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SURFACES AND RATIONAL POINTS

by
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ABSTRACT. — We discuss Manin’s conjecture concerning the distribution of
rational points of bounded height on Del Pezzo surfaces, and its refinement by
Peyre, and explain applications of universal torsors to counting problems. To
illustrate the method, we provide a proof of Manin’s conjecture for the unique
split singular quartic Del Pezzo surface with a singularity of type Dy.
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1. Introduction

Let f € Zlxo, ..., x,| be a form of degree d. By the circle method,
N(f, B) i= #{x € 2"/ | max(|a,]) < B} ~ ¢+ B
j
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with ¢ € Ry, provided d < n, and f(x) is solvable over all completions
of Q (see [Bir62]). Let X = X C P" be a smooth hypersurface over Q,
given by f(x) = 0. It follows that

(L1)  N(X,~Kx,B) = #{x € X(Q) | H_x,(x) < B} ~ C - B,

as B — oo. Here X(Q) is the set of rational points on X, represented
by primitive vectors Zgrﬁl \ 0, modulo %1, and
(1.2)

H_ g (x) := max(|z;[)" 74
J

, for x=(xg,...,2,) € (Zgrﬁl 0)/ +.
is the anticanonical height of a primitive representative.

In 1989 Manin initiated a program towards understanding connections
between certain geometric invariants of algebraic varieties over number
fields and their arithmetic properties, in particular, the distribution of
rational points of bounded height, see [FMT89] and [BM90]. The main
goal is an extension of the asymptotic formula (1.1) to other algebraic
varieties of small degree, called Fano varieties, which are not necessarily
realizable as hypersurfaces in projective space. It became apparent, that
in general, to obtain a geometric interpretation of asymptotic results, it
may be necessary to restrict to appropriate Zariski open subsets of X
and to allow finite field extensions.

Of particular interest are Del Pezzo surfaces, i.e., geometrically rational
surfaces S whose anticanonical class —Kg is ample. Prime examples are
cubic surfaces S5 C P? or degree 4 surfaces, i.e., intersections of two
quadrics Sy := Q1 N Qy C P*. Geometrically, smooth Del Pezzo surfaces
are obtained by blowing up < 8 general points in 2. The singular ones
are blow-ups of P2 in special configurations of points or in infinitely near
points. Over number fields, we say that a Del Pezzo surface is split if all
of the exceptional curves are defined over Q; there exist non-split forms,
some of which are not birational to P? over the ground field.

From now on, we work over Q. Manin’s conjecture in the special case
of Del Pezzo surfaces can be formulated as follows.

CONJECTURE 1. — Let S be a Del Pezzo surface with at most rational

double points over Q. Then there exists a dense Zariski open subset
S° C S such that

(1.3) N(S°, —Kg, B) ~ csy - B(log B)"™*,
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as B — oo, where r is the rank of the Picard group of the minimal
desingularization S of S, over Q.

The constant cg g has been defined by Peyre [Pey95]; it should be non-
zero if S(Q) # 0. Note that a Q-rational line on a Del Pezzo surface such
as S3 or S, contributes ~ B? rational points to the counting function.
Thus it is expected that S° is the complement to all Q-rational lines
(exceptional curves).

Table 1 gives an overview of current results towards Conjecture 1 for
Del Pezzo surfaces. In Column 4 (“type of result”), “asymptotic” means
that the analog of (1.3) is established, including the predicted value of
the constant; “bounds” means that only upper and lower bounds of the
expected order of magnitude with unknown constants are proved.

The paper [BT98] contains a proof of Manin’s conjecture for toric
Fano varieties, including all smooth Del Pezzo surfaces of degree > 6 and
the unique 3A, cubic surface(”). This result also covers:

— all singular surfaces of degree > 7 (i.e., A; in degree 7 and 8),

- Ay, 2A, As + Ay in degree 6,

— 2A4, As + Ay in degree 5,

- 4A1, AQ + 2A1, A3 + 2A1 in degree 4.

Figure 1 shows all points of height < 50 on the Cayley cubic surface
(Example 14), which has four singularities of type A; and was considered
in [HBO03]. In Figure 2, we see points of height < 1000 on the Eg cubic
surface ([Der05] and [dIBBDO05]).

The proofs of Manin’s conjecture proceed either via the height zeta

function
Z(s) := Z H_ k. (x)7%
x€X°(Q)

whose analytic properties are related to the asymptotic (1.3) by Taube-
rian theorems, or via the lifting of the counting problem to the universal
torsor — an auxiliary variety parametrizing rational points. The torsor
approach has been developed by Colliot-Thélene and Sansuc in the con-
text of the Brauer-Manin obstruction [CTS87] and applied to Manin’s
conjecture by Peyre [Pey98] and Salberger [Sal98].

(1 Singular Del Pezzo surfaces will be labeled by the type (in the ADE-classification)
and number of their singularities.
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| degree | singularities | (non-)split | type of result | reference
>6 - split asymptotic [BT98]
5 - split asymptotic [dIB02]
5 — non-split | asymptotic [dIBF04]
4 Ds split asymptotic | [CLT02], [d1BB04|
4 D, non-split | asymptotic [dIBBO05]
4 D, split asymptotic this paper
4 3A, split bounds [Bro05]
3 3A, split asymptotic | [BT98]|, [dIB9g], ...
3 4A, split bounds [HBO3]
3 D, split bounds [Bro04]
3 Es split asymptotic | [Der05], [dIBBDO5]

TABLE 1. Results for Del Pezzo surfaces

F1GURE 1. Points of height < 50 on the Cayley cubic surface
Tor1x2 + Tor1x3 + ToToxs + x1x223 = 0.
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FIGURE 2. Points of height < 1000 on the Eg singular cubic
surface xlx% + 3321'(2) + a:g = 0 with zg, z2 > 0.

In the simplest case of hypersurfaces X = X; C P" over Q, with
n > 4, this is exactly the passage from rational vectors x = (xy, ..., z,),
modulo the diagonal action of Q*, to primitive lattice points (Z2,\0)/+.
Geometrically, we have

Artiyg Zmypn and 7 Gm o x

Here, Tx is the hypersurface in A"\ 0 defined by the form f, the
torus Gy, is interpreted as the Néron-Severi torus Tyg, i.e., an algebraic
torus whose characters are isomorphic to the Néron-Severi group (lattice)
of P, resp. X, and the map is the natural quotient by its (diagonal)
action. Rational points on the base are lifted to integral points on the
torsor, modulo the action of the group of units Txs(Z) = {£1}. The
height inequality on the base H(x) < B translates into the usual height
inequality on the torsor (1.2).

In general, a torsor under an algebraic torus 7' is determined by a
homomorpism x : X*(T) — NS(X) to the Néron-Severi group of the
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underlying variety X; the term universal is applied when y is an isomor-
phism.

However, for hypersurfaces in P?, or more generally for complete in-
tersection surfaces, the Néron-Severi group may have higher rank. For
example, for split smooth cubic surfaces S = S C P? the rank is 7,
so that the dimension of the corresponding universal torsor 7g is 9; for
quartic Del Pezzo surfaces these are 6 and 8, respectively.

It is expected that the passage to universal torsors, which can be con-
sidered as natural descent varieties, will facilitate the proof of Manin’s
conjecture (Conjecture 1), at least for Del Pezzo surfaces. Rational points
on S are lifted to certain integral points on 7g, modulo the action of
Tns(Z) = (£1)", where 7 is the rank of NS(S), and the height inequality
on S translates into appropriate inequalities on 7g. This explains the
interest in the projective geometry of torsors, and expecially, in their
equations. The explicit determination of these equations is an interest-
ing algebro-geometric problem, involving tools from invariant theory and
toric geometry.

In this note, we illustrate the torsor approach to asymptotics of rational

points in the case of a particular singular surface S C P* of degree 4 given
by:

(1.4) T3 — T124 = Toxy + T123 + 2 = 0.
This is a split Del Pezzo surface, with a singularity of type Dy.

THEOREM 2. — The number of Q-rational points of anticanonical height

bounded by B on the complement S° of the Q-rational lines on S as in
(1.4) satisfies

N(S°,—Kgs,B) = csu - B-Q(log B) + O(B(log B)?)  as B — oo,

where QQ is a monic polynomial of degree 5, and

= s e L0 = 1)+ 6/p 4 1/87)

Cs.H
with

wooz?)/// 1dt dudw,
{(t,u,w)ER3 |0V L, [t02 ], |v2ul,|v(to+u?)|, |t (tv+u?) <1}

is the constant predicted by Peyre [Pey95].



TORSORS AND RATIONAL POINTS 7

In [dIBBO05], Manin’s conjecture is proved for a non-split surface with
a singularity of the same type. However, these results do not follow from
each other.

In Section 2, we collect some facts about the geometric structure of
S. In Section 3, we calculate the expected value of cg iz and show that
Theorem 2 agrees with Manin’s conjecture.

In our case, the universal torsor is an affine hypersurface. In Section 4,
we calculate its equation, stressing the relation with the geometry of S.
We make explicit the coprimality and the height conditions. The method
is more systematic than the derivation of torsor equations in [d1BB04]
and [dIBBDO05], and should bootstrap to more complicated cases, e.g.,
other split Del Pezzo surfaces.

Note that our method gives coprimality conditions which are different
from the ones in [d1IBB04] and [dIBBDO05|, but which are in a certain
sense more natural: They are related to the set of points on 7g which are
stable with respect to the action of the Néron-Severi torus (in the sense
of geometric invariant theory). Our conditions involve only coprimality
of certain pairs of variables; these might be easier to handle than for
example a mix of square-free variables and coprimalities produced by the
other method.

In Section 5, we estimate the number of integral points on the universal
torsor by iterating summations over the torsor variables and using results
of elementary analytic number theory. Finally we arrive at Lemma 10,
which is very similar to [dIBB04, Lemma 10] and [Der05, Lemma 12].
In Section 6 we use familiar methods of height zeta functions to derive
the exact asymptotic. We isolate the expected constant cgy and finish
the proof of Theorem 2. In Section 7 we write down examples of universal
torsors for other Del Pezzo surfaces and discuss their geometry.

Acknowledgment. Part of this work was done while the authors were
visiting the CRM at the Université de Montréal during the special year
on Analysis in Number Theory. We are grateful for the invitation and
ideal working conditions.
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2. Geometric background

In this section, we collect some geometric facts concerning the surface
S. We show that Manin’s conjecture for S is not a special case of available
more general results for Del Pezzo surfaces.

LEMMA 3. — The surface S has the following properties:
(1) It has ezactly one singularity of type Dy at theq=(0:0:0:0:1).
(2) S contains ezxactly two lines:
E5:{$0:I1:$2:O} and E6:{l'1:$2:l‘3:0},

which intersect in q.
(3) The projection from the line Es is a birational map

p: S --» P2
x —  (xg:x:x1)
which is defined outside Es. It restricts to an isomorphism between
S° = S\(EsUFEs) = {x €S|z, #0} and A* = {(t:u:v)|v+#0} CP?
whose inverse is the restriction of
(U P2 --» S,
(t:u:v) — (t0?:0%: 0% —v(tv +u?) 1 —t(tv + u?))

Similar results hold for the projection from Eg.

(4) The process of resolving the singularity q gives four exceptional

divisors E1, ..., Ey and produces the minimal desingularization S, which
is also the blow-up of P? in five points.

Proof. — Direct computations. O]

It will be important to know the details of the sequence of five blow-ups
of P? giving S as in Lemma 3(4):
In order to describe the points in P2, we need the lines
EgZ{U:O}, Alz{UZO}, AQZ{tZO}

and the curve Az = {tv + u* = 0}.

LEMMA 4. — The following five blow-ups of P? result in S:

— Blow up the intersection of Es, A1, Az, giving Es.
— Blow up the intersection of Eo, E3, Az, giving Fy.
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— Blow up the intersection of Ey and As, giving Ej.
— Blow up the intersection of By and As, giving Eg.
— Blow up the intersection of Es and As, giving Ej.

Here, the order of the first four blow-ups is fixed, and the fifth blow-up
can be done at any time.

The Dynkin diagram in Figure 3 describes the final configuration of
divisors Fy, ..., Fg, A1, Ag, As. Here, A1, Ao, Az intersect at one point.

Ficure 3. Extended Dynkin diagram

The quartic Del Pezzo surface with a singularity of type Dy is not
toric, and Manin’s conjecture does not follow from the results of [BT98].
The Dj example of [dIBBO04] is an equivariant compactification of G2,
and thus a special case of [CLT02].

LEMMA 5. — The quartic Del Pezzo surface with a singularity of type
D, is a compactification of A%, but not an equivariant compactification

of G2.

Proof. — We follow the strategy of [HT04, Remark 3.3].

Consider the maps ¢, as in Lemma 3(3). As 1 restricts to an iso-
morphism between A% and the open set S° C S, the surface S is a
compactification of AZ?.

If S were an equivariant compactification of G2 then the projection ¢
from E5 would be a G2-equivariant map, giving a G2-action on P2. The
line {v = 0} would be invariant under this action. The only such action
is the standard translation action

T: P? — P2,
(t:u:v) — (t+av:u+Pv:v).
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However, this action does not leave the linear series
(tv? : v v —v(to +u?) - —t(tv + u?))
invariant, which can be seen after calculating
t(tv + u?) —(t + av)((t + av)v + (u + Bv)?)
=t(tv + u®) + 2Btuv + (6° + a)tv® + av(tv + u?)
+ 2a8v*u + (af? + a?)v?,

since the term tuv does not appear in the original linear series. O

3. Manin’s conjecture

LEMMA 6. — Let S be the surface (1.4). Manin’s conjecture for S states
that the number of rational points of height < B outside the two lines is
given by

N(S°,—Kg, B) ~ cs.5r - B(log B)°,

where cg g = a(S) - B(S) - wy(S) with

a(S)=(5!-4-2-3-3-2-2)7" = (34560)""
BS) =1
wir(S) = wee - [[(1 = 1/p)°(1 +6/p+ 1/p?)

p

and

woo:3/// 1dtdudv
{(t,u,0) ER3 |0V L, [t02 ], |v2ul,|v(tv+u?)|, |t (tv+u?)|<1}

Proof. — Since S is split over Q, we have rk(NS(S)) = 6, and the ex-
pected exponent of log B is 5. Further, 5(S) = 1. The computation of

cs,m is done on the desingularization S. For the computation of «(.S),
observe that the effective cone of S is simplicial, and

—Kg=4FE, +2E, + 3E5 + 3L, + 2E5 + 2 L.

The calculation is analog to [Der05, Lemma 2]. The constant wg(.S) is
computed as in [dIBB04, Lemma 1] and [Der05, Lemma 2]. O
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4. The universal torsor

As explained above, the problem of counting rational points of bounded
height on the surface S translates into a counting problem for certain
integral points on the universal torsor, subject to coprimality and height
inequalities. In the first part of this section, we describe these conditions
in detail. They are obtained by a process of introducing new variables
which are the greatest common divisors of other variables. Geometrically,
this corresponds to the realization of S as a blow-up of P? in five points.

In the second part, we prove our claims.

The universal torsor 7g of S is an open subset of the hypersurface in
AY = SpecZny, ..., n6, a1, o, 3] defined by the equation

(4.1) T(n, &) = ainy + aansm + asns = 0.
The projection ¥ : 7g — S is defined by
(4.2)

" (21,21,2,0 4,2,3322) (32221, 2,1,1,2,0,2
(\II (xl)) - (77( )042777( )777( )041;77( )063,062&3),

where we use the notation 7("1:72:m3:m4m5:m6) — plttyn2 s, apns,ne

The coprimality conditions can be derived from the extended Dynkin
diagram (see Figure 3). Two variables are allowed to have a common
factor if and only if the corresponding divisors (F; for n; and A; for «;)
intersect (i.e., are connected by an edge in the diagram). Furthermore,
ged(ag, ag, ag) > 1 is allowed (corresponding to the fact that A, Ay, As
intersect in one point).

We will show below that there is a bijection between rational points
on S° C S and integral points on an open subset of 7g, subject to these
coprimality conditions.

We will later refer to

(4.3) coprimality between 7; as in Figure 3,
(4.4) ged (a1, mnsmansne) = 1,
(4.5) ged(az, mnensmane) = 1,
(4.6) ged (s, mnanzmans) = 1.

To count the number of x € S(Q) such that H(x) < B, we must lift
this condition to the universal torsor, i.e., H(V(n,a)) < B. This is the
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same as
|n@L2L20 0, < B, Ce lawas| < B,
using the five monomials occuring in (4.2). These have no common fac-
tors, provided the coprimality conditions are fulfilled (direct verification).
It will be useful to write the height conditions as follows: Let

X, = (77(4’2’3’3’2’2))1/3 X, = (Bn(—l,—Q,O,O,l,l))l/B X, = (BTI(2’1’0’3’_2’4))1/3-
B ; )
Then
47 (X3 <1
(48)  [X(ar/Xy)| <1
[Xg(a2/X2)| <1, [Xo(Xo(az/X2) + (en/X1)?)| <1,

(4.9) :
[(aa/ X2)(Xo(a2/X2) + (a1 /X)) <1

are equivalent to the five height conditions. Here we have used the torsor
equation to eliminate a3 because in our counting argument we will also
use that ag is determined by the other variables.

We now prove the above claims.

LEMMA 7. — The map ¥ gives a bijection between the set of points x
of S°(Q) such that H(x) < B and the set

equation (4.1),
coprimality (4.3), (4.4), (4.5), (4.6),}

1= {(77»04) € L3y x Z°
inequalities (4.7), (4.8), (4.6) hold

Proof. — The map v of Lemma 3(3) induces a bijection
Yo 1 (03, 01, ) = (7732,042,773’77??04177730437042%);
where a3 := — (302 + o), i.e.,
Ty := oﬁ + n3ae + az = 0,
between
{(n3, a1, a9) € Zisg x Z* | ged(ns, a1, a0) = 1} and S°(Q) € S(Q).
The height function on S°(Q) is given by

maX(|U§042|7 ’77331|> |77§041|7 Insas|, azas))
H(o(n3, a1, a2)) = .
( 0< o 2)) ng(ngo'/Qan§)777§a17773a3aa2a3)




TORSORS AND RATIONAL POINTS 13

The derivation of the torsor equation from the map vy together with
the coprimality conditions and the lifted height function is parallel to
the blow-up process described in Lemma 4. More precisely, each line
Es3, Ay, Ay in P? corresponds to a coordinate function 73, oy, o vanishing
in one of the lines; the blow-up of the intersection of two divisors gives
an exceptional divisor FEj;, corresponding to the introduction of a new
variable 7; as the greatest common divisor of two old variables. Two
divisors are disjoint if and only if the corresponding variables are coprime.
This is summarized in Table 2.

| Variables, Equations | Geometry |
variables divisors
initial variables coordinate lines
13, 01, A2 Es, Ay, Ay
taking gcd of two variables | blowing up intersection of divisors
new gcd-variable exceptional divisor
12,71, M4, M6, 15 Fs, By, By, Eg, Es
extra variable extra curve
as Az
starting relation starting description
az = — (300 + a3) Az = {mpay + a? =0}
final relation torsor equation
asnang = —(cansns + ofn) || afne + congng + asnang =0

TABLE 2. Dictionary between ged-process and blow-ups

This plan will now be implemented in five steps; at each step, the map
Vi 25 x 7P — S°(Q)
gives a bijection between:
— the set of all (n;, a1, g, a3) € ZZ;% x 73 satisfying certain coprimality

conditions (described by the extended Dynkin diagram corresponding to
the i-th blow-up of Lemma 4), an equation 7},

~ maxg(|vi(n;, o))rl)
H(vi(nj, o)) = gcd(¥i(n;, @, )e) < B

— the set of all x € S°(Q) with H(x) < B.
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The steps are as follows:
(1) Let 1y := ged(ns, 1) € Zsg. Then
N3 = N7, ay = nal, with ged(n;, o) = 1.

Since 1y | a3, we can write az = noay. Then af = —(nan +m0072). After
renaming the variables, we have

T, = 7]2063 + N3t + a3 = 0
and
(N (77277737041,@2,043) = (7727732,042 : 773773?,’ : 7737733041 S M2n3aes 042043)-

Here, we have eliminated the common factor 7, which occured in all five
components of the image. Below, we repeat the corresponding transfor-
mation at each step.

(2) Let n := ged(ne,m3) € Zsg. Then

N =My N3 =mns  with ged(ny,n3) = 1.
As | as, we write a3 = 104, and we obtain:
Ty = 77204% + nzae + a3 =0

and

Vo 2 (11,72, M3, 1, g, 3)
(i3 0z < TTRTS F MMRNEON T MNaNsQts ¢ ).
(3) Let ny := ged(ny, a3) € Zsg. Then
M = Nany, a3 = 1403, with ged(n, a3) = 1.
We get after removing " again:
Ty = 20 + n3ay + naorg = 0

and

1/}3 : (77177727773a774,0417027043) =

(Mimemsmaces : MiMEMANS « MmN en i memsmi Qs © Qevs).
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(4) Let ng := ged(ns, a3) € Z~o. Then

Ny = N7, a3 = N6y, with ged(n), a3) = 1.
We obtain
Ty = maof + m302 + ungas = 0
and

Yy (N1, M2, M3, M4, M, 1, o, 3)
(imamzmaces - ENINENG * MITBTE A6 © TG s+ acrs).

(5) The final step is 15 := ged(ns, az) € Zsg, we could have done it
earlier (just as the blow-up of the intersection of Es5, Ay in Lemma (4.2)).
Then

13 = 1573, gy = 1500, with ged(ns, a5) = 1.
We get
Ts = 103 + Msm5002 + Mangas = 0

and

Vs = (01,02, M3, M4, M5, M6, QU1 g, Q3)

(imems a3 = mmsI3NANETG * MIMIEMANsT6Cn © TN Cus © Qpaiy)
We observe that at each stage the coprimality conditions correspond
to intersection properties of the respective divisors. The final result is
summarized in Figure 3, which encodes data from (4.3), (4.4), (4.5), (4.6).

Note that ¢ is ¥ from (4.2). As mentioned above, ged(v5(n;, a;)k)
(over all five components of the image) is trivial by the coprimality con-
ditions of Figure 3. Therefore, H(5(n, a)) < B is equivalent to (4.7),
(4.8), (4.9).

Finally, T5 is the torsor equation 7' (4.1). O

5. Summations

In the first step, we estimate the number of (ay,as,a3) € Z* which
fulfill the torsor equation 7' (4.1) and the height and coprimality condi-
tions. For fixed (a1, az), the torsor equation T has a solution a3 if and
only if the congruence

afne + asnznz = 0 (mod mamg)
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holds and the conditions on the height and coprimalities are fulfilled.
We have already written the height conditions so that they do not
depend on «3. For the coprimality, we must ensure that (4.5) and (4.6)
are fulfilled.
As ged(n3n2, nan?) = 1, we can find the multiplicative inverse ¢; of n3n?
modulo nynZ, so that

(5.1) ansns = 1+ conang

for a suitable ¢;. Choosing

(5.2) iy = Cnuiy — 1O,
(5.3) g = 0T — C3n37]3

gives a solution of (4.1) for any c3 € Z.

Without the coprimality conditions, the number of pairs (as, ag) satis-
fying 7" and (4.9) would differ at most by O(1) from 1/n4n?2 of the length
of the interval described by (4.9). However, the coprimality conditions
(4.5) and (4.6) impose further restrictions on the choice of c¢3. A slight
complication arises from the fact that because of T, some of the condi-
tions are fulfilled automatically once n, oy satisfy (4.3) and (4.4).

Conditions (4.3) imply that the possibilities for a prime p to divide
more than one of the 7; are very limited. We distinguish twelve cases,
listed in Column 2 of Table 3.

In Columns 4 and 5, we have denoted the relevant information for the
divisibility of s, a3 by primes p which are divisors of the n; in Column
2, but of no other 7;:

— “allowed” means that «; may be divisible by p.

— “automatically” means that the conditions on the 7; and the other
a; imply that p { ;. These two cases do not impose conditions on c;
modulo p.

— “restriction” means that c3 is not allowed to be in a certain congru-
ence class modulo p in order to fulfill the condition that p must not divide
Q4.

The information in the table is derived as follows:

— If p | m3, then p 1 co from (5.1), and p t aymy because of (4.3), (4.4),
so by (5.3), p 1 a3 independently of the choice of ¢3. Since p { mun2, we
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lcase [p|... | plax | plas | plag |
0 — allowed allowed allowed
1 m restriction | restriction restriction
1 Mo allowed restriction | automatically
11 N3 restriction | restriction | automatically
w i restriction | automatically | restriction
v M5 restriction allowed automatically
vl N6 restriction | automatically allowed

vit | mp,7m2 | restriction | restriction | automatically
vitl | M1, M3 || restriction | restriction | automatically
x| m,ns || restriction | automatically | restriction
x | m3,m5 || restriction | restriction | automatically
xi | M4,Me || restriction | automatically | restriction

TABLE 3. Coprimality conditions

see from (5.2) that p | ay for one in p subsequent choices of ¢ which we
must therefore exclude. This explains cases 7ii and viii.

— In case vit, the same is true for ap. More precisely, we see that we
must exclude ¢; = 0 (mod p). By (5.3), p { ¢ implies that p 1 as, so we
do not need another condition on cs.

— In case i, we see that p | as for one in p subsequent choices of ¢,
and the same holds for a3. However, in this case, p cannot divide as, a3
for the same choice of c3, as we can see by considering T": since p { a3ns,
it is impossible that p | as, as. Therefore, we must exclude two out of p
subsequent choices of p in order to fulfill p { as, as.

— In the other cases, the arguments are similar.

The number of (a9, a3) € Z? subject to T, (4.5), (4.6), (4.9) equals
the number of ¢z such that as, a3 as in (5.2), (5.3) satisfy these condi-
tions. This can be estimated as 1/mung of the interval described by (4.9),
multiplied by a product of local factors whose value can be read off from
Columns 2, 4, 5 of Table 3: The divisibility properties of n; by p deter-
mine whether zero, one or two out of p subsequent values of ¢3 have to be
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excluded. Different primes can be considered separately, and we define

1—2/p, casei,
Vip:=4q1—1/p, cases ii—iv,vi— xi,

1, case 0, v.

= I
p

be the product of these local factors, and

(5.4) n(u,0) = / Ldt.
[reR 2] fe(ro-+u) o (ro-+u2)|<1)

Let w(n) denote the number of primes dividing n.

Let

LEMMA 8. — For fized (n, o) € Z8y X Z as in (4.3), (4.4), (4.7), (4.8),
the number of (o, a3) € Z? satisfying T, (4.5), (4.6), (4.9) is

U1(n) X,
Ni(n, o) = %gl(al/x’l,){o) + O(QW(mnznsnwa)).

416

The sum of error terms for all possible values of (n,ay) is < B(log B)?.

Proof. — The number of ¢z such that the resulting ao, oz satisfy (4.9)
differs from le(al/Xl,Xo) by at most O(1).

Each 94, 7& 1 corresponds to a congruence condition on c3 imposed by
one of the cases 1 — v, vi — xi. For each congruence condition, the actual
ratio of allowed ¢z can differ at most by O(1) from the ¥;,. The total
number of these primes p is

w(mmansnans) < 22w

which is independent of 75 since any prime dividing only 15 contributes
a trivial factor (see case v).

Using the estimate (4.8) for oy in the first step and ignoring (4.3) (4.4),
which can only increase the error term, we obtain:

Qw (mm2m3m4m6)

B-
Z Z ow(mmansmane) < Z EEEEREY < B(log B>3.
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Here, we use 2°(M < n for the summations over 1y, 12, 03, n4. For ng, we
employ

Z 2°(") <« x(log x)

n<e

together with partial summation, contributing a factor (log B)?, while
the summation over 75 gives another factor log B. O]

Next, we sum over all a; subject to the coprimality condition (4.4) and
the height condition (4.8). Let

(5.5) ga(v) = / g1 () du
{ueR|[v2u|<1}

Similar to our discussion for as, a3, the number of possible values for a;
as in (4.8), while ignoring (4.4) for the moment, is X;g2(Xo) + O(1).

None of the coprimality conditions are fulfilled automatically, and only
common factors with 7, are allowed (see Column 3 of Table 3). Therefore,
each prime factor of n1m3n4m5m6 reduces the number of allowed oy by a
factor of ¥, = 1 — 1/p with an error of at most O(1). For all other
primes p, let ¥, = 1, and let

v1(n) - 92(n), (4.3) holds
0, otherwise.

Oa(m) = [[02p  and  9(n) = {

LEMMA 9. — For fizedn € Z8 as in (4.3), (4.7), the sum of N1(n, ay)
over all ay € 7 satisfying (4.4), (4.8) is

V() X1 X
14
where the sum of error terms Ra(n) over all possible ) is < Blog B.

No(n) := 92(Xo) + Ra(n),

Proof. — Let
N(bb bz) = 191(77) : #{041 S [bl,bz] | ng(a17ﬁ1773774775776) = 1}-

Using Mobius inversion, this is estimated as

N (b1,b2) = D1(n) - Da(n) - (by — b1) + R(b1, b2)
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with R (b, by) = O(2@(mmsmansns)) - By partial summation,

9(n) X X
Nofm) = 22X ) + Ra(m)
N4
with
_ =X 2
Ra(n) = — (D1g1)(u, Xo)R(—X1/Xg, Xiu) du
N4 J{u)| X2u|<1}

where D1 g, is the partial derivative of g; with respect to the first variable.
Using the above bound for R (b, by), we obtain:

RQ(W) < X 2‘*’(771773774775776)
774776

Summing this over all  as in (4.7) while ignoring (4.3) which can only
enlarge the sum, we obtain:

> Raln) < 32

Qw N113M4M576) QW(T)1U3TI4TI5T)6)

- Z (212222 < BlogB

Mg X
In the first step, we use X, < 1. 0
Let
_ ¥(n)X1X 9 (m) (n+2:3:32:2))1/3
swep Y NG |
n;,(42:3:3:2:2)=n "7 i ($:2:3:3,2,2) —p, 77(171’171’171)

In view of Lemma 7, the number of rational points of bounded height on
S° can be estimated by summing the result of Lemma 9 over all suitable
1. The error term is the combination of the error terms in Lemmas 8
and 9.

LEMMA 10. — We have

N(S°,—Ks, B) = B* Y " A(n)g((n/B)"*) + O(B(log B)?).

n<B
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6. Completion of the proof

We need an estimate for

M(t) == A(t).
n<t
Consider the Dirichlet series F'(s) := > -, A(n)n*. Using
v(n)
F(s+1/3) = Z A5+1, 2541, 3s+1, 3s+1, 251, 2s+1°

T Ty Tl s T

we write F'(s +1/3) = [, F,,(s + 1/3) as its Euler product. To obtain
F,(s 4+ 1/3) for a prime p, we need to restrict this sum to the terms in
which all 7; are powers of p. Note that ¥(n) is non-zero if and only if
the divisibility of 7; by p falls into one of the twelve cases described in
Table 3. The value of ¥J(n) only depends on these cases.

Writing F(s +1/3) = 311, F,i(s + 1/3), we have for example:
F,o(s+1/3) =1,

Fy(s 1/ = S YD = 2/) (1= 1p)(1=2/p)

P =

pi(dst1) phstl — 1 )

.
Il
—

1-1/p)?* (1—1/p)?
pj(4s+1)pk(2s+1) - (p4s+1 _ 1)(]923“ — 1).

NE

Fpals+1/3) =

e
Il

j7 1

The other cases are similiar, giving

o 1-1/p 1-1/p 1-1/p
F,(s+1/3) =1+ Jm((l —2/p)+ P2t 1 +2p3s+1 1

1-1/p (- 1/p)? 1—-1/p (1-1/p)?
p25+1 _ 1 p35+1 _ 1 p28+1 _ ]_ (p25+1 _ 1)2 :

Defining
E(s) == ((4s+1)((3s+1)%¢(2s+1)>  and  G(s) := F(s+1/3)/E(s),
we see as in [Der05] that the residue of F(s)t*/s at s =1/3 is

_3G(0)t3Q1(log )

Res(t) = 597 3.3.2.2
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for a monic @, € R[z] of degree 5. By Lemma 6, o(S) = s755353- By
a Tauberian argument as in [Der05, Lemma 13]:

LEMMA 11. — M(t) = Res(t) + O(t'/37%) for some & > 0.

By partial summation,

> Am)ga((n/B)?) = a(8)-G(0)-B'Q(log B)-3 /0 g2(v) dv+O(B5 %)

n<B

for a monic polynomial @) of degree 5. We identify wy(S) from

G(O)zH(l—%)G(lnLngz%), andwoo:?)/olgg(v)dv.

Together with Lemma 10, this completes the proof of Theorem 2.

7. Equations of universal torsors

The simplest universal torsors are those which can be realized as Zariski
open subsets of the affine space. This happens iff the Del Pezzo surface
is toric.

EXAMPLE 12. — There are 20 types of singular Del Pezzo surfaces of
degree d > 3 whose universal torsor is an open subset of a hypersurface
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in A9 They are listed in the following table.

’ degree \ singularities \ # of lines \ defining equation

6 A, 3 N20u1 + M3y + N0

6 A, 2 203 + N300 + Naaiy

5 Ay 7 M2Me + 1307 + Nans

5% A.2 4 N30 + N4Qi2 + 7727752)776

5 A5 2 77104% + 773774%062 + 503

5 A, 1 e + Ny + nsais

4 3A, 6 NaNs + MNeN7 + N8No

4 A, + A 6 517 + N67s + M35

4 A; 5 50+ N3N + 131578
4 As;+ Ay 3 NeQi2 + Nrae 4+ nzmans

4 Ay 3 N5 + 7]104% + 7]3772773777

4 D, 2 ManEan + Mangas + 1pad
4 D; 1 N30 + mangas + e
3 D, 6 21378 + 13770 + N30
3 As+2A, 5 MN21g + Nanho =+ Nsho
3 2A, + Ay 5 n3M5MF + MNeNs + NoTho

3 A+ A 4 MmnNsg + N3N3TeTe + e
3 D5 3 Mamgr2 + Mam3nins + nsad
3 As+ Ay 2 niN3N3NTs + N5Q7 + Necva
3 Eg 1 NiNseis + 1203 + 171307

EXAMPLE 13 (Cubic surface with A; + Aj singularities)

This surface has 7 lines, 4 additional variables correspond to excep-
tional divisors of the desingularization. Its 9-dimensional universal torsor
is a Zariski open subset of a complete intersection in

All = SpeCZ[UOa <o N3y Moy - 7”6]
given by
Miapapis + pafte + pispis = 0 and  1on1 3 + Nspispie + popn = 0.

There are examples of universal torsors which are not complete inter-
sections, but have still been successfully used in the context of Manin’s
conjecture:
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EXAMPLE 14 (Cayley cubic). — The Cayley cubic surface
ToT1T2 + ToT1T3 + ToLak3 + T1X2X3 = 0

(Figure 1) is a split singular cubic surface with four singularities ¢q, ..., q
of type A; and nine lines. It is the blow-up of P? in the 6 intersection
points of 4 lines in general position. The universal torsor is an open
subvariety of the variety in

13
A™ = Spec Z[via, V13, V14, Y1, Y2, Y3, Y4, 212, 213, 214, 223, 224, Z25]

defined by six equations of the form

ZikZialj + ZjRZYi = Zijvij
and three equations of the form

_ L2 2

VijVik = Z3YiYk — ZkYiY1;

where {i,j, k, 1} = {1,2,3,4} and
Zij = Zjia Uij = Uji7 and Uij = —Vgi-

The variables y; correspond to the four exceptional divisors F; obtained
by blowing up ¢;, 2;; correspond to the six lines m,;; through two of the
singularities, and v;; correspond to the other three lines £;;. The first six
equations can be interpreted in connection with the projection from m;;,
and the other three equations are connected to the projection from ¢;;.
Upper and lower bounds of the expected order of magnitude have been

established in [HBO3].

EXAMPLE 15 (Smooth degree 5 Del Pezzo surface)
The blow-up of P? in

(1:0:0), (0:1:0), (0:0:1), (1:1:1)

is a split smooth Del Pezzo surface of degree 5. Its universal torsor is an
open subset of the variety defined by the following five equations in ten
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variables:

A3 — A2ane + Azama = 0
A1ana — A13nz + Arzne = 0
Azanz — A2ana + Aram =0
AoaMy — Aaznz + Ay = 0
A12A34 — A13A24 + Az Ay = 0
The asymptotic formula (1.3) has been established in [d1B02].

To illustrate some of the difficulties in proving Conjecture 1 for a
smooth split cubic surface, we now write down equations for its universal
torsor (up to radical).

EXAMPLE 16 (Smooth cubic surfaces). — Let S be the blow-up of P? in
(1:0:0), (0:1:0), (0:0:1), (1:1:1), (L:a:b), (1:c:d),

in general position. Conjecturally, the universal torsor is an open subset
of the intersection of 81 quadrics in 27-dimensional space Spec Z[n;, i ;, i
where

— n1,...,ns correspond to the preimages of the points,

— pij (i <je{l,...,6}) correspond to the 15 lines m, ; through two
of the points,

— A, ..., Ag correspond to the conics ; through five of the six points,

and relations arise from conic bundle structures on S. Batyrev and Popov
proved that the above variables are indeed generators and that the rela-
tions give the universal torsor, up to radical [BP04].

We now write down these equations explicitly. The 81 defining quadrics
occur in sets of three. These 27 triples correspond to projections from
the 27 lines on S. We use

E=0b-1)(c=1)—(a—1)(d—1) and F :=bc— ad
to simplify the equations.

Q.0 = —M2f1,2 — M3fh1,3 + Nafb1 4
qQ.2 = —anzpir2 — bnspin s + Mspiy s
qQi,2 = —Capir2 — dnzfiy s + Nefl1e
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4Qs,1 = MM1,2 — M3l2,3 + Nafio4
4Q.2 = M2 — bnspia s + Nspias
4Q2,3 = TH1,2 — dnzjia3 + Nefloe

4Qs,1 = MH1,3 T+ N2ft2,3 + Nafls 4
4Qs,2 = MM1,3 + anzfia3 + Ns543.5
4Qs,3 = MH1,3 T Caft23 + Nel3.6

Qs = MM14 + N2pi24 + N334
4Qu2 = (L =b)mpra+ (a—b)naping + Nspias
4.3 = (L —d)mpr s+ (¢ — d)napiog + Nepias

4051 = 1/bmpns + a/bnapias + n3pis 5
qQs2 = (L =0)/bnipir s + (@ — b) /bnapias + Napias
4@s3 = (b—d)/bmpns + F/bnapas + npis s

40,1 = L/dmpn g + c/dnapioe 4+ n3pise
4Qs,2 = (1- d)/dnlﬂl,ﬁ + (c— d)/d772uz,6 + Naflas
9Qs,3 = (b— d)/dmﬂl,ﬁ + F/an,LLQ,G + N5 1456

Qmy o1 = Ha5H3.6 — U3504,6 T 13,4156
Gmy2 = (b= d)pussptae + (d — 1)z apis e + m2M
Qa3 = Fsspae + a(d — c)psapise + A2

Gmy 5,1 = Masi26 — H25M4,6 T H2,4/45.6
mq 3,2 = (c— a>#2,5,u4,6 + (1 - C),UZA,US,G + M3\
Gmi 3 = —Fliosptae + b(c — d)poapise + mAs
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Qmas,1 = Masii6 — H15H4,6 T H1,4/45,6
my 3,2 = (@ —c)prspas + alc — 1) aptse + N3Aa
Gmass = (b — d)pasptas + 0(d — 1)1 apis 6 + n2A3

Qmy a1 = M35H26 — H2,503,6 1 H23M5.6
Qmy 4,2 = —FEpaspze + (b - 1)(0 - 1)#2,3#5,6 + A1
Om; 4,3 = —F g s 6 + bepio siis 6 + mAa

Qmasl = M35M1,6 — H15M3,6 T H1,3/45,6
Omg 4,2 = Epyspse + (a— b)(c - 1)#1,3#5,6 + Nara
Gmaas = (b — d)p1spis6 — by apis. + N2s

Qms.a1 = H2sii6 — H1502,6 1 H12/5.6
Qms 4,2 = _EN1,5M2,6 + (a - b)(l - d)M1,2M5,6 + M43
Gmsa,3 = (€ — @) 526 + apiy 256 + 134

Qmy 5,1 = M34M2,6 — H2,4M3,6 T 12,3146
Umys2 = —Epoapze + (@ —c)(1 —b)uospias + N5 1
m, 53 = (d - C)M2,4M3,6 + clo3phae + s

Qmas1 = M34M1,6 — H1,4M43,6 1 H1,314,6
Qa2 = aBp apze + (@ —b)(c — a)u13tae + M5 2
Gmas3 = (1 — d)pyapis e — pi1,304,6 + 7205

Qms 5,1 = M2af1,6 — H14aM2,6 T H1,2/4.6
Gms 52 = —bEp1apioe + (a — b)(b — d)p12ptae + 153
ms 5,3 = (¢ = 1)1 aptoe + 20046 + M35
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Qmas1 = M23M1,6 — H1,3M2,6 T H1,2/43,6
mas2 = b(c — a)p spioe + alb — d)pyopis6 + M5\
Gmass = (¢ = Duigpioe + (1 — d)propize + n4)s

Qmy 1 = M34Mb25 — H24M35 + 231445
G2 = —Epzapss + (a — o) (1 — d)paspas + nsh
mi6,3 = (b— G)M2,4M375 + ajiazftas + M6

Qmael = M34M015 — 14035 + [U1,3004,5
Umae2 = CEp a3 5 + (@ —c)(d— c)pr3ptas + NeAa
mg 6,3 = (1 —b)p1,aptas — p1,3ka5 + 126

Qms el = M2afb15 — H1af2s + (1 2/45
Ums g2 = —dE 1 apio5 + (d—0b)(d — c)pr2pta5 + N6A3
Gms o3 = (@ — 1)y apios + fl12fta5 + 17306

Qmae1l = M23M15 — H1,3M25 T H1,2/435
Imy 6.2 = d(c — a)p gpias + (b — d)papiz s + M6
Gmaes = (@ — D)pyapios + (1 —b)pyopizs + nads

Gmse,1 = M23M01.4 — H13M2,4 + [1,2/43.4
Ims6,2 = d(C - 1)#1,3,“2,4 + C(l - d),ul,Z,USA + 776>\5
Ums6,3 = (@ — 1)p1 3o + a(l — b)p12pt3.4 + 156

ge 1 = (d—b)/Epi oA+ (¢ —a)/Epy sAs + f11.4M
qE. 2 = (d - 1>/E,LL1’2/\2 + (C — 1)/E[JJ1,3)\3 + ,LLL5>\5
ey 3= (b—1)/Ep2Xe + (a — 1)/ Epy 33 + 1,66
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0,1 = F/Ep2M + (¢ — a)/EpasAs + p2.4\
02 = (c—d)/Ep oM + (¢ — 1)/ Epg sAs + pos5As
03 = (a—b)/Epi2M + (a — 1)/ EpssAs + 26

qes1 = F/Epish + (b — d)/Epo s + i aAa
qps2 = (¢ —d)/Eps i + (1 — d)/Epuashs + 355
qps3 = (@ —b)/Euish + (1 = b)/Epashe + 1366

qp1 = F/(a—c)prad + (b—d)/(a — c)paare + 113423
qr,2 = c/(a— c)urad + 1/(a — ¢)aare + pasAs
qe3 = af(a —c)pad + 1/(a — ¢)pgars + prashe

qps1 = (d—c)/(c— s  + (d—1)/(c— D pasia + p35A3
4Bs2 = —c/(c— 1)#1,5>\1 —1/(c— 1)#2,5)\2 + a5 s
qE5,3 = _1/(0 - 1),“1,5)\1 - 1/(0 - 1)/12,5)\2 + 566

qes1 = (b—a)/(a — DA + (b—1)/(a = D)paeAa + f136A3
Qes2 = —a/(a — 1)p16M — 1/(a — 1) po Ao + fa e
Qess = —1/(a — 1)1 A — 1/(a — 1)pagAe + s 65

In general, the dimension k of the ambient space A¥ of the universal
torsor is at least as large as the number of lines on the surface plus the
number of exceptional divisors of its desingularization, while the dimen-
sion of the universal torsor only depends on the degree of the surface, so
that the number of equations must grow with k.

Heuristically, the complexity of universal torsors should be dictated by
the following considerations:

— The dimension of the universal torsor of split Del Pezzo surfaces S
is 12 — d, where d is the degree of S.

— For smooth Del Pezzo surfaces, the number of lines is bigger in
smaller degrees (e.g., 10 lines in degree 5, and 27 lines in degree 3).

— Singular surfaces have less lines than smooth surfaces.
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— The number of lines is higher in cases with “few mild” singularities
(e.g., for cubics: Ay with 21 lines, Ay with 15 lines), while it is low for
“bad” singularities (e.g., 1 for the Eg cubic, 2 for the A5 + A; cubic).
Therefore, we expect universal torsors over surfaces which have low de-
gree, are smooth or have mild singularities to be more complex than
torsors over surfaces in large degree, or with complicated singularities.
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