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Abstract. — We discuss Manin’s conjecture concerning the distribution of
rational points of bounded height on Del Pezzo surfaces, and its refinement by
Peyre, and explain applications of universal torsors to counting problems. To
illustrate the method, we provide a proof of Manin’s conjecture for the unique
split singular quartic Del Pezzo surface with a singularity of type D4.
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1. Introduction

Let f ∈ Z[x0, . . . , xn] be a form of degree d. By the circle method,

N(f,B) := #{x ∈ Zn+1/± | max
j

(|xj|) 6 B} ∼ c ·Bn+1−d
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with c ∈ R>0, provided d� n, and f(x) is solvable over all completions
of Q (see [Bir62]). Let X = Xf ⊂ Pn be a smooth hypersurface over Q,
given by f(x) = 0. It follows that

(1.1) N(X,−KX , B) = #{x ∈ X(Q) | H−KX
(x) 6 B} ∼ C ·B,

as B → ∞. Here X(Q) is the set of rational points on X, represented
by primitive vectors Zn+1

prim \ 0, modulo ±1, and
(1.2)
H−KX

(x) := max
j

(|xj|)n+1−d, for x = (x0, . . . , xn) ∈ (Zn+1
prim \ 0)/± .

is the anticanonical height of a primitive representative.
In 1989 Manin initiated a program towards understanding connections

between certain geometric invariants of algebraic varieties over number
fields and their arithmetic properties, in particular, the distribution of
rational points of bounded height, see [FMT89] and [BM90]. The main
goal is an extension of the asymptotic formula (1.1) to other algebraic
varieties of small degree, called Fano varieties, which are not necessarily
realizable as hypersurfaces in projective space. It became apparent, that
in general, to obtain a geometric interpretation of asymptotic results, it
may be necessary to restrict to appropriate Zariski open subsets of X
and to allow finite field extensions.

Of particular interest are Del Pezzo surfaces, i.e., geometrically rational
surfaces S whose anticanonical class −KS is ample. Prime examples are
cubic surfaces S3 ⊂ P3 or degree 4 surfaces, i.e., intersections of two
quadrics S4 := Q1 ∩Q2 ⊂ P4. Geometrically, smooth Del Pezzo surfaces
are obtained by blowing up 6 8 general points in P3. The singular ones
are blow-ups of P2 in special configurations of points or in infinitely near
points. Over number fields, we say that a Del Pezzo surface is split if all
of the exceptional curves are defined over Q; there exist non-split forms,
some of which are not birational to P2 over the ground field.

From now on, we work over Q. Manin’s conjecture in the special case
of Del Pezzo surfaces can be formulated as follows.

Conjecture 1. — Let S be a Del Pezzo surface with at most rational
double points over Q. Then there exists a dense Zariski open subset
S◦ ⊂ S such that

(1.3) N(S◦,−KS, B) ∼ cS,H ·B(logB)r−1,
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as B → ∞, where r is the rank of the Picard group of the minimal

desingularization S̃ of S, over Q.

The constant cS,H has been defined by Peyre [Pey95]; it should be non-
zero if S(Q) 6= ∅. Note that a Q-rational line on a Del Pezzo surface such
as S3 or S4 contributes ∼ B2 rational points to the counting function.
Thus it is expected that S◦ is the complement to all Q-rational lines
(exceptional curves).

Table 1 gives an overview of current results towards Conjecture 1 for
Del Pezzo surfaces. In Column 4 (“type of result”), “asymptotic” means
that the analog of (1.3) is established, including the predicted value of
the constant; “bounds” means that only upper and lower bounds of the
expected order of magnitude with unknown constants are proved.

The paper [BT98] contains a proof of Manin’s conjecture for toric
Fano varieties, including all smooth Del Pezzo surfaces of degree > 6 and
the unique 3A2 cubic surface(1). This result also covers:

– all singular surfaces of degree > 7 (i.e., A1 in degree 7 and 8),
– A1, 2A1, A2 + A1 in degree 6,
– 2A1, A2 + A1 in degree 5,
– 4A1, A2 + 2A1, A3 + 2A1 in degree 4.

Figure 1 shows all points of height 6 50 on the Cayley cubic surface
(Example 14), which has four singularities of type A1 and was considered
in [HB03]. In Figure 2, we see points of height 6 1000 on the E6 cubic
surface ([Der05] and [dlBBD05]).

The proofs of Manin’s conjecture proceed either via the height zeta
function

Z(s) :=
∑

x∈X◦(Q)

H−KX
(x)−s,

whose analytic properties are related to the asymptotic (1.3) by Taube-
rian theorems, or via the lifting of the counting problem to the universal
torsor – an auxiliary variety parametrizing rational points. The torsor
approach has been developed by Colliot-Thélène and Sansuc in the con-
text of the Brauer-Manin obstruction [CTS87] and applied to Manin’s
conjecture by Peyre [Pey98] and Salberger [Sal98].

(1)Singular Del Pezzo surfaces will be labeled by the type (in the ADE-classification)
and number of their singularities.
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degree singularities (non-)split type of result reference

> 6 – split asymptotic [BT98]
5 – split asymptotic [dlB02]
5 – non-split asymptotic [dlBF04]
4 D5 split asymptotic [CLT02], [dlBB04]
4 D4 non-split asymptotic [dlBB05]
4 D4 split asymptotic this paper
4 3A1 split bounds [Bro05]
3 3A2 split asymptotic [BT98], [dlB98], . . .
3 4A1 split bounds [HB03]
3 D4 split bounds [Bro04]
3 E6 split asymptotic [Der05], [dlBBD05]

Table 1. Results for Del Pezzo surfaces

Figure 1. Points of height 6 50 on the Cayley cubic surface
x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0.
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Figure 2. Points of height 6 1000 on the E6 singular cubic
surface x1x

2
2 + x2x

2
0 + x3

3 = 0 with x0, x2 > 0.

In the simplest case of hypersurfaces X = Xf ⊂ Pn over Q, with
n > 4, this is exactly the passage from rational vectors x = (x0, . . . , xn),
modulo the diagonal action of Q∗, to primitive lattice points (Zn+1

prim\0)/±.
Geometrically, we have

An+1 \ 0
Gm−−−→ Pn and TX

Gm−−−→ X.

Here, TX is the hypersurface in An+1 \ 0 defined by the form f , the
torus Gm is interpreted as the Néron-Severi torus TNS, i.e., an algebraic
torus whose characters are isomorphic to the Néron-Severi group (lattice)
of Pn, resp. X, and the map is the natural quotient by its (diagonal)
action. Rational points on the base are lifted to integral points on the
torsor, modulo the action of the group of units TNS(Z) = {±1}. The
height inequality on the base H(x) 6 B translates into the usual height
inequality on the torsor (1.2).

In general, a torsor under an algebraic torus T is determined by a
homomorpism χ : X∗(T ) → NS(X) to the Néron-Severi group of the
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underlying variety X; the term universal is applied when χ is an isomor-
phism.

However, for hypersurfaces in P3, or more generally for complete in-
tersection surfaces, the Néron-Severi group may have higher rank. For
example, for split smooth cubic surfaces S = S3 ⊂ P3 the rank is 7,
so that the dimension of the corresponding universal torsor TS is 9; for
quartic Del Pezzo surfaces these are 6 and 8, respectively.

It is expected that the passage to universal torsors, which can be con-
sidered as natural descent varieties, will facilitate the proof of Manin’s
conjecture (Conjecture 1), at least for Del Pezzo surfaces. Rational points
on S are lifted to certain integral points on TS, modulo the action of
TNS(Z) = (±1)r, where r is the rank of NS(S), and the height inequality
on S translates into appropriate inequalities on TS. This explains the
interest in the projective geometry of torsors, and expecially, in their
equations. The explicit determination of these equations is an interest-
ing algebro-geometric problem, involving tools from invariant theory and
toric geometry.

In this note, we illustrate the torsor approach to asymptotics of rational
points in the case of a particular singular surface S ⊂ P4 of degree 4 given
by:

(1.4) x0x3 − x1x4 = x0x1 + x1x3 + x2
2 = 0.

This is a split Del Pezzo surface, with a singularity of type D4.

Theorem 2. — The number of Q-rational points of anticanonical height
bounded by B on the complement S◦ of the Q-rational lines on S as in
(1.4) satisfies

N(S◦,−KS, B) = cS,H ·B ·Q(logB) +O(B(logB)3) as B →∞,

where Q is a monic polynomial of degree 5, and

cS,H =
1

34560
· ω∞ ·

∏
p

(1− 1/p)6(1 + 6/p+ 1/p2)

with

ω∞ = 3

∫ ∫ ∫
{(t,u,v)∈R3|06v61,|tv2|,|v2u|,|v(tv+u2)|,|t(tv+u2)|61}

1 dt du dv,

is the constant predicted by Peyre [Pey95].
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In [dlBB05], Manin’s conjecture is proved for a non-split surface with
a singularity of the same type. However, these results do not follow from
each other.

In Section 2, we collect some facts about the geometric structure of
S. In Section 3, we calculate the expected value of cS,H and show that
Theorem 2 agrees with Manin’s conjecture.

In our case, the universal torsor is an affine hypersurface. In Section 4,
we calculate its equation, stressing the relation with the geometry of S.
We make explicit the coprimality and the height conditions. The method
is more systematic than the derivation of torsor equations in [dlBB04]
and [dlBBD05], and should bootstrap to more complicated cases, e.g.,
other split Del Pezzo surfaces.

Note that our method gives coprimality conditions which are different
from the ones in [dlBB04] and [dlBBD05], but which are in a certain
sense more natural: They are related to the set of points on TS which are
stable with respect to the action of the Néron-Severi torus (in the sense
of geometric invariant theory). Our conditions involve only coprimality
of certain pairs of variables; these might be easier to handle than for
example a mix of square-free variables and coprimalities produced by the
other method.

In Section 5, we estimate the number of integral points on the universal
torsor by iterating summations over the torsor variables and using results
of elementary analytic number theory. Finally we arrive at Lemma 10,
which is very similar to [dlBB04, Lemma 10] and [Der05, Lemma 12].
In Section 6 we use familiar methods of height zeta functions to derive
the exact asymptotic. We isolate the expected constant cS,H and finish
the proof of Theorem 2. In Section 7 we write down examples of universal
torsors for other Del Pezzo surfaces and discuss their geometry.

Acknowledgment. Part of this work was done while the authors were
visiting the CRM at the Université de Montréal during the special year
on Analysis in Number Theory. We are grateful for the invitation and
ideal working conditions.
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2. Geometric background

In this section, we collect some geometric facts concerning the surface
S. We show that Manin’s conjecture for S is not a special case of available
more general results for Del Pezzo surfaces.

Lemma 3. — The surface S has the following properties:

(1) It has exactly one singularity of type D4 at the q = (0 : 0 : 0 : 0 : 1).
(2) S contains exactly two lines:

E5 = {x0 = x1 = x2 = 0} and E6 = {x1 = x2 = x3 = 0},
which intersect in q.

(3) The projection from the line E5 is a birational map

φ : S 99K P2

x 7→ (x0 : x2 : x1)

which is defined outside E5. It restricts to an isomorphism between

S◦ = S\(E5∪E6) = {x ∈ S | x1 6= 0} and A2 ∼= {(t : u : v) | v 6= 0} ⊂ P2,

whose inverse is the restriction of

ψ : P2 99K S,
(t : u : v) 7→ (tv2 : v3 : v2u : −v(tv + u2) : −t(tv + u2))

Similar results hold for the projection from E6.
(4) The process of resolving the singularity q gives four exceptional

divisors E1, . . . , E4 and produces the minimal desingularization S̃, which
is also the blow-up of P2 in five points.

Proof. — Direct computations.

It will be important to know the details of the sequence of five blow-ups

of P2 giving S̃ as in Lemma 3(4):
In order to describe the points in P2, we need the lines

E3 = {v = 0}, A1 = {u = 0}, A2 = {t = 0}
and the curve A3 = {tv + u2 = 0}.

Lemma 4. — The following five blow-ups of P2 result in S̃:

– Blow up the intersection of E3, A1, A3, giving E2.
– Blow up the intersection of E2, E3, A3, giving E1.
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– Blow up the intersection of E1 and A3, giving E4.
– Blow up the intersection of E4 and A3, giving E6.
– Blow up the intersection of E3 and A2, giving E5.

Here, the order of the first four blow-ups is fixed, and the fifth blow-up
can be done at any time.

The Dynkin diagram in Figure 3 describes the final configuration of
divisors E1, . . . , E6, A1, A2, A3. Here, A1, A2, A3 intersect at one point.

A2

BB
BB

BB
BB

E5 E3

AA
AA

AA
AA

A1 E2 E1

A3

||||||||
E6 E4

}}}}}}}}

Figure 3. Extended Dynkin diagram

The quartic Del Pezzo surface with a singularity of type D4 is not
toric, and Manin’s conjecture does not follow from the results of [BT98].
The D5 example of [dlBB04] is an equivariant compactification of G2

a,
and thus a special case of [CLT02].

Lemma 5. — The quartic Del Pezzo surface with a singularity of type
D4 is a compactification of A2, but not an equivariant compactification
of G2

a.

Proof. — We follow the strategy of [HT04, Remark 3.3].
Consider the maps φ, ψ as in Lemma 3(3). As ψ restricts to an iso-

morphism between A2 and the open set S◦ ⊂ S, the surface S is a
compactification of A2.

If S were an equivariant compactification of G2
a then the projection φ

from E5 would be a G2
a-equivariant map, giving a G2

a-action on P2. The
line {v = 0} would be invariant under this action. The only such action
is the standard translation action

τ : P2 → P2,
(t : u : v) 7→ (t+ αv : u+ βv : v).
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However, this action does not leave the linear series

(tv2 : v3 : v2u : −v(tv + u2) : −t(tv + u2))

invariant, which can be seen after calculating

t(tv + u2) 7→(t+ αv)((t+ αv)v + (u+ βv)2)

=t(tv + u2) + 2βtuv + (β2 + α)tv2 + αv(tv + u2)

+ 2αβv2u+ (αβ2 + α2)v3,

since the term tuv does not appear in the original linear series.

3. Manin’s conjecture

Lemma 6. — Let S be the surface (1.4). Manin’s conjecture for S states
that the number of rational points of height 6 B outside the two lines is
given by

N(S◦,−KS, B) ∼ cS,H ·B(logB)5,

where cS,H = α(S) · β(S) · ωH(S) with

α(S) = (5! · 4 · 2 · 3 · 3 · 2 · 2)−1 = (34560)−1

β(S) = 1

ωH(S) = ω∞ ·
∏

p

(1− 1/p)6(1 + 6/p+ 1/p2)

and

ω∞ = 3

∫ ∫ ∫
{(t,u,v)∈R3|06v61,|tv2|,|v2u|,|v(tv+u2)|,|t(tv+u2)|61}

1 dt du dv

Proof. — Since S is split over Q, we have rk(NS(S̃)) = 6, and the ex-
pected exponent of logB is 5. Further, β(S) = 1. The computation of

cS,H is done on the desingularization S̃. For the computation of α(S),

observe that the effective cone of S̃ is simplicial, and

−KeS = 4E1 + 2E2 + 3E3 + 3E4 + 2E5 + 2E6.

The calculation is analog to [Der05, Lemma 2]. The constant ωH(S) is
computed as in [dlBB04, Lemma 1] and [Der05, Lemma 2].
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4. The universal torsor

As explained above, the problem of counting rational points of bounded
height on the surface S translates into a counting problem for certain
integral points on the universal torsor, subject to coprimality and height
inequalities. In the first part of this section, we describe these conditions
in detail. They are obtained by a process of introducing new variables
which are the greatest common divisors of other variables. Geometrically,

this corresponds to the realization of S̃ as a blow-up of P2 in five points.
In the second part, we prove our claims.
The universal torsor TS of S is an open subset of the hypersurface in

A9 = Spec Z[η1, . . . , η6, α1, α2, α3] defined by the equation

(4.1) T (η,α) = α2
1η2 + α2η3η

2
5 + α3η4η

2
6 = 0.

The projection Ψ : TS → S is defined by
(4.2)
(Ψ∗(xi)) = (η(2,1,2,1,2,0)α2, η

(4,2,3,3,2,2), η(3,2,2,2,1,1)α1, η
(2,1,1,2,0,2)α3, α2α3),

where we use the notation η(n1,n2,n3,n4,n5,n6) = ηn1
1 η

n2
2 η

n3
3 η

n4
4 η

n5
5 η

n6
6 .

The coprimality conditions can be derived from the extended Dynkin
diagram (see Figure 3). Two variables are allowed to have a common
factor if and only if the corresponding divisors (Ei for ηi and Ai for αi)
intersect (i.e., are connected by an edge in the diagram). Furthermore,
gcd(α1, α2, α3) > 1 is allowed (corresponding to the fact that A1, A2, A3

intersect in one point).
We will show below that there is a bijection between rational points

on S◦ ⊂ S and integral points on an open subset of TS, subject to these
coprimality conditions.

We will later refer to

coprimality between ηi as in Figure 3,(4.3)

gcd(α1, η1η3η4η5η6) = 1,(4.4)

gcd(α2, η1η2η3η4η6) = 1,(4.5)

gcd(α3, η1η2η3η4η5) = 1.(4.6)

To count the number of x ∈ S(Q) such that H(x) 6 B, we must lift
this condition to the universal torsor, i.e., H(Ψ(η,α)) 6 B. This is the
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same as
|η(2,1,2,1,2,0)α2| 6 B, . . . , |α2α3| 6 B,

using the five monomials occuring in (4.2). These have no common fac-
tors, provided the coprimality conditions are fulfilled (direct verification).

It will be useful to write the height conditions as follows: Let

X0 = (
η(4,2,3,3,2,2)

B
)1/3, X1 = (Bη(−1,−2,0,0,1,1))1/3, X2 = (Bη(2,1,0,3,−2,4))1/3.

Then

|X3
0 | 6 1(4.7)

|X2
0 (α1/X1)| 6 1(4.8)

|X2
0 (α2/X2)| 6 1, |X0(X0(α2/X2) + (α1/X1)

2)| 6 1,

|(α2/X2)(X0(α2/X2) + (α1/X1)
2)| 6 1

(4.9)

are equivalent to the five height conditions. Here we have used the torsor
equation to eliminate α3 because in our counting argument we will also
use that α3 is determined by the other variables.

We now prove the above claims.

Lemma 7. — The map Ψ gives a bijection between the set of points x
of S◦(Q) such that H(x) 6 B and the set

T1 :=

{
(η,α) ∈ Z6

>0 × Z3

∣∣∣∣∣
equation (4.1),

coprimality (4.3), (4.4), (4.5), (4.6),

inequalities (4.7), (4.8), (4.6) hold

}

Proof. — The map ψ of Lemma 3(3) induces a bijection

ψ0 : (η3, α1, α2) 7→ (η2
3α2, η

3
3, η

2
3α1, η3α3, α2α3),

where α3 := −(η3α2 + α2
1), i.e.,

T0 := α2
1 + η3α2 + α3 = 0,

between

{(η3, α1, α2) ∈ Z>0 × Z2 | gcd(η3, α1, α2) = 1} and S◦(Q) ⊂ S(Q).

The height function on S◦(Q) is given by

H(ψ0(η3, α1, α2)) =
max(|η2

3α2|, |η3
3|, |η2

3α1|, |η3α3|, |α2α3|)
gcd(η2

3α2, η3
3, η

2
3α1, η3α3, α2α3)

.



TORSORS AND RATIONAL POINTS 13

The derivation of the torsor equation from the map ψ0 together with
the coprimality conditions and the lifted height function is parallel to
the blow-up process described in Lemma 4. More precisely, each line
E3, A1, A2 in P2 corresponds to a coordinate function η3, α1, α2 vanishing
in one of the lines; the blow-up of the intersection of two divisors gives
an exceptional divisor Ei, corresponding to the introduction of a new
variable ηi as the greatest common divisor of two old variables. Two
divisors are disjoint if and only if the corresponding variables are coprime.
This is summarized in Table 2.

Variables, Equations Geometry

variables divisors
initial variables coordinate lines
η3, α1, α2 E3, A1, A2

taking gcd of two variables blowing up intersection of divisors
new gcd-variable exceptional divisor
η2, η1, η4, η6, η5 E2, E1, E4, E6, E5

extra variable extra curve
α3 A3

starting relation starting description
α3 = −(η3α2 + α2

1) A3 = {η3α2 + α2
1 = 0}

final relation torsor equation
α3η4η

2
6 = −(α2η3η

2
5 + α2

1η2) α2
1η2 + α2η3η

2
5 + α3η4η

2
6 = 0

Table 2. Dictionary between gcd-process and blow-ups

This plan will now be implemented in five steps; at each step, the map

ψi : Zi+1
>0 × Z3 → S◦(Q)

gives a bijection between:

– the set of all (ηj, α1, α2, α3) ∈ Zi+
>0×Z3 satisfying certain coprimality

conditions (described by the extended Dynkin diagram corresponding to
the i-th blow-up of Lemma 4), an equation Ti,

H(ψi(ηj, αj)) =
maxk(|ψi(ηj, αj)k|)

gcd(ψi(ηj, αj)k)
6 B,

– the set of all x ∈ S◦(Q) with H(x) 6 B.
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The steps are as follows:

(1) Let η2 := gcd(η3, α1) ∈ Z>0. Then

η3 = η2η
′
3, α1 = η2α

′
1, with gcd(η′3, α

′
1) = 1.

Since η2 | α3, we can write α3 = η2α
′
3. Then α′

3 = −(η′3α2 + η2α
′2
1 ). After

renaming the variables, we have

T1 = η2α
2
1 + η3α2 + α3 = 0

and

ψ1 : (η2, η3, α1, α2, α3) 7→ (η2η
2
3α2 : η2

2η
3
3 : η2

2η
2
3α1 : η2η3α3 : α2α3).

Here, we have eliminated the common factor η2 which occured in all five
components of the image. Below, we repeat the corresponding transfor-
mation at each step.

(2) Let η1 := gcd(η2, η3) ∈ Z>0. Then

η2 = η1η
′
2, η3 = η1η

′
3, with gcd(η′2, η

′
3) = 1.

As η1 | α3, we write α3 = η1α
′
3, and we obtain:

T2 = η2α
2
1 + η3α2 + α3 = 0

and

ψ2 : (η1, η2, η3, α1, α2, α3) 7→
(η2

1η2η
2
3α2 : η4

1η
2
2η

3
3 : η3

1η
2
2η

2
3α1 : η2

1η2η3α3 : α2α3).

(3) Let η4 := gcd(η1, α3) ∈ Z>0. Then

η1 = η4η
′
1, α3 = η4α

′
3, with gcd(η′1, α

′
3) = 1.

We get after removing ′ again:

T3 = η2α
2
1 + η3α2 + η4α3 = 0

and

ψ3 : (η1, η2, η3, η4, α1, α2, α3) 7→
(η2

1η2η
2
3η4α2 : η4

1η
2
2η

3
3η

3
4 : η3

1η
2
2η

2
3η

2
4α1 : η2

1η2η3η
2
4α3 : α2α3).
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(4) Let η6 := gcd(η4, α3) ∈ Z>0. Then

η4 = η6η
′
4, α3 = η6α

′
3, with gcd(η′4, α

′
3) = 1.

We obtain
T4 = η2α

2
1 + η3α2 + η4η

2
6α3 = 0

and

ψ4 : (η1, η2, η3, η4, η6, α1, α2, α3) 7→
(η2

1η2η
2
3η4α2 : η4

1η
2
2η

3
3η

3
4η

2
6 : η3

1η
2
2η

2
3η

2
4η6α1 : η2

1η2η3η
2
4η

2
6α3 : α2α3).

(5) The final step is η5 := gcd(η3, α2) ∈ Z>0, we could have done it
earlier (just as the blow-up of the intersection of E3, A2 in Lemma (4.2)).
Then

η3 = η5η
′
3, α2 = η5α

′
2, with gcd(η′3, α

′
2) = 1.

We get
T5 = η2α

2
1 + η3η5α2 + η4η

2
6α3 = 0

and

ψ5 : (η1, η2, η3, η4, η5, η6, α1, α2, α3) 7→
(η2

1η2η
2
3η4η

2
5α2 : η4

1η
2
2η

3
3η

3
4η

2
5η

2
6 : η3

1η
2
2η

2
3η

2
4η5η6α1 : η2

1η2η3η
2
4η

2
6α3 : α2α3)

We observe that at each stage the coprimality conditions correspond
to intersection properties of the respective divisors. The final result is
summarized in Figure 3, which encodes data from (4.3), (4.4), (4.5), (4.6).

Note that ψ5 is Ψ from (4.2). As mentioned above, gcd(ψ5(ηj, αj)k)
(over all five components of the image) is trivial by the coprimality con-
ditions of Figure 3. Therefore, H(ψ5(η,α)) 6 B is equivalent to (4.7),
(4.8), (4.9).

Finally, T5 is the torsor equation T (4.1).

5. Summations

In the first step, we estimate the number of (α1, α2, α3) ∈ Z3 which
fulfill the torsor equation T (4.1) and the height and coprimality condi-
tions. For fixed (α1, α2), the torsor equation T has a solution α3 if and
only if the congruence

α2
1η2 + α2η3η

2
5 ≡ 0 (mod η4η

2
6)
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holds and the conditions on the height and coprimalities are fulfilled.
We have already written the height conditions so that they do not

depend on α3. For the coprimality, we must ensure that (4.5) and (4.6)
are fulfilled.

As gcd(η3η
2
5, η4η

2
6) = 1, we can find the multiplicative inverse c1 of η3η

2
5

modulo η4η
2
6, so that

(5.1) c1η3η
2
5 = 1 + c2η4η

2
6

for a suitable c2. Choosing

α2 = c3η4η
2
6 − c1α

2
1η2,(5.2)

α3 = c2α
2
1η2 − c3η3η

2
5(5.3)

gives a solution of (4.1) for any c3 ∈ Z.
Without the coprimality conditions, the number of pairs (α2, α3) satis-

fying T and (4.9) would differ at most by O(1) from 1/η4η
2
6 of the length

of the interval described by (4.9). However, the coprimality conditions
(4.5) and (4.6) impose further restrictions on the choice of c3. A slight
complication arises from the fact that because of T , some of the condi-
tions are fulfilled automatically once η, α1 satisfy (4.3) and (4.4).

Conditions (4.3) imply that the possibilities for a prime p to divide
more than one of the ηi are very limited. We distinguish twelve cases,
listed in Column 2 of Table 3.

In Columns 4 and 5, we have denoted the relevant information for the
divisibility of α2, α3 by primes p which are divisors of the ηi in Column
2, but of no other ηj:

– “allowed” means that αi may be divisible by p.
– “automatically” means that the conditions on the ηi and the other

αj imply that p - αi. These two cases do not impose conditions on c3
modulo p.

– “restriction” means that c3 is not allowed to be in a certain congru-
ence class modulo p in order to fulfill the condition that p must not divide
αi.

The information in the table is derived as follows:

– If p | η3, then p - c2 from (5.1), and p - α1η2 because of (4.3), (4.4),
so by (5.3), p - α3 independently of the choice of c3. Since p - η4η

2
6, we
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case p | . . . p | α1 p | α2 p | α3

0 − allowed allowed allowed
i η1 restriction restriction restriction
ii η2 allowed restriction automatically
iii η3 restriction restriction automatically
iv η4 restriction automatically restriction
v η5 restriction allowed automatically
vi η6 restriction automatically allowed
vii η1, η2 restriction restriction automatically
viii η1, η3 restriction restriction automatically
ix η1, η4 restriction automatically restriction
x η3, η5 restriction restriction automatically
xi η4, η6 restriction automatically restriction

Table 3. Coprimality conditions

see from (5.2) that p | α2 for one in p subsequent choices of c3 which we
must therefore exclude. This explains cases iii and viii.

– In case vii, the same is true for α2. More precisely, we see that we
must exclude c3 ≡ 0 (mod p). By (5.3), p - c3 implies that p - α3, so we
do not need another condition on c3.

– In case i, we see that p | α2 for one in p subsequent choices of c3,
and the same holds for α3. However, in this case, p cannot divide α2, α3

for the same choice of c3, as we can see by considering T : since p - α2
1η2,

it is impossible that p | α2, α3. Therefore, we must exclude two out of p
subsequent choices of p in order to fulfill p - α2, α3.

– In the other cases, the arguments are similar.

The number of (α2, α3) ∈ Z2 subject to T , (4.5), (4.6), (4.9) equals
the number of c3 such that α2, α3 as in (5.2), (5.3) satisfy these condi-
tions. This can be estimated as 1/η4η

2
6 of the interval described by (4.9),

multiplied by a product of local factors whose value can be read off from
Columns 2, 4, 5 of Table 3: The divisibility properties of ηi by p deter-
mine whether zero, one or two out of p subsequent values of c3 have to be
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excluded. Different primes can be considered separately, and we define

ϑ1,p :=


1− 2/p, case i,

1− 1/p, cases ii− iv, vi− xi,

1, case 0, v.

Let

ϑ1(η) =
∏

p

ϑ1,p

be the product of these local factors, and

(5.4) g1(u, v) =

∫
{t∈R||tv2|,|t(tv+u2)|,|v(tv+u2)|61}

1 dt.

Let ω(n) denote the number of primes dividing n.

Lemma 8. — For fixed (η, α1) ∈ Z6
>0×Z as in (4.3), (4.4), (4.7), (4.8),

the number of (α2, α3) ∈ Z2 satisfying T , (4.5), (4.6), (4.9) is

N1(η, α1) =
ϑ1(η)X2

η4η2
6

g1(α1/X1, X0) +O(2ω(η1η2η3η4η6)).

The sum of error terms for all possible values of (η, α1) is � B(logB)3.

Proof. — The number of c3 such that the resulting α2, α3 satisfy (4.9)
differs from X2

η4η2
6
g1(α1/X1, X0) by at most O(1).

Each ϑ1,p 6= 1 corresponds to a congruence condition on c3 imposed by
one of the cases i− iv, vi−xi. For each congruence condition, the actual
ratio of allowed c3 can differ at most by O(1) from the ϑ1,p. The total
number of these primes p is

ω(η1η2η3η4η6) � 2ω(η1η2η3η4η6),

which is independent of η5 since any prime dividing only η5 contributes
a trivial factor (see case v).

Using the estimate (4.8) for α1 in the first step and ignoring (4.3) (4.4),
which can only increase the error term, we obtain:∑

η

∑
α1

2ω(η1η2η3η4η6) 6
∑

η

B · 2ω(η1η2η3η4η6)

η(3,2,2,2,1,1)
� B(logB)3.
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Here, we use 2ω(n)�εn
ε for the summations over η1, η2, η3, η4. For η6, we

employ ∑
n6x

2ω(n) � x(log x)

together with partial summation, contributing a factor (logB)2, while
the summation over η5 gives another factor logB.

Next, we sum over all α1 subject to the coprimality condition (4.4) and
the height condition (4.8). Let

(5.5) g2(v) =

∫
{u∈R||v2u|61}

g1(u, v) du

Similar to our discussion for α2, α3, the number of possible values for α1

as in (4.8), while ignoring (4.4) for the moment, is X1g2(X0) +O(1).
None of the coprimality conditions are fulfilled automatically, and only

common factors with η2 are allowed (see Column 3 of Table 3). Therefore,
each prime factor of η1η3η4η5η6 reduces the number of allowed α1 by a
factor of ϑ2,p = 1 − 1/p with an error of at most O(1). For all other
primes p, let ϑ2,p = 1, and let

ϑ2(η) =
∏

p

ϑ2,p and ϑ(η) =

{
ϑ1(η) · ϑ2(η), (4.3) holds

0, otherwise.

Lemma 9. — For fixed η ∈ Z6
>0 as in (4.3), (4.7), the sum of N1(η, α1)

over all α1 ∈ Z satisfying (4.4), (4.8) is

N2(η) :=
ϑ(η)X1X2

η4η2
6

g2(X0) +R2(η),

where the sum of error terms R2(η) over all possible η is � B logB.

Proof. — Let

N (b1, b2) = ϑ1(η) ·#{α1 ∈ [b1, b2] | gcd(α1, η1η3η4η5η6) = 1}.

Using Möbius inversion, this is estimated as

N (b1, b2) = ϑ1(η) · ϑ2(η) · (b2 − b1) +R(b1, b2)
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with R(b1, b2) = O(2ω(η1η3η4η5η6)). By partial summation,

N2(η) =
ϑ(η)X1X2

η4η2
6

g2(X0) +R2(η)

with

R2(η) =
−X2

η4η2
6

∫
{u||X2

0u|61}
(D1g1)(u,X0)R(−X1/X

2
0 , X1u) du

where D1g1 is the partial derivative of g1 with respect to the first variable.
Using the above bound for R(b1, b2), we obtain:

R2(η) � X2

η4η2
6

2ω(η1η3η4η5η6).

Summing this over all η as in (4.7) while ignoring (4.3) which can only
enlarge the sum, we obtain:∑

η

R2(η) �
∑

η

X2 · 2ω(η1η3η4η5η6)

η4η2
6X

2
0

=
∑

η

B · 2ω(η1η3η4η5η6)

η(2,1,2,2,2,2)
� B logB

In the first step, we use X0 6 1.

Let

∆(n) = B−2/3
∑

ηi,η(4,2,3,3,2,2)=n

ϑ(η)X1X2

η4η2
6

=
∑

ηi,η(4,2,3,3,2,2)=n

ϑ(η)(η(4,2,3,3,2,2))1/3

η(1,1,1,1,1,1)
.

In view of Lemma 7, the number of rational points of bounded height on
S◦ can be estimated by summing the result of Lemma 9 over all suitable
η. The error term is the combination of the error terms in Lemmas 8
and 9.

Lemma 10. — We have

N(S◦,−KS, B) = B2/3
∑
n6B

∆(n)g2((n/B)1/3) +O(B(logB)3).
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6. Completion of the proof

We need an estimate for

M(t) :=
∑
n6t

∆(t).

Consider the Dirichlet series F (s) :=
∑∞

n=1 ∆(n)n−s. Using

F (s+ 1/3) =
∑

η

ϑ(η)

η4s+1
1 η2s+1

2 η3s+1
3 η3s+1

4 η2s+1
5 η2s+1

6

,

we write F (s + 1/3) =
∏

p Fp(s + 1/3) as its Euler product. To obtain

Fp(s + 1/3) for a prime p, we need to restrict this sum to the terms in
which all ηi are powers of p. Note that ϑ(η) is non-zero if and only if
the divisibility of ηi by p falls into one of the twelve cases described in
Table 3. The value of ϑ(η) only depends on these cases.

Writing Fp(s+ 1/3) =
∑11

i=1 Fp,i(s+ 1/3), we have for example:

Fp,0(s+ 1/3) = 1,

Fp,1(s+ 1/3) =
∞∑

j=1

(1− 1/p)(1− 2/p)

pj(4s+1)
=

(1− 1/p)(1− 2/p)

p4s+1 − 1
,

Fp,7(s+ 1/3) =
∞∑

j,k=1

(1− 1/p)2

pj(4s+1)pk(2s+1)
=

(1− 1/p)2

(p4s+1 − 1)(p2s+1 − 1)
.

The other cases are similiar, giving

Fp(s+ 1/3) =1 +
1− 1/p

p4s+1 − 1

(
(1− 2/p) +

1− 1/p

p2s+1 − 1
+ 2

1− 1/p

p3s+1 − 1

)
+

1− 1/p

p2s+1 − 1
+ 2

(1− 1/p)2

p3s+1 − 1
+ 2

1− 1/p

p2s+1 − 1
+ 2

(1− 1/p)2

(p2s+1 − 1)2
.

Defining

E(s) := ζ(4s+1)ζ(3s+1)2ζ(2s+1)3 and G(s) := F (s+1/3)/E(s),

we see as in [Der05] that the residue of F (s)ts/s at s = 1/3 is

Res(t) =
3G(0)t1/3Q1(log t)

5! · 4 · 2 · 3 · 3 · 2 · 2
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for a monic Q1 ∈ R[x] of degree 5. By Lemma 6, α(S) = 1
5!·4·2·3·3·2·2 . By

a Tauberian argument as in [Der05, Lemma 13]:

Lemma 11. — M(t) = Res(t) +O(t1/3−δ) for some δ > 0.

By partial summation,

∑
n6B

∆(n)g2((n/B)1/3) = α(S)·G(0)·B1/3Q(logB)·3
∫ 1

0

g2(v) dv+O(B
1
3
−δ)

for a monic polynomial Q of degree 5. We identify ωH(S) from

G(0) =
∏

p

(
1− 1

p

)6 (
1 +

6

p
+

1

p2

)
, and ω∞ = 3

∫ 1

0

g2(v) dv.

Together with Lemma 10, this completes the proof of Theorem 2.

7. Equations of universal torsors

The simplest universal torsors are those which can be realized as Zariski
open subsets of the affine space. This happens iff the Del Pezzo surface
is toric.

Example 12. — There are 20 types of singular Del Pezzo surfaces of
degree d > 3 whose universal torsor is an open subset of a hypersurface
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in A13−d. They are listed in the following table.

degree singularities # of lines defining equation

6 A1 3 η2α1 + η3α2 + η4α3

6 A2 2 η2α
2
1 + η3α2 + η4α3

5 A1 7 η2η6 + η3η7 + η4η8

5 A2 4 η3α1 + η4α2 + η2η
2
5η6

5 A3 2 η1α
2
1 + η3η

2
4α2 + η5α3

5 A4 1 η2
1η2α

3
1 + η4α

2
2 + η5α3

4 3A1 6 η4η5 + η1η6η7 + η8η9

4 A2 + A1 6 η5η7 + η6η8 + η1η3η
2
9

4 A3 5 η5α+ η1η
2
4η7 + η3η

2
6η8

4 A3 + A1 3 η6α2 + η7α1 + η1η3η
2
4η

3
5

4 A4 3 η5α1 + η1α
2
2 + η3η

2
4η

3
6η7

4 D4 2 η3η
2
5α2 + η4η

2
6α3 + η2α

2
1

4 D5 1 η3α
2
1 + η2η

2
6α3 + η4η

2
5α

3
2

3 D4 6 η2η
2
5η8 + η3η

2
6η9 + η4η

2
7η10

3 A3 + 2A1 5 η1η2η
2
6 + η4η

2
7η10 + η8η9

3 2A2 + A1 5 η3η5η
2
7 + η1η6η8 + η9η10

3 A4 + A1 4 η1η5η
2
8 + η3η

2
4η

3
6η9 + η7α

3 D5 3 η2η
2
6α2 + η4η

2
5η

3
7η8 + η3α

2
1

3 A5 + A1 2 η3
1η

2
2η3η7η8 + η5α

2
1 + η6α2

3 E6 1 η2
4η5η

3
7α3 + η2α

2
2 + η2

1η3α
3
1

Example 13 (Cubic surface with A1 + A3 singularities)
This surface has 7 lines, 4 additional variables correspond to excep-

tional divisors of the desingularization. Its 9-dimensional universal torsor
is a Zariski open subset of a complete intersection in

A11 = Spec Z[η0, . . . , η3, µ0, . . . , µ6]

given by

η1η2µ1µ2 + µ4µ6 + µ3µ5 = 0 and η0η1µ
2
2 + η3µ5µ6 + µ0µ1 = 0.

There are examples of universal torsors which are not complete inter-
sections, but have still been successfully used in the context of Manin’s
conjecture:
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Example 14 (Cayley cubic). — The Cayley cubic surface

x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0

(Figure 1) is a split singular cubic surface with four singularities q1, . . . , q4
of type A1 and nine lines. It is the blow-up of P2 in the 6 intersection
points of 4 lines in general position. The universal torsor is an open
subvariety of the variety in

A13 = Spec Z[v12, v13, v14, y1, y2, y3, y4, z12, z13, z14, z23, z24, z25]

defined by six equations of the form

zikzilyj + zjkzjlyi = zijvij

and three equations of the form

vijvik = z2
ilyjyk − z2

jkyiyl,

where {i, j, k, l} = {1, 2, 3, 4} and

zij = zji, vij = vji, and vij = −vkl.

The variables yi correspond to the four exceptional divisors Ei obtained
by blowing up qi, zij correspond to the six lines mij through two of the
singularities, and vij correspond to the other three lines `ij. The first six
equations can be interpreted in connection with the projection from mij,
and the other three equations are connected to the projection from `ij.

Upper and lower bounds of the expected order of magnitude have been
established in [HB03].

Example 15 (Smooth degree 5 Del Pezzo surface)
The blow-up of P2 in

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1)

is a split smooth Del Pezzo surface of degree 5. Its universal torsor is an
open subset of the variety defined by the following five equations in ten
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variables:

λ13η1 − λ23η2 + λ34η4 = 0

λ14η4 − λ13η3 + λ12η2 = 0

λ34η3 − λ24η4 + λ14η1 = 0

λ24η4 − λ23η3 + λ12η1 = 0

λ12λ34 − λ13λ24 + λ23λ14 = 0

The asymptotic formula (1.3) has been established in [dlB02].

To illustrate some of the difficulties in proving Conjecture 1 for a
smooth split cubic surface, we now write down equations for its universal
torsor (up to radical).

Example 16 (Smooth cubic surfaces). — Let S be the blow-up of P2 in

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1), (1 : a : b), (1 : c : d),

in general position. Conjecturally, the universal torsor is an open subset
of the intersection of 81 quadrics in 27-dimensional space Spec Z[ηi, µi,j, λi],
where

– η1, . . . , η6 correspond to the preimages of the points,
– µi,j (i < j ∈ {1, . . . , 6}) correspond to the 15 lines mi,j through two

of the points,
– λ1, . . . , λ6 correspond to the conics Qi through five of the six points,

and relations arise from conic bundle structures on S. Batyrev and Popov
proved that the above variables are indeed generators and that the rela-
tions give the universal torsor, up to radical [BP04].

We now write down these equations explicitly. The 81 defining quadrics
occur in sets of three. These 27 triples correspond to projections from
the 27 lines on S. We use

E := (b− 1)(c− 1)− (a− 1)(d− 1) and F := bc− ad

to simplify the equations.

qQ1,1 = −η2µ1,2 − η3µ1,3 + η4µ1,4

qQ1,2 = −aη2µ1,2 − bη3µ1,3 + η5µ1,5

qQ1,2 = −cη2µ1,2 − dη3µ1,3 + η6µ1,6
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qQ2,1 = η1µ1,2 − η3µ2,3 + η4µ2,4

qQ2,2 = η1µ1,2 − bη3µ2,3 + η5µ2,5

qQ2,3 = η1µ1,2 − dη3µ2,3 + η6µ2,6

qQ3,1 = η1µ1,3 + η2µ2,3 + η4µ3,4

qQ3,2 = η1µ1,3 + aη2µ2,3 + η5µ3,5

qQ3,3 = η1µ1,3 + cη2µ2,3 + η6µ3,6

qQ4,1 = η1µ1,4 + η2µ2,4 + η3µ3,4

qQ4,2 = (1− b)η1µ1,4 + (a− b)η2µ2,4 + η5µ4,5

qQ4,3 = (1− d)η1µ1,4 + (c− d)η2µ2,4 + η6µ4,6

qQ5,1 = 1/bη1µ1,5 + a/bη2µ2,5 + η3µ3,5

qQ5,2 = (1− b)/bη1µ1,5 + (a− b)/bη2µ2,5 + η4µ4,5

qQ5,3 = (b− d)/bη1µ1,5 + F/bη2µ2,5 + η6µ5,6

qQ6,1 = 1/dη1µ1,6 + c/dη2µ2,6 + η3µ3,6

qQ6,2 = (1− d)/dη1µ1,6 + (c− d)/dη2µ2,6 + η4µ4,6

qQ6,3 = (b− d)/dη1µ1,6 + F/dη2µ2,6 + η5µ5,6

qm1,2,1 = µ4,5µ3,6 − µ3,5µ4,6 + µ3,4µ5,6

qm1,2,2 = (b− d)µ3,5µ4,6 + (d− 1)µ3,4µ5,6 + η2λ1

qm1,2,3 = Fµ3,5µ4,6 + a(d− c)µ3,4µ5,6 + η1λ2

qm1,3,1 = µ4,5µ2,6 − µ2,5µ4,6 + µ2,4µ5,6

qm1,3,2 = (c− a)µ2,5µ4,6 + (1− c)µ2,4µ5,6 + η3λ1

qm1,3,3 = −Fµ2,5µ4,6 + b(c− d)µ2,4µ5,6 + η1λ3
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qm2,3,1 = µ4,5µ1,6 − µ1,5µ4,6 + µ1,4µ5,6

qm2,3,2 = (a− c)µ1,5µ4,6 + a(c− 1)µ1,4µ5,6 + η3λ2

qm2,3,3 = (b− d)µ1,5µ4,6 + b(d− 1)µ1,4µ5,6 + η2λ3

qm1,4,1 = µ3,5µ2,6 − µ2,5µ3,6 + µ2,3µ5,6

qm1,4,2 = −Eµ2,5µ3,6 + (b− 1)(c− 1)µ2,3µ5,6 + η4λ1

qm1,4,3 = −Fµ2,5µ3,6 + bcµ2,3µ5,6 + η1λ4

qm2,4,1 = µ3,5µ1,6 − µ1,5µ3,6 + µ1,3µ5,6

qm2,4,2 = Eµ1,5µ3,6 + (a− b)(c− 1)µ1,3µ5,6 + η4λ2

qm2,4,3 = (b− d)µ1,5µ3,6 − bµ1,3µ5,6 + η2λ4

qm3,4,1 = µ2,5µ1,6 − µ1,5µ2,6 + µ1,2µ5,6

qm3,4,2 = −Eµ1,5µ2,6 + (a− b)(1− d)µ1,2µ5,6 + η4λ3

qm3,4,3 = (c− a)µ1,5µ2,6 + aµ1,2µ5,6 + η3λ4

qm1,5,1 = µ3,4µ2,6 − µ2,4µ3,6 + µ2,3µ4,6

qm1,5,2 = −Eµ2,4µ3,6 + (a− c)(1− b)µ2,3µ4,6 + η5λ1

qm1,5,3 = (d− c)µ2,4µ3,6 + cµ2,3µ4,6 + η1λ5

qm2,5,1 = µ3,4µ1,6 − µ1,4µ3,6 + µ1,3µ4,6

qm2,5,2 = aEµ1,4µ3,6 + (a− b)(c− a)µ1,3µ4,6 + η5λ2

qm2,5,3 = (1− d)µ1,4µ3,6 − µ1,3µ4,6 + η2λ5

qm3,5,1 = µ2,4µ1,6 − µ1,4µ2,6 + µ1,2µ4,6

qm3,5,2 = −bEµ1,4µ2,6 + (a− b)(b− d)µ1,2µ4,6 + η5λ3

qm3,5,3 = (c− 1)µ1,4µ2,6 + µ1,2µ4,6 + η3λ5
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qm4,5,1 = µ2,3µ1,6 − µ1,3µ2,6 + µ1,2µ3,6

qm4,5,2 = b(c− a)µ1,3µ2,6 + a(b− d)µ1,2µ3,6 + η5λ4

qm4,5,3 = (c− 1)µ1,3µ2,6 + (1− d)µ1,2µ3,6 + η4λ5

qm1,6,1 = µ3,4µ2,5 − µ2,4µ3,5 + µ2,3µ4,5

qm1,6,2 = −Eµ2,4µ3,5 + (a− c)(1− d)µ2,3µ4,5 + η6λ1

qm1,6,3 = (b− a)µ2,4µ3,5 + aµ2,3µ4,5 + η1λ6

qm2,6,1 = µ3,4µ1,5 − µ1,4µ3,5 + µ1,3µ4,5

qm2,6,2 = cEµ1,4µ3,5 + (a− c)(d− c)µ1,3µ4,5 + η6λ2

qm2,6,3 = (1− b)µ1,4µ3,5 − µ1,3µ4,5 + η2λ6

qm3,6,1 = µ2,4µ1,5 − µ1,4µ2,5 + µ1,2µ4,5

qm3,6,2 = −dEµ1,4µ2,5 + (d− b)(d− c)µ1,2µ4,5 + η6λ3

qm3,6,3 = (a− 1)µ1,4µ2,5 + µ1,2µ4,5 + η3λ6

qm4,6,1 = µ2,3µ1,5 − µ1,3µ2,5 + µ1,2µ3,5

qm4,6,2 = d(c− a)µ1,3µ2,5 + c(b− d)µ1,2µ3,5 + η6λ4

qm4,6,3 = (a− 1)µ1,3µ2,5 + (1− b)µ1,2µ3,5 + η4λ6

qm5,6,1 = µ2,3µ1,4 − µ1,3µ2,4 + µ1,2µ3,4

qm5,6,2 = d(c− 1)µ1,3µ2,4 + c(1− d)µ1,2µ3,4 + η6λ5

qm5,6,3 = b(a− 1)µ1,3µ2,4 + a(1− b)µ1,2µ3,4 + η5λ6

qE1,1 = (d− b)/Eµ1,2λ2 + (c− a)/Eµ1,3λ3 + µ1,4λ4

qE1,2 = (d− 1)/Eµ1,2λ2 + (c− 1)/Eµ1,3λ3 + µ1,5λ5

qE1,3 = (b− 1)/Eµ1,2λ2 + (a− 1)/Eµ1,3λ3 + µ1,6λ6
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qE2,1 = F/Eµ1,2λ1 + (c− a)/Eµ2,3λ3 + µ2,4λ4

qE2,2 = (c− d)/Eµ1,2λ1 + (c− 1)/Eµ2,3λ3 + µ2,5λ5

qE2,3 = (a− b)/Eµ1,2λ1 + (a− 1)/Eµ2,3λ3 + µ2,6λ6

qE3,1 = F/Eµ1,3λ1 + (b− d)/Eµ2,3λ2 + µ3,4λ4

qE3,2 = (c− d)/Eµ1,3λ1 + (1− d)/Eµ2,3λ2 + µ3,5λ5

qE3,3 = (a− b)/Eµ1,3λ1 + (1− b)/Eµ2,3λ2 + µ3,6λ6

qE4,1 = F/(a− c)µ1,4λ1 + (b− d)/(a− c)µ2,4λ2 + µ3,4λ3

qE4,2 = c/(a− c)µ1,4λ1 + 1/(a− c)µ2,4λ2 + µ4,5λ5

qE4,3 = a/(a− c)µ1,4λ1 + 1/(a− c)µ2,4λ2 + µ4,6λ6

qE5,1 = (d− c)/(c− 1)µ1,5λ1 + (d− 1)/(c− 1)µ2,5λ2 + µ3,5λ3

qE5,2 = −c/(c− 1)µ1,5λ1 − 1/(c− 1)µ2,5λ2 + µ4,5λ4

qE5,3 = −1/(c− 1)µ1,5λ1 − 1/(c− 1)µ2,5λ2 + µ5,6λ6

qE6,1 = (b− a)/(a− 1)µ1,6λ1 + (b− 1)/(a− 1)µ2,6λ2 + µ3,6λ3

qE6,2 = −a/(a− 1)µ1,6λ1 − 1/(a− 1)µ2,6λ2 + µ4,6λ4

qE6,3 = −1/(a− 1)µ1,6λ1 − 1/(a− 1)µ2,6λ2 + µ5,6λ5

In general, the dimension k of the ambient space Ak of the universal
torsor is at least as large as the number of lines on the surface plus the
number of exceptional divisors of its desingularization, while the dimen-
sion of the universal torsor only depends on the degree of the surface, so
that the number of equations must grow with k.

Heuristically, the complexity of universal torsors should be dictated by
the following considerations:

– The dimension of the universal torsor of split Del Pezzo surfaces S
is 12− d, where d is the degree of S.

– For smooth Del Pezzo surfaces, the number of lines is bigger in
smaller degrees (e.g., 10 lines in degree 5, and 27 lines in degree 3).

– Singular surfaces have less lines than smooth surfaces.
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– The number of lines is higher in cases with “few mild” singularities
(e.g., for cubics: A1 with 21 lines, A2 with 15 lines), while it is low for
“bad” singularities (e.g., 1 for the E6 cubic, 2 for the A5 + A1 cubic).

Therefore, we expect universal torsors over surfaces which have low de-
gree, are smooth or have mild singularities to be more complex than
torsors over surfaces in large degree, or with complicated singularities.
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