assume furthermore:

(3) x2 is not contained in H1, the tangent hyperplane to X at x1.

It follows that x2 6∈ H ′
1, the tangent hyperplane section at x′

1. Indeed,
suppose that x2 ∈ H ′

1. We know that x2 6= x′
1 (because x′

1 6∈ H2), so
consider the line joining x2 and x′

1. This meets X only at x2 and x′
1, so

x′
1 = x1 and x2 ∈ H1, a contradiction.
Finally, we assume:

(4) H ′
1 is irreducible and nodal.

In particular, H ′
1 ⊂ Xsm.

Since x2 6∈ H ′
1, ιx2 is regular along H ′

1. We verify that the rational
curve R = ιx2(H

′
1) has the desired properties. Since x2 6∈ H ′

1, H2 and H ′
1

intersect at a point z 6= x2; thus the curve

R = ιx2(H
′
1) ∋ ιx2(z) = x2.

We know H ′
1 ⊂ Xsm and ιx2(X

sm) ⊂ Xsm, hence R ⊂ Xsm. We have
x′

1 ∈ H ′
1, so x1 = ιx2(x

′
1) ∈ R. Since H ′

1 meets H2 in a point z 6= x2,
x2 = ιx2(y) ∈ R. �

We now prove Theorem 2: For each singular fiber Xb, X sm
b is strongly

rationally connected by Theorem 20. Approximation follows from Theo-
rem 1.

Example 22. Here is another case where Conjecture 19 is easily verified.
Let X be a partial resolution of a cubic surface Σ with at most A1-
singularities, i.e., we have a factorization of the minimal resolution

Σ̃ → X
β
→ Σ.
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Then Xsm is strongly rationally connected.
Theorem 2 implies that Σsm is strongly rationally connected, hence

β−1(Σsm) ⊂ (Xsm)0. The locus Xsm\β−1(Σsm) is a union of (−2)-curves
{Ei}, corresponding to the resolved singularities {pi} of Σ. If (Xsm)0

meets Ei, it must also contain Ei. Hence it suffices to show that for each
Ei there exists a rational curve in Xsm meeting Ei and β−1(Σsm) (see
Remark 11).

To find this rational curve, consider the projection from pi

πi : Σ 99K P2

which induces a morphism π′
i : X → P2. The image of Ei is a plane conic

and the image of the singularities of X has codimension two in P2, so
there exists a rational curve

f : P1 → P2 \ π′
i(Sing(X))

meeting the image of Ei.
The same argument applies if X is obtained from a cubic surface Σ

with A1 and A2 singularities by resolving some subset of Sing(Σ).

Corollary 4 is an immediate consequence of Corollary 3 and the fol-
lowing:

Lemma 23. Let Hi lb = P(Γ(OPn(d))) denote the Hilbert scheme of
degree-d hypersurfaces, U → Hi lb the universal family, and D ⊂ Hi lb
the discriminant divisor. Suppose B ⊂ Hi lb is a smooth curve with cor-
responding family

Y := U ×Hilb B → B.

Then B is transversal to each branch of the discriminant iff Y is regular
and the fibers have ordinary double points.

Our transversality condition means that each branch of D at b is
smooth and transverse to B.

Proof. Let b ∈ B ∩D and y ∈ Yb a singularity corresponding to a branch
D′ ⊂ D at b. First suppose that y is an isolated singularity of Yb. Then
we have the formula [22, 2.8.3]

multb(B ∩ D′) = µ(Yb, y) + µ(Y , y),

the sum of the corresponding Milnor numbers. Thus the multiplicity is
one if µ(Yb, y) = 1 and µ(Y , y) = 0, i.e., y ∈ Y is nonsingular and y ∈ Yb

is an ordinary double point.
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Now suppose y fails to be isolated. If d = 2 then the quadratic form
defining Yb has rank ≤ n − 1; the discriminant is defined by the de-
terminant of an (n + 1) × (n + 1) symmetric matrix and thus is sin-
gular when the matrix has rank < n. Otherwise, let Σ ⊂ Yb denote
the irreducible component of the singular locus containing y. Choose
generic y′, y′′ ∈ Σ, y′ 6= y′′, and consider the hypersurfaces singular
at both y′ and y′′, which form a codimension-2(n + 1) linear subspace
L ⊂ Hi lb = P(Γ(OPn(d))). The generic hypersurface singular at y′ (or
y′′) is contained in D′ thus L is contained in the singular locus of D′. �

6. Higher-dimensional Fano hypersurfaces

Here we work over an uncountable algebraically closed field k of char-
acteristic zero.

We are grateful to James McKernan for pointing out the following
amplification of [11, 5.9]

Proposition 24. Let X be a projective rationally connected variety with
isolated terminal local complete intersection singularities. Then Xsm is
strongly rationally connected.

Proof. Let ρ : X̃ → X denote a resolution of singularities of X, such
that ρ−1(Xsm) → Xsm is an isomorphism and X̃ \ ρ−1(Xsm) is a normal
crossings divisor with components E1, . . . , Em.

We first show that Xsm is rationally connected. Suppose that (x1, x2) ∈
Xsm × Xsm is general, in the sense that it lies in the complement of a
countable union of proper subvarieties. (Here we are using the fact that
the base field is uncountable.) Then any morphism

h : P1 → X̃, h(0) = x1, h(∞) = x2

is necessarily very free (cf. [15, 3.11]).

Choose a very free imbedding f̃ : P1 → X̃ with f̃(0) = x1, f̃(∞) = x2,
and image meeting ρ−1(Xsm). The induced curve in X is denoted f =

ρ ◦ f̃ : P1 → X. We may assume that f(P1) meets the singularities of X;

otherwise there is nothing to prove. Consequently, f̃(P1) meets at least
one of the Ei.

We compare dimensions of deformation spaces

Def(f̃) := Hom(P1, X̃; 0 → x1,∞ → x2)

and
Def(f) := Hom(P1, X; 0 → x1,∞ → x2).
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The first space has dimension

− deg f̃ ∗KX̃ − 2 dim(X)

at f̃ . By Theorem 2.10 of [13], the second space has dimension at least

− deg f ∗KX − 2 dim(X);

the discrepancy formula

KX̃ = KX +
∑

i

biEi, bi > 0

then guarantees
dim Def(f̃) < dim Def(f).

Composition by ρ gives a morphism of deformation spaces

ιρ : Def(f̃) → Def(f)
g̃ 7→ ρ ◦ g̃

which is not dominant by dimension considerations. Let gt : P1 → X be
a one-parameter deformation of f such that

lim
t→0

gt = f,

and gt(0) = x1, gt(∞) = x2 for each t. Assume that gt is generic on the
maximal-dimension irreducible component of Def(f) passing through f .
For generic t, write

g̃t : P1 → X̃

is the lift of gt to X̃, which is also very free.
We claim gt(P

1) ⊂ Xsm. If not then we could repeat the argument
above, finding a component of Def(gt) with dimension strictly larger than
the dimension of Def(g̃t), contradicting our assumption.

We now prove that Xsm is strongly rationally connected, by exhibiting
a free curve in Xsm through each point x1 ∈ Xsm. As above, let f̃ : P1 →
X̃ denote a free curve with f̃(0) = x1 and passing through a general point

of X̃. Write f = ρ ◦ f̃ and repeat our dimension analysis, applied to the
deformation spaces

Def(f̃) := Hom(P1, X̃; 0 → x1)

and
Def(f) := Hom(P1, X; 0 → x1).

If f(P1) is not contained in Xsm then

dim Def(f̃) < dim Def(f)
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and we can choose gt : P1 → X generic on the component of maximal
dimension. The lift g̃t : P1 → X̃ remains free because it passes through
a general point of X̃. Thus if gt(P

1) were not in Xsm then we could
exhibit a component of Def(gt) with dimension strictly larger than the
dimension of Def(g̃t), a contradiction. �

Remark 25. The classification of terminal singularities in dimension
three [19] shows they are quotients of isolated complete intersection sin-
gularities by the action of Z/rZ, where r is the index of the singularity.
Thus the hypotheses of Proposition 24 are quite natural.

With further technical hypotheses, the proof of Proposition 24 can be
extended to r > 1.

Example 26. Examples of three-dimensional terminal singularities of
index one include ordinary threefold double points

w2 = x2 + y2 + z2.

For a complete list see [17, 6.4].

Theorem 1 then gives

Corollary 27. Let X be a smooth rationally connected variety over F =
k(B). Suppose X admits a regular proper model π : X → B whose
singular fibers have isolated terminal complete-intersection singularities.
Then weak approximation holds for X away from S = B \ B.

Applying Lemma 23 we obtain

Corollary 28. Let Hi lb = P(Γ(OPn(d))) ≃ P(n+d

d )−1 denote the Hilbert
scheme of hypersurfaces of degree d ≤ n, n ≥ 4, U → Hi lb the universal
family, and D ⊂ Hi lb the discriminant divisor. Let B ⊂ Hi lb be a smooth
curve transverse to each branch of D and

X := U ×Hilb B → B

the corresponding family. Then X = U ×Hilb Spec(F ) satisfies weak ap-
proximation away from S = B \ B.
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