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tionCet arti
le est le deuxième d'une série 
onsa
rée à l'étude des hauteurs sur 
ertainesvariétés algébriques sur un 
orps de nombres, notamment en 
e qui 
on
erne la distri-bution des points rationnels de hauteur bornée.Pré
isément, soient X une variété algébrique proje
tive lisse sur un 
orps de nombresF , L un �bré en droites sur X et HL : X(F ) ! R�+ une fon
tion hauteur (exponen-tielle) pour L . Si U est un ouvert de Zariski de X, on 
her
he à estimer le nombreNU(L ; H) = #fx 2 U(F ) ; HL (x) � Hg



2 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELlorsque H tend vers +1. L'étude de nombreux exemples a montré que l'on peut s'at-tendre à un équivalent de la forme(�) NU(L ; H) = �(L )Ha(L )(logH)b(L )�1(1 + o(1)); H ! +1pour un ouvert U 
onvenable et lorsque par exemple L et !�1X (�bré anti
anonique)sont amples. On a en e�et un résultat de 
e genre lorsque X est une variété de dra-peaux [11℄, une interse
tion 
omplète lisse de bas degré (méthode du 
er
le), unevariété torique [4℄, une variété horosphérique [19℄, une 
ompa
ti�
ation équivarianted'un groupe ve
toriel [10℄, et
. On dispose de plus d'une des
ription 
onje
turale assezpré
ise des 
onstantes a(L ) et b(L ) en termes du 
�ne des diviseurs e�e
tifs [1℄ ainsique de la 
onstante �(L ) ([15℄, [5℄).En fait, on étudie plut�t la fon
tion zêta des hauteurs, dé�nie par la série de Diri
hletZU(L ; s) = Xx2U(F )HL (x)�sà laquelle on applique des théorèmes taubériens standard. Sur 
ette série, on peut seposer les questions suivantes : domaine de 
onvergen
e, prolongement méromorphe,ordre du premier p�le, terme prin
ipal, sans oublier la 
roissan
e dans les bandes ver-ti
ales à gau
he du premier p�le. Cela permet de proposer des 
onje
tures de pré
isionvariable.Dans 
et arti
le, nous 
onsidérons 
ertaines �brations lo
alement triviales 
onstruitesde la façon suivante. Soient G un groupe algébrique linéaire sur F agissant sur unevariété proje
tive lisse X, B une variété proje
tive lisse sur F et T un G-torseur surB lo
alement trivial pour la topologie de Zariski. Ces données dé�nissent une variétéalgébrique proje
tive Y munie d'un morphisme Y ! B dont les �bres sont isomorphesà X. Le 
÷ur du problème est de 
omprendre le 
omportement de la fon
tion hauteurlorsqu'on passe d'une �bre à l'autre, 
omportement vraiment non trivial bien qu'ellessoient toutes isomorphes.Dans notre premier arti
le, nous avons exposé en détail la 
onstru
tion de hauteurssur de telles variétés. Dans 
elui-
i, nous appliquons 
es 
onsidérations générales au
as d'une �bration en variétés toriques provenant d'un torseur sous un tore déployé,pour l'ouvert U dé�ni par le tore. Nous avons 
onstruit les hauteurs à l'aide d'unprolongement du torseur géométrique en un torseur arithmétique, 
e qui 
orrespond enl'o

uren
e au 
hoix de métriques hermitiennes sur 
ertains �brés en droites. É
rivonsla fon
tion zêta 
omme la somme des fon
tions zêta des �bresZU(L ; s) = Xb2B(F ) Xx2Ub(F )HL (x)�s = Xb2B(F )ZUb(L jUb; s):Chaque Ub est isomorphe au tore et on peut exprimer la fon
tion zêta des hauteursde Ub à l'aide de la formule de Poisson adélique. De 
ette façon, la fon
tion zêta de Uapparaît 
omme une intégrale sur 
ertains 
ara
tères du tore adélique de la fon
tion Ld'Arakelov du torseur arithmétique sur B.



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 3Ainsi, nous pouvons démontrer des théorèmes de montée : supposons que B véri�eune 
onje
ture, alors Y la véri�e. Bien sûr, la méthode reprend les outils utilisés dansla démonstration de 
es 
onje
tures pour les variétés toriques ([4, 2, 3℄).Par exemple, nous démontrons au � 5.1, sous des hypothèses minimales sur B, l'ho-lomorphie de la fon
tion ZU(L ; s) pour Re(s) > a(L ) ; 
ela implique que pour tout" > 0, le nombre de points rationnels de hauteur HL inférieure à H est O(Ha(L )+").Ensuite, sous des hypothèses raisonnables 
on
ernant B, nous établissons un prolon-gement méromorphe de 
ette fon
tion zêta à gau
he de a(L ) et nous démontrons quel'ordre du p�le est inférieur ou égal à b(L ) ; 
ela pré
ise la majoration du nombre depoints en O(Ha(L )(logH)b(L )�1). En�n, lorsqueL = !�1Y , nous démontrons que le p�leest e�e
tivement d'ordre b(L ) d'où une estimation de la forme (�) et nous identi�onsla 
onstante �(L ), établissant ainsi la 
onje
ture de Manin ra�née par Peyre. Pour un�bré en droites quel
onque, la preuve de la 
onje
ture de Batyrev�Manin [1℄ ave
 sonra�nement par Batyrev�Ts
hinkel [5℄ est ramenée à la détermination exa
te de l'ordredu p�le, 
'est-à-dire à la non-annulation d'une 
ertaine 
onstante. Dans le 
as des varié-tés toriques ou des variétés horosphériques, l'utilisation de � �brations L -primitives �dans [3℄ et [19℄ a permis d'établir 
ette 
onje
ture. Moyennant des hypothèses sur B,
ette méthode devrait s'étendre au sujet de notre étude.Notre méthode impose de disposer de majorations de la fon
tion zêta des hauteurs(pour B) dans les bandes verti
ales à gau
he du premier p�le ; nous avons ainsi tâ
héd'obtenir de telles majorations pour la variété Y . Il est en outre bien 
onnu que 
elaentraîne un développement asymptotique assez pré
is pour le nombre de points dehauteur bornée, 
f. le théorème taubérien donné en appendi
e. Quelques 
as de variétéstoriques sur Q avaient en e�et attiré l'attention des spé
ialistes de théorie analytiquedes nombres (voir notamment les arti
les de É. Fouvry et R. de la Bretè
he dans [16℄,ainsi que [6℄). Notre méthode établit un tel développement pour les variétés toriqueslisses, les variétés horosphériques, et
. sur tout 
orps de nombres.La démonstration de l'existen
e d'un prolongement méromorphe de la fon
tion zêtades hauteurs pour les variétés toriques ou pour les variétés horosphériques faisait inter-venir un théorème te
hnique d'analyse 
omplexe à plusieurs variables dont la démons-tration se trouve dans [4℄, [3℄ et [19℄. En vue d'obtenir les majorations exigées dans lesbandes verti
ales, nous sommes obligés d'en pré
iser la preuve ; 
e
i est l'objet du � 3.Dans les � 4 et � 5 se situe l'étude de la fon
tion zêta des hauteurs d'une variété toriqueet d'une �bration en variétés toriques. Pour les variétés toriques, nous améliorons leterme d'erreur à la suite de [4, 18, 8℄. Le théorème de montée pour les �brationsgénéralise le résultat prin
ipal de [19℄.Notations et 
onventionsSi X est un s
héma, on note Pi
(X ) le groupe des 
lasses d'isomorphisme defais
eaux inversibles sur X . Si F est un fais
eau quasi-
ohérent sur X , on note



4 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELV(F ) = Spe
 SymF et P(F ) = Proj SymF les �brés ve
toriels et proje
tifs as-so
iés à F .On note 
Pi
(X ) le groupe des 
lasses d'isomorphisme de �brés en droites hermitienssur X (
'est-à-dire des �brés en droites munis d'une métrique hermitienne 
ontinuesur X (C) et invariante par la 
onjugaison 
omplexe)..Si X est un S-s
héma, et si � 2 S(C), on désigne par X� le C-s
héma X �� C.Cette notation servira lorsque S est le spe
tre d'un lo
alisé de l'anneau des entiers d'un
orps de nombres F , de sorte que � n'est autre qu'un plongement de F dans C.SiG est un s
héma en groupes sur S,X�(G) désigne le groupe des S-homomorphismesG! Gm (
ara
tères algébriques).Si X =S est lisse, le fais
eau 
anonique de X =S, noté !X =S, est la puissan
e exté-rieure maximale de 
1X =S.3. Fon
tions holomorphes dans un tubeLe but de 
e paragraphe est de prouver un théorème d'analyse sur le prolongementméromorphe de 
ertaines intégrales et leur estimation dans des bandes verti
ales. Cethéorème généralise un énon
é analogue de [4, 19℄. La présentation en est un peudi�érente et le formalisme que nous introduisons permet de 
ontr�ler la 
roissan
e desfon
tions obtenues. Ce 
ontr�le est né
essaire pour utiliser des théorèmes taubérienspré
is et améliorer ainsi le développement asymptotique du nombre de points rationnelsde hauteur bornée.Les résultats de 
e paragraphe n'interviennent que dans la preuve des théorèmes 4.4.6et 5.2.5.3.1. Énon
é du théorèmeSoit V un R-espa
e ve
toriel réel de dimension �nie muni d'une mesure de Lebesguedv et d'une norme k�k. On dispose alors d'une mesure 
anonique dv� sur le dual V �.Notons VC = V 
RC le 
omplexi�é de V . On appelle tube toute partie 
onnexe de VCde la forme 
 + iV où 
 est une partie 
onnexe de V ; on le notera T(
).Soit en�n M un sous-espa
e ve
toriel de V muni d'une mesure de Lebesgue dm.Dé�nition 3.1.1. � Une 
lasse de 
ontr�le D est la donnée pour tout 
oupleM � V deR-espa
es ve
toriels de dimension �nie d'un ensemble D(M;V ) de fon
tions mesurables� : V ! R+ dites D(M;V )-
ontr�lantes véri�ant les propriétés suivantes :(a) si �1 et �2 sont deux fon
tions de D(M;V ), �1 et �2 deux réels positifs, et si �est une fon
tion mesurable V ! R+ telle que � � �1�1 + �2�2, alors � 2 D(M;V ) ;(b) Si � 2 D(M;V ) et si K est un 
ompa
t de V , la fon
tion v 7! supu2K �(v + u)appartient à D(M;V ) ;(
) si � 2 D(M;V ), pour tout v 2M n 0, �(tv) tend vers 0 lorsque t tend vers +1 ;



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 5(d) si � 2 D(M;V ), pour tout sous-espa
e M1 �M , la fon
tion M1-invariante�M1 : v 7! ZM1 �(v +m1) dm1est �nie et appartient à D(M=M1; V=M1) ;(e) si � 2 D(M;V ), pour tout sous-espa
e M1 � M et tout proje
teur p : V ! Vde noyau M1, la fon
tion M1-invariante � Æ p appartient à D(M=M1; V=M1).3.1.2. Il existe une 
lasse de 
ontr�le Dmax 
ontenant toutes les 
lasses de 
ontr�les :l'ensemble Dmax(M;V ) est dé�ni par ré
urren
e sur la dimension de M par les trois
onditions (a, 
, e) dans la dé�nition 3.1.1. La dernière 
ondition est alors automatique.Dans la suite, on �xe une 
lasse de 
ontr�le D , et on abrège l'expression D(M;V )-
ontr�lante en M-
ontr�lante.Dé�nition 3.1.3. � Une fon
tion f : T(
) ! C sur un tube est dite M-
ontr�lée s'ilexiste une fon
tion M -
ontr�lante � telle que pour tout 
ompa
t K � T(
), il existeun réel 
(K) de sorte que l'inégalitéjf(z + iv)j � 
(K)�(v)soit véri�ée pour tout z 2 K et tout v 2 V .3.1.4. Considérons une fon
tion sur un tube, f : T(
) ! C. Soit M un sous-espa
eve
toriel de V , muni d'une mesure de Lebesgue dm. On 
onsidère la proje
tion � :V ! V 0 = V=M et on munit V 0 de la mesure de Lebesgue quotient. On pose, quand
ela a un sens,(3.1.5) SM (f)(z) = 1(2�)dimM ZM f(z + im) dm; z 2 T(
):Lemme 3.1.6. � Soit 
 � V et f : T(
)! C une fon
tion holomorphe M-
ontr�lée.Soit M 0 un sous-espa
e ve
toriel de M et 
0 l'image de 
 par la proje
tion V ! V=M 0.Alors, l'intégrale qui dé�nit SM 0(f) 
onverge en tout z 2 T(
) et dé�nit une fon
tionholomorphe M=M 0-
ontr�lée sur T(
0).Démonstration. � Comme f est M -
ontr�lée, il existe une fon
tion � 2 D(M;V ) et,pour tout 
ompa
t K � T(
), un réel 
(K) > 0 de sorte que pour tout v 2 V et toutz 2 K, on ait jf(z + iv)j � 
(K)�(v). La 
ondition (3.1.1, d) des 
lasses de 
ontr�lesjointe au théorème de 
onvergen
e dominée de Lebesgue implique que l'intégrale quidé�nit SM 0(f) 
onverge et que la somme est une fon
tion holomorphe sur T(
). Par
onstru
tion, 
ette fon
tion est iM 0-invariante. Comme elle est analytique, elle estdon
 invariante par M 0 et dé�nit ainsi une fon
tion holomorphe sur T(
0). De plus, si� désigne la proje
tion V ! V=M 0, pour tout z 2 K et tout v 2 V , on ajSM 0(f)(�(z) + i�(v))j � 
(K) ZM 0 �(v +m0) dm0 = 
(K)�0(�(v))



6 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELoù �0 appartient par dé�nition à D(M=M 0; V=M 0). Tout 
ompa
t de T(
0) étant de laforme �(K) pour un 
ompa
t K de T(
), le lemme est ainsi démontré.3.1.7. Fon
tion 
ara
téristique d'un 
�ne. � Soit � un 
�ne 
onvexe polyédral ouvertde V . La fon
tion 
ara
téristique de � est la fon
tion sur T(�) dé�nie par l'intégrale
onvergente(3.1.8) X�(z) = Z�� e�hz;v�i dv�;où �� � V � est le 
�ne dual de �, V � étant muni de la mesure de Lebesgue dv� dualede la mesure dv.Si � est simpli
ial, 
'est-à-dire qu'il existe n = dimV formes linéaires indépendantes`1; : : : ; `n telles que v 2 � si et seulement si `j(v) > 0 pour tout j, alorsX�(z) = kd`1 ^ � � � ^ d`nk nYj=1 1`j(z) :(On a noté kd`1 ^ � � � ^ d`nk le volume du parallélépipède fondamental dans V � de baseles `j.) Dans le 
as général, toute triangulation de �� par des 
�nes simpli
iaux permetd'exprimer X� sous la forme d'une somme de fra
tions rationnelles de 
e type. Elle seprolonge ainsi en une fon
tion rationnelle sur T(V ) dont les p�les sont exa
tement leshyperplans de VC dé�nis par les équations des fa
es de �. Elle est de plus stri
tementpositive sur �.Une autre façon de 
onstruire un 
�ne est de s'en donner des générateurs, autrementdit de l'é
rire 
omme quotient d'un 
�ne simpli
ial. À 
e titre, on a la propositionsuivante.Proposition 3.1.9. � Soit � un 
�ne polyédral 
onvexe ouvert de V dont l'adhéren
e� ne 
ontient pas de droite. Soit M un sous-espa
e ve
toriel de V tel que �\M = f0g.On note � la proje
tion V ! V 0 = V=M .La restri
tion à T(�) de la fon
tion X� estM-
ontr�lée (pour la 
lasse Dmax(M;V )).L'intégrale qui dé�nit SM(X�) 
onverge don
 absolument et pour tout z 2 T(�), on aSM(X�)(z) = X�0(�(z)):Remarque 3.1.10. � Les hypothèses impliquent que �0 ne 
ontient pas de droite. Ene�et, s'il existait un ve
teur non nul de �0 \��0, il existerait deux ve
teurs v1 et v2 de� tels que v1 + v2 2M mais v1 62M . Comme � \M = f0g, v1 = �v2 
e qui 
ontreditl'hypothèse que � ne 
ontient pas de droite.Démonstration. � La preuve est une adaptation des paragraphes 7.1 et 7.2 de [19℄.Soit (ei) une famille minimale de générateurs de �. Chaque fa
e de �� dont la dimensionest dimV � 1 engendre un sous-espa
e ve
toriel qui est l'orthogonal d'un des ei.Comme M \ � = f0g, il existe une forme linéaire ` 2 V � qui est nulle sur M maisqui n'appartient à au
une fa
e de �� ; posons H = ker `. Soit H 0 un supplémentairede R` dans V �. Si ' 2 V � et t 2 R sont tels que ' + t` 2 ��, on doit avoir pour



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 7tout générateur ej de � l'inégalité '(ej) + t`(ej) > 0, soit (rappelons que `(ej) n'estpas nul), t > �'(ej)=`(ej) quand `(ej) > 0 et t < �'(ej)=`(ej) quand `(ej) < 0. Soitalors I(') = ℄h1('); h2(')[ l'intervalle de R dé�ni par 
es inégalités. (Si tous les `(ej)sont positifs, 
'est-à-dire ` 2 ��, on a h1 � �1, tandis que s'ils sont tous négatifs,h2 � +1.) Les fon
tions h1 et h2 sont linéaires par mor
eaux par rapport à un éventailde H 0 qu'on peut supposer 
omplet et régulier (voir par exemple [12℄ pour la dé�nition,ou [2℄).Alors, si v 2 T(�) et m 2 H, on aX�(v + im) = ZV � 1��(')e�hv+im;'i d'= ZH0 ZR 1��('+ t`)e�hv+im;'ie�thv;`i dt d'= ZH0 Z h2(')h1(') e�hv+im;'ie�thv;`i dt d'= ZH0 e�hv+im;'i e�h1(')hv;`i � e�h2(')hv;`ihv; `i d'de sorte que la fon
tion H ! C telle que m 7! X�(v + im) est (à une 
onstantemultipli
ative près) la di�éren
e des transformées de Fourier des fon
tionsH 0 ! C; ' 7! e�hv;'+hj(')`ipour j = 1 et 2.Comme v 2 T(�) et ' + hj(')` appartient au bord de ��, hv; ' + hj(')`i est departie réelle stri
tement positive, à moins que ' = 0. Soit K un 
ompa
t de T(�).Il résulte alors des estimations des transformées de Fourier de fon
tions linéaires parmor
eaux et positives (voir [2℄, proposition 2.3.2, p. 614, et aussi infra, prop. 4.2.4)une majoration de la fon
tionf�;K(m) :=Xv2K jX�(v + im)jde la forme f�;K(m) � 
(K)X� dimHYj=1 1(1 + jhm; `�;jij)1+1= dimH ;où pour tout �, la famille (`�;j)j est une base de H�. D'après le lemme 3.1.11 
i-dessous,la fon
tion f�;K appartient à Dmax(M;V ).La fon
tion m 7! X�(v + im) est don
 absolument intégrable sur M . C'est la trans-formée de Fourier de la fon
tion ' 7! 1��(')e�hv;'i dont il est fa
ile de voir qu'elle estintégrable sur tout sous-espa
e et don
 aussi M?. La formule de Poisson s'applique(après un léger argument de régularisation) et s'é
ritZM X�(v + im) dm = (2�)dimM Z��\M? e�hv;'i d':



8 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELOr, l'appli
ation V ! V 0 identi�e (V 0)� à M?, et �� \M? à (�0)�. Ainsi, on obtientSM(X�)(v) = Z(�0)� e�h�(v);'i d' = X�0(�(v)):Lemme 3.1.11. � Soit V un R-espa
e ve
toriel de dimension d, (`1; : : : ; `d) une basede V � et f la fon
tion v 7!Qdj=1(1 + j`j(v)j)�1�1=d. Alors, f 2 Dmax(V; V ).Démonstration. � Soit M un sous-espa
e ve
toriel de V de dimension m. Quitte àréordonner les indi
es, on peut supposer que M est l'image d'une appli
ation linéaireRm ! Rd = V de la forme t = (t1; : : : ; tm) 7! (t1; : : : ; tm; 'm+1(t); : : : ; 'd(t)). Si onréalise V=M par son supplémentaire f0gm�Rd�m, la fon
tion fM : v 7! RM f(v+m) dmest donnée par l'intégraleZRm 1(1 + jt1j)1+1=d : : : 1(1 + jtmj)1+1=d dYj=m+1 1(1 + jvj + 'j(t)j)1+1=d dt1 : : : dtm:Elle est dominée par l'intégrale 
onvergenteZRm 1(1 + jt1j)1+1=d : : : 1(1 + jtmj)1+1=d dt1 : : : dtmet le théorème de 
onvergen
e dominée implique alors que pour tout ve
teur v =(0; : : : ; 0; vm+1; : : : ; vd) distin
t de 0,lims!+1 fM(sv) = 0:Le lemme est ainsi démontré.Dé�nition 3.1.12. � Soient C un ouvert 
onvexe de V ayant 0 pour point adhérent et� un 
�ne polyédral ouvert 
ontenant C.Soit � � V � une famille de formes linéaires deux à deux non proportionnelles dé�-nissant les fa
es de �.On note HM(�;C) l'ensemble des fon
tions holomorphes f : T(C)! C telles qu'ilexiste un voisinage 
onvexe B de 0 dans V de sorte que la fon
tion g dé�nie parg(z) = f(z)Y'2� '(z)1 + '(z)admet un prolongement holomorphe M -
ontr�lé dans T(B).Par le théorème d'extension de Bo
hner (voir par exemple [13℄), une telle fon
tions'étend en une fon
tion holomorphe sur le tube de base l'enveloppe 
onvexe C 0 de B[C.En parti
ulier, il n'aurait pas été restri
tif de prendre pour C l'interse
tion du 
�ne �ave
 un voisinage 
onvexe de 0 dans V .On 
onstate aussi que f est né
essairementM -
ontr�lée dans T(C). En�n, il est fa
ilede véri�er que HM(�;C) ne dépend pas du 
hoix des formes linéaires qui dé�nissentles fa
es de �.



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 93.1.13. Si � est un 
�ne polyédral et si M est un sous-espa
e ve
toriel de V tel quel'image de � dans V=M ne 
ontient pas de droite, la proposition 3.1.9 implique don
que la fon
tion X� appartient à l'espa
eHM(�; �) dé�ni par la 
lasse de 
ontr�le Dmax.Le théorème prin
ipal de 
ette se
tion est le suivant.Théorème 3.1.14. � Soit M � V un sous-espa
e ve
toriel muni d'une mesure deLebesgue.Soit C l'interse
tion de � ave
 un voisinage 
onvexe de 0 et soit f 2 HM(�;C).Soit M 0 un sous-espa
e ve
toriel de M , � la proje
tion V ! V 0 = V=M 0, �0 = �(�) etC 0 = �(C).Alors, la fon
tion SM 0(f) appartient à HM=M 0(�0;C 0).Si de plus l'adhéren
e du 
�ne �0 ne 
ontient pas de droite et si pour tout z 2 �,lims!0+ f(sz)X�(sz) = 1;alors pour tout z0 2 �0, lims!0+ SM 0(f)(sz0)X�0(sz0) = 1:Corollaire 3.1.15. � Supposons de plus que f est la restri
tion à �\C d'une fon
-tion holomorphe M-
ontr�lée sur �. Alors, la fon
tion SM (f) sur V 0 est méromorphedans un voisinage 
onvexe de �0, ses p�les étant simples dé�nis par les fa
es (de 
odi-mension 1) de �0.3.2. Démonstration du théorèmeD'après le lemme 3.1.6, la fon
tion SM 0(f) est holomorphe et M=M 0-
ontr�lée surT(C 0). Le but est de montrer qu'elle y est la restri
tion d'une fon
tion méromorphedont on 
ontr�le les p�les et la 
roissan
e. La démonstration est fondée sur l'appli-
ation su

essive du théorème des résidus pour obtenir le prolongement méromorphe.La dé�nition des 
lasses de 
ontr�le est faite pour assurer l'intégrabilité ultérieure de
ha
un des termes obtenus.Par ré
urren
e, il su�t de démontrer le résultat lorsque dimM 0 = 1. Soit m0 ungénérateur de M 0. Munissons la droite Rm0 de la mesure de Lebesgue d�. Soit � � V �une famille de formes linéaires deux à deux non proportionnelles positives sur � et dontles noyaux sont les fa
es de �.Soit B un ouvert 
onvexe et symétrique par rapport à l'origine, assez petit de sorteque pour tout ' 2 � et tout v 2 B, j'(v)j < 1 et que la fon
tiong(z) = f(z)Y'2� '(z)1 + '(z)admette un prolongement holomorphe M -
ontr�lé sur T(B). L'intégrale à étudier estZ +1�1 g(z + itm0)Y'2� 1 + '(z + itm0)'(z + itm0) dt:



10 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELOn veut dépla
er la droite d'intégration vers la gau
he. Fixons � > 0 tel que 2�m0 2B. Ainsi, si Re(z) 2 12B, z + (u + it)m0 appartient à T(B) pour tout u 2 [�� ; 0℄ ettout t 2 R.Notons �+, �� et �0 les ensembles des ' 2 � tels que respe
tivement '(m0) > 0,'(m0) < 0 et '(m0) = 0. Soit B1 � 12B l'ensemble des v 2 12B tels que pour tout' 2 �+, j'(v)j < �2'(m0).Dans la bande �� � s � 0, les p�les de la fon
tion holomorphes 7! g(z + sm0)Y'2� 1 + '(z + sm0)'(z + sm0)sont ainsi donnés par s'(z) = � '(z)'(m0) ; ' 2 �+:Le p�le s = s'(z) est simple si et seulement si pour tout  2 �+ tel que  6= ','(z) (m0)�  (z)'(m0) 6= 0:Comme ' et  sont non proportionnelles,  (m0)'�'(m0) est une forme linéaire nonnulle ; notons By1 � B1 le 
omplémentaire des hyperplans qu'elles dé�nissent lorsque' 6=  par
ourent les éléments de �+.Si z 2 T(By1) et si T > maxfjIm(s'(z))j ; ' 2 �+g, la formule des résidus pour le
ontour délimité par le re
tangle �� � Re(s) � 0, �T � Im(s) � T s'é
ritZ T�T g(z + itm0)Y'2� 1 + '(z + itm0)'(z + itm0) dt= X'2�+ 2i�'(m0)g(z + s'(z)m0)Y 6=' 1 +  (z + s'(z)m0) (z + s'(z)m0)+ Z T�T g(z � �m0 + itm0)Y'2� 1 + '(z � �m0 + itm0)'(z � �m0 + itm0) dt+ Z ��0 g(z + sm0 + iTm0)Y'2� 1 + '(z + sm0 + iTm0)'(z + sm0 + iTm0) ds+ Z 0�� g(z + sm0 � iTm0)Y'2� 1 + '(z + sm0 � iTm0)'(z + sm0 � iTm0) ds:Lorsque T ! +1, l'hypothèse que g estM -
ontr�lée et l'axiome (3.1.1,
) des 
lassesde 
ontr�les impliquent que 
es deux dernières intégrales (sur les segments horizontauxdu re
tangle) tendent vers 0. De même, l'axiome (3.1.1,d) assure la 
onvergen
e desdeux premières intégrales vers les intégrales 
orrespondantes de �1 à +1.



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 11Par suite, si z 2 T(By1 \ �), on a(3.2.1) SRm0(f)(z) = X'2�+ g(z + s'(z)m0)Y 6=' 1 +  (z + s'(z)m0) (z + s'(z)m0)+ Y'2�0 1 + '(z)'(z) Z 1�1 g(z � �m0 + itm0) Y'2�n�0 1 + '(z � �m0 + itm0)'(z � �m0 + itm0) dt:Il résulte alors des axiomes (3.1.1,e) et (3.1.1,d) des 
lasses de 
ontr�les que la fon
tion(3.2.2) z 7! SRm0(f)(z) Y'2�0 '(z)1 + '(z) Y'2�+ Y 62�0[f'g '(s+ s (z)m0)1 +  (s+ s'(z)m0)dé�nie sur T(By1\�) s'étend en une fon
tion holomorpheM=M 0-
ontr�lée sur T(�(By1)).En parti
ulier, SRm0(f) se prolonge méromorphiquement à T(By1) et les p�les deSRm0(f) sont donnés par une famille �nie de formes linéaires. Le lemme suivant lesinterprète géométriquement.Lemme 3.2.3. � Les fa
es de �0 sont les noyaux des formes linéaires deux à deux nonproportionnelles sur V=Rm0 ' 2 �0 et '� '(m0) (m0) pour ' 2 �+ et  2 ��.De plus, si ' et  2 �+, le noyau de '� '(m0) (m0) ren
ontre �0.Démonstration. � Un ve
teur x 2 V appartient à � si et seulement si '(x) > 0 pourtout ' 2 �. Par suite, �(x) 2 �0 si et seulement si il existe � 2 R tel que '(x��m0) > 0pour tout ' 2 �. Si ' 2 �0, 
ette 
ondition est exa
tement '(x) > 0. Pour les autres', elle devient max'2�� '(x)'(m0) < � < min'2�+ '(x)'(m0)d'où la première partie du lemme.Pour la se
onde, soit ' et  deux éléments distin
ts de �+. Si le noyau de '� '(m0) (m0) ne re
ontre pas �0, quitte à permuter ' et  , on a'(v)'(m0) >  (v) (m0)pour tout v 2 � et 
ela 
ontredit le fait que ' et  dé�nissent deux fa
es distin
tes de�.On sait que SRm0(f) est holomorphe sur T(�0). Il résulte du lemme que les formeslinéaires  + s'(z)' ave
 ' 2 �+ et  62 �0 [ f'g sont des p�les apparents dès que 2 �+. Les autres 
orrespondent aux fa
es de �0 !Autrement dit, nous avons déjà prouvé que SRm0(f) est la restri
tion à T(�(B1))d'une fon
tion méromorphe dont les p�les (simples) sont donnés par les fa
es de �0.Montrons 
omment 
ontr�ler la 
roissan
e de SRm0(f) dans les bandes verti
ales.



12 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELLemme 3.2.4. � Soit V un espa
e ve
toriel, M un sous-espa
e ve
toriel, B un voisi-nage de 0 dans V . Soit h une fon
tion holomorphe sur T(B) et soit ` une forme linéairesur V . Si la fon
tion z 7! h(z) `(z)1+`(z) est M-
ontr�lée, h est M-
ontr�lée.Démonstration. � Il faut montrer que h est M -
ontr�lée dans un voisinage de toutpoint de B. Soit don
 x0 2 B et K un voisinage 
ompa
t de x0 
ontenu dans B. Soit� 2 D(M;V ) telle que pour tout x 2 K et tout y 2 V ,����h(x + iy) `(x + iy)1 + `(x+ iy) ���� � �(y):Supposons d'abord que `(x0) 6= 0. Si � = j`(x0)j =2 > 0, il existe un voisiange
ompa
t K1 � K de x0 où j`j � �. Alors, pour tout x 2 K1 et tout y 2 V , on ajh(x+ iy)j � �(y)1 + j`(x+ iy)j`(x + iy) � 1 + �� �(y);
e qui prouve que h est M -
ontr�lée dans K1.Si `(x0) = 0, soit u 2 V tel que `(u) = 1, K1 un voisinage 
ompa
t de x0 assezpetit et � > 0 tels que pour tout t 2 [�1; 1℄ et tout x 2 K1, x + t�u 2 K. La fon
tions 7! h(x + iy + s�u) est une fon
tion holomorphe sur le disque unité fermé jsj � 1.D'après le prin
ipe du maximum, on a don
 pour tout x + iy 2 T(K1),jh(x+ iy)j � supjsj�1 jh(x+ iy + s�u)j = supjsj=1 jh(x+ iy + s�u)j � 1 + �� supjsj�1 �(y + su):L'axiome (3.1.1,b) assure alors l'existen
e d'une fon
tion �1 2 D(M;V ) telle que pourtout x+ iy 2 T(K1), jh(x + iy)j � �1(y):La fon
tion h est don
 M -
ontr�lée dans un voisinage de x0.Il reste à démontrer que si pour tout z 2 �, limt!0+ f(tz)=X�(tz) = 1, alorslimt!0+SRm0(f)(tz0)=X�0(tz0) = 1:Comme X�(tz) = t� dimVX�(z), l'hypothèse f(tz) � X�(tz) se ré
ritlimt!0 tdim V�#�g(tz) = X�(z):



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 13D'autre part, la formule (3.2.1) donnet�1+dim VSRm0(f)(tz)= t�1+dim V X'2�+ g(tz + s'(tz)m0)Y 6=' 1 +  (tz + s'(tz)m0) (tz + s'(tz)m0)+ t�1+dim V Y'2�0 1 + '(tz)'(tz) �� Z 1�1 g(tz � �m0 + itm0) Y'2�n�0 1 + '(tz � �m0 + itm0)'(tz � �m0 + itm0) dt= X'2�+ tdimV�#�g(t(z + s'(z)m0))Y 6=' 1 + t (z + s'(z)m0) (z + s'(z)m0)+ t�1+dim V�#�0 Y'2�0 1 + t'(tz)'(z) �� Z 1�1 g(tz � �m0 + itm0) Y'2�n�0 1 + '(tz � �m0 + itm0)'(tz � �m0 + itm0) dt:Un ve
teur non nul de V ne peut appartenir qu'à au plus dimV � 1 fa
es de � et seulsles générateurs de � appartiennent à dimV � 1 fa
es. Comme m0 est supposé n'êtrepas un générateur de �, #�0 � dimV � 2. Lorsque t tend vers 0, on a don
lim t�1+dim VSRm0(f)(tz) = X'2�+ X�(z + s'(z)m0)Y 6=' 1 (z + s'(z)m0)où le se
ond membre ne dépend plus de f . Comme on peut appliquer 
ette formule àf = X�, on obtient don
lim t1�dim V (SRm0(f))(tz) = lim t1�dimV (SRm0(X�))(tz)= lim t1�dimV X�0(tz) = X�0(z):Le théorème est ainsi démontré.Remarque 3.2.5. � La démonstration s'adapte sans peine lorsque f dépend uniformé-ment de paramètres supplémentaires.4. Variétés toriquesDans 
e paragraphe, nous montrons 
omment les ra�nements analytiques du para-graphe 3 permettent de pré
iser le développement asymptotique obtenu par Batyrev�Ts
hinkel dans [4℄ pour la fon
tion zêta des hauteurs d'une variété torique. Les résul-tats te
hniques que nous rappelons à l'o

asion seront réutilisés au paragraphe suivant,lorsque nous traiterons le 
as d'une �bration en variétés toriques.



14 ANTOINE CHAMBERT-LOIR & YURI TSCHINKEL4.1. Préliminaires4.1.1. Rappels adéliques. � Notons S = Spe
 oF le spe
tre de l'anneau des entiers deF . Si v est une pla
e de F , on dé�nit la norme k�kv sur Fv de la manière habituelle,
omme le module asso
ié à une mesure de Haar additive sur Fv. En parti
ulier, si �v estune uniformisante en une pla
e �nie v, k�vkv est l'inverse du 
ardinal du 
orps résiduelen v.Soit G un tore déployé de dimension d sur S. Désignons par K1 la 
olle
tion de sessous-groupes 
ompa
ts maximaux aux pla
es à l'in�ni et KG =Qv-1G(ov)Qvj1Kv �G(AF ). Il nous faut faire quelques rappels sur la stru
ture du groupe AG des 
ara
tèresde G(F )nG(AF )=KG. On a un homomorphisme de noyau �ni AG ! Lvj1X�(G)R,� 7! �1 obtenu en asso
iant à un 
ara
tère adélique son type à l'in�ni, 
'est-à-dire sarestri
tion au sous-groupe de G(A) dont les 
omposantes aux pla
es �nies sont triviales.En 
hoisissant une norme sur X�(G)R, on obtient ainsi une � norme � � 7! k�1k surAG.Il existe en�n un homomorphisme X�(G)R ! AG, tel que l'image du 
ara
tèrealgébrique � 2 X�(G) est le 
ara
tère adélique g 7! j�(g)ji dont le type à l'in�nis'identi�e à � sur 
haque 
omposante.Le quotient AG=X�(G)R est un Z-module de type �ni et de rang (� � 1)d (où� = r1 + r2, r1 et r2 désignant 
omme d'habitude les nombres de pla
es réelles et
omplexes) et l'on peut �xer une dé
omposition AG = X�(G)R � UG, par exemple àl'aide d'un s
indage de la suite exa
te1! Gm(AF )1 ! Gm(AF ) j�j�! R� ! 1:(Rappelons que G est supposé déployé.)4.1.2. Rappels sur les variétés toriques. � Notons M = X�(G)R, 
'est un espa
eve
toriel sur R de dimension �nie d. Considérons une 
ompa
ti�
ation équivarianteXde G, lisse sur S. D'après la théorie des variétés toriques (
f. par exemple [14℄, [12℄),X est dé�nie par un éventail 
omplet et régulier � de N := Hom(M;R) formé de
�nes 
onvexes simpli
iaux rationnels. Il existe ainsi une famille (minimale) (ej)j2J deve
teurs de N telle que tout 
�ne � 2 � soit engendré par une sous-famille (ej)j2J� de
ardinal dimve
t(�). On note �(d) l'ensemble des 
�nes de � de dimension d.L'espa
e ve
toriel PL(�) des fon
tions 
ontinues N ! R dont la restri
tion à 
haque
�ne de � est linéaire est un espa
e ve
toriel de dimension �nie sur R, d'ailleurs égale à#J ; munissons le d'une norme arbitraire. L'espa
e ve
toriel Pi
G(XF )R est isomorpheà PL(�) ; il possède une base 
anonique formée des �brés en droitesG-linéarisés asso
iésaux diviseurs G-invariants sur XF . À 
haque ej 
orrespond un tel diviseur Dj ; à undiviseur G-invariant D = Pj �jDj 
orrespond l'unique fon
tion ' 2 PL(�) telle que'(ej) = �j. Dans 
ette des
ription, le 
�ne des diviseurs e�e
tifs 
orrespond simplementl'ensemble des éléments de Pi
G(XF ) dont les 
oordonnées (�j) véri�ent �j � 0 pourtout j. Plus généralement, on notera �t l'ensemble des éléments de Pi
G(XF ) tels que�j > t pour tout j ; le 
�ne ouvert �0 est aussi noté PL+(�) et en
ore �0e�(XF ).



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 15Cette base (Dj) de Pi
G(XF ) et l'homomorphisme 
anonique � : X�(G)! Pi
G(X )induisent des sous-groupes à un paramètreGm ! G, d'où, pour tout 
ara
tère � 2 AG,des 
ara
tères �j de Gm(F )nGm(AF )=KGm, autrement dit des 
ara
tères de He
ke.Les �brés en droites sur XF seront systématiquement munis de leur métrique adé-lique 
anonique introduite notamment dans [2℄. Cela nous fournit un homomorphisme
anonique Pi
(XF )! 
Pi
(X ) qui induit un homomorphisme(4.1.3) Pi
G(XF )! 
Pi
G;K(X ):On véri�e aisément, par exemple sur les formules données dans [2℄, que les sous-groupes
ompa
ts maximaux aux pla
es ar
himédiennes agissent de manière isométrique. Deplus, le 
hoix d'une G-linéarisation fournit une unique F -droite de se
tions ne s'annu-lant pas sur G, don
 en parti
ulier une fon
tion hauteur sur les points adéliques deXF
omme dans la dé�nition 1.3.3. Cette fon
tion s'étend en une appli
ation � bilinéaire �H : PL(�)C �G(AF )! C�:(On a identi�é Pi
G(XF )C et PL(�)C.)Lemme 4.1.4. � Soit m 2 X�(G) et notons �m 2 AG le 
ara
tère adélique qu'il dé�-nit. On a alors �m(g) = H(�(m); g)�i:Démonstration. � Par dé�nition, �(m) est le �bré en droite trivial sur X muni dela G-linéarisation dans laquelle G agit par multipli
ation par le 
ara
tère algébriquem. Ainsi, la droite de se
tions rationnelles G-invariante et ne s'annulant pas sur G estengendrée par le 
ara
tère m vu 
omme fon
tion rationnelle sur X . La dé�nition deH implique que H(�(m); g) =Yv km(gv)k�1 = km(g)k�1 :Or, �m(g) = km(g)ki = H(�(m); g)�i:4.1.5. Mesures. � Pour toute pla
e v de F , on �xe une mesure de Haar dxv sur Fv.On suppose que pour presque toute pla
e �nie v, la mesure du sous-groupe 
ompa
tov est égale à 1. Alors, dx = Qv dxv est une mesure de Haar sur le groupe lo
alement
ompa
t AF . On en déduit pour tout v une mesure de Haar �0Gm;v = kxvk�1v dxv surF �v . Pour presque toute pla
e �nie v, la mesure de o�v est égale à 1 � q�1v ; dé�nissonsainsi, si v est une pla
e �nie, �Gm;v = (1 � q�1v )�1�0Gm;v. On munit alors A�F de lamesure Yv �Gm;v =Yv-1(1� q�1v )�1 kxvk�1 dxv �Yvj1 kxvk�1 dxv:Remarquons que �F;v(1) = (1 � q�1v )�1 est le fa
teur lo
al en la pla
e �nie v de lafon
tion zêta de Dedekind du 
orps F .



16 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELTout oF -isomorphisme G ' Gdm induit alors des mesures de Haar �0G;v et �G;v =�F;v(1)d�0G;v sur G(Fv) pour toute pla
e v de F , indépendantes de l'isomorphisme. Onen déduit aussi une mesure de Haar Q�G;v sur G(AF ).D'autre part, le �bré 
anonique sur X est métrisé. Peyre a montré dans [15℄ 
om-ment en déduire une mesure sur X (AF ). Pour toute pla
e v, on dispose d'une mesure�0X ;v sur X (Fv) dé�nie par la formule�0X ;v = kd�1 ^ � � � ^ d�dk�1v d�1 : : : d�dsi (�1; : : : ; �d) est un système arbitraire de 
oordonnées lo
ales sur X (Fv). Si l'onrestreint la mesure �0X ;v à G(Fv), on obtient don
(4.1.6) Hv(��; x)�0G;v;� désignant la fon
tion de PL(�) telle que pour tout j, ej 7! 1 (� 
orrespond à la 
lasseanti
anonique).Pour presque toute pla
e �nie v, on a alors�0X ;v(X (Fv)) = q�dv #X (kv):La dé
omposition 
ellulaire des variétés toriques (point n'est besoin i
i d'invoquer lethéorème de Deligne sur les 
onje
tures de Weil) implique alors que#X (kv) = qdv + rang(Pi
XF )qd�1v +O(qd�2v ):Par suite, le produit in�niYv-1�0v(X (Fv))�F;v(1)� rang(Pi
XF )est 
onvergent. Dé�nissons une mesure �X ;v sur X (Fv) par�X ;v = �F;v(1)� rang Pi
XF�0X ;vsi v est �nie et �X ;v = �0X ;v si v est ar
himédienne. Ainsi, le produit in�ni Qv �X ;v
onverge et dé�nit une mesure, dite mesure de Tamagawa sur X (AF ). Le nombre deTamagawa de X (AF ) est alors dé�nie par(4.1.7) �(X ) = �(AF=F )�d ress=1 �F (s)rang(Pi
XF )�X (AF ):Remarque 4.1.8. � La di�éren
e de formulation ave
 la dé�nition que donne Peyredans [15℄ n'est qu'apparente. Peyre a 
hoisi la mesure sur Fv de la façon suivante : si vest une pla
e �nie, dxv(ov) = 1, si v est une pla
e réelle, dxv est la mesure de Lebesgueusuelle sur R et si v est une pla
e 
omplexe, dxv est le double de la mesure usuelle surC. Le volume de AF=F est alors égal à �1=2F .



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 174.2. Transformations de FourierOn s'intéresse à la transformée de Fourier de la fon
tion g 7! H(��; g) sur le groupeabélien lo
alement 
ompa
t G(AF ). Rappelons qu'on a noté �1 l'ensemble des � 2PL(�) tels que �j > 1 pour tout j. Alors, si � 2 T(�1), la fon
tion g 7! H(��; g)est intégrable (
f. [19℄, � 3.4), si bien que la transformée de Fourier existe pour tout� 2 T(�1). Elle se dé
ompose par 
onstru
tion en un produit �H = �Hf � �H1, où�Hf = (ress=1 �F (s))�dYv-1(1� q�1v )�d �Hvet �H1 = Qvj1 �Hv sont les produits des intégrales lo
ales (renormalisées) aux pla
es�nies et ar
himédiennes. (Les transformées de Fourier lo
ales existent même dès quepour tout j, Re(�j) > 0.)Lemme 4.2.1. � Soit �2=3 � PL(�) la partie 
onvexe dé�nie par �j > 2=3 pour toutj. Il existe une fon
tion
f : T(�2=3)�AG ! C; (�; �) 7! 
f(�; �);holomorphe en � telle que log j
f j est bornée et telle que le produit des transforméesde Fourier lo
ales aux pla
es non ar
himédiennes s'é
rive, pour tout � 2 AG et tout� 2 T(�) �Hf(��; �) = 
f(�; �)Yj L(�j; �j):Démonstration. � Si � est �xé, 
'est la proposition 2.2.6 de [2℄. Le fait que log j
f j soitborné indépendamment de � se déduit immédiatement de la preuve dans lo
. 
it.Corollaire 4.2.2. � La fon
tion �Hf se prolonge en une fon
tion méromorphe pour� 2 T(�2=3). Plus pré
isément, le produit Qj(�j � 1) �Hf(��; �) se prolonge en unefon
tion holomorphe dans T(�0) etlim�!(1;:::;1)Yj (�j � 1) �Hf(��; �) = 0si et seulement si � 6= 1.Comme 
onséquen
e fa
ile de l'estimation par Radema
her des valeurs des fon
tionsL de He
ke pour les 
ara
tères non rami�és, estimation qui repose sur le prin
ipe dePhragmén�Lindelöf, on obtient la majoration suivante :Corollaire 4.2.3. � Pour tout " > 0, il existe 0 < Æ < 1=3 et un réel 
" tels que siRe(�j) > 1� Æ,Yj j�j � 1jj�jj �Hf(��; �) � 
"�1 + kIm(�)k �"�1 + k�k �":Passons maintenant aux pla
es ar
himédiennes. La proposition suivante pré
ise laproposition 2.3.2 de [2℄.



18 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELProposition 4.2.4. � Pour tout 
ompa
t K � �2=3 � PL(�)R, il existe un réel 
Ktelle que pour tout ' 2 T(K) et tout m 2 M , on ait la majorationjF (m)j � 
K 11 + kmk X�2�(d) 1 + k'k�Qj2J� (1 + jhej; mij) :Corollaire 4.2.5. � Désignons par e� l'éventail Qvj1 � dans eN = Qvj1N . Si ' 2PL(�), désignons par e' la fon
tion eN ! R dé�nie par (nv)v 7! P'(nv). Pour tout
ompa
t K de PL(�) 
ontenu dans �2=3, il existe une 
onstante 
K telle que pour tout' 2 T(K) et tout � 2 AG dé
omposé sous la forme � = im + �u 2 iM �UG, on ait�H1('; �) � 
K1 + k�kXe�2e� 1 + kIm e'ke�Qe2e� (1 + jhe; Im e'je� + emij) :Démonstration. � Si l'on note em = (mv)v la dé
omposition de � à l'in�ni, on remarqueque �H1('; �) =Yvj1 �Hv('; �) =Yvj1F (';mv) = F (e'; em):Il su�t alors d'appliquer la proposition pré
édente.Preuve de la proposition 4.2.4. � Il faut estimerF (m) = ZN exp(�'(v)� ihv;mi) dv:Soit � 2 � un 
�ne de base (e1; : : : ; ed). Si jdet(ej)j désigne la mesure du parralèlotopede base les ej, on aZ� exp(�'(v)� ihv;mi) dv = ZRd+ dYj=1 exp �� tj('(ej) + ihej; mi)� jdet(ej)jY dtj= 
(�) dYj=1 1'(ej) + ihej; mi :(4.2.6)Ainsi, on a(4.2.7) F (m) =X� 
(�)Ye2� 1'(e) + ihe;mi :



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 19D'autre part, supposons que mj 6= 0, on peut intégrer par parties et é
rireF (m) = ZN 1imj �� �'�vj� exp(�'(v)� ihv;mi) dv�imjF (m) = ZN � �'�vj� exp(�'(v)� ihv;mi) dv=X� �'�vj ����� Z� exp(�'(v)� ihv;mi) dv=X� 
(�) �'�vj �����Ye2� 1'(e) + ihe;mi :(4.2.8)En 
ombinant les égalités (4.2.7) et (4.2.8) pour tous les indi
es j tels que mj 6= 0, onobtient une majorationjF (m)j � 11 + kmkX� 
(�) 1 + k'k�Qe2� j'(e) + ihe;mij :Finalement, 
omme ' 2 T(K), on a une estimationj'(e) + ihe;mij � 1 + jIm(')(e) + he;mijet la proposition s'en déduit.4.3. Dé�nition d'une 
lasse de 
ontr�leSoit � un réel stri
tement positif. Si M et V sont deux R-espa
es ve
toriels dedimension �nie ave
M � V , notonsD�;"(M;V ) le sous-monoïde deF (V;R+) engendrépar les fon
tions h : V ! R+ telles que pour tout " > 0, il existe 
 > 0, " 2 ℄0; 1[ etune famille (`j) de formes linéaires sur V véri�ant :� la famille (`jjM) forme une base de M� ;� pour tout v 2 V et tout m 2M , on a(4.3.1) h(v +m) � 
 (1 + kvk)�(1 + kmk)1�" 1Q(1 + j`j(v +m)j) :Notons alors D� = T">0D�;".Proposition 4.3.2. � Les D�(M;V ) dé�nissent une 
lasse de 
ontr�le au sens de ladé�nition 3.1.1.La preuve de 
ette proposition 
onsiste en une série d'inégalités fa
iles mais te
h-niques. Nous la repoussons à l'appendi
e B.4.4. La fon
tion zêta des hauteurs et la formule de PoissonOn s'intéresse fon
tion zêta des hauteurs de X restreinte à l'ouvert dense formé parle tore G ; 
'est par dé�nition la série génératri
eZ(�) = Xx2G(F )H(��; x);



20 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELquand elle 
onverge. Des théorèmes taubériens standard (voir l'appendi
e) permettrontde déduire de résultats analytiques sur Z un développement asymptotique du nombrede points de hauteur bornéeN(�;H) = #fx 2 G(F ) ; H(�; x) � Hg:Lemme 4.4.1. � Lorsque Re(�) dé
rit un 
ompa
t de �1, la fon
tion zêta des hauteurs
onverge uniformémént en �. Plus généralement, la sérieXx2G(F )H(��; xg)
onverge absolument uniformément lorsque Re(�) dé
rit un 
ompa
t de �1 et g un
ompa
t de G(AF ).Démonstration. � Compte tenu d'estimations pour H(��; xg)=H(��; x) lorsque gdé
rit un 
ompa
t de G(AF ), x 2 G(F ) et � 2 T(�1), 
'est en fait un 
orollairede l'intégrabilité de la fon
tion H(��; �) sur G(AF ). Voir [4℄, Th. 4.2 et aussi [19℄,Prop. 4.3.Par 
onséquent, on peut appliquer la formule sommatoire de Poisson sur le toreadélique G(AF ) pour le sous-groupe dis
ret G(F ). Compte tenu de l'invarian
e del'a

ouplement de hauteurs par le sous-groupe 
ompa
t maximalKG de G(AF ), on endéduit la formule(4.4.2) Z(�) = ZAG �H(��; �) d�où d� est la mesure de Haar sur le groupe AG des 
ara
tères unitaires 
ontinus sur legroupe G(F )nG(AF )=KG duale de la mesure de 
omptage sur G(F ).Rappelons que l'on a dé
omposé le groupe AG = M � UG, où UG est un groupedis
ret. De plus, si � = m� �u,�H(��; �) = �H(��� im; �u)si bien que Z(�) = ZM  X�u2UG �H(��� im; �u)! dmoù dm est la mesure de Lebesgue sur M telle que dmd�u = d�, d�u étant la mesurede 
omptage sur UG.Lemme 4.4.3. � Si d0m est la mesure de Lebesgue sur M dé�nie par le réseau M , ona dm = (2� vol(AF=F ) ress=1 �F (s))�d d0m:Démonstration. � Par multipli
ativité, il su�t de traiter le 
as G = Gm et d = 1.Notons A1F le sous-groupe de A�F formé des x tels que kxk = 1. La suite exa
te1! A1F=F � ! A�F=F � logkxk���! R! 0



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 21permet de munir A1F=F � de la mesure de Haar dx1 telle que d�x = dx1 d0n. La suiteexa
te duale 1! R! (A�F=F �)� ! (A1F=F �)� ! 1et la dis
rétude du groupe des 
ara
tères de A1F=F � permet de munir (A�F=F �)� dele mesure d0m P. Ave
 
es normalisations, la 
onstante devant la formule de Poissonest (2� vol(A1F=F �))�1. Compte tenu des normalisations 
hoisies, le théorème 
lassiqueselon lequel �(Gm) = �(Ga) = 1, 
f. par exemple [20℄, p. 116, devientvol(A1F=F �) = vol(AF=F ) ress=1 �F (s);d'où le lemme.Soit � = (1; : : : ; 1) 2 PL(�). On dé
ale la fon
tion zêta des hauteurs de � : si� 2 PL(�)+, Z(�+ �) = ZM  X�u2UG �H(��� �� im; �u)! dmSoit F la fon
tion PL(�)+ ! C dé�nie par la série� 7! (vol(AF=F ) ress=1 �F (s))�d X�u2UG �H(�1� �; �u);de sorte que si � 2 PL(�)+,(4.4.4) Z(�+ �) = 1(2�)d ZM F (�+ im) d0m:Proposition 4.4.5. � Si � > 1, la fon
tion F appartient à l'espa
e HM(PL(�)+)dé�ni par la 
lasse de 
ontr�le D� du paragraphe 4.3.De plus, pour tout � 2 PL(�)+,lims!0 F (s�)XPL(�)+(s�) = �(X );le nombre de Tamagawa de X .Démonstration. � On a vu que l'on pouvait é
rire�H(��� �; �) = 
f(�+ �; �) �H1(���; �)Yj L(�j + 1; �j):Par suite, la fon
tion � 7! �H(��� �; �)Yj �j�j + 1admet un prolongement holomorphe pour Re(�j) > �1.De plus, il résulte des 
orollaires 4.2.3 et 4.2.5 que pour tout " > 0, il existe Æ < 1=3tel que si pour tout j on a Re(�j) > �Æ, alors����� �H(��� �; �)Yj �j�j + 1 ������ (1 + kIm(�)k)1+"(1 + k�1k)1�" Xe�2e�(d) 1Qe2e�1(1 + jhe; Im(�)je� + �1ij) ;



22 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELformule dans laquelle �1 désigne l'image de � par l'homomorphisme de noyau �ni� type à l'in�ni � AG ! M1 = Lvj1M . Ainsi, on obtient un prolongement holo-morphe de la fon
tion � : � 7! F (�)Qj �j=(1 + �j) pour Re(�j) > �Æ si l'on prouveque pour tout e� 2 e�(d), la sérieX�u2UG 1(1 + k�u;1k)1�" 1Qe2e�1(1 + jhe; Im(�)je� + �u;1ij)
onverge lo
alement uniformément en � siRe(�j) > �Æ. Fixons e� 2 e�(d). Alors, lorsquee 2 e�1, les formes linéaires he; �i forment une base de M�1. Il est fa
ile de rempla
erla sommation sur le sous-groupe dis
ret UG;1 par une intégrale sur l'espa
e ve
torielqu'il engendre, lequel est d'ailleurs un supplémentaire deM envoyé diagonalement dansM1. La 
onvergen
e est alors une 
onséquen
e de la proposition B.3.Pour obtenir l'assertion sur la 
roissan
e de F , il faut montrer que si � > 1, K estun 
ompa
t de PL(�)+, � 2 T(K) et m 2 M , on a une majorationj�(� + im)j � (1 + kIm(�)k)�(1 + kmk)1�" X� Yk 11 + j`�;k(Im(�) +m)joù � par
ourt un ensemble �ni et où pour tout �, f`�;kgk est une base de PL(�)�. Il nousfaut ré
rire un peu di�éremment la majoration de �H obtenue 
i-dessus en remarquantque si la forme des transformées de Fourier aux pla
es �nies fournit le prolongementméromorphe, la 
onvergen
e de la série provient, elle, des estimations ar
himédiennes.On é
rit ainsi�H(��� �� im; �u) = 
f (�+ �+ im; �u)Yj L(�j + 1 + im; �u;j) �H1(��� �; �m�u)et don
����� �H(��� �� im; �u)Yj �j + im1 + �j + im ������ (1 + kIm(�) +mk)"(1 + k�uk)"1 + km + �u;1k Xe�2e�(d) 1 + kIm(�)ke�Qe2e�1(1 + jhe; Im(�)je� +m + �1ij) :Par suite,j�(�+ im)j � Xe�2e�(d)(1 + kIm(�)ke�)(1 + kIm(�) +mk)"Ge�(Im(�); m)où �e�(';m) est dé�ni par la série�e�(';m) = X�u2UG (1 + k�uk)"1 + km + �u;1k Ye2e�1 11 + jhe; e'je� +m + �u;1ij :On a la majoration1 + k�uk � 1 + km+ �u;1k+ kmk � (1 + km+ �u;1k)(1 + kmk)
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omme pré
édemment, on rempla
e la sommation sur le sous-groupe dis
ret UG parl'intégrale sur l'espa
e ve
toriel qu'il engendre. La proposition B.3 fournit alors pourtout "0 > " une estimationGe�(';m)� 1(1 + kmk)1�"0 X� Yk 11 + j`�;k(m+ 'je�)joù f`�;kgk est une base de M� et 'je� l'élément de M qui 
oïn
ide ave
 ('; : : : ; ') 2Lvj1 PL(�) sur le 
�ne e� de l'éventail e�. L'appli
ation ' 7! `�;k('je�) est une formelinéaire `e�;�;k sur PL(�). On a ainsijG(�+ im)j � (1 + kIm(�)k)(1 + kIm(�) +mk)"(1 + kmk)1�"�"0 Xe� X� Yk 11 + j`e�;�;k(Im(�) +m)j� (1 + kIm(�)k)1+"(1 + kmk)1�2"�"0 Xe� X� Yk 11 + j`e�;�;k(Im(�) +m)j :Comme on peut prendre " et "0 arbitrairement petits, la 
ontr�labilité est établie.Il reste à 
al
uler la limite quand s! 0 par valeurs supérieures de F (s�)=XPL(�)+(s�).Le 
�ne PL(�)+ est simpli
ial etXPL(�)+(�) = 1Qj �j :Ainsi, F (�)XPL(�)+(�) = (vol(AF=F ) ress=1 �F (s))�dYj �j X�u2UG �H(��� �; �u):D'après 
e qui pré
ède, la série qui dé�nit F 
onverge uniformément pour Re(�j) > �Æ ;
ela permet de permuter sommation et limite, si bien quelims!0+ F (s�)XPL(�)+(s�)= (vol(AF=F ) ress=1 �F (s))�d X�u2UG lims!0+ �H(�s�� �; �u)Yj (s�j)! :En é
rivant,�H(�s�� �; �)Yj (s�j) = 
f (s�; �)Yj �s�jL(s�j + 1; �j)� �H1(s�; �);on voit que la limite est nulle si l'un des �j 6= 1 (
ar une des fon
tions L(�; �j) n'a pasde p�le en 1, les autres ont au plus un p�le simple). Étudions maintenant le 
as � = 1.



24 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELUtilisant la formule (4.1.6), il vient�H(�s�� �; 1)Yj �F (1 + �js)�1=Yv-1 �v(1)dYj �v(1 + �js)�1 ZG(Fv)H(�s�� �; x)�0G;v�Yvj1ZG(Fv)H(�s�� �; x)�0G;v=Yv-1 �v(1)dYj �v(1 + �js)�1 ZG(Fv)H(�s�)�0X ;v �Yvj1 ZG(Fv)H(�s�)�0X ;v:C'est un produit eulérien absolument 
onvergent pour Re(s) > �", d'où un prolonge-ment par 
ontinuité en s = 0, de valeurYv-1 �v(1)d�#J�0X ;v(X (Fv))Yvj1�0X ;v(X (Fv))= �(X )�(AF=F )d(ress=1 �F (s))� rang(Pi
XF )en vertu de la dé�nition (4.1.7) de la mesure de Tamagawa de X (AF ). Ainsi,lims!0 �H(�s�� �; 1)(Yj s�j) = (ress=1 �F (s))#J lims!0 �H(�s�� �; 1)Yj �F (1 + s�j)�1= �(X )�(AF=F )d(ress=1 �F (s))d:Finalement, on a don
lims!0F (�s)XPL+(�)(�s)�1 = (vol(AF=F ) ress=1 �F (s))�d�(AF=F )d(ress=1 �F (s))d�(X )= �(X );ainsi qu'il fallait démontrer.L'équation (4.4.4) et le théorème 3.1.14 impliquent alors le théorème suivant.Théorème 4.4.6. � La fon
tion zêta des hauteurs (dé
alée)� 7! Z(�+ �)
onverge lo
alement uniformément sur le tube T(PL(�)+) et dé�nit une fon
tion ho-lomorphe sur T(�0e�(XF )). Si � > 1 et si D� désigne la 
lasse de 
ontr�le intro-duite au sous-paragraphe 4.3, elle appartient à l'espa
e Hf0g(�0e�(XF ); �0e�(XF )) (dé-�ni en 3.1.12) des fon
tions méromorphes f0g-
ontr�lées dont les p�les sont simples etdonnés par les fa
es du 
�ne �0e�(XF ).De plus, pour tout � 2 �0e�(XF ),lims!0 Z(s�+ �)X�0e� (s�) = �(X ):
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ialisant la fon
tion zêta des hauteurs à la droite C� qui 
orrespond au �bréen droite anti
anonique, on obtient le 
orollaire :Corollaire 4.4.7. � Si � > 1, il existe " > 0, une fon
tion f holomorphe pourRe(s) � 1� " telle que(i) f(1) = �(X ) ;(ii) Pour tout � 2 [1� "; 1 + "℄ et tout � 2 R, jf(� + i�)j � (1 + j� j)� ;(iii) Pour tout � > 1 et tout � 2 R, Z(s!) = � ss�1�rf(s).Corollaire 4.4.8. � Si r désigne le rang de Pi
(XF ), il existe un polyn�me unitaireP de degré r � 1 et un réel " > 0 tels que pour tout H > 0,N(!�1X ;H) = �(X )(r � 1)!HP (logH) +O(H1�"):Lorsque F = Q et lorsque la variété torique X est proje
tive et telle que !�1Xest engendré par ses se
tions globales, 
e 
orollaire avait été démontré pré
édemmentpar R. de la Bretè
he. Sa méthode est di�érente ; elle est fondée sur le travail deP. Salberger [18℄ et une étude �ne des sommes de fon
tions arithmétiques en plusieursvariables (voir [7, 6℄ et [8℄ pour un 
as parti
ulier).5. Appli
ation aux �brations en variétés toriques5.1. HolomorphieSoit B un S-s
héma proje
tif et plat. Soit T ! B un G-torseur, et notons � :X�(G) ! Pi
(B) l'homomorphisme de fon
torialité des torseurs. Fixons un relève-ment b� : X�(G)! 
Pi
(B) de 
et homomorphisme (
'est-à-dire, un 
hoix de métriqueshermitiennes à l'in�ni sur les images d'une base de X�(G), prolongés par multipli
ati-vité à l'image de �).Donnons nous une S-variété torique lisse X , 
ompa
ti�
ation équivariante de G.Soit Y le S-s
héma obtenu par les 
onstru
tions du � 2.1.On obtient alors un diagramme 
anonique, qui provient des propositions 2.1.11, 2.3.6,du théorème 2.2.4 et de l'oubli des métriques hermitiennes :(5.1.1) 0 // X�(G) // Pi
G(XF )� Pi
(BF ) // Pi
(YF ) // 00 // X�(G) // 
Pi
G;K(X )� 
Pi
(B)OO

// 
Pi
(Y )OO

Le s
héma Y 
ontient T 
omme ouvert dense. On s'intéresse à la fon
tion zêtades hauteurs de T . Lorsque � 2 Pi
G(XF )C, notons b� l'image de � par l'homomor-phisme (4.1.3). Si de plus b� 2 
Pi
(B), on notera en�nZ(b�; b�) = Z(#(b�)
 ��b�;Y ) = Xy2T (F )H(#(b�)
 ��b�; y)�1:



26 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELProposition 5.1.2. � Soient b� � 
Pi
(B)R une partie 
onvexe telle que Z(b�;B)
onverge normalement si la partie réelle de b� 2 
Pi
(B)C appartient à �.Alors, la fon
tion zêta des hauteurs de T 
onverge absolument pour tout (b�; b�) telque la partie réelle de �
 !X appartient à �0e�(XF ) et la partie réelle de � appartientà �. La 
onvergen
e est de plus uniforme si la partie la partie réelle de �
 !X dé
ritun 
ompa
t de �0e�(XF ).Démonstration. � On peut dé
omposer la fon
tion zêta des hauteurs de T en é
rivant(5.1.3) Z(b�; b�) = Xb2B(F )H(b�; b)�1Z(#(b�);T jb):D'après la remarque 2.4.6, le �bré inversible � admet une se
tion G-invariante s qui n'ani p�les ni zéros sur l'ouvert G � X . En utilisant 
ette se
tion, on obtient, en vertudu théorème 2.4.8 et de la proposition 2.4.3 une égalité(5.1.4) Z(#(b�);T jb) = Xx2G(F )H(b�; s; gb � x)�1;où gb 2 G(AF ) représente la 
lasse du G-torseur arithmétique 
T jb. On rappelle que six 2 G(AF ), on a une expression de la hauteur en produit de hauteurs lo
alesH(b�; s;x) =Yv kskv (xv)�1:On peut appliquer la formule sommatoire de Poisson sur le tore adélique G(AF ), d'où,en utilisant l'invarian
e des hauteurs lo
ales par les sous-groupes 
ompa
ts maximaux,(5.1.5) Z(#(b�);T jb) = ZAG ��1(gb) �H(�b�;�) d�où l'intégration est sur le groupe AG des 
ara
tères (unitaires 
ontinus) du groupelo
alement 
ompa
t G(F )nG(AF )=KG, muni de son unique mesure de Haar d� quipermet 
ette formule.L'utilisation de la formule de Poisson est justi�ée par le fait que les deux membres
onvergent absolument. La série du membre de gau
he est traitée dans [4℄, Theorem4.2, lorsque gb = 1, 
'est-à-dire lorsqu'il n'y a pas de torsion. Comme il existe une
onstante C(�; gb) ne dépendant que de gb et b� telle que���H(b�; s; gb � x)����1 � C(�; gb) ���H(b�; s; x)����1et 
ommeH(b�; s; x) = H(b�; x), la 
onvergen
e absolue du membre de gau
he en résulte.(Voir aussi le lemme 4.4.1.) Quant à l'intégrale du membre de droite, on peut négliger le
ara
tère � dont la valeur absolue est 1 et on retrouve une intégrale dont la 
onvergen
eabsolue est prouvée dans [4℄ (preuve du théorème 4.4). Cela prouve aussi que lorsqueRe(�) dé
rit un 
ompa
t de !�1X +�0e�(XF ), la fon
tion zêta des hauteurs Z(#(b�);T jb)de la �bre en b 2 B(F ) est bornée indépendamment de b.En reportant 
ette majoration dans la dé
omposition (5.1.3), il en résulte la 
onver-gen
e absolue de la fon
tion zêta des hauteurs de T lorsque la partie réelle de b�
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 !X appartient à �0e�(XF ), uniformément lorsque �
 !X dé
ritun 
ompa
t de 
e 
�ne.Dans [9℄, dé�nition 1.4.1, on a dé�ni la notion de fon
tion L d'Arakelov atta
hée à untorseur arithmétique et à une fon
tion sur un espa
e adélique. Appliquée au G�Gm-torseur arithmétique sur B dé�ni par 
T �B b� et à la fon
tion ��1 � k�k, la dé�nitiondevient L(
T � b�; ��1 � k�k) = Xb2B(F )��1(gb)H(b�; b)�1:(On a utilisé le fait que gb 2 G(F )nG(AF )=KG est la 
lasse du G-torseur arithmétiqueT jb.)Un 
orollaire de la démonstration de la proposition pré
édente est alors le suivant :Corollaire 5.1.6. � Sous les hypothèses de la proposition 5.1.2, on a la formuleZ(b�; b�) = ZAG �H(�b�;�)L(
T � b�; ��1 � k�k) d�:Démonstration. � Compte tenu de la majoration établie à la �n de la preuve duthéorème pré
édent et des rappels faits sur les fon
tions L d'Arakelov, il su�t dereporter l'équation (5.1.5) dans la formule (5.1.3) et d'é
hanger les signes somme etintégrale.Cette dernière formule est le point de départ pour établir, moyennant des hypothèsessupplémentaires sur B, un prolongement méromorphe de la fon
tion zêta des hauteursde T .5.2. Prolongement méromorpheFixons une se
tion de l'homomorphisme 
anonique 
Pi
(B) 
Z Q ! Pi
(BF ) 
Q,autrement dit un 
hoix de fon
tions hauteurs 
ompatible au produit tensoriel, 
e quePeyre appelle système de hauteurs dans [17℄, 2.2. Con
ernant X , on utilise toujoursles métriques adéliques 
anoniques utilisées au paragraphe 4. Ainsi, on é
rira � et �,les 
hapeaux devenant inutiles. L'appli
ation b� : X�(G)! 
Pi
(B) est supposée être la
omposée de l'appli
ation � : X�(G) ! Pi
(BF ) donnée par la restri
tion du torseurà la �bre générique, et de la se
tion Pi
(BF )
Q! 
Pi
(B)
Q �xée.Ces restri
tions ne sont pas vraiment essentielles mais simpli�ent beau
oup les no-tations.Notons V1 = Pi
G(XF )R, M1 = X�(G)R, n1 = dimV1 et V2 = Pi
(BF )R. Soient�1 � V1 et �2 � V2 les 
�nes ouverts, intérieurs des 
�nes e�e
tifs dans Pi
G(XF )Ret Pi
(BF )R. L'espa
e ve
toriel V1 possède une base naturelle, formée des �brés endroites G-linéarisés asso
iés aux diviseurs G-invariants sur X 
F . Dans 
ette base, le
�ne �1 est simplement l'ensemble des (s1; : : : ; sn1) stri
tement positifs.On note � : M1 ! V2 l'appli
ation linéaire déduite de b� et M = (id;��)(M1) �V1�V2. Notons V = V1�V2. Les théorèmes 2.2.4 et 2.2.9 identi�ent Pi
(YF )R à V=M ,et l'intérieur du 
�ne e�e
tif de YF à l'image de �1 � �2 par la proje
tion V ! V=M .



28 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELSi !X est muni de sa G-linéarisation 
anonique, la proposition 2.1.8 dit que !Y estl'image du 
ouple (!X ; !B) par 
ette même proje
tion.Lemme 5.2.1. � Ave
 
es notations, la formule du 
orollaire du paragraphe pré
édentpeut se ré
rire :Z(�+ !�1X ; � + !�1B ) = ZM1 f(�+ im1;�� i�(m1)) dm1;où la fon
tion f : T(�1 � �2)! Cest dé�nie parf(�;�) = ZUG �H(�(�+ !�1X );�u)L(
T � (� + !�1B );��1u � k�k) d�uet dm1, d�u sont des mesures de Haar sur M1 et UG telles que d� = dm1 d�u dans ladé
omposition AG =M1 �UG du paragraphe 4.1.1 (
f. aussi le lemme 4.4.3).On note que UG est un groupe dis
ret et que la mesure d�u est don
 proportionnelleà la mesure de 
omptage.Démonstration. � Si � 2 AG s'é
rit (m1; �u) dans M1 �UG, on remarque que l'on ales égalités �H(��;�) = �H(��� �(im1);�u)et ��1(gb)H(b�; b)�1 = ��1u (gb)H(b�� �(m1); b)�1
ar (lemme 4.1.4)�m1(gb) = exp(i k�k)([m1℄�
T jb) = exp(i kb�(m1)jbk) = H(�b�(m1); b):On utilise ensuite le théorème de Fubini.On utilise en�n les notations du � 3.Hypothèses 5.2.2. � On fait les hypothèses suivantes :� le 
�ne �2 est un 
�ne polyédral (de type �ni). Notons (`j) les formes linéairesdé�nissant ses fa
es ;� la fon
tion zêta des hauteurs de B 
onverge lo
alement normalement pour � +!B 2 �2 ;� il existe un voisinage 
onvexe B2 de l'origine dans V2 et pour tout 
ara
tère � 2AG une fon
tion holomorphe g(�; �) sur le tube T(B2) tels que, si Re(�+!B) 2 �2,L(
T � �; ��1 � k�k) =Yj `j(�)`j(� + !B)g(�;�+ !B);
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 stri
tement positif tel que pour tout " > 0, les fon
tions g(�; �)véri�ent une majoration uniformejg(�;�+ !B)j � C"�1 + kIm(�)k �
�1 + k�k �";pour un réel " < 1 et une 
onstante C" ;� si �(B) désigne le nombre de Tamagawa de B, pour tout � appartenant à �2,lims!0+ Z(B; s� + !�1B )X�2(s�) = �(B) 6= 0:Remarque 5.2.3. � Dans le 
as où B est une variété de drapeaux généralisée, 
eshypothèses 
orrespondent à des énon
és sur les séries d'Eisenstein tordues par des
ara
tères de He
ke. Ils sont établis dans [19℄.Dans la suite, on travaille ave
 les 
lasses de 
ontr�le D� introduites au para-graphe 4.3.Lemme 5.2.4. � Sous les hypothèses pré
édentes, pour tout réel � > 1, la fon
tion fappartient à HM(�1 � �2), pour la 
lasse D�+
 .Démonstration. � Il su�t de reprendre la démonstration de la proposition 4.4.5, d'yinsérer les majorations que nous avons supposées et de majorer(1 + kIm�k)�(1 + kIm�k)
 � (1 + kIm�k+ kIm�k)�+
:Grâ
e au théorème d'analyse 3.1.14, on en déduit un prolongement méromorphe pourla fon
tion zêta des hauteurs de T .Théorème 5.2.5. � La fon
tion zêta des hauteurs dé
alée de T admet un prolonge-ment méromorphe dans un voisinage de T(�0e�(Y )) dans Pi
(Y )C. Cette fon
tion ades p�les simples donnés par les équations des fa
es de �0e�(Y ). De plus, si � 2 �0e�(Y ),lims!0+ Z(T ; s�+ !�1Y )X�e� (Y )(s�) = �(Y );le nombre de Tamagawa de Y .Démonstration. � Le seul point qui n'a pas été rappelé est que le nombre de Tamagawaest Y est le produit de 
eux de X et B ([9℄, théorème 2.5.5).Corollaire 5.2.6. � Il existe " > 0 et un polyn�me P tels que le nombre de pointsde T (F ) dont la hauteur anti
anonique est inférieure ou égale à H véri�e un dévelop-pement asymptotique N(H) = HP (logH) +O(H1�")lorsque H tend vers +1. Le degré de P est égal au rang de Pi
(YF ) moins 1 et son
oe�
ient dominant vaut X�e� (Y )(!�1Y )�(Y ):



30 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELAppendi
e AUn théorème taubérienLe but de 
e paragraphe est de démontrer un théorème taubérien dont la preuve nous a été
ommuniquée par P. Etingof. Ce théorème est 
ertainement bien 
onnu des experts mais quenous n'avons pu le trouver sous 
ette forme dans la littérature.Théorème A.1. � Soient (�n)n2N une suite 
roissante de réels stri
tement positifs, (
n)n2Nune suite de réels positifs et f la série de Diri
hletf(s) = 1Xn=0 
n 1�sn :On fait les hypothèses suivantes :� la série dé�nissant f 
onverge dans un demi-plan Re(s) > a > 0 ;� elle admet un prolongement méromorphe dans un demi-plan Re(s) > a� Æ0 > 0 ;� dans 
e domaine, elle possède un unique p�le en s = a, de multipli
ité b 2 N. On note� = lims!a f(s)(s� a)b > 0 ;� en�n, il existe un réel � > 0 de sorte que l'on ait pour Re(s) > a� Æ0 l'estimation,����f(s)(s� a)bsb ���� = O�(1 + Im(s))��:Alors il existe un polyn�me unitaire P de degré b� 1 tel que pour tout Æ < Æ0, on ait, lorsqueX tend vers +1, N(X) def= X�n�X 
n = �a (b� 1)!XaP (logX) +O(Xa�Æ):On introduit pour tout entier k � 0 la fon
tion'k(X) = X�n�X an (log(X=�n))k ;de sorte que '0 = N .Lemme A.2. � Sous les hypothèses du théorème A.1, il existe pour tout entier k > � unpolyn�me Q de degré b � 1 et de 
oe�
ient dominant k!�=(ak+1(b � 1)!) tel que pour toutÆ < Æ0, on ait l'estimation, lorsque X tend vers +1,'k(X) = XaQ(logX) +O(Xa�Æ):Démonstration. � Soit a0 > a arbitraire. On remarque, en vertu de l'intégrale 
lassiqueZa0+iR �s dssk+1 = 2i�k! �log+(�)�k ; � > 0que l'on a la formule '(X) = k!2i� Za0+iR f(s)Xs dssk+1 ;l'intégrale étant absolument 
onvergente puisque � < k.On veut dé
aler le 
outour d'intégration vers la droite verti
ale Re(s) = a� Æ, où Æ est unréel arbitraire tel que 0 < Æ < Æ0. Dans le re
tangle a� Æ � Re(s) � a0, jIm(s)j � T , il y a un



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 31unique p�le en s = a. Le résidu y vautRess=a f(s) Xssk+1 = �ak+1 (b� 1)!XaQ(logX)où Q est un polyn�me unitaire de degré b� 1. Il en résulte que12i� Z a0+iTa0�iT f(s)Xs dssk+1= 12i� Z a�Æ+iTa�Æ�iT f(s)Xs dssk+1 + I+ � I� + �ak+1 (b� 1)!XaQ(logX);où I+ et I� sont les intégrales sur les segments horizontaux (orientés de la gau
he vers ladroite). Lorsque T tend vers +1, 
es intégrales sont O(T ��k�1Xa0) et tendent don
 vers 0.Les hypothèses sur f et le fait que k > � montrent que f(s)Xs=sk+1 est absolument intégrablesur la droite Re(s) = a� Æ, l'intégrale étant majorée par O(Xa�Æ). Par 
onséquent, on a'(X) = � k!ak+1 (b� 1)!XaQ(logX) +O(Xa�Æ):Le lemme est ainsi démontré.Preuve du théorème. � On va démontrer par ré
urren
e des
endante que la 
on
lusion dulemme pré
édent vaut en fait pour tout entier k � 0. Arrivés à k = 0, le théorème seraprouvé. Montrons don
 
omment passer de k � 1 à k � 1.Pour tout � 2 ℄0; 1[, on a fa
ilement l'inégalité'k(X(1 � �))� 'k(X)log(1� �) � k'k�1(X) � 'k(X(1 + �))� 'k(X)log(1 + �) :Fixons un réel Æ0 tel que 0 < Æ0 < Æ < Æ0. D'après le lemme pré
édent, il existe un réel C telque ����'k(X) � k!�ak+1 (b� 1)!XaQ(logX)���� � CXa�Æ0 :On 
onstate que l'on a alors, si �1 < u < 1,'k(X(1 + u))� 'k(X)log(1 + u) = k!�ak+1 (b� 1)!XaQ(logX + log(1 + u))(1 + u)a �Q(logX)log(1 + u) +R(X);où jR(X)j � 2CXa�Æ0= jlog(1 + u)j = O(Xa�Æ0=u)si u tend vers 0 et X ! +1. Toujours lorsque X ! +1 et u! 0, on aQ(logX + log(1 + u))(1 + u)a �Q(logX)log(1 + u)= Q(logX)(1 + u)a � 1log(1 + u) + b�1Xn=1 1n!Q(n)(logX) log(1 + u)n�1(1 + u)a= Q(logX) (a+O(u)) +Q0(logX) (1 +O(u)) +O((logX)b�1u)= (aQ+Q0)(logX) +O((logX)b�1u):



32 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELPrenons u = �1=X" où " > 0 est 
hoisi de sorte que Æ0 + " < Æ. Alors, lorsque X ! +1,jR(X)j = O(Xa�Æ) etQ(logX + log(1 + u))(1 + u)a �Q(logX)log(1 + u) = (aQ+Q0)(logX) +O(X�Æ):On a alors un développement'k�1(X) = 1kXa(aQ+Q0)(logX) +O(Xa�Æ)Le 
oe�
ient dominant de (aQ+Q0)=k est égal à (k� 1)!�=(ak(b� 1)!) d'où le théorème parré
urren
e des
endante. Appendi
e BDémonstration de quelques inégalitésLe but de 
et appendi
e est de démontrer les inégalités sous-ja
entes à la proposition 4.3.2qui a�rmait l'existen
e d'une 
lasse de 
ontr�le.Rappelons les notations.Soit � un réel stri
tement positif. Si M et V sont deux R-espa
es ve
toriels de dimension�nie ave
M � V , notons D�;"(M;V ) le sous-monoïde deF (V;R+) engendré par les fon
tionsh : V ! R+ telles qu'il existe 
 > 0 et une famille (`j) de formes linéaires sur V véri�ant :� la famille (`j jM ) forme une base de M� ;� pour tout v 2 V et tout m 2M , on a(B.1) h(v +m) � 
 (1 + kvk)�(1 + kmk)1�" 1Q(1 + j`j(v +m)j) :On dé�nit ensuite D�(M;V ) = T">0D�;"(M;V ).Théorème B.2. � Les D�(M;V ) dé�nissent une 
lasse de 
ontr�le au sens de la dé�ni-tion 3.1.1.Démonstration. � Les points (3.1.1,a) et (3.1.1,
) sont 
lairs. L'axiome (3.1.1,e) est vrai 
arla famille (`j Æ pjM) 
ontient une base de (M=M1)�. L'axiome (3.1.1,b) résulte de l'inégalitéminjtj�1(1 + j`(v + tu+m)j) � 11 + j`(u)j(1 + j`(v +m)jvalable pour tous v 2 V , u 2 V et m 2 M . En�n, l'axiome (3.1.1,d), le plus déli
at, faitl'objet de la proposition suivante.Proposition B.3. � Soient M � V , V 0 un supplémentaire de M dans V , dm une mesurede Lebesgue sur M , (`j) une base de V �. Pour tout "0 > ", il existe une 
onstante 
"0 et unensemble ((`j;�)j)� de bases de (V 0)� tels que pour tous v1 et v2 2M 0,ZM 1(1 + kv1 +mk)1�" dmQ(1 + j`j(v2 +m)j) � 
"0(1 + kv1k)1�"0 X� 1Qj(1 + j`j;�(v2)j) :Démonstration. � On raisonne par ré
urren
e sur dimM . Soient u 2 M , M 0 � M tels queM = M 0 �Ru et �xons une mesure de Lebesgue dm0 sur M 0 telle que dm0 � dt = dm. Alors,



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 33ZRu : : :� ZR 1(1 + kv1 +m0k+ jtj)1�" dtQj(1 + j`j(v2 +m0)t`j(u)j) dt� Yj ; `j(u)=0 11 + j`j(v2 +m0)j�� ZR 1(1 + kv1 +m0k+ jtj)1�" Yj ; `j(u)6=0 11 + j`j(v2 +m0) + tj dtet, en appliquant le lemme B.4 
i-dessous,� 1 + log(1 + kv1 +m0k)(1 + kv1 +m0k)1�" X� Yj 11 + j`j;�(v2 +m0)j�"0 1(1 + kv1 +m0k)1�"0 X� 1Qj(1 + j`j;�(v2)j) :Lemme B.4. � On a une majoration, valable pour tous réels t1 � � � � � tn et tout A � 0,Z 1�1 1(1 +A+ jtj)1�" nYj=1 11 + jt� tj j dt� 1 + log(1 +A)(1 +A)1�" X� n�1Yj=1 11 + j��;j joù pour tout � et tout j, ��;j = ta(�;j)� tb(�;j) de sorte que pour tout �, notant (e1; : : : ; en) labase 
anonique de Rn, les familles (e�;j = ea(�;j) � eb(�;j))j sont libres.Démonstration. � On dé
oupe l'intégrale en R t1�1, R t2t1 , . . ., R1tn et on majore 
haque terme.Pour l'intégrale de �1 à t1, on aZ t1�1 : : : � nYj=2 11 + jtj � t1j Z t1�1 1(1 +A+ jtj)1�" dt1 + t1 � t� nYj=2 11 + jtj � t1j Z 10 1(1 +A+ jt� t1j)1�" dt1 + t� nYj=2 11 + jtj � t1j 1 + log(1 +A)(1 +A)1�"d'après le lemme B.5. La dernière intégrale (de tn à +1) se traite de même. En�n,Z tk+1tk � � � �Yj<k 11 + jtk � tj j Yj>k+1 11 + jtk+1 � tjj�� Z tk+1tk 1(1 +A+ jtj)1�" dt(1 + t� tk)(1 + tk+1 � t)



34 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELet 
ette dernière intégrale s'estime 
omme suit :1(1 +A+ jtj)1�" dt(1 + t� tk)(1 + tk+1 � t) == Z tk+1tk 1(1 +A+ jtj)1�" 12 + tk+1 � tk � 11 + t� tk + 11 + tk+1 � t� dt� 12 + tk+1 � tk� Z 1tk 1(1 +A+ jtj)1�" dt1 + t� tk+ Z tk+1�1 1(1 +A+ jtj)1�" dt1 + tk+1 � t�� 12 + tk+1 � tk� Z 10 1(1 +A+ jt+ tkj)1�" dt1 + t+ Z 10 1(1 +A+ jt� tk+1j)1�" dt1 + t�� 11 + tk+1 � tk 1 + log(1 +A)(1 +A)1�"en vertu du lemme B.5.Lemme B.5. � On a une majoration, valable pour tout A � 1 et tout a > 0,Z 10 1(A+ jt+ aj)� dt1 + t � 1 + logAA� :Il reste à démontrer 
e lemme. Pour 
ela, on a besoin de deux lemmes supplémentaires !Lemme B.6. � Pour tous A et B � 1 et tous �; � > 0 tels que �+ � > 1,Z 10 dt(A+ t)�(B + t)� ��;� min(A;B)A�B� �8>><>>:1 + log(B=A) si � = 1 et B > A ;1 + log(A=B) si � = 1 et A > B ;1 sinon.Démonstration. � On ne traite que le 
as A < B, l'autre étant symétrique et le 
as A = Bélémentaire. Faisons le 
hangement de variables A + T = (B � A)eu, d'où B + T = (B �A)(1 + eu). Pour t = 0, u = logA=(B � A). Lorsque t ! +1, u ! +1. Ainsi, l'intégralevaut I(A;B;�; �) = 1(B �A)�+��1 Z 1logA=(B�A) e(1��)u(1 + eu)� du:Si A < B � 2A, on majore l'intégrale parI(A;B;�; �) � 1(B �A)�+��1 Z 1logA=(B�A) e(1����)u du� 1(B �A)�+��1 11� �� � �B �AA ��+��1� 1A�+��1 � AA�B�puisque 1=A � 2=B.



FONCTIONS ZÊTA DES HAUTEURS DES ESPACES FIBRÉS 35Lorsque B � 2A, logA=(B � A) � 0. On minore 1 + eu par 1 lorsque u � 0 et par eulorsque u � 0, d'où les inégalités(B �A)�+��1I(A;B;�; �) = Z 0logA=(B�A) +Z 10� Z 10 e(1��)u(1 + eu)� du+ Z 0logA=(B�A) e(1��)u du� 1 +8<:log(B �A)=A si � = 1 ;11���1� �B�AA ���1� si � 6= 1� (1 + log(B=A) si � = 1 ;1 + �B�AA ���1 sinon.De plus, 1B �A � 2B � 1A , si bien queI(A;B;�; �) � 1(B �A)�+��1 �� 1 + log(B=A)1 + ((B �A)=A)��1� ((1 + log(B=A))=A��1B� si � = 1 ;1=A��1B� sinon.Le lemme est don
 démontré.Lemme B.7. � Si A;B � 1, � � 1, on aZ B�10 du(A+ u)�(B � u) �� 1 + logAA� :Démonstration. � On fait le 
hangement de variables A+ u = (A+B)(1� t), soit B � u =(A+B)t. Ainsi, l'intégrale vautJ(A;B;�) = 1(A+B)� Z B=(A+B)1=(A+B) du(1� u)�u:Si A � B, u � B=(A+B) � 1=2, don
 1� u � 1=2 et l'intégrale véri�eJ(A;B;�)� 1(A+B)� Z B=(A+B)1=(A+B) duu = logB(A+B)� � 1 + logAA� :Si A � B, on dé
oupe l'intégrale de 1=(A+B) à 1=2 et de 1=2 à B=(A+B).Z 1=21=(A+B) du(1� u)�u � Z 1=21=(A+B) duu = log A+B2Z B=(A+B)1=2 du(1� u)�u � (R 11=2(: : : ) si � < 1 ;log A+B2A � log A+B2 si � = 1Finalement, J(A;B;�)� 1 + log(A+B)(A+B)� � 1 + logAA� ;ainsi qu'il fallait démontrer.



36 ANTOINE CHAMBERT-LOIR & YURI TSCHINKELPreuve du lemme B.5. � Si a > 0, l'intégrale se majore parZ 10 1(A+ t)� dt1 + t � 1 + logAA�d'après le lemme B.6. Si a < 0, on dé
oupe l'intégrale de 0 à �a et de �a à +1. L'intégralede 0 à �a vautZ �a0 1(A� t� a)� dt1 + t = Z �a0 1(A+ u)� dy(1� a)� u � 1 + logAA�en vertu du lemme B.7, tandis que l'intégrale de �a à +1 s'estime ainsi :Z 1�a 1(A+ t+ a))� dt1 + t = Z 10 1(A+ u)� du1� a+ u � 1 + logAA�en appliquant de nouveau le lemme B.6 et en distinguant suivant que A � 1 � a ou A �1� a. Référen
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