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Introduction

Cet article est le deuxiéme d’une série consacrée a I’étude des hauteurs sur certaines

bution des points rationnels de hauteur bornée.
Précisément, soient X une variété algébrique projective lisse sur un corps de nombres

F, £ un fibré en droites sur X et Hy : X(F') — R une fonction hauteur (exponen-
tielle) pour .Z. Si U est un ouvert de Zariski de X, on cherche a estimer le nombre

Ny(Z,H) = #{x € U(F); Hy(x) < H)

variétés algébriques sur un corps de nombres, notamment en ce qui concerne la distri-
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lorsque H tend vers +oco. L’étude de nombreux exemples a montré que l'on peut s’at-
tendre & un équivalent de la forme

(%) Ny(¥,H) = @(Z)H“(f)(logH)b("?)*l(l +0(1)), H— +o0

pour un ouvert U convenable et lorsque par exemple .Z et w;(l (fibré anticanonique)
sont amples. On a en effet un résultat de ce genre lorsque X est une variété de dra-
peaux [11|, une intersection compléte lisse de bas degré (méthode du cercle), une
variété torique [4], une variété horosphérique [19], une compactification équivariante
d’un groupe vectoriel [10], etc. On dispose de plus d’une description conjecturale assez
précise des constantes a(Z) et b(Z) en termes du cone des diviseurs effectifs [1] ainsi
que de la constante ©(.%) ([15], [5]).

En fait, on étudie plutot la fonction zéta des hauteurs, définie par la série de Dirichlet

Zy(Z,s) = Z Hgy(z)*

zcU(F)

a laquelle on applique des théorémes taubériens standard. Sur cette série, on peut se
poser les questions suivantes : domaine de convergence, prolongement méromorphe,
ordre du premier pole, terme principal, sans oublier la croissance dans les bandes ver-
ticales a gauche du premier podle. Cela permet de proposer des conjectures de précision
variable.

Dans cet article, nous considérons certaines fibrations localement triviales construites
de la fagon suivante. Soient G un groupe algébrique linéaire sur F' agissant sur une
variété projective lisse X, B une variété projective lisse sur F' et 7" un G-torseur sur
B localement trivial pour la topologie de Zariski. Ces données définissent une variété
algébrique projective Y munie d’un morphisme Y — B dont les fibres sont isomorphes
a X. Le coeur du probléme est de comprendre le comportement de la fonction hauteur
lorsqu’on passe d’une fibre a ’autre, comportement vraiment non trivial bien qu’elles
soient toutes isomorphes.

Dans notre premier article, nous avons exposé en détail la construction de hauteurs
sur de telles variétés. Dans celui-ci, nous appliquons ces considérations générales au
cas d’une fibration en variétés toriques provenant d’un torseur sous un tore déployé,
pour l'ouvert U défini par le tore. Nous avons construit les hauteurs a 1’aide d’un
prolongement du torseur géométrique en un torseur arithmétique, ce qui correspond en
'occurence au choix de métriques hermitiennes sur certains fibrés en droites. Ecrivons
la fonction zéta comme la somme des fonctions zéta des fibres

Zy(Z,s)= > Y Hylx)' = > Zy(Lly,s)

beB(F) zeUy(F) bEB(F)

Chaque U, est isomorphe au tore et on peut exprimer la fonction zéta des hauteurs
de U, a I'aide de la formule de Poisson adélique. De cette facon, la fonction zéta de U
apparait comme une intégrale sur certains caractéres du tore adélique de la fonction L
d’Arakelov du torseur arithmétique sur B.
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Ainsi, nous pouvons démontrer des théorémes de montée : supposons que B vérifie
une conjecture, alors Y la vérifie. Bien stir, la méthode reprend les outils utilisés dans
la démonstration de ces conjectures pour les variétés toriques ([4, 2, 3]).

Par exemple, nous démontrons au §5.1, sous des hypothéses minimales sur B, I'ho-
lomorphie de la fonction Zy (%, s) pour Re(s) > a(¥); cela implique que pour tout
e > 0, le nombre de points rationnels de hauteur Hy inférieure & H est O(HZ)+%).
Ensuite, sous des hypothéses raisonnables concernant B, nous établissons un prolon-
gement méromorphe de cette fonction zéta a gauche de a(-¥) et nous démontrons que
I'ordre du péle est inférieur ou égal a b(Z); cela précise la majoration du nombre de
points en O(H*¥)(log H)*¥)~1). Enfin, lorsque . = wy ', nous démontrons que le pole
est effectivement d’ordre b(-#) d’oil une estimation de la forme (*) et nous identifions
la constante © (%), établissant ainsi la conjecture de Manin raffinée par Peyre. Pour un
fibré en droites quelconque, la preuve de la conjecture de Batyrev—Manin [1] avec son
raffinement par Batyrev—Tschinkel [5]| est ramenée a la détermination exacte de I'ordre
du pole, c’est-a-dire a la non-annulation d’une certaine constante. Dans le cas des varié-
tés toriques ou des variétés horosphériques, I'utilisation de « fibrations .Z-primitives »
dans 3] et [19] a permis d’établir cette conjecture. Moyennant des hypothéses sur B,
cette méthode devrait s’étendre au sujet de notre étude.

Notre méthode impose de disposer de majorations de la fonction zéta des hauteurs
(pour B) dans les bandes verticales & gauche du premier poéle; nous avons ainsi taché
d’obtenir de telles majorations pour la variété Y. Il est en outre bien connu que cela
entraine un développement asymptotique assez précis pour le nombre de points de
hauteur bornée, cf. le théoréme taubérien donné en appendice. Quelques cas de variétés
toriques sur Q avaient en effet attiré ’attention des spécialistes de théorie analytique
des nombres (voir notamment les articles de E. Fouvry et R. de la Bretéche dans [16],
ainsi que [6]). Notre méthode établit un tel développement pour les variétés toriques
lisses, les variétés horosphériques, etc. sur tout corps de nombres.

La démonstration de I'existence d’un prolongement méromorphe de la fonction zéta
des hauteurs pour les variétés toriques ou pour les variétés horosphériques faisait inter-
venir un théoréme technique d’analyse complexe & plusieurs variables dont la démons-
tration se trouve dans [4], [3] et [19]. En vue d’obtenir les majorations exigées dans les
bandes verticales, nous sommes obligés d’en préciser la preuve; ceci est 'objet du § 3.

Dansles §4 et § 5 se situe I’étude de la fonction zéta des hauteurs d’une variété torique
et d'une fibration en variétés toriques. Pour les variétés toriques, nous améliorons le
terme d’erreur & la suite de [4, 18, 8]. Le théoréme de montée pour les fibrations
généralise le résultat principal de [19].

Notations et conventions

Si 2 est un schéma, on note Pic(Z") le groupe des classes d’isomorphisme de
faisceaux inversibles sur 2 . Si .# est un faisceau quasi-cohérent sur 2, on note
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V(%) = SpecSym.Z et P(#) = ProjSym.# les fibrés vectoriels et projectifs as-
sociés a Z.

On note ﬁl\c(ﬂ?f) le groupe des classes d’isomorphisme de fibrés en droites hermitiens
sur Z (c’est-a-dire des fibrés en droites munis d’'une métrique hermitienne continue
sur Z°(C) et invariante par la conjugaison complexe)..

Si £ est un S-schéma, et si 0 € S(C), on désigne par Z, le C-schéma 2~ x, C.
Cette notation servira lorsque S est le spectre d’un localisé de I’anneau des entiers d’un
corps de nombres F', de sorte que o n’est autre qu'un plongement de F' dans C.

Si G est un schéma en groupes sur S, X*(G) désigne le groupe des S-homomorphismes
G — G,, (caractéres algébriques).

Si Z'/S est lisse, le faisceau canonique de 2°/S, noté wg g, est la puissance exté-
rieure maximale de Q}%/S'

3. Fonctions holomorphes dans un tube

Le but de ce paragraphe est de prouver un théoréme d’analyse sur le prolongement
méromorphe de certaines intégrales et leur estimation dans des bandes verticales. Ce
théoréme généralise un énoncé analogue de [4, 19]. La présentation en est un peu
différente et le formalisme que nous introduisons permet de controler la croissance des
fonctions obtenues. Ce controle est nécessaire pour utiliser des théorémes taubériens
précis et améliorer ainsi le développement asymptotique du nombre de points rationnels
de hauteur bornée.

Les résultats de ce paragraphe n’interviennent que dans la preuve des théorémes 4.4.6
et 5.2.5.

3.1. Enoncé du théoréme

Soit V' un R-espace vectoriel réel de dimension finie muni d’une mesure de Lebesgue
dv et d’une norme ||-||. On dispose alors d’'une mesure canonique dv* sur le dual V*.
Notons Vg = V ®gr C le complexifié de V. On appelle tube toute partie connexe de Vg
de la forme  + iV ou Q est une partie connexe de V'; on le notera T(£2).

Soit enfin M un sous-espace vectoriel de V muni d’une mesure de Lebesgue dm.

Définition 3.1.1. — Une classe de contréle 9 est la donnée pour tout couple M C V de
R-espaces vectoriels de dimension finie d'un ensemble Z(M, V') de fonctions mesurables
k:V — Ry dites D(M,V)-contrélantes vérifiant les propriétés suivantes :

(a) si k1 et Ky sont deux fonctions de (M, V'), A1 et Ay deux réels positifs, et si &
est une fonction mesurable V' — R telle que k < A\jk1 + Ayko, alors k € D (M, V) ;

(b) Sik € Z(M,V) et si K est un compact de V, la fonction v — sup,cx £(v + u)
appartient & (M, V);

(c) sik € Z(M,V), pour tout v € M \ 0, k(tv) tend vers 0 lorsque ¢ tend vers +o0;
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(d) si k € Z(M,V), pour tout sous-espace M; C M, la fonction M;-invariante

Ky U k(v + mq) dmy
My

est finie et appartient & 2(M /M, V /M) ;

(e) si k € P(M,V), pour tout sous-espace M; C M et tout projecteur p : V — V
de noyau Mj, la fonction Mj-invariante k o p appartient & 2(M /M, V/M).

3.1.2. 1l existe une classe de controle 2™2* contenant toutes les classes de contréles :
I'ensemble 2™**(M, V') est défini par récurrence sur la dimension de M par les trois
conditions (a, c, e) dans la définition 3.1.1. La derniére condition est alors automatique.

Dans la suite, on fixe une classe de controle 2, et on abrége 'expression Z(M,V)-
contrélante en M -contrdlante.

Définition 3.1.3. — Une fonction f : T(2) — C sur un tube est dite M -controlée s'il
existe une fonction M-controlante k telle que pour tout compact K C T(), il existe
un réel ¢(K) de sorte que I'inégalité

f(z +iv)| < e(K)k(v)
soit vérifiée pour tout z € K et tout v € V.

3.1.4. Considérons une fonction sur un tube, f : T(2) — C. Soit M un sous-espace
vectoriel de V', muni d’une mesure de Lebesgue dm. On considére la projection 7 :
V — V' =V/M et on munit V' de la mesure de Lebesgue quotient. On pose, quand
cela a un sens,

(3.1.5) FulF)(z) = (%)ﬁ /Mf(z tim)dm,  zeT(Q).

LEMME 3.1.6. — Soit Q C V et f: T(Q) — C une fonction holomorphe M -controlée.
Soit M' un sous-espace vectoriel de M et Q' l'image de Q par la projection V.— V/M'.
Alors, Uintégrale qui définit Sy (f) converge en tout z € T(Q) et définit une fonction
holomorphe M /M'-contrélée sur T(§2').

Démonstration. — Comme f est M-controlée, il existe une fonction k € Z(M,V) et,
pour tout compact K C T(€2), un réel ¢(K) > 0 de sorte que pour tout v € V et tout
z € K, on ait |f(z +iv)| < ¢(K)k(v). La condition (3.1.1, d) des classes de controles
jointe au théoréme de convergence dominée de Lebesgue implique que l'intégrale qui
définit .y (f) converge et que la somme est une fonction holomorphe sur T(2). Par
construction, cette fonction est ¢M'-invariante. Comme elle est analytique, elle est
donc invariante par M’ et définit ainsi une fonction holomorphe sur T(£2'). De plus, si
7 désigne la projection V' — V/M', pour tout z € K et tout v € V, on a

Zw (F)(m(2) +im(v))] < C(K)/ k(v +m')dm’ = c(K)k'(m(v))

!
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ou k' appartient par définition & Z(M/M', V/M'). Tout compact de T(Q') étant de la
forme 7(K') pour un compact K de T(2), le lemme est ainsi démontré. O

3.1.7. Fonction caractéristique d’un comne. — Soit A un cone convexe polyédral ouvert
de V. La fonction caractéristique de A est la fonction sur T(A) définie par I'intégrale
convergente

(3.1.8) Xa(z) = / (o) gyt

ot A* C V* est le cone dual de A, V* étant muni de la mesure de Lebesgue dv* duale
de la mesure dv.
Si A est simplicial, c’est-a-dire qu’il existe n = dim V' formes linéaires indépendantes

Uy, ..., 0, telles que v € A si et seulement si £;(v) > 0 pour tout j, alors
L |
X = ||dly N\ --- Ndb, .
A(2) = [t Difrs
j=1

(On a noté ||dly A --- A dl,]| le volume du parallélépipéde fondamental dans V* de base
les £;.) Dans le cas général, toute triangulation de A* par des cones simpliciaux permet
d’exprimer X, sous la forme d’une somme de fractions rationnelles de ce type. Elle se
prolonge ainsi en une fonction rationnelle sur T(V') dont les poles sont exactement les
hyperplans de Vi définis par les équations des faces de A. Elle est de plus strictement
positive sur A.

Une autre fagon de construire un cone est de s’en donner des générateurs, autrement
dit de 1'écrire comme quotient d'un cone simplicial. A ce titre, on a la proposition
suivante.

PROPOSITION 3.1.9. — Soit A un céne polyédral convexe ouvert de V dont l’adhérence
A ne contient pas de droite. Soit M un sous-espace vectoriel de V tel que AN M = {0}.
On note w la projection V. — V' =V /M.

La restriction a T(A) de la fonction Xa est M -contrélée (pour la classe D™ (M, V) ).
L’intégrale qui définit #p(Xa) converge donc absolument et pour tout z € T(A), on a

Su(Xa)(2) = Xa (7(2)).

Remarque 3.1.10. — Les hypothéses impliquent que A ne contient pas de droite. En
effet, s’il existait un vecteur non nul de AN —K’, il existerait deux vecteurs v; et vy de
A tels que v; + vy € M mais v; € M. Comme AN M = {0}, v; = —v, ce qui contredit
'hypothése que A ne contient pas de droite.

Démonstration. — La preuve est une adaptation des paragraphes 7.1 et 7.2 de [19].
Soit (e;) une famille minimale de générateurs de A. Chaque face de A* dont la dimension
est dim V' — 1 engendre un sous-espace vectoriel qui est I'orthogonal d’un des e;.
Comme M N A = {0}, il existe une forme linéaire £ € V* qui est nulle sur M mais
qui n’appartient a aucune face de A*; posons H = ker /. Soit H' un supplémentaire
de Rf dans V*. Si o € V* et t € R sont tels que ¢ + t¢ € A*, on doit avoir pour
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tout générateur e; de A 'inégalité p(e;) + tl(e;) > 0, soit (rappelons que £(e;) n’est
pas nul), t > —(e;)/l(e;) quand l(e;) > 0 et t < —p(e;)/L(e;) quand £(e;) < 0. Soit
alors I(¢) = |hi(¢), ha(p)[ I'intervalle de R défini par ces inégalités. (Si tous les £(e;)
sont positifs, c’est-a-dire £ € A* on a h; = —oo, tandis que s’ils sont tous négatifs,
hy = 400.) Les fonctions h; et hy sont linéaires par morceaux par rapport a un éventail
de H' qu’on peut supposer complet et régulier (voir par exemple [12]| pour la définition,
ou [2]).
Alors, siv € T(A) et m € H, on a

Xa(v +1im) = / 1p-(@)e VHme) dy
V*

= / / 1p- (@ 4 tl)e™ 0Hime) o =tb gt do

ha(yp
/ / —(v+im,p) ft(vl) dt ng
1 hl

v+zm (p> efhl(‘p)<vv£> — eth(‘p)(vv& d
- /’ ¢ <’U, £> v

de sorte que la fonction H — C telle que m — Xj(v + im) est (& une constante
multiplicative prés) la différence des transformées de Fourier des fonctions

H' — C, ¢ e Wethile)t)

pour j =1 et 2.

Comme v € T(A) et ¢ + h;(p)¢ appartient au bord de A*, (v, + h;(¢)l) est de
partie réelle strictement positive, & moins que ¢ = 0. Soit K un compact de T(A).
Il résulte alors des estimations des transformées de Fourier de fonctions linéaires par
morceaux et positives (voir [2], proposition 2.3.2, p. 614, et aussi infra, prop. 4.2.4)
une majoration de la fonction

fA K Z |XA v+ ZTTL
veEK

de la forme
dim H

fA,K Z H 1_‘_‘ m, l, >|)1+1/dimH’

ol pour tout «, la famille (£, ), est une base de H*. D’aprés le lemme 3.1.11 ci-dessous,
la fonction f, j appartient & Z™*(M, V).
La fonction m — X (v +im) est donc absolument intégrable sur M. C’est la trans-

formée de Fourier de la fonction ¢+ 1,-(p)e {"? dont il est facile de voir qu’elle est
intégrable sur tout sous-espace et donc aussi M. La formule de Poisson s’applique
(aprés un léger argument de régularisation) et s’écrit

/ Xa (v + im) dm = (27)imM / e ") do.
M AnML
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Or, lapplication V — V' identifie (V')* & M+, et A* N M+ a (A')*. Ainsi, on obtient

F(Xn)(v) = /( e do = Xy (x(0).

O
LEMME 3.1.11. — Soit V' un R-espace vectoriel de dimension d, ({y,...,4q) une base
de V* et f la fonction v — H;i:l(l + [6;(v))"7Y4 Alors, f € 9™ax(V, V).
Démonstration. — Soit M un sous-espace vectoriel de V' de dimension m. Quitte a

réordonner les indices, on peut supposer que M est I'image d’une application linéaire
R™ — R? =V de la forme t = (t1,...,tm) = (t1,-- - tm, ms1(t), ..., @a(t)). Si on
réalise V/M par son supplémentaire {0}™ x R4 ™ la fonction fy : v — [, f(v+m)dm
est donnée par l'intégrale

1
dty . ..dt,,.
/Rm (1+ [t )1V (1 + |t 1+1/d H (1+ |v; + @ ( Y1+ 1

Elle est dominée par l'intégrale convergente

1 1
e dty...dt
/Rm (L[ ) (L4 [t yra
et le théoréme de convergence dominée implique alors que pour tout vecteur v =
(0,...,0, 041, ...,vq) distinct de 0,
lim fuy(sv) = 0.

s—+400

Le lemme est ainsi démontré. O

Définition 3.1.12. — Soient C' un ouvert convexe de V ayant 0 pour point adhérent et
A un coéne polyédral ouvert contenant C'.

Soit & C V* une famille de formes linéaires deux & deux non proportionnelles défi-
nissant les faces de A.

On note 73, (A; C) 'ensemble des fonctions holomorphes f : T(C) — C telles qu'il
existe un voisinage convexe B de 0 dans V' de sorte que la fonction g définie par

o) =1 [T 7250

admet un prolongement holomorphe M-controlé dans T(B).

Par le théoréme d’extension de Bochner (voir par exemple [13]), une telle fonction
s’étend en une fonction holomorphe sur le tube de base ’enveloppe convexe C' de BUC.
En particulier, il n’aurait pas été restrictif de prendre pour C l'intersection du céne A
avec un voisinage convexe de 0 dans V.

On constate aussi que f est nécessairement M-controlée dans T(C'). Enfin, il est facile
de vérifier que 7, (A;C) ne dépend pas du choix des formes linéaires qui définissent
les faces de A.
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3.1.18. Si A est un cone polyédral et si M est un sous-espace vectoriel de V' tel que

I'image de A dans V/M ne contient pas de droite, la proposition 3.1.9 implique donc

que la fonction X, appartient a 'espace #3,(A; A) défini par la classe de controle ™2,
Le théoréme principal de cette section est le suivant.

THEOREME 3.1.14. — Soit M C V wun sous-espace vectoriel muni d’une mesure de
Lebesque.

Soit C lintersection de A avec un voisinage conveze de 0 et soit f € 5 (A;C).
Soit M' un sous-espace vectoriel de M, w la projection V. — V' =V/M', ' = n(A) et
C'=x(C).

Alors, la fonction Sy (f) appartient & Fm(A'; C').

Si de plus 'adhérence du come A' ne contient pas de droite et si pour tout z € A,

im L2

450+ Xa(s2)

I

alors pour tout 2’ € A\,

!
L A
s—0+  Xai(s2")
COROLLAIRE 3.1.15. — Supposons de plus que f est la restriction a ANC d’une fonc-

tion holomorphe M-controlée sur A. Alors, la fonction Sy (f) sur V' est méromorphe
dans un voisinage conveze de N', ses poles étant simples définis par les faces (de codi-
mension 1) de A'.

3.2. Démonstration du théoréme

D’aprés le lemme 3.1.6, la fonction #y(f) est holomorphe et M /M'-controlée sur
T(C"). Le but est de montrer qu’elle y est la restriction d’une fonction méromorphe
dont on controle les péles et la croissance. La démonstration est fondée sur I'appli-
cation successive du théoréme des résidus pour obtenir le prolongement méromorphe.
La définition des classes de controéle est faite pour assurer I'intégrabilité ultérieure de
chacun des termes obtenus.

Par récurrence, il suffit de démontrer le résultat lorsque dim M’ = 1. Soit my un
générateur de M'. Munissons la droite Rmg de la mesure de Lebesgue dp. Soit ® C V*
une famille de formes linéaires deux & deux non proportionnelles positives sur A et dont
les noyaux sont les faces de A.

Soit B un ouvert convexe et symétrique par rapport a I'origine, assez petit de sorte
que pour tout ¢ € ® et tout v € B, |p(v)| < 1 et que la fonction

p(2)

9(2) = f(2) T4 oz

ped

admette un prolongement holomorphe M-contrélé sur T(B). L’intégrale a étudier est

e 1 it
/ g(z +itmyg) H +QO(Z%Z mo) dt
- i @(z + itmyg)

o0
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On veut déplacer la droite d’intégration vers la gauche. Fixons 7 > 0 tel que 27my €
B. Ainsi, si Re(z) € 3B, z + (u + it)mg appartient & T(B) pour tout u € [—7;0] et
tout t € R.

Notons ®, &~ et ®° les ensembles des p € @ tels que respectivement ¢(mg) > 0,
¢(mg) < 0 et p(mg) = 0. Soit B; C 3B l'ensemble des v € B tels que pour tout
p € ®T, Jp(v)] < Fp(mo).

Dans la bande —7 < s < 0, les poles de la fonction holomorphe

1+ ¢(z + smy)

s+ g(z + smy) H

v o(z + smy)
sont ainsi donnés par
o(2) T
Sp(2) = — , pedT.
<P( ) QO(mo)

Le pole s = s,(z) est simple si et seulement si pour tout ¢ € ®* tel que ¢ # o,

o(2)(mg) — Y(2)p(mg) # 0.

Comme ¢ et 1 sont non proportionnelles, 1(mg)p — @(mg)1 est une forme linéaire non
nulle ; notons BI C Bj le complémentaire des hyperplans qu’elles définissent lorsque
¢ # 1 parcourent les éléments de ®7.

Si z € T(B]) et si T > max{|Im(s,(2))| ; ¢ € ®*}, la formule des résidus pour le
contour délimité par le rectangle —7 < Re(s) < 0, =7 < Im(s) < T s’écrit

T :

1 t

/ g(z+itm0)H +g0(z—?—z o) dt
s @(z + itmyg)

2w
_ g}; mg(z +s,(2)ma) ||

-T

14+ (2 + s,(2)mp)
Y(z + sp(2)my)

PYFp
T .
1 — t
+ / g(z — Tmg + itmy) H i SO(i o + itrmo) dt
7 o(z — Tmg + itmyg)
peP
o . 14 o(z + smg + iT'myg
+ / g(z 4+ smg + iT'my) H (Z(+ o ] ) ds
0 ocd 2 0 0
0 .
. 1+ p(z 4+ smg — tT'my
+/ g(z + smg —iT'my) H (Z(+ s ) ds.
L, e P 0 0

Lorsque T' — 400, I'hypothése que g est M-controlée et 'axiome (3.1.1,c) des classes
de controles impliquent que ces deux derniéres intégrales (sur les segments horizontaux
du rectangle) tendent vers 0. De méme, 'axiome (3.1.1,d) assure la convergence des
deux premiéres intégrales vers les intégrales correspondantes de —oo a +o0.
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Par suite, si z € T(BI N A), on a

14+ (2 + s,(2)mo)
Y(z + s,(2)my)

(32.1) Frm(f)(z) = D 9(z+s,(z)mo) [ |

peEPRT Y7

1 0 1 — 't
+ H 1+ o(z) / g(z — ™mg + itmy) H + oz — mmo + itmo) dt.
o(2) _ BB o(z — Tmg + itmy)

pe®0 o0

Il résulte alors des axiomes (3.1.1,e) et (3.1.1,d) des classes de controles que la fonction

(3.2.2) 2 Fam(£)(2) ] % n 10 o(s + sy(2)mo)

PEDD EDT B U{p} L+ (s + sp(2)mo)

définie sur T(BINA) s’étend en une fonction holomorphe M /M'-controlée sur T(x(B!)).
En particulier, .-#gm,(f) se prolonge méromorphiquement a T(BI) et les poles de
PRmo(f) sont donnés par une famille finie de formes linéaires. Le lemme suivant les
interpréte géométriquement.

LEMME 3.2.3. — Les faces de A" sont les noyauzx des formes linéaires deux a deuz non
proportionnelles sur V/Rmg o € ®° et o — :E’:lzgqp pour ¢ € T et ) € &,

De plus, si ¢ et ) € ', le noyau de ¢ — zgzg;w rencontre A'.
Démonstration. — Un vecteur x € V appartient & A si et seulement si p(z) > 0 pour

tout ¢ € ®. Par suite, m(z) € A’ si et seulement si il existe a € R tel que p(z—amg) > 0
pour tout ¢ € ®. Si p € B, cette condition est exactement ¢(z) > 0. Pour les autres
@, elle devient

max go(ac) < a < min gp(r)
pea— p(mo) peat p(my)

d’ou la premiére partie du lemme.

Pour la seconde, soit ¢ et ¢ deux éléments distincts de ®*. Si le noyau de ¢ — j;m;qp

ne recontre pas A’, quitte & permuter ¢ et v, on a

ov) _ v()
o(m) ~ (mo)

pour tout v € A et cela contredit le fait que ¢ et ¢ définissent deux faces distinctes de
A. O

On sait que Prm,(f) est holomorphe sur T(A'). Il résulte du lemme que les formes
linéaires ¢ + s,(2)p avec p € ®* et Y & ®° U {p} sont des poles apparents dés que
1 € ®T. Les autres correspondent aux faces de A’!

Autrement dit, nous avons déja prouvé que Frm,(f) est la restriction a T(n(B))
d’une fonction méromorphe dont les poles (simples) sont donnés par les faces de A'.
Montrons comment controler la croissance de .#gu, (f) dans les bandes verticales.
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LEMME 3.2.4. — Soit V un espace vectoriel, M un sous-espace vectoriel, B un voisi-
nage de 0 dans V. Soit h une fonction holomorphe sur T(B) et soit £ une forme linéaire

sur V. Si la fonction z — h(Z)li(;()z)

est M -contrélée, h est M -contrélée.

Démonstration. — 11 faut montrer que h est M-controélée dans un voisinage de tout
point de B. Soit donc z¢g € B et K un voisinage compact de zy contenu dans B. Soit
k€ 9(M,V) telle que pour tout € K et tout y € V|

Uz + iy)
1+ Uz +1y)| —

K(y)-

h(z + iy)

Supposons d’abord que ¢(zg) # 0. Si p = [l(zg)| /2 > 0, il existe un voisiange
compact K7 C K de zg ou |¢| > p. Alors, pour tout x € K; et tout y € V, on a

1+ [l(z +iy)]| < 1+pH
Uz +iy) — p

h(z +1dy)| < K(y)

(v),

ce qui prouve que h est M-controlée dans K;.

Si £(zg) = 0, soit u € V tel que ¢(u) = 1, K; un voisinage compact de x, assez
petit et p > 0 tels que pour tout ¢ € [—1;1] et tout € Ky, z + tpu € K. La fonction
s — h(z + iy + spu) est une fonction holomorphe sur le disque unité fermé |s| < 1.
D’aprés le principe du maximum, on a donc pour tout z + iy € T(K7),

. . . 1+
h(z +iy)| < sup |h(z + iy + spu)| = sup |h(z + iy + spu)| < p ? sup w(y + su).
sl<1 js|=1 sl<1

L’axiome (3.1.1,b) assure alors I’existence d’une fonction k; € Z(M, V) telle que pour
tout = + iy € T(K,),

h(z +iy)| < ra(y).
La fonction h est donc M-contrélée dans un voisinage de zy. O

Il reste a démontrer que si pour tout z € A, lim f(tz)/Xa(tz) =1, alors
t—0

lHm Srm, (f)(#2")/Xar(t2") = 1.

t—0t
Comme X, (tz) =t 9mV X, (z), 'hypothése f(tz) ~ X, (tz) se récrit

lim t4™ V= #2g(t2) = X (2).

t—0
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D’autre part, la formule (3.2.1) donne
Y S, () (£2)

_ 1+dim V 1+ l/)(tz + S‘P(tz)mo)
_ it Z (tz + s, (tz)mo) H Y(tz + s,(tz)mg)

pedt YFp
1+ go tz
ped0
& 1 tz — 't
X / g(tz — Tmg + itmy) H * pltz = 7mo + itmy) dt
o et o(tz — Tmy + itmy)
imV— 1+ t(z + s,(2)m
= Z iV E gt (2 + s,(2)mo)) H ¢(z(+s (;)(m) ) :
pedt ) ®» 0
| - l+dimV—#a0 H 1+ tp(t2) y
A C)
& 1 tz — 't
X / g(tz — Tmg + itmy) H il f( S 4,;2 o) dt.
L BT o(tz — Tmg + itmyg)

Un vecteur non nul de V' ne peut appartenir qu’a au plus dim V' — 1 faces de A et seuls
les générateurs de A appartiennent & dim V' — 1 faces. Comme mg est supposé n’étre
pas un générateur de A, #®° < dimV — 2. Lorsque ¢ tend vers 0, on a donc

lime Y S (£)(t2) = > Xalz + sp(2)mo) [ | v :

pedt Y (2 + 5p(2)mo)

ou le second membre ne dépend plus de f. Comme on peut appliquer cette formule a
f = X4, on obtient donc

lim tlfdimv(&”RmO(f))(tz) = lim tlfdimv(&”RmO(XA))(tz)
= lim tlidimVXAl (tz) = XAI(Z).
Le théoréme est ainsi démontré.

Remarque 3.2.5. — La démonstration s’adapte sans peine lorsque f dépend uniformé-
ment de paramétres supplémentaires.

4. Variétés toriques

Dans ce paragraphe, nous montrons comment les raffinements analytiques du para-
graphe 3 permettent de préciser le développement asymptotique obtenu par Batyrev—
Tschinkel dans [4] pour la fonction zéta des hauteurs d'une variété torique. Les résul-
tats techniques que nous rappelons a I’occasion seront réutilisés au paragraphe suivant,
lorsque nous traiterons le cas d’une fibration en variétés toriques.
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4.1. Préliminaires

4.1.1. Rappels adéligues. — Notons S = Spec o le spectre de 'anneau des entiers de
F. Si v est une place de F, on définit la norme ||-||, sur F, de la maniére habituelle,
comme le module associé a une mesure de Haar additive sur F,. En particulier, si m, est
une uniformisante en une place finie v, ||m,||, est I'inverse du cardinal du corps résiduel
en v.

Soit G un tore déployé de dimension d sur S. Désignons par K, la collection de ses
sous-groupes compacts maximaux aux places a l'infini et K¢ = [[ ;. G(04) [ [0 Ko C
G(AF). Il nous faut faire quelques rappels sur la structure du groupe @ des caractéres
de G(F)\G(AF)/Kg. On a un homomorphisme de noyau fini @z = @, X" (G)r,
X — Xoo Obtenu en associant a un caractére adélique son type a l’infini, c’est-a-dire sa
restriction au sous-groupe de G(A) dont les composantes aux places finies sont triviales.
En choisissant une norme sur X*(G)g, on obtient ainsi une « norme » x — ||xoo|| sur
JZ%G.

Il existe enfin un homomorphisme X*(G)gr — o, tel que I'image du caractére
algébrique y € X*(G) est le caractére adélique g — |x(g)|' dont le type a linfini
s'identifie & x sur chaque composante.

Le quotient &7;/X*(G)r est un Z-module de type fini et de rang (p — 1)d (ou
p = ry + ry, r1 et 7o désignant comme d’habitude les nombres de places réelles et
complexes) et 'on peut fixer une décomposition @z = X*(G)r ® %, par exemple a
I’aide d’un scindage de la suite exacte

1= Gn(Ap)' = Gm(Ap) 5 R 1.

(Rappelons que G est supposé déployé.)

4.1.2. Rappels sur les variétés toriques. — Notons M = X*(G)g, c’est un espace
vectoriel sur R de dimension finie d. Considérons une compactification équivariante 2
de G, lisse sur S. D’aprés la théorie des variétés toriques (cf. par exemple [14], [12]),
Z est définie par un éventail complet et régulier ¥ de N := Hom(M, R) formé de
cones convexes simpliciaux rationnels. Il existe ainsi une famille (minimale) (e;);es de
vecteurs de NN telle que tout cone o € ¥ soit engendré par une sous-famille (e;);cs, de
cardinal dim vect(o). On note 3(d) ’ensemble des cones de ¥ de dimension d.

L’espace vectoriel PL(X) des fonctions continues N — R dont la restriction a chaque
cone de ¥ est linéaire est un espace vectoriel de dimension finie sur R, d’ailleurs égale a
#.J ; munissons le d'une norme arbitraire. L’espace vectoriel PicG(%p)R est isomorphe
a PL(X); il posséde une base canonique formée des fibrés en droites G-linéarisés associés
aux diviseurs G-invariants sur 2. A chaque e; correspond un tel diviseur D;; & un
diviseur G-invariant D = 3, A;D; correspond 'unique fonction ¢ € PL(X) telle que
¢(e;) = A;. Dans cette description, le cone des diviseurs effectifs correspond simplement
I’ensemble des éléments de Pic®(2Z%) dont les coordonnées (A;) vérifient \; > 0 pour
tout j. Plus généralement, on notera A, 'ensemble des éléments de Pic(27) tels que
Aj >t pour tout j; le cone ouvert Ay est aussi noté PLT(X) et encore A% (27F).
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Cette base (D;) de Pic®(27%) et 'homomorphisme canonique ¢ : X*(G) — Pic%(Z")
induisent des sous-groupes a un paramétre G,, — G, d’ou, pour tout caractére xy € g,
des caractéres x; de G, (F)\Gn,(Ar)/Kag,,,

Les fibrés en droites sur 2% seront systématiquement munis de leur métrique adé-

autrement dit des caractéres de Hecke.

lique canonique introduite notamment dans [2]. Cela nous fournit un homomorphisme
canonique Pic(ZF) — Pic(£") qui induit un homomorphisme

(4.1.3) Pic%(ZF) — Pic¥¥(2).

On vérifie aisément, par exemple sur les formules données dans [2], que les sous-groupes
compacts maximaux aux places archimédiennes agissent de maniére isométrique. De
plus, le choix d'une G-linéarisation fournit une unique F'-droite de sections ne s’annu-
lant pas sur GG, donc en particulier une fonction hauteur sur les points adéliques de 2%
comme dans la définition 1.3.3. Cette fonction s’étend en une application « bilinéaire »

H :PL(Y)c x G(Ap) — C*.
(On a identifi¢ Pic®(2%)c et PL(%)c.)

LEMME 4.1.4. — Soit m € X*(G) et notons xm € g le caractére adélique qu’il défi-
nit. On a alors

Xm(g) = H(u(m),g)~".

Démonstration. — Par définition, «(m) est le fibré en droite trivial sur £ muni de
la G-linéarisation dans laquelle G agit par multiplication par le caractére algébrique
m. Ainsi, la droite de sections rationnelles G-invariante et ne s’annulant pas sur G est
engendrée par le caractére m vu comme fonction rationnelle sur 2. La définition de
H implique que

H(u(m),g) = [ [ Im(g.)|I " = Im(g)] "

Or,
Xm(8) = [m(g)lI' = H(1(m),g) "
]

4.1.5. Mesures. — Pour toute place v de F', on fixe une mesure de Haar dx, sur F,.
On suppose que pour presque toute place finie v, la mesure du sous-groupe compact
0, est égale a 1. Alors, dz = [ [, dz, est une mesure de Haar sur le groupe localement
compact Ap. On en déduit pour tout v une mesure de Haar ug, , = |z, dz, sur
F*. Pour presque toute place finie v, la mesure de o} est égale & 1 — ¢, ! ; définissons
ainsi, si v est une place finie, pug,,,» = (1 — qv’l)*lu’Gm’v. On munit alors A}, de la

[[rene =110 @) Mzl daw < [T Il de.

vfoo v]oo

mesure

Remarquons que (r,(1) = (1 — ¢, )" est le facteur local en la place finie v de la
fonction zéta de Dedekind du corps F.
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Tout op-isomorphisme G ~ GZ induit alors des mesures de Haar HGo et Hap =
Cro(1)?pg,, sur G(F,) pour toute place v de F, indépendantes de I'isomorphisme. On
en déduit aussi une mesure de Haar [[ pg, sur G(Ar).

D’autre part, le fibré canonique sur 2 est métrisé. Peyre a montré dans [15] com-
ment en déduire une mesure sur 2 (Ar). Pour toute place v, on dispose d'une mesure
py, sur Z'(F,) définie par la formule

Wo o = [|déx A AN dEqll,t dér ... dq

si (&1,...,&) est un systéme arbitraire de coordonnées locales sur 2 (F,). Si 'on
restreint la mesure 'y, & G(F,), on obtient donc

(4.1.6) Hy(—p, )i s

p désignant la fonction de PL(X) telle que pour tout j, e; — 1 (p correspond & la classe
anticanonique).
Pour presque toute place finie v, on a alors

Wo o( X (Fy)) = q, H# X (ky).

La décomposition cellulaire des variétés toriques (point n’est besoin ici d’invoquer le
théoréme de Deligne sur les conjectures de Weil) implique alors que

# (ky) = g + rang(Pic Zr)gs ' + O(g) ).

Par suite, le produit infini

[T (2 (F)) (1)~ netPic #2)

vfoo
est convergent. Définissons une mesure p g, sur 2 (F,) par

R w = (:F,v(l)irang P & :u{%”,v
si v est finie et pg , = 'y, si v est archimédienne. Ainsi, le produit infini [[, pa .
converge et définit une mesure, dite mesure de Tamagawa sur Z (Ar). Le nombre de
Tamagawa de Z (Ar) est alors définie par

(4.1.7) (X)) = u(Ap/F) Cres,_y Cp(s)2m8FC?r) ), (AR).

Remarque 4.1.8. — La différence de formulation avec la définition que donne Peyre
dans [15] n’est qu’apparente. Peyre a choisi la mesure sur F, de la facon suivante : si v
est une place finie, dz,(0,) = 1, si v est une place réelle, dz, est la mesure de Lebesgue
usuelle sur R et si v est une place complexe, dz, est le double de la mesure usuelle sur
C. Le volume de Ap/F est alors égal a A}D/Z.
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4.2. Transformations de Fourier

On s’intéresse a la transformée de Fourier de la fonction g — H(—A, g) sur le groupe
abélien localement compact G(Ar). Rappelons qu’on a noté A; I'ensemble des A €
PL(X) tels que A; > 1 pour tout j. Alors, si A € T(A), la fonction g — H(—A, g)
est intégrable (cf. [19], §3.4), si bien que la transformée de Fourier existe pour tout
A € T(Ay). Elle se décompose par construction en un produit H= I:If X H,,, ol

Hy = (res,—1 Cp(s)) ™ H(l —q,') H,
vfoo

et Hyo = Hv‘oo H, sont les produits des intégrales locales (renormalisées) aux places
finies et archimédiennes. (Les transformées de Fourier locales existent méme dés que
pour tout j, Re(};) > 0.)

LEMME 4.2.1. — Soit Ay/3 C PL(X) la partie conveze définie par \; > 2/3 pour tout
j. 1l existe une fonction

cr: T(Ays) x @l — C, (A, x) = cp(A X),

holomorphe en X telle que log|cs| est bornée et telle que le produit des transformées
de Fourier locales auzx places mon archimédiennes s’écrive, pour tout x € g et tout

A€ T(A)
Hf(_)‘v X) = Cf()" X) H L()‘jv Xj)'
J

Démonstration. — Si x est fixé, c’est la proposition 2.2.6 de [2]. Le fait que log |c¢| soit
borné indépendamment de y se déduit immédiatement de la preuve dans loc. cit. [
COROLLAIRE 4.2.2. — La fonction I:If se prolonge en une fonction méromorphe pour
A € T(Ag3). Plus précisément, le produit [[;(A; — 1)H;(—), x) se prolonge en une
fonction holomorphe dans T(Ay) et

lim  TTO — DA (A x) =0

A—(1,...,1)
si et seulement si x # 1.

Comme conséquence facile de ’estimation par Rademacher des valeurs des fonctions
L de Hecke pour les caractéres non ramifiés, estimation qui repose sur le principe de
Phragmén—Lindel6f, on obtient la majoration suivante :

COROLLAIRE 4.2.3. — Pour tout ¢ > 0, il existe 0 < 0 < 1/3 et un réel c. tels que si
Re()\j) >1-—4,

11 MTT”@(—A,x) < (14 [m)] ) (1 + )"

Passons maintenant aux places archimédiennes. La proposition suivante précise la
proposition 2.3.2 de [2].
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PROPOSITION 4.2.4. — Pour tout compact K C Ayj3 C PL(X)R, il existe un réel cx
telle que pour tout p € T(K) et tout m € M, on ait la magjoration

F(m)| <

1+ [lell,
1 H Z o jes, (L [(eg,m)l)

COROLLAIRE 4.2.5. — Désignons par & I’éventail [0 & dans N=T]],.N.Sige
PL(Y), désignons par @ la fonction N — R définie par (ny)y — 3 @(ny). Pour tout

compact K de PL(X) contenu dans Ay, il existe une constante ck telle que pour tout

v]oo

o € T(K) et tout x € g décomposé sous la forme x = im + x, € iM & Ug, on ait

. CK 1+ [[Im @~
Hoo(p, x) < A
T+ I 22 oy (o et g 5 7))
Démonstration. — Sil’on note m = (m, ), la décomposition de x a I'infini, on remarque
que

=[[H.(0.x) = [[ # (0, m0) = Z(5, 7).
v]oo v]oo

Il suffit alors d’appliquer la proposition précédente. ]

Preuve de la proposition 4.2.4. — 1l faut estimer

Soit o € ¥ un cone de base (eq,...,eq). Si |det(e;)| désigne la mesure du parralélotope
de base les e;, on a

d

/exp(—go( ) — i(v, m) dv—/Rd Hexp (= t;(ples) + ifes, m))) det(e;)| [T dt;
a 1
(4.2.6) ~ (o) o
Ainsi, on a

(4.2.7) #m) = o) [] s
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D’autre part, supposons que m; # 0, on peut intégrer par parties et écrire

Fom = [ — (3—¢) exp(— (o) — i(v,m)) do

—im () = [ (52 ) explplo) = o m)) dy
=S g_?i

a

/exp(go(v) —i{v,m)) dv

(4.2.8) = Zc(a) g—z

En combinant les égalités (4.2.7) et (4.2.8) pour tous les indices j tels que m; # 0, on

1
Il p(e) +i(e,m)

0 eco

obtient une majoration

o> 1
| F(m)] < THm”ZJ:C(U)H

Finalement, comme ¢ € T(K), on a une estimation

1+ [lell,
eco 9(€) +i(e,m)|

p(e) +ile,m)[ > 1+ [Im(p)(e) + (e, m)]

et la proposition s’en déduit. ]

4.3. Définition d’une classe de controle

Soit [ un réel strictement positif. Si M et V sont deux R-espaces vectoriels de
dimension finie avec M C V', notons Z5 (M, V') le sous-monoide de # (V, R ) engendré
par les fonctions h : V' — R, telles que pour tout ¢ > 0, il existe ¢ > 0, ¢ € |0;1] et
une famille (¢;) de formes linéaires sur V' vérifiant :

— la famille (¢;]57) forme une base de M*;
— pour tout v € V et tout m € M, on a

(L+[lv])? 1

(4.81) M m) < ) T+ 16 (o - )

Notons alors Zg = (..o Zs.e-

PROPOSITION 4.3.2. — Les 93(M,V') définissent une classe de controle au sens de la
définition 3.1.1.

La preuve de cette proposition consiste en une série d’inégalités faciles mais tech-
niques. Nous la repoussons a ’'appendice B.

4.4. La fonction zéta des hauteurs et la formule de Poisson

On s’intéresse fonction zéta des hauteurs de 2" restreinte a I'ouvert dense formé par
le tore G ; c’est par définition la série génératrice

Z(\) = Y H(-\w)

zeG(F)
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quand elle converge. Des théorémes taubériens standard (voir 'appendice) permettront
de déduire de résultats analytiques sur Z un développement asymptotique du nombre
de points de hauteur bornée

N\ H) = #{z € G(F); H\ z) < H}.

LEMME 4.4.1. — Lorsque Re(\) décrit un compact de Ay, la fonction zéta des hauteurs
converge uniformémeént en . Plus généralement, la série

Z H(-\ zg)

zeG(F)

converge absolument uniformément lorsque Re(\) décrit un compact de Ay et g un
compact de G(Ap).

Démonstration. — Compte tenu d’estimations pour H(—A\,zg)/H(—A, z) lorsque g
décrit un compact de G(Ar), © € G(F) et A € T(Ay), c’est en fait un corollaire
de D'intégrabilité de la fonction H(—A,-) sur G(Ar). Voir [4], Th. 4.2 et aussi [19],
Prop. 4.3. U

Par conséquent, on peut appliquer la formule sommatoire de Poisson sur le tore
adélique G(Ar) pour le sous-groupe discret G(F'). Compte tenu de l'invariance de
I'accouplement de hauteurs par le sous-groupe compact maximal Kg de G(Ar), on en
déduit la formule
(4.4.2) Z(\) = | H(=Mx)dx

oz’
ot dy est la mesure de Haar sur le groupe 2/; des caractéres unitaires continus sur le
groupe G(F)\G(Ar)/Kg duale de la mesure de comptage sur G(F).

Rappelons que l'on a décomposé le groupe @ = M & g, ou %g est un groupe

discret. De plus, si x = m & X,

H(=Xx) = H(-A—im, xu)
si bien que

Z()\):/M ( 3y ﬁ(—)\—im,xu)) dm

X’ME%G
ou dm est la mesure de Lebesgue sur M telle que dm dy, = dy, dx, étant la mesure
de comptage sur %g.

LEMME 4.4.3. — Si d®m est la mesure de Lebesque sur M définie par le réseau M, on
a

dm = (27 vol(Ap/F)res,_1 (p(s)) ¢ dm.

Démonstration. — Par multiplicativité, il suffit de traiter le cas G = G,,, et d = 1.
Notons A}, le sous-groupe de A% formé des x tels que ||z|| = 1. La suite exacte

1= AL/F — A% /F PR g
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permet de munir AL/F* de la mesure de Haar dz! telle que d*z = dz' dn. La suite
exacte duale

15 R— (AL/F*) — (AR/F*) — 1
et la discrétude du groupe des caractéres de AL /F* permet de munir (A% /F*)* de
le mesure d®m Y . Avec ces normalisations, la constante devant la formule de Poisson
est (2w vol(A}/F*))~!. Compte tenu des normalisations choisies, le théoréme classique
selon lequel 7(G,,) = 7(G,) = 1, cf. par exemple [20], p. 116, devient

VOI(A};'/F*) = VOI(AF/F) reéSg—1 (:F(S),
d’ou le lemme. O

Soit p = (1,...,1) € PL(X). On décale la fonction zéta des hauteurs de p : si
A € PL(D)*,

Z(p+/\)=/

M

( Z ﬁ(—)\—p—im,xu)) dm
XuE%G’
Soit F la fonction PL(X)T — C définie par la série

A (vol(Ap/F)res,—1 Cr(s) ™ Y H(-1- A xu),

X’ME%G
de sorte que si A € PL(X)*,

(4.4.4) Z(\+p) =

(2;)d/MF()\+im)d°m.

PROPOSITION 4.4.5. — Si 8 > 1, la fonction F appartient a l'espace 73 (PL(X)")

défini par la classe de contréle P du paragraphe 4.5.
De plus, pour tout A\ € PL(X)™,

F(sA
T C) B—
s—0 XPL(E)+ (S)\)
le nombre de Tamagawa de Z .
Démonstration. — On a vu que l'on pouvait écrire

H(—p— X x)=crA+p, ) Hoo(—pX, x) [T LG + 1 x))-
J
Par suite, la fonction
Aj
Aj+1

A H(i—p= ) ]]

admet un prolongement holomorphe pour Re(};) > —1.
De plus, il résulte des corollaires 4.2.3 et 4.2.5 que pour tout ¢ > 0, il existe § < 1/3
tel que si pour tout j on a Re(};) > —§, alors

. )y (1+ [[Tm(N)])'+ !
eI T e 2 e e mons

J FeX(d)
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formule dans laquelle y, désigne I'image de y par I’homomorphisme de noyau fini
« type a linfini » &z — My, = @v‘oo M. Ainsi, on obtient un prolongement holo-
morphe de la fonction @ : A — F(A)[]; A;/(1 + A;) pour Re();) > —d si I'on prouve

que pour tout o € i(d), la série

1 1
Z (14 [[Xu,oo0l)1 ¢ Heea(l + (e, Im(A) |5 + Xu,00)|)

Xu€%a

converge localement uniformément en A si Re(A;) > —4. Fixons o € 5:(d). Alors, lorsque
e € 01, les formes linéaires (e, -) forment une base de MZ. Il est facile de remplacer
la sommation sur le sous-groupe discret % o, par une intégrale sur ’espace vectoriel
qu’il engendre, lequel est d’ailleurs un supplémentaire de M envoyé diagonalement dans
M. La convergence est alors une conséquence de la proposition B.3.

Pour obtenir I'assertion sur la croissance de F', il faut montrer que si § > 1, K est
un compact de PL(X)*, A € T(K) et m € M, on a une majoration

o = (L [0
[ (A +im)| < 1+ |m Hle ZH1+\£ak1m (A) +m)|

ou «a parcourt un ensemble fini et ot pour tout «, {£, x }x est une base de PL(X)*. Il nous

faut récrire un peu différemment la majoration de H obtenue ci-dessus en remarquant
que si la forme des transformées de Fourier aux places finies fournit le prolongement
méromorphe, la convergence de la série provient, elle, des estimations archimédiennes.
On écrit ainsi

H(—p—X—im,xu) = cp(p+ X +im, xu) HL()\]- + 14 im, Xu) Hoo(—p — X, XmXu)
J
et donc
. Aj +im
H(—p—X—im,xy —
(=¢ Zm’X)H1+Aj+im

(1 + [[Tm(A) + m[[)*(1 + [Ixall)® 1+ [[Tm(M)][5
< L+ [ + Xu,o| 2 [Lees, (1 + (e, Im(A) [z +m + Xoo) )

FeS(d)
Par suite,
[@(A+im)| < Y (14 [Tm(A)|[3)(L + [Im(A) + ml[)*G5(Im(A), m)
Fe3(d)

ou Pz, m) est défini par la série

(L + |Ixal) 1
5 (p,m) = E I I .
Xu€%a 1+||m+X“°°|| 1—|—|<6 §0|U+m+Xuoo>‘

On a la majoration

L+ Ixull < 1T+ [m 4+ Xuooll + [[m]] < (1 + [|m + Xu,ool) (1 + [|m]])
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et comme précédemment, on remplace la sommation sur le sous-groupe discret % par
I'intégrale sur 1'espace vectoriel qu’il engendre. La proposition B.3 fournit alors pour
tout ¢’ > ¢ une estimation

1 1
Ga(p,m) < e
(14 [Jml[)! = za: 1;[ 1+ [lar(m + ¢l5)|

ou {lo}r est une base de M* et |5 I'élément de M qui coincide avec (p,...,p) €
@D, PL(X) sur le cone o de I'éventail . L’application ¢ — lq1([5) est une forme
linéaire ¢ 4 sur PL(X). On a ainsi

mﬁmwﬂﬂmwwwm-mnzzn
1+ |45

(
(14 [Jml)t=* 7,0,k ( ) +m))|
()

(1+ [Im(A)])H+
<uwwmfzznumm(wmw

Comme on peut prendre ¢ et ¢’ arbitrairement petits, la contrélabilité est établie.

Il reste a calculer la limite quand s — 0 par valeurs supérieures de F'(sA)/Xpr )+ (sA).
Le cone PL(X)" est simplicial et

1
Hj)‘]'.

XPL(E)+ ()\) —

Ainsi,
F(A)

m = (vol(Ap/F)ress—1 (r(s H)\ Z — X — P, Xu)-

Xu e%G

D’aprés ce qui précéde, la série qui définit F' converge uniformément pour Re(};) > —§;
cela permet de permuter sommation et limite, si bien que

F(s))
s—0+ XPL(E)+ (S)\)

= (vol(Ap/F)res,—1 (p(s)) ™ > (lim H(—s\ — p, XU)H(SAJ-)) .

s—0+ ;
X?L€7/G J

En écrivant,

H(—s\—p,x) H(s)\j) = c¢(sA, x) H (sAjL(sA; + 1, Xj))I:Ioo(s)\, X),

J J

on voit que la limite est nulle si 'un des x; # 1 (car une des fonctions L(-, x;) n’a pas
de pole en 1, les autres ont au plus un pdle simple). Etudions maintenant le cas xy = 1.
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Utilisant la formule (4.1.6), il vient

H(—s\—p,1) HgF (14 X;s)7"

_H(:v dHCv +)\3 / H —SA — p,T )/’LGU

vfoo
X H/ SA*pa‘T),ulG,v
v|oo G(Fv)
=« ngUH/\s / H( s/\uwXH/ (=) s -
vioo v]oo G(Fv)

C’est un produit eulérien absolument convergent pour Re(s) > —&, d’ott un prolonge-
ment par continuité en s = 0, de valeur

[Ty (2 (F) [ [ oo (2 (F))
v]oo

vtoo
= (2)u(A /) o5,y Cr(s) )
en vertu de la définition (4.1.7) de la mesure de Tamagawa de 2 (Ar). Ainsi,
iy 715~ p, ([T s5) = (resoca Gos))# i F (-5~ p, ) [T Go(1+ 52y)
j
= (2 )u(Ar/F)!(res, Cr(s)) ",
Finalement, on a donc
litn F(As)Xpp sy (As) " = (vol( A/ F) res, 1 Cr(s) (A r/F)(res 1 Ci(s))r( 2)
=7(Z),
ainsi qu’il fallait démontrer. O
L’équation (4.4.4) et le théoréme 3.1.14 impliquent alors le théoréme suivant.
THEOREME 4.4.6. — La fonction zéta des hauteurs (décalée)

A Z(p+ A)

converge localement uniformément sur le tube T(PL(X)T) et définit une fonction ho-
lomorphe sur T(A%(ZF)). Si B > 1 et si Dy désigne la classe de contréle intro-
duite au sous-paragraphe 4.3, elle appartient & Uespace 5oy (Adg(Zr); Aog(ZF)) (dé-
fini en 3.1.12) des fonctions méromorphes {0}-contrélées dont les poles sont simples et
donnés par les faces du cone A% (ZF).

De plus, pour tout A € A% (ZFr),

Z(sA
lim (sA+p)

lim 7)(1\23(8)\) =7(Z).
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En spécialisant la fonction zéta des hauteurs a la droite Cp qui correspond au fibré
en droite anticanonique, on obtient le corollaire :

COROLLAIRE 4.4.7. — Si B > 1, il existe ¢ > 0, une fonction f holomorphe pour
Re(s) > 1 — ¢ telle que

(i) f(1) =7(2);
(ii) Pour tout o € [1 —&;1+¢] et tout 7 € R, |f(o +i7)| < (14 |7])#;

(iii) Pour tout o > 1 et tout 7 € R, Z(sw) = (:27)" f(s).

COROLLAIRE 4.4.8. — Sir désigne le rang de Pic(ZF), il existe un polyndéme unitaire
P de degré r — 1 et un réel € > 0 tels que pour tout H > 0,

N(w,';H) = (;(‘%;))'HP(logH) +O(H" ).

Lorsque F' = Q et lorsque la variété torique 2 est projective et telle que w,;//l
est engendré par ses sections globales, ce corollaire avait été démontré précédemment
par R. de la Bretéche. Sa méthode est différente; elle est fondée sur le travail de
P. Salberger [18] et une étude fine des sommes de fonctions arithmétiques en plusieurs
variables (voir |7, 6] et [8] pour un cas particulier).

5. Application aux fibrations en variétés toriques

5.1. Holomorphie

Soit % un S-schéma projectif et plat. Soit .7 — £ un G-torseur, et notons 7 :
X*(G) — Pic(#) 'homomorphisme de fonctorialité des torseurs. Fixons un reléve-
ment 7: X*(G) — lgl\c(%) de cet homomorphisme (c’est-a-dire, un choix de métriques
hermitiennes & l'infini sur les images d’une base de X*(G), prolongés par multiplicati-
vité a I'image de 7).

Donnons nous une S-variété torique lisse 2", compactification équivariante de G.
Soit % le S-schéma obtenu par les constructions du §2.1.

On obtient alors un diagramme canonique, qui provient des propositions 2.1.11, 2.3.6,
du théoréme 2.2.4 et de 'oubli des métriques hermitiennes :

(5.1.1) 0 — X*(G) — Pic%(Z¥) @ Pic(Br) — Pic(%) — 0

| T T

0 — X*(G) — Pic®¥(2) ® Pic(B) — Pic(#)

Le schéma % contient 7 comme ouvert dense. On s’intéresse a la fonction zéta
des hauteurs de 7. Lorsque A € PicG(ﬁlfp)C, notons A 'image de A par 'homomor-
phisme (4.1.3). Si de plus @ € Pic(%), on notera enfin

Z\G)=ZWN erad) =Y HON) @6y "
yeJ(F)
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PROPOSITION 5.1.2. — Soient A C P/’i\c(e%’)R une partie conveze telle que Z(a; AB)
converge normalement si la partie réelle de a € P/’l\c(%)c appartient a A.

Alors, la fonction zéta des hauteurs de  converge absolument pour tout (X, a) tel
que la partie réelle de A @ wy appartient a Ag(ZF) et la partie réelle de o appartient
a A. La convergence est de plus uniforme si la partie la partie réelle de A\ ® wq- décrit
un compact de A% (ZF%).

Démonstration. — On peut décomposer la fonction zéta des hauteurs de .7 en écrivant
(5.1.3) Z H(@;b) ' Z(W\); Ts).
be B(F

D’aprés la remarque 2.4.6, le fibré 1nver31ble A admet une section G-invariante s qui n’a
ni poles ni zéros sur 'ouvert G C £ . En utilisant cette section, on obtient, en vertu
du théoréme 2.4.8 et de la proposition 2.4.3 une égalité

(5.1.4) ZOMN; T = Y, HAsig-x) ",

z€G(F)

ou g, € G(AF) représente la classe du G-torseur arithmétique :7\|b. On rappelle que si
x € G(Ap), on a une expression de la hauteur en produit de hauteurs locales

H(\,s,x) H|||| z,) L.

On peut appliquer la formule sommatoire de Poisson sur le tore adélique G(Ar), d’on,
en utilisant I'invariance des hauteurs locales par les sous-groupes compacts maximaux,

(5.1.5) 2(90); 7)) = /ﬂ v Mg (R y) dx

ou l'intégration est sur le groupe o; des caractéres (unitaires continus) du groupe
localement compact G(F)\G(AFr)/Kg, muni de son unique mesure de Haar dx qui
permet cette formule.

L’utilisation de la formule de Poisson est justifiée par le fait que les deux membres
convergent absolument. La série du membre de gauche est traitée dans [4], Theorem
4.2, lorsque g, = 1, c’est-a-dire lorsqu’il n'y a pas de torsion. Comme il existe une
constante C(A, gy) ne dépendant que de g et X telle que
1

H(sg o) <COg)|HQs2)

et comme H(X, s; ) = H(X, x), la convergence absolue du membre de gauche en résulte.
(Voir aussi le lemme 4.4.1.) Quant a 'intégrale du membre de droite, on peut négliger le
caractére y dont la valeur absolue est 1 et on retrouve une intégrale dont la convergence
absolue est prouvée dans [4] (preuve du théoréme 4.4). Cela prouve aussi que lorsque
Re()\) décrit un compact de wy,' + A% (ZF), la fonction zéta des hauteurs ZWOON): Ty)
de la fibre en b € Z(F) est bornée indépendamment de b.

En reportant cette majoration dans la décomposition (5.1.3), il en résulte la conver-
gence absolue de la fonction zéta des hauteurs de .7 lorsque la partie réelle de a
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appartient a Aet A ® wg appartient & A% (Z2F), uniformément lorsque A ® w4 décrit
un compact de ce cone. O

Dans [9], définition 1.4.1, on a défini la notion de fonction L d’Arakelov attachée a un
torseur arithmétique et a une fonction sur un espace adélique. Appliquée au G x G,,-
torseur arithmétique sur % défini par 7 x4 @ et a la fonction x ' |||, 1a définition
devient .

LT Rax "R = Y x '(e)H(@b) "
beB(F)
(On a utilisé le fait que g, € G(F)\G(AFr)/Kg est la classe du G-torseur arithmétique
T v.)

Un corollaire de la démonstration de la proposition précédente est alors le suivant :

COROLLAIRE 5.1.6. — Sous les hypothéses de la proposition 5.1.2, on a la formule

Z0@) = [ H(-XNX)L(TRaE,x ")) dx.
P
Démonstration. — Compte tenu de la majoration établie & la fin de la preuve du
théoréme précédent et des rappels faits sur les fonctions L d’Arakelov, il suffit de
reporter I’équation (5.1.5) dans la formule (5.1.3) et d’échanger les signes somme et
intégrale. O

Cette derniére formule est le point de départ pour établir, moyennant des hypothéses
supplémentaires sur &, un prolongement méromorphe de la fonction zéta des hauteurs

de 7.

5.2. Prolongement méromorphe

Fixons une section de I’homomorphisme canonique f/’l\c(f%’) ®z Q — Pic(%r) ® Q,
autrement dit un choix de fonctions hauteurs compatible au produit tensoriel, ce que
Peyre appelle systéme de hauteurs dans [17], 2.2. Concernant 2, on utilise toujours
les métriques adéliques canoniques utilisées au paragraphe 4. Ainsi, on écrira A et «,
les chapeaux devenant inutiles. L’application 77 : X*(G) — lsl\c(%) est supposée étre la
composée de I'application 1 : X*(G) — Pic(#r) donnée par la restriction du torseur
a la fibre générique, et de la section Pic(%r) ® Q — ﬁl\c(%’) ® Q fixée.

Ces restrictions ne sont pas vraiment essentielles mais simplifient beaucoup les no-
tations.

Notons Vi = Pic®(Z¥)r, M1 = X*(G)r, n1 = dimV; et V3 = Pic(%r)r. Soient
Ay C Vi et Ay C Vj les cones ouverts, intérieurs des cones effectifs dans Pic®(27)r
et Pic(%Br)r. L'espace vectoriel V; posséde une base naturelle, formée des fibrés en
droites G-linéarisés associés aux diviseurs G-invariants sur 2 ® F'. Dans cette base, le
cone A; est simplement I'ensemble des (si, ..., sy, ) strictement positifs.

On note n : M; — Vj, l'application linéaire déduite de 7 et M = (id, —n)(M;) C
V1 x V5. Notons V = V] x V;. Les théorémes 2.2.4 et 2.2.9 identifient Pic(%r)r & V/M,
et 'intérieur du cone effectif de % a I'image de A; x A, par la projection V. — V/M.



28 ANTOINE CHAMBERT-LOIR & YURI TSCHINKEL

Si wge est muni de sa G-linéarisation canonique, la proposition 2.1.8 dit que wg est
I'image du couple (wg,wy) par cette méme projection.

LEMME 5.2.1. — Awvec ces notations, la formule du corollaire du paragraphe précédent
peut se récrire :

ZOA+wy, atwy') = y FA+imq; o —in(my)) dmy,
1
ot la fonction
f:T(A; x Ay) = C
est définie par
fva) = [ HEO+ @) W) LT B e+ 0! B D dx
ALel

et dmq, dx, sont des mesures de Haar sur M, et %g telles que dx = dmy dx, dans la
décomposition g = My @ % du paragraphe 4.1.1 (cf. aussi le lemme 4.4.3).

On note que % est un groupe discret et que la mesure dy, est donc proportionnelle
a la mesure de comptage.
Démonstration. — Si x € @ s'écrit (my, x,) dans My @& %, on remarque que l'on a
les égalités

H(-Ax) = H(-X — t(ima); xa)
et
X (g H(G50) " = X, (8o) H (G — n(ma); b)

car (lemme 4.1.4)

Xmi (86) = exp (i || [|)([ma]« 7 ]s) = exp(i [[7(ma)s]]) = H(—7(m1);b).
On utilise ensuite le théoréme de Fubini. O

On utilise enfin les notations du § 3.

HYPOTHESES 5.2.2. — On fait les hypothéses suivantes :
— le cone Ay est un cone polyédral (de type fini). Notons ({;) les formes linéaires
définissant ses faces;
~ la fonction zéta des hauteurs de 9B converge localement normalement pour o +
wgp € Ay ;
— 1l existe un voisinage convexe By de l'origine dans Vy et pour tout caractére x €
g une fonction holomorphe g(x;-) sur le tube T(Bs) tels que, si Re(a+wg) € As,

— N li(a
UFBanx @) =TT 2t o+ wa)
i '
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— il existe un réel y strictement positif tel que pour tout € > 0, les fonctions g(x;-)
vérifient une magjoration uniforme

90 a +wg)| < Co(L+ [Im(a)[])" (L + [IxI)",

pour un réel ¢ < 1 et une constante C, ;
— 51 7(AB) désigne le nombre de Tamagawa de B, pour tout o appartenant a As,

Z(B; sa+ wy)

lim =T7(H) # 0.
s—0+ Xa, (sa) (8) #
Remarque 5.2.3. — Dans le cas o % est une variété de drapeaux généralisée, ces

hypothéses correspondent a des énoncés sur les séries d’Eisenstein tordues par des
caractéres de Hecke. Ils sont établis dans [19].

Dans la suite, on travaille avec les classes de controle Zp introduites au para-
graphe 4.3.

LEMME 5.2.4. — Sous les hypothéses précédentes, pour tout réel 5 > 1, la fonction f
appartient a (A1 x As), pour la classe Dp .

Démonstration. — 11 suffit de reprendre la démonstration de la proposition 4.4.5, d’y
insérer les majorations que nous avons supposées et de majorer

(14 [[Tm AP (1 + [T af)” < (1 + [T Al + [[Tm e[
O

Grace au théoréme d’analyse 3.1.14, on en déduit un prolongement méromorphe pour
la fonction zéta des hauteurs de 7.

THEOREME 5.2.5. — La fonction zéta des hauteurs décalée de  admet un prolonge-
ment méromorphe dans un voisinage de T(A% (%)) dans Pic(#')c. Cette fonction a
des poles simples donnés par les équations des faces de A% (%'). De plus, si A € A% (%),

Z(T ;8\ + wy')

lim =7(¥%),

s—0Tt XAeg(Z’/)(S)\) ( )
le nombre de Tamagawa de ¥ .
Démonstration. — Le seul point qui n’a pas été rappelé est que le nombre de Tamagawa
est % est le produit de ceux de 2" et A ([9], théoréme 2.5.5). O
COROLLAIRE 5.2.6. — Il existe ¢ > 0 et un polynéme P tels que le nombre de points

de T (F) dont la hauteur anticanonique est inférieure ou égale & H vérifie un dévelop-
pement asymptotique

N(H) = HP(logH) + O(H" )
lorsque H tend vers +oo. Le degré de P est égal au rang de Pic(#F) moins 1 et son
coefficient dominant vaut

Xnea(@)(wy')T(Z).
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Appendice A

Un théoréme taubérien

Le but de ce paragraphe est de démontrer un théoréme taubérien dont la preuve nous a été
communiquée par P. Etingof. Ce théoréme est certainement bien connu des experts mais que
nous n’avons pu le trouver sous cette forme dans la littérature.

THEOREME A.1. — Soient (Ap)neN une suite croissante de réels strictement positifs, (¢n)neN
une suite de réels positifs et f la série de Dirichlet

fls) = Z cn)\is.
n=0 n
On fait les hypothéses suivantes :
— la série définissant f converge dans un demi-plan Re(s) >a > 0;
— elle admet un prolongement méromorphe dans un demi-plan Re(s) > a — 69 > 0;
— dans ce domaine, elle posséde un unique pdle en s = a, de multiplicité b € N. On note
© = lim,_,, f(S)(S - a)b >0y
— enfin, il existe un réel k > 0 de sorte que l'on ait pour Re(s) > a — &y l’estimation,

(s —a)’

gb

‘ﬂﬁ — O((1 + Im(s))").

Alors il existe un polynéme unitaire P de degré b — 1 tel que pour tout § < dg, on ait, lorsque
X tend vers 400,

def __ a a6
An<X
On introduit pour tout entier £ > 0 la fonction
oe(X) = Y an (log(X/Xn))¥,
An<X

de sorte que ¢g = N.

LEMME A.2. — Sous les hypothéses du théoréeme A.1, il existe pour tout entier k > Kk un
polynéme Q de degré b — 1 et de coefficient dominant k'©/(a**1(b — 1)!) tel que pour tout
& < &g, on ait l’estimation, lorsque X tend vers +oo,

pr(X) = X°Q(log X) + O(X*™).

Démonstration. — Soit a’ > a arbitraire. On remarque, en vertu de 'intégrale classique

ds 2 k
X —— = (log"(\ A>0
/a’+iR skt k! (1og™(V)"
que 'on a la formule

k! ds
X)= x5
o) =5 [ x

I'intégrale étant absolument convergente puisque k < k.
On veut décaler le coutour d’intégration vers la droite verticale Re(s) = a — §, ot ¢ est un
réel arbitraire tel que 0 < § < dp. Dans le rectangle a — § < Re(s) < d/, |Im(s)| < T,ily a un
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unique poéle en s = a. Le résidu y vaut
X3 S}
Ressma 1(8) 1 = i = 1))

ol @ est un polynéme unitaire de degré b — 1. Il en résulte que

X?Q(log X)

1 a' +iT ds
5 f(s)X?

1
0 a' —iT Sk+

1 a—0+iT , ds )
= 5im fOX G+~ T+ Ty

X?Q(log X)),
20 Jo 5t

ou I, et I sont les intégrales sur les segments horizontaux (orientés de la gauche vers la

droite). Lorsque T tend vers 400, ces intégrales sont O(T* *~1X%) et tendent donc vers 0.

Les hypothéses sur f et le fait que k£ > x montrent que f(s)X*/s**! est absolument intégrable

sur la droite Re(s) = a — 8, l'intégrale étant majorée par O(X® ®). Par conséquent, on a

o(X) = @%X‘IQ(log X) 4+ 0(X*9).

Le lemme est ainsi démontré. O
Preuve du théoréme. — On va démontrer par récurrence descendante que la conclusion du
lemme précédent vaut en fait pour tout entier & > 0. Arrivés & k = 0, le théoréme sera

prouvé. Montrons donc comment passer de k > 1a k — 1.
Pour tout n € |0; 1], on a facilement I'inégalité

er(X(1—1n)) — pr(X) er(X(1+1n)) — pr(X)
log(1 —17) < ke (X) < log(1 +1n) '

Fixons un réel ¢ tel que 0 < §' < § < §p. D’aprés le lemme précédent, il existe un réel C tel

que
R s
@k(X)—mX Q(log X)| < CX*7.

On constate que I'on a alors, si —1 < u < 1,

pr(X (1 +u)) — op(X)
log(1 + u)

B k'© XaQ(logX +log(1 4+ u))(1 + u)®* — Q(log X)
~aktl (b —1)! log(1 + u)

+ R(X),
ou

IR(X)| <20X%% /|log(1 +u)| = O(X* 7 /Ju)
si u tend vers 0 et X — +o00. Toujours lorsque X — +oco et u — 0, on a

Q(log X +log(1 + u))(1 4+ u)* — Q(log X)
log(1 + )

= Q(log X )(i o2l

= Q(log X) (a + O(U)) +qQ' (log X) (14 0(u)) + O((log X)* 1u)
= (aQ + Q") (log X) + O((log X )" 'u).

Z Q (log X) log(1 + u)™ (1 + u)*
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Prenons u = +1/X¢ ot ¢ > 0 est choisi de sorte que §' + ¢ < §. Alors, lorsque X — +o00,
|R(X)| = O(X*7%) et
Q(log X +1log(1+ u))(1 4+ u)® — Q(log X)

log(1 + u) = (aQ + Q")(log X) + O(X ).

On a alors un développement
1
pr-1(X) = EXG(GQ +Q")(log X) + O(X*?)

Le coefficient dominant de (aQ + Q')/k est égal & (k —1)!©/(a*(b—1)!) d’ott le théoréme par
récurrence descendante. O

Appendice B

Démonstration de quelques inégalités

Le but de cet appendice est de démontrer les inégalités sous-jacentes a la proposition 4.3.2
qui affirmait 'existence d’une classe de controle.

Rappelons les notations.

Soit 8 un réel strictement positif. Si M et V' sont deux R-espaces vectoriels de dimension
finie avec M C V', notons %3 (M, V') le sous-monoide de .# (V, R.;) engendré par les fonctions
h:V — R, telles qu’il existe ¢ > 0 et une famille (¢;) de formes linéaires sur V' vérifiant :

— la famille (¢;]57) forme une base de M*;
— pour tout v € V et tout m € M, on a

(L + o)1) 1
(L4 lImI)*== TI( + [€5(v +m)])”

On définit ensuite Z3(M,V) = (,2q Z3,(M,V).

(B.1) h(v+m) <e¢

THEOREME B.2. — Les Z5(M,V) définissent une classe de contréle au sens de la défini-
tion 3.1.1.
Démonstration. — Les points (3.1.1,a) et (3.1.1,c) sont clairs. L’axiome (3.1.1,e) est vrai car

la famille (¢; o p|pr) contient une base de (M /M;)*. L’axiome (3.1.1,b) résulte de I'inégalité

min(1 + |[¢(v + tu + m)|)

t]<1 "1y \é(u)\(lﬂg(“m)'

valable pour tous v € V, u € V et m € M. Enfin, 'axiome (3.1.1,d), le plus délicat, fait
I'objet de la proposition suivante. O

PROPOSITION B.3. — Soient M C V, V' un supplémentaire de M dans V, dm une mesure
de Lebesgue sur M, ({;) une base de V*. Pour tout ' > ¢, il existe une constante c. et un
ensemble (({jq)j)a de bases de (V')* tels que pour tous vy et vy € M',

/ 1 dm < Ce! Z 1
v (L4 Jlor +ml) 7 T+ 45 (w2 + m)[) = (L4 flonlD) " < T1;(1 + [ja(v2)])

Démonstration. — On raisonne par récurrence sur dim M. Soient u € M, M' C M tels que
M = M' ® Ru et fixons une mesure de Lebesgue dm' sur M’ telle que dm' - dt = dm. Alors,
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1 dt
<</ dt
/Ru r (L+ Jor + m/[ + )7 ¢ T1, (L + 16 (02 + m)et; (w)])
1

< II —x
183 ()= 1+ |4;(v2 +m')|

<[ . 11 ! dt
r (14 ||vg +m!|| + [¢))t—= 1+ |€j(va +m') + ¢
7345 (u)#0

et, en appliquant le lemme B.4 ci- dessous
(14 |lvg + m!||)1—= 1+|€]av2+m)|

<<5’

1 1
(L + Jfor + m[) Z L0+ Ga)

LEMME B.4. — On a une majoration, valable pour tous réels t1 < --- < t, et tout A > 0,

o 1 - 1 1+log1+A
dt < —————"
/00(1+A+|t|)18]_1:[11+t—tj| EE ZHl+\7w|

ot pour tout o et tout j, T = ta(a,j) — tb(aj) de sorte que pour tout a, notant (e1,...,ey,) la
base canonique de R", les familles (eq j = €a(a,j) — eb(a,j))j sont libres.

. . 4 5. 4 t1 to o0 .
Démonstration. — On découpe ’'intégrale en f—oo’ PRI ftn et on majore chaque terme.
Pour l'intégrale de —oo a ¢1, on a

t “ 1 t 1 dt
< —
/oo j1:[21+tj—t1/oo(1+A+|t|)151+t1—t

1 dt
S II . A _ 1751
j:21+\t] tilJo (L+A+|t—t1]) +t

< ﬁ 1 1+log(l+ A)
Sl o n (1A

d’aprés le lemme B.5. La derniére intégrale (de t,, & +00) se traite de méme. Enfin,

[ M it
1+\tk—ty\ 1+ [tpgr — t5]

j>k+1

b1 1 dt
X
/ T+ A+ [) = (T4t t)(L+ tyar — 1)
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et cette derniére intégrale s’estime comme suit :

1 dt
T+ A+t (L4t —tp) (L +tpyr — )

oyt 1 1 1 1
-/ . ( ¥ ) a
t (I+A+ )2+ tper —tp \1+t—tx 14+tpq —t

1 (/OO 1 dt
T 24t —tp Ny, (LHAF[E)IELE 8

bt 1 dt
* )
/OO T+ A+t =1+ tggq — ¢

1 /oo 1 dt
S Sl
24t —tiNJo (L+HA+[E+t]) 1 +1

+/°° 1 dt )
o (T+A+t—tpp]) =1+t
1 1+log(l+ A)

SThto —t (1+A) -
en vertu du lemme B.5. O
LEMME B.5. — On a une majoration, valable pour tout A > 1 et tout a > 0,
/Oo 1 dt 1+logA
o (A+ft+a))*1+t A

Il reste & démontrer ce lemme. Pour cela, on a besoin de deux lemmes supplémentaires !

LEMME B.6. — Pour tous A et B > 1 et tous o, 3 > 0 tels que a + 8 > 1,

1+log(B/A) sia=1etB>A;

/oo dt s A B) ) e(A/B) sif—1 el A> B
o (A+t)2(B+t)s B T JapB +log(A/B) sif=1etA>B;
1 sinon.

Démonstration. — On ne traite que le cas A < B, 'autre étant symétrique et le cas A = B
élémentaire. Faisons le changement de variables A + 7T = (B — A)e*, dot B+ T = (B —
A)(1+€"). Pour t =0, u = logA/(B — A). Lorsque t — 400, u — +00. Ainsi, I'intégrale
vaut

I(A, B; a, B) ! / ” el
Bie,B) = st ——— 5 du.
(B — A)2B1 g ay(p—ay (1+e%)P
Si A < B < 2A, on majore l'intégrale par
1 o
I(A,B;a, 8) < —/ e(1-a—B)u gy,
( ) (B = A)>+B1 Jiog 4/(B-2)
< 1 1 (B — A)a+ﬁ71
SB-Ap P 1-a—5" 4
1 A

< AatB-1 < AaBB
puisque 1/A < 2/B.
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Lorsque B > 2A, log A/(B — A) < 0. On minore 1 + e* par 1 lorsque u < 0 et par e*
lorsque u > 0, d’oul les inégalités

0 o)
(B — A1 1(A, Bya, B) = / 4 /
B-A) Jo

log A/
oo L(1-a)u 0
< / eiﬁdu—l—/ el gy
o (1+e%) log A/(B—A)
log(B — A)/A sia=1;
L1+

—_Aya—1 .
a1 (B4 siazl
1+1log(B/A) sia=1,;
1+ (BTTA)afl sinon.

1 2 1
<Z <=
B-A- B A

| 1 1+ log(B/A)
I(A,B;a,B) < (B Ayerp—1~ {1 + ((B—A)/A)>!

{(1 +1log(B/A))/A* B8 sia=1;

De plus, si bien que

1/A*1BP sinon.
Le lemme est donc démontré. O

LEMME B.7. — Si A, B>1,a<1, ona

/Bl du 1+logA
<a :
0 (A + U)a(B — ’LL) Aa

Démonstration. — On fait le changement de variables A +u = (A + B)(1 —t), soit B —u =
(A + B)t. Ainsi, l'intégrale vaut

B/(A+B)
J(A,Bia) = — / du
1

(A+B)a /(A+B) (1 —u)”‘u'
SiA>B,u<B/(A+ B)<1/2,donc 1—wu >1/2 et I'intégrale vérifie

1 /B/ (A+B) dy log B 1+1logA
— = < .
1

(A+B)* Jijarm u (A+B) A~

Si A < B, on découpe 'intégrale de 1/(A+ B) a1/2 et de 1/2 4 B/(A+ B).

/1/2 du /1/2 du A+B
——— < — =log
1/(a+B) (L —w)u = Ji/(a4B) u 2
/B/(A+B) du {f11/2(. ) sia<1;
1

<
/2 (I—-u)*u = |log A;AB < log A;B sia=1

J(A, B;a) <

Finalement,
1+log(A+B) 1+logA
(A + B)« A7
ainsi qu’il fallait démontrer. ]

J(A, B;a) <
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Preuve du lemme B.5. — Si a > 0, I'intégrale se majore par

/°° 1 dt <<1+10gA
0o (A+t)@1+t A«

d’aprés le lemme B.6. Si a < 0, on découpe l'intégrale de 0 & —a et de —a & +oo. L’intégrale

de 0 & —a vaut

/a 1 dt _/a 1 dy <<1+10gA
0o (A—t—a)1+t J, (A+we*(l—-a)—u A«

en vertu du lemme B.7, tandis que 'intégrale de —a & +o00 s’estime ainsi :

/oo 1 dt _/oo 1 du <<1+10gA
s (A+t+a)e1+t Jy (A+uw)l—a+u Ae

en appliquant de nouveau le lemme B.6 et en distinguant suivant que A < 1 —a ou 4 >
1—a. ]
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