ON THE BRAUER-MANIN OBSTRUCTION FOR INTEGRAL
POINTS

ANDREW KRESCH AND YURI TSCHINKEL

ABSTRACT. We give examples of Brauer-Manin obstructions to integral points
on open subsets of the projective plane.

1. INTRODUCTION

Let k be a number field and X a smooth projective geometrically irreducible variety
over k. It is well known that the existence of points of X over all completions k, of k
does not imply the existence of a k-rational point on X, in general. This phenomenon
is referred to as the failure of the Hasse principle. Examples of failure of the Hasse
principle are known for genus 1 curves, cubic surfaces, etc. Even when the Hasse
principle holds, rational points need not be dense in the set of adelic points of X. This
phenomenon, the failure of weak approximation, also is known in many examples.

The Brauer—Manin obstruction [ManT71], [Man74] often explains the failure of the
Hasse principle and weak approximation. The exact sequence from class field theory

0 — Br(k) — @Br(kv) 2 i Q/Z —0

(where Y inv,, denotes the sum of local invariants) leads to the constraint
X(k) C X(Ap)P" = {(20) € X(Ar) | D invy(als,) = 0Va € Br(X) }

on the set X (Ay) of adelic points on X. When X(A;)B" # X(Ay), then we say
there is a Brauer-Manin obstruction to the Hasse principle, respectively to weak
approximation, in case X (A)B" = 0, respectively, X (A)Br # 0.

For a thorough introduction to the subject, see [Sko01]. For a survey, see [Pey05].

The study of rational points on projective hypersurfaces is equivalent to the study
of integral solutions to homogeneous Diophantine equations f(zo,...,z,) = 0. Many
interesting Diophantine problems involve non-homogeneous equations. Their solu-
tions can be interpreted as integral points on quasi-projective varieties.

Let o0x be the ring of integers of k. Let X be an integral model for X i.e., a scheme,
projective and flat over Spec(oy) having general fiber X. Let Z be a reduced closed
subscheme of X, and set U = X \ Z. Then we define Z to be the scheme-theoretic
closure of Z in X and set U = X ~ Z. We then have U(oy), the integral points of
U. By abuse the terminology, we say that a k-rational point of U is an integral point
if its (unique) extension to an og-point of X has image in U. (This notion depends
on the choice of integral model X'). There are S-integral points (o, g) for S a finite
set of non-archimedean places of k (0j,s denotes the ring of S-integral elements of k)
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and v-adic integral points U(0,) for v a non-archimedean place of k; the latter will be
identified with k,-points of U that extend to U(o,).

The Brauer—-Manin obstruction has been extensively studied in the setting of pro-
jective varieties; see, e.g., [CTKS87]. Its study in the context of open varieties is
more recent and originates in the work of Colliot-Thélene and Xu [CTXO07], which
gives a new explanation based on the Brauer-Manin obstruction for the failure of
Hasse principle exhibited in [BR95] and [SX04] in the representation of integers by
quadratic forms in three variables.

The insolubility of a Diophantine equation that admits solutions in k and in v-
adic integers for all non-archimedean places v of k£ can be a manifestation of the
failure of the Hasse principle, or strong approximation, for a variety. (For smooth
projective varieties, strong and weak approximation are the same.) In this paper we
give examples of this, that can be explained by the Brauer—Manin obstruction:

(1) Uor)  ([Jt(ou) x TT UK,

vtoo v|oo

where the set on the right is the set of tuples of adelic points, integral at all non-
archimedean places, whose sum of local invariants is zero with respect to every element
of Br(U). The formulation of the obstruction, and in particular the use of Br(U) rather
than Br(i/), follows Colliot-Thélene and Xu (see [CTXO07] §1).

This note is inspired by lectures of J.-L. Colliot-Thélene on his joint work with
F. Xu. As in their work, we take U to be the complement of a geometrically irre-
ducible smooth divisor D on a surface X. In their work, X is a quadric surface and
D a hyperplane section. Here for simplicity we take k = Q and X = P2, so that if ho-
mogeneous f(z,y,2) € Z[z,y, ] defines D (and D), then elements of U(Z) correspond
to triples of integers (x : y : z) (up to a factor +1) such that f(x,y,z) = 1, where
U = P2 \ D. The geometric Brauer group of U is understood by an exact sequence
[AMO92] that reduces in this case to an isomorphism, the ramification map:

(2) Br(U®Q) = H'(D ®Q,Q/Z).

Our D C P? will admit unramified coverings over Q, such that known constructions
of algebras representing ramified Brauer group elements can be carried out over Q.
For the local analysis we must restrict the Brauer group elements to points of U(R)
and to the p-adic integral points in U(Q,). These correspond to triples (x : y : z) of
reals satisfying f(z,y,z) € R*, respectively p-adic integers satisfying f(z,y,z2) € Z;.

The authors are grateful to the referee for suggestions that led to significant im-
provements in the presentation of this material.

2. CuBIC

This section is devoted to the following example, concerning rational and integral
points on the complement of a plane cubic curve over Q.

Example 1. For the Diophantine equation
(3) Y2z — (4o — 2)(1622 + 20wz + 722) = 1.
we have:

(i) There are solutions in p-adic integers for all primes p.
(ii) There are solutions in Q.
(iii) There are no solutions in 7Z.
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There is the rational solution (1/4,1, 1), which is a p-adic integer solution for p # 2.
A 2-adic integer solution is (0,0, {/1/7), so statements (i) and (ii) are established.
The proof of (iii) is more subtle and uses the Brauer group. Letting the polynomial

flz,y,2) =y*z — (4o — 2)(162% + 2022 + 72?)

define the divisor D C P? (and D C P2) and setting U = P2\ D (and U = PZ \ D)
we will exhibit a 2-torsion ramified Brauer group element A € Br(U) whose pull-back
to Br(U ® Q) has prescribed (nontrivial) image under the ramification map. With A,
we are able to deduce from (1) a congruence condition on integral points on U that
is incompatible with (3).

Remark 1. Since f is homogeneous of odd degree, the insolubility of (3) in integers
implies U(Z) = 0. So, statements (i)-(iii) of Example 1 signify a Brauer-Manin
obstruction to the Hasse principle over Z.

Remark 2. The algebraic fundamental group of U ® Q is cyclic of order 3 by [Zar29]
Theorem 8, [SGA1] (XII.5.2), and [SGA1] (X.1.8) with appeal to (XIII.4.6) instead
of (X.1.7). Hence a universal cover of U ® Q is U ® Q, where U is the affine open
subscheme defined by ¢ # 0 of the cubic surface X with defining equation f(x,y,z) =
t3, and the covering map is given by
(x:y:z:t)—(x:y:2).

For the degree 3 extension of function fields Q(U) — @((NJ ), there are restriction and
corestriction maps on Brauer groups, and restriction followed by corestriction acts as

multiplication by 3 on Br(Q(U)). Nontriviality of the pull-back of A to Br(U®Q) (see
Lemma 1, below) implies: the 2-torsion element A remains nontrivial, hence ramified

(since Br(X ® Q) = 0), upon pull-back to the geometric universal cover.

Remark 3. We can state an integer-point analogue of a basic obstruction to rational
points coming from torsor theory and check that it does not obstruct integral points
on U. Letting the group ps of cube roots of unity act on the variety U of Remark 2 by
multiplication on the ¢ coordinate gives U the structure of U-torsor under 3. Torsor
theory, described in [Sko01] §2.2, supplies arithmetic twists 7. : ﬁ,y — U indexed by
v € HY(Q, u3), with the property that U(Q) is the disjoint union of the images in U
of the ﬁ,y((@). Obstructions based on the consequence that U(Q) = 0 if ﬁ,,(Q) = () for
all v are called descent obstructions, cf. [Sko01] §5.3. An easy integer-point descent
obstruction states: if, for every v € HY(Q, u3), there exists a prime py such that
Wv(ﬁﬂ,((@pw)) contains no py-adic integral points, then U(Z) = 0. We know a priori
that there are only finitely many classes v such that Wy(ﬁ,y(@pw)) contains a p,-
adic integral point (see the next paragraph). For the untwisted Uy = U we have by
statement (i) that 7o (Up (Qp)) contains p-adic integral points for every prime p.
Proposition 5.3.2 of [Sko01] tells us that the descent obstruction to rational points
on a proper variety over a number field k£ reduces to analysis on just finitely many
arithmetic twists of a given torsor. In the proof, properness is used only for the
assertion that every k-rational point extends to an og-point of a fixed integral model.
So we can apply the argument in the setting of integral points on an open subvariety.
Viewing ps as a smooth group scheme over Spec(Z[1/3]), then for suitable N, U
extends to some U ® Z[1/3N]-torsor U ® Z[1/3N] under us. For a prime pf 3N and
point s € U(Q,), the classes v such that s € WW(INJ.Y(@I,)) are precisely those whose
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image under H'(Q, uu3) — H'(Qy, p13) is the class of the restriction U, of the U-torsor
U to s. If the point s is a p-adic integral point then (7|S is isomorphic to the restriction
of a Spec(Z,)-torsor under 3. The proof of [Sko01] Proposition 5.3.2, establishes that
for a number field k, linear algebraic group G over k, finite set S of non-archimedean
places of k, and smooth group scheme Gg — Spec(og,s) extending G, there are only
finitely many v € H'(k,G) whose image in H'(k,,G) is the restriction of a class in
H'(0,,Gs) for every non-archimedean place v ¢ S.

Returning to the verification of (iii), D is an elliptic curve over Q, and its group
structure is readily computed to be D(Q) = Z/2Z. Hence there is a unique (up to
isomorphism) nontrivial unramified cover D® Q — D ® Q that can be obtained by
base change from some D — D defined over Q. The cover has degree 2.

Lemma 1. The class in Br(Q(U)) of the quaternion algebra
(4) (%272 — (4z — 2)(162% + 2022 + 72) 273, (4 — 2)27 1)

is the restriction of a Brauer group element A € Br(U), such that the pull-back of A to
Br(U®Q) is sent by the ramification map to the class of the extension Q(D) — Q(D).

Proof. The assertion about Br(U) uses the fact, immediate from [Gro68] (IIL.6.2),
that the image of Br(U) in Br(Q(U)) is the kernel of a prescribed map Br(Q(U)) —
@D.cvm H' (ku,Q/Z), where the sum is over generic points u of codimension 1 sub-
varieties of U, with k,, the residue field at such a point u. The argument of [AM92]
§3 supplies a concrete description of this map, also called ramification map (since the
base field Q is not algebraically closed, the right-hand 0 in the exact sequence [AM92]
(3.2) needs to be replaced with H3(Q(U), G,,) in the present setting). Given rational
functions f, g € Q(U)*, if f and g are both units in Oy, then (f,g) € Br(U) lies in
the kernel of the ramification map at u, while if f is a uniformising element for the
discrete valuation ring O, and g is a unit in Oy, then (f,g) lies in the kernel of
the ramification map when g is a square in k, and otherwise is sent to the class of
k, — ku(g'/?). Immediately from (4), then, A lies in the kernel of the ramification
map at the line 4o — z = 0. We rewrite the class of (4) in Br(Q(U)) as

(—zy~ ' 4 (4o — 2)(162% 4+ 202z + 722y, 2y~ 1)
+ (22572 — (4o — 2)(162% + 20wz + 7232y ™2, (4 — 2)y ™)

to see that A lies in the kernel of the ramification map at z = 0. At other u € UM,
the functions in (4) are both units in Oyy,.

Upon base change to Q, the algebra (4) becomes the explicitly given symbol algebra
in [Jac01], proof of the Theorem. There the image under the ramification map is
computed and found to be as claimed. O

The local analysis of the algebra A at p-adic integral points of U is simplified by
the following observation.

Lemma 2. The element A € Br(U) from Lemma 1 is the restriction of an element
of Br(U ® Z[1/2]).

Proof. Lemma 1 implies that for suitable NV there exists a scheme U; of the form
U @ Z[1/2N] and A; € Br(l) extending A. If we define Us to be the complement
in U @ Z[1/2] of the union of D and the scheme defined by (4x — z)z = 0, then
the rational functions in (4) are units in Oy, hence (4) defines Az € Br(ls) also
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extending A. The restrictions of A; and Az to Br(ly NUs) are equal since U & Z[1/2]
is regular and A; and As extend the same element of Br(Q(U)). So, by the Mayer-
Vietoris sequence, A extends to an element of Br(i; UUs). By a purity result of
Gabber for three-dimensional regular schemes, [Gab81] Theorem 2, the restriction
map Br(Ud @ Z[1/2]) — Br(Uy UlUz) is an isomorphism. O
At any 2-adic integral point (z : y : 2z) of U satisfying

(5) y=0 (mod 2) and z=1 (mod 2),

direct evaluation reveals that A is nonzero at (z : y : z) € U(Q2). By Lemma 2,
A vanishes at all p-adic integral points of U, for any odd prime p. Since U(R) is
connected, the behaviour of A at real points of U is revealed by evaluation at a single
point, and we find that A vanishes at real points. By the condition (1), ¢ has no
integral points satisfying (5). Any integer solution to (3) would have to satisfy (5),

as we see by reduction modulo 2. Since any integer solution to (3) would determine
an integral point on U, statement (iii) is established.

3. QUARTIC
In this section, we study the complement of a quartic curve in the projective plane
over Q.
Example 2. For the Diophantine equation
(6) —22% —yt 4182 =1
we have:

(i) There are solutions in p-adic integers for all primes p.
(ii) There are solutions in Q.
(iil) There are no solutions in 7Z.

The rational solution (1/2,0,1/2) is a p-adic integer solution for p # 2, and a 2-adic
integer solution is (0, v/17,1). So, (i) and (ii) are established.
Let D C P? and D C PZ be defined by the equation

f(xaya Z) = 721’4 - y4 + 18247

and set U = P? \ D and U = PZ \. D. We will exhibit 2-torsion A € Br(U) and use
the constraint (1) dictated by A to establish (iii).
The equation for D can be expressed in the form

(42% — y*)? + 2(2% + 2y% + 92%) (2 + 2% — 927) = 0.
This shows that the extension of function fields Q(D) — Q(D) (/2% + 2y2 + 922 /)
corresponds to an unramified degree 2 cover D — D.
Lemma 3. The class in Br(Q(U)) of the quaternion algebra®
(7) (fh, —gh),
with
g = —282% — 36zy + Ty? + 7222 and h = —25z + 162y — 22y% + 8122,

is the restriction of an element A € Br(U). The pull-back of A to Br(U @ Q) is sent
by the ramification map to the class of the extension Q(D) — Q(D).

1We take the liberty here of writing homogeneous functions of even degree rather than rational
functions.
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Proof. For the first claim it suffices by [Gro68](I11.6.2) to show that A is in the
kernel of the ramification map at the divisors on U defined by g and by h. Since
(fh,—gh) = (f,g9) + (f,—h) + (g, h) in Br(Q(U)), this reduces to the assertions that
fg is a square modulo h and fh is a square modulo g, and these assertions can be
verified directly.

The algebra (7), upon base change to Q, results by applying the recipe of [KRTY06],
proof of Proposition 1.3(iii), to the ramification locus D ® Q (after transforming by a
linear change of coordinates that eliminates the y* term from f), wherein the image
under the ramification map is calculated and found to be as claimed here. O

Lemma 4. The element A € Br(U) from Lemma 3 is the restriction of an element
of Br(U ® Z[1/2]).

Proof. The element A extends to U ® Z[1/N] for some integer N, as well as to the
open subscheme of U ® Z[1/2] where f, g, and h are nonvanishing, and hence to their
union by the Mayer-Vietoris sequence. Gabber’s purity result [Gab81] Theorem 2’
completes the proof. O

By direct evaluation, we see that for (z : y : 2) € U(Z) satisfying
(8) =0 (mod 2), y=1 (mod 2), and z=1 (mod 2),
A is nonzero at (x : y : z) € U(Qz). By Lemma 4, A vanishes at p-adic integral points
of U for p odd. Evaluation at one point in each of the two connected components of
U(R) reveals that A vanishes at all real points of U. So, the constraint (1) dictates

that & has no integral points satisfying (8). Since any integer solution to (6) would
have to satisfy (8), we have established (iii).

Remark 4. Since (0:1:0) € U(Z), Example 2 furnishes a Brauer—Manin obstruction
to strong approximation of integral points, as formulated in [HT08] §2.

Remark 5. There is a tower of projective varieties and open subvarieties

U—X

(zry:z:t)—
(z:y:2:2)

W=V

|
(zry:z:w)—
(x:y:2)

U—— p2

where X is defined by f(x,y,2) = t* in P, V is defined by f(z,y,2) = w? in the
weighted projective space P(1,1,1,2), and where UcC X and W C V are defined
by t # 0 and w # 0 respectively. By [Zar29] Theorem 8, [SGA1] (XIL.5.2), and
[SGA1] (X.1.8) with appeal to (XIIL4.6) instead of (X.1.7), U ® Q is a geometric
universal cover of U. The pull-back of A to Br(W) is seen by direct evaluation to lie
in the kernel of the ramification map on V', hence the pull-back of A to the geometric
universal cover is unramified, and in fact, trivial (since Br(V ® Q) = 0).

Remark 6. Statement (iii) is not, to the authors’ knowledge, a consequence of any
descent obstruction coming from U-torsors under finite algebraic groups. Remark 5
exhibits a U-torsor U under the group pug4 of fourth roots of unity, acting by multipli-
cation on the ¢ coordinate. For any prime p, the set 7r((~] (Qp)) contains p-adic integral
points, and some of these indeed satisfy (8) when p = 2.
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