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Introduction

Cet article est le premier d’une série dont le théme principal est I’étude des hauteurs
sur certaines variétés algébriques sur un corps de nombres. On voudrait notamment
comprendre la distribution des points rationnels de hauteur bornée.

Précisément, soient X une variété algébrique projective lisse sur un corps de nom-
bres F, . un fibré en droites sur X et Hy : X(F) — R une fonction hauteur
(exponentielle) pour .Z. Si U est un ouvert de Zariski de X, on cherche a estimer le
nombre

Ny(Z.H) = #{x € U(F); Hy(x) < H)
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lorsque H tend vers +oc. L’étude de nombreux exemples a montré que l'on peut s’at-
tendre & un équivalent de la forme

(%) Ny(Z, H) =0(ZL)H @ (log H)") 11+ 0(1)), H — +o0

pour un ouvert U convenable et lorsque par exemple .Z et w)}l (fibré anticanonique)
sont amples. On a en effet un résultat de ce genre lorsque X est une variété de dra-
peaux [12], une intersection compléte lisse de bas degré (méthode du cercle), une variété
torique [5], une variété horosphérique [22], etc. On dispose de plus d’une description
conjecturale assez précise des constantes a(.%) et b(.Z) en termes du cone des diviseurs
effectifs [2] ainsi que de la constante ©(.%) ([16], [6]).

En fait, on étudie plutot la fonction zéta des hauteurs, définie par la série de Dirichlet

Zy(Z.s)= Y Hglr)

zeU(F)

a laquelle on applique des théorémes taubériens standard. Sur cette série, on peut se
poser les questions suivantes : domaine de convergence, prolongement méromorphe,
ordre du premier pole, terme principal, sans oublier la croissance dans les bandes ver-
ticales a gauche du premier pole. Cela permet de proposer des conjectures de précision
variable.

Il est naturel de vouloir tester la compatibilité de cette conjecture avec les construc-
tions usuelles de la géométrie algébrique. Par exemple, on n’arrive pas a démontrer
cette conjecture pour un éclatement X' d’une variété X pour laquelle cette conjecture
est connue. Méme pour un éclatement de 4 points dans le plan projectif, on n’a pas de
résultat complet !

Dans cet article, nous considérons certaines fibrations localement triviales constru-
ites de la facon suivante. Soient G un groupe algébrique linéaire sur F' agissant sur une
variété projective lisse X, B une variété projective lisse sur F' et T un G-torseur sur
B localement trivial pour la topologie de Zariski. Ces données définissent une variété
algébrique projective Y munie d’un morphisme Y — B dont les fibres sont isomorphes
a X. On donne au §2.7 de nombreux exemples «concrets» de variétés algébriques
provenant d’une telle construction. Le coeur du probléme est de comprendre le com-
portement de la fonction hauteur lorsqu’on passe d’une fibre a 'autre, comportement
vraiment non trivial bien qu’elles soient toutes isomorphes.

Pour définir et étudier de facon systématique les fonctions hauteurs sur Y, on est
amené a dégager de nouvelles notions dans 'esprit de la géométrie d’Arakelov. Ap-
paraissent notamment les notions de G-torseur arithmétique au §1.1.3, ainsi que la
définition de la fonction L d’Arakelov attachée a un tel torseur arithmétique et & une
fonction sur le groupe adélique G(A ) invariante par G(F') et par un sous-groupe com-
pact convenable (§1.4). Elles généralisent les notions usuelles de fibré inversible métrisé
ainsi que la fonction zéta des hauteurs introduits par S. Arakelov |1].
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Ceci fait, on peut voir que les fonctions hauteurs d’une fibre Y, de la projection
Y — B différent de la fonction hauteur sur X par ce que nous appelons torsion
adélique, dans laquelle on retrouve explicitement la classe d’isomorphisme du G-torseur
arithmétique Tj, sur F' (§2.4).

Dans un deuxiéme article, nous appliquerons ces considérations générales au cas
d’une fibration en variétés toriques provenant d’un torseur sous un tore pour I'ouvert U
défini par le tore. Le principe de 'étude généralise [22] et est le suivant. On construit les
hauteurs a I'aide d'un prolongement du torseur géométrique en un torseur arithmétique,
ce qui correspond en l'occurence au choix de métriques hermitiennes sur certains fibrés

en droites. On écrit ensuite la fonction zéta comme la somme des fonctions zéta des
fibres

ZU(Zv S) = Z Z Hf(m)is = Z ZUb(Z|Ub7S)'
beB(F) xcUy(F) beB(F)
Chaque U, est isomorphe au tore et on peut récrire la fonction zéta des hauteurs de
Uy, a l'aide de la formule de Poisson adélique. De cette fagon, la fonction zéta de U
apparait comme une intégrale sur certains caractéres du tore adélique de la fonction L
d’Arakelov d’un torseur arithmétique sur B.

Cette expression nous permettra d’établir des théorémes de montée ou de descente :
supposons que B vérifie une conjecture, alors Y la vérifie ; réciproquement, supposons
que Y la vérifie, alors, B aussi. Bien siir, la méthode reprend les outils utilisés dans la
démonstration de ces conjectures pour les variétés toriques (|5, 3, 4|).

Alors que le présent article contient des considérations générales de « théorie d’Arakelov
équivariante» dont on peut espérer qu’elles seront utiles dans d’autres contextes, le
deuxiéme verra intervenir des outils de théorie analytique des nombres (formule de
Poisson, théoréme des résidus, estimations, etc.).

Remerciements. — Nous remercions J.-B. Bost pour d’utiles discussions. Pendant la prépara-
tion de cet article, le second auteur™) était invité a 'I.H.E.S. et a Jussieu ; il est reconnaissant
envers ces institutions pour leur hospitalité.

Notations et conventions

Si 2 est un schéma, on désigne par QCoh(.Z") et Fiby(Z") les catégories des
faisceaux quasi-cohérents (resp. des faisceaux localement libres de rang d) sur 2 .
On note Pic(Z") le groupe des classes d’isomorphisme de faisceaux inversibles sur
2. Si Z est un faisceau quasi-cohérent sur 2", on note V(.%) = SpecSym.Z et
P(.#) = ProjSym .Z les fibrés vectoriels et projectifs associés a 7.

On note ﬁd(%) la catégorie des fibrés vectoriels hermitiens sur 2" (c¢’est-a-dire
des faisceaux localement libres de rang d munis d’'une métrique hermitienne continue

(*)partially supported by the N.S.A.
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sur 2 (C) et invariante par la conjugaison complexe). On note f/’;‘(g%”) le groupe des
classes d’isomorphisme de fibrés en droites hermitiens sur 2.

Si Z est un S-schéma, et si 0 € S(C), on désigne par 2, le C-schéma 2 x, C.
Cette notation servira lorsque S est le spectre d'un localisé de I’anneau des entiers d'un
corps de nombres F', de sorte que o n’est autre qu'un plongement de F' dans C.

Si G est un schéma en groupes sur S, X*(G) désigne le groupe des S-homomorphismes
G — G,, (caractéres algébriques).

Si 2"/ S est lisse, le faisceau canonique de .2"/S, noté w4 /g est la puissance extérieure
maximale de Q?%/S‘

§ 1. Torseurs arithmétiques

1.1. Définitions

Rappelons la définition d’un torseur en géométrie algébrique.

Définition 1.1.1. — Soient S un schéma, #Z un S-schéma et G un S-schéma en groupes
plat et localement de présentation finie.

Un G-torseur sur un 4 est un %-schéma 7 : .7 — % fidélement plat et localement
de présentation finie muni d’une action de G au-dessus de &, m : G x5 7 — 7, de
sorte que le morphisme

(m,p2) : G x5 T =T X T

soit un isomorphisme. On le suppose de plus localement trivial pour la topologie de
Zariski.

On note H'(4, G) 'ensemble des classes d’isomorphisme de G-torseurs sur 2.

SITUATION 1.1.2. Supposons que S est le spectre de 'anneau des entiers d’un
corps de nombres F' et que G est un S-schéma en groupes linéaire connexe plat et de
présentation finie. Fizons pour tout plongement complexe de F, o € S(C), un sous-
groupe compact mazimal K, de G(C) et notons K« la collection (K,),. On suppose
que pour deux plongements complexes conjugués, les sous-groupes compacts mazimaux
correspondants sont échangés par la conjugaison compleze.

Définition 1.1.3. On appelle (G, Ky)-torseur arithmétique sur % la donnée d’'un
G-torseur .7 sur 4 ainsi que pour tout o € S(C), d’une section du K,\G,(C)-fibré
sur %4,(C) quotient & Z,(C) par I'action de K,. On suppose de plus que pour deux
plongements complexes conjugués, les sections sont échangées par la conjugaison com-
plexe.

On note H' (%, (G, K)) ensemble des classes d’isomorphisme de (G, Koo)-torseurs
arithmétiques sur 4.

On note aussi ﬁo(,%’, (G,Ky)) l'ensemble des sections g € H°(%, G) telles que pour
toute place a 'infini 0, ¢g définisse une section %, (C) — K, .
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Remarque 1.1.4. — Se donner une section du K,\G,(C)-fibré associé a .7,(C) sur
A,(C) revient a fixer dans un recouvrement ouvert (U;) pour la topologie complexe
les fonctions de transition g;; € I'(U; NU;, G) a valeurs dans K,. Il en existe car G,(C)
est homéomorphe au produit de K, par un R-espace vectoriel de dimension finie, cf.
par exemple [7].

D’autre part, on choisit dans cet article de supposer la section continue. Dans cer-
taines situations, il pourrait étre judicieux de la supposer indéfiniment différentiable.

La dépendance de cette notion en les sous-groupes maximaux fixés est la suivante :
toute famille (z,) € [[, G, (C) telle que K. = z,K,x,' détermine une bijection canon-
ique

H1(°@7 (Ga Koo)) = Hl('@a (Ga Kgo))
(Rappelons que deux sous-groupes compacts maximaux sont conjugués.)

1.1.5. Variante adélique. Il existe une variante adélique des considérations précé-
dentes qui supprime en apparence la référence a un modéle sur Specoy. En effet, si
A est propre sur Spec o, remarquons que pour toute place finie de F', un G-torseur
arithmétique sur % induit une section du morphisme G(o0,)\.7 (F,) — A(F,).

Définition 1.1.6. Soit G un F-schéma en groupes de type fini et fixons un sous-
groupe compact maximal K = [], K, du groupe adélique G(Af). Soit % un F-
schéma propre.

On appelle (G g, K)-torseur adélique sur A la donnée d’un G g-torseur T — B,
ainsi que pour toute place v de F', d'une section continue de K,\ 7% (F,) — %Br(F,).
On suppose de plus qu’il existe un ouvert non vide U de Specop, un U-schéma en
groupes plat et de présentation fini G, un U-schéma % propre, plat et de type fini, ainsi
qu'un G-torseur .7 — % qui prolongent respectivement G, #Br et I et vérifiant :
pour toute place finie v de F' dominant U, G(o,) = K, et la section continue de
K\ 7 (F,) = Br(F,) est celle fournie par le modéle .7 — A.

On note H' (%, (G, K)) Pensemble des classes d’isomorphisme de (G, K)-torseurs
adéliques sur %y.

Bien str, si 4 est un op-schéma propre et G un op-schéma en groupes plat et de
présentation finie, tout (G, K )-torseur arithmétique sur # définit un (G, K)-torseur
adélique ou K est le compact adélique [], ¢... G(0,) [1, Ko-

1.1.7. Ezemples. a) Quand G = GL(d), le torseur .7 correspond naturellement a la
donnée d’un fibré vectoriel & de rang d sur & par la formule .7 = Isom (&%, &). Si l'on
choisit K, = U(d), une section du U(d, C)\ GL(d, C)-fibré associé correspond a une
métrique hermitienne (continue) sur &. Ainsi, les (GL(d), U(d))-torseurs arithmétiques
sont en bijection naturelle avec les fibrés vectoriels hermitiens.

(1) Cela signifiera pour nous que les K, sont des sous-groupes compacts ouverts aux places finies,
et maximaux aux places infinies.
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b) En particulier, lorsque G = G,,, la famille des sous-groupes compacts maximaux
K., est canoniquement définie (ce qui permet de les omettre dans la notation) et
HY(%,G,,) = P/’;‘(%’), le groupe des classes d’isomorphisme de fibrés en droites sur
% munis d'une métrique hermitienne continue compatible & la conjugaison complexe.
Les G,,-torseurs adéliques s’identifient de méme aux fibrés inversibles munis d’une
métrique adélique. Nous rappelons cette théorie au paragraphe 1.3

¢) Dans ce texte, nous ne considérons que des G-torseurs localement triviaux pour
la topologie de Zariski. Néanmoins, lorsque G/S est un S-schéma abélien, un exemple
de G-torseur localement trivial pour la topologie étale sur Z est fourni par un schéma
abélien 7 /% obtenu par torsion de G/S, c’est-a-dire tel qu'il existe un revétement
étale B' — A de sorte que o x4 A’ soit isomorphe a G x5 %' (famille de schémas
abéliens & module constant). De tels exemples devraient bien sir faire partie d'une
étude plus générale de la géométrie d’Arakelov des torseurs que nous reportons a une
occasion ultérieure.

1.2. Propriétés

Les ensembles de classes d’isomorphisme de (G, K )-torseurs arithmétiques vérifient
un certain nombre de propriétés formelles, dont les analogues algébriques sont bien
connus. Leur démonstration est standard et laissée au lecteur.

PROPOSITION 1.2.1. — L’oubli de la structure arithmétique induit une application
H'(%, (G.K)) = H'(%,G).

On a aussi une suite exacte d’ensembles pointés :

1 - H(%, (G, Ky)) » H'(%.G) (@r K,\G,(C ))) .

—~ H'(%, (G, Ky)) » H'(%,G) > 1

Remarque 1.2.2. — Lorsque G = G, en identifiant G,,,(C)/K a R’ , nous retrouvons
la suite exacte bien connue pour Pic et Pic (cf. |14], 3.3.5 ou 3.4.2).

D’autre part, on devrait pouvoir interpréter cette suite exacte a l'aide de la mapping
cylinder category introduite par S. Lichtenbaum dans son étude des valeurs spéciales
des fonctions zéta des corps de nombres. En effet, cette catégorie est (?7!) la catégorie
des faisceaux en groupes abéliens sur, disons Spec Z U {oo}.

PROPOSITION 1.2.3. Supposons que le groupe G est commutatif. Alors, les sous-
groupes compacts mazimauz sont uniques et l’ensemble ﬁ%@, (G,Ky)) hérite d’une
structure de groupe abélien compatible avec la structure de groupe abélien sur H' (%4, G).
Dans ce cas, la suite exacte 1.2.1 est une suite exacte de groupes abéliens.
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PROPOSITION 1.2.4. — (Changement de base) Tout morphisme de S-schémas A —
A induit un foncteur des (G, Ky )-torseurs arithmétiques sur B vers les (G, Ku)-
torseurs arithmétiques sur A, compatible a 'oubli des structures arithmétiques et auz
classes d’isomorphisme.

(Changement du corps de base) Si F' est une extension de F, S’ = Specop et
si on choisit pour tout plongement compleve o' de F' Ky = Ky, on dispose d’'un
foncteur des (G, Ky)-torseurs arithmétiques sur B vers les (G xg S', Ky )-torseurs
arithmétiques sur B xg S', compatible a loubli des structures arithmétiques et aux
classes d’isomorphisme.

PROPOSITION 1.2.5. (Changement de groupe) Si p : G — G’ est un morphisme
de S-schémas en groupes et que les sous-groupes compacts mazimauzr K et K. sont
choisis de sorte que pour tout plongement complexe o, tel que p(K.) C K., il y a un
foncteur des (G, K )-torseurs arithmétiques vers les (G', K. )-torseurs arithmétiques,
compatible a 'oubli des structures arithmétiques et aux classes d’isomorphisme.

(Suite exacte courte) Soit

1-G" 56056 -1
une suite exacte de S-schémas en groupes. Soient K, K/ et K des familles de
sous-groupes compacts mazimaux pour G, G' et G" aux places archimédiennes choisis
de sorte que K" = 17" (K,) et p(K,) = K pour toute place o.

Si p admet localement une section (comme S-schéma), alors on a une suite exacte
courte canonique d’ensembles pointés :

1 0%, (6", K")) & H(%, (G, K)) & 1'%, (G, K.)) >
— H' (2, (G".K")) 5 H(%, (G, Ks)) 5 H (8, (G, K.)).

Sur Specop, 'ensemble des classes d’isomorphisme de (G, K)-torseurs arithmé-
tiques a une description trés simple, similaire a la description classique des classes d’i-
somorphisme de G-torseurs sur une courbe projective sur un corps fini. Cela généralise
la description analogue du groupe P/’i\c(Spec or) (cf. |14], 3.4.3, p. 131, ou le groupe
correspondant est noté CH (Spec o).

PROPOSITION 1.2.6. On a des isomorphismes canoniques
H'(Spec o, (G, Ko)) ~ G(F)\G(Ar)/Kg,
ou K¢ désigne le produit [ G(o,) [ K-

v finie o infinie
De méme, pour un sous-groupe compact mazimal K de G(A ), on a un isomorphisme

canonique

H'(Spec F, (Gr,K)) ~ G(F)\G(Ar)/K.

Démonstration. — Soit 7 un (G, K)-torseur arithmétique sur Spec(or), localement
trivial pour la topologie de Zariski. Commencons par fixer un section 7 € 7 (F). Si v
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est une place finie de F', comme H*(Spec o0, G) = 0, il existe une section 7, € .7 (0,),
unique modulo l'action de G(o,). Cette section se relie & 77 par un élement bien défini
g, € G(F,)/G(0,) tel que g, ' - 77 = 7,. Comme 77 s’'étend en une section de 7 sur
un ouvert de Spec oy, on a g, € K, pour presque toute place v. D’autre part, si o est
une place infinie, la section de K,\.7(C) donnée par la structure de (G, K )-torseur
arithmétique est de la forme K,g, '7p, pour un unique g, € G(C)/K,. On a ainsi
défini un élement g dans G(Ap)/Kg. 11 dépend de la section 74, mais si on choisit
une autre section, elle sera de la forme gp7r, ce qui revient a changer 1’élément g par
gr'g. Nous avons donc attaché au (G, Ko, )-torseur arithmétique 7 un élément dans
G(F)\G(Ar)/Kg qui visiblement ne dépend que de la classe d’isomorphisme de 7.

Pour la bijection réciproque, on choisit un représentant de g € G(F)\G(Ar)/Keg
ou pour toute place finie v, g, € G(F), et ou presque tous les g, valent 1. Soit alors
U le plus grand ouvert de Spec oy tel que pour toute place finie v, g, € G(U); si v
est une place finie qui ne domine pas U, soit U, = U U {v}. On définit un G-torseur
7 sur Specopr comme isomorphe a G sur U et sur chaque U,, les isomorphismes de
transition étant fixés par I'isomorphisme entre 7|y = G|y et T |y, x U = G|y induit
par la multiplication & gauche par g, '. On munit ce G-torseur de la K,-classe & gauche
K,g,; ! dans la trivialisation canonique sur I'ouvert U qui contient Spec F', d’ou un
(G, K)-torseur arithmétique sur Spec op.

On laisse au lecteur le soin de vérifier plus en détail que la classe d’isomorphisme du
(G, K )-torseur arithmétique ainsi construit est indépendante du représentant choisi,
et que cela définit effectivement la bijection réciproque voulue.

La variante adélique H' (Spec F, (G, K)) se traite de méme (et plus facilement car
on n’a pas de torseur a construire!). O

Remarque 1.2.7. On aurait aussi pu construire le G-torseur .7 associé a un point
adélique (g,) en décrétant que les sections de .7 sur un ouvert U de Spec ox sont les
v € G(F) tels que pour toute place finie v dominant U, vg, € G(o,).

1.3. Métriques adéliques

Pour la commodité du lecteur, nous rappelons la théorie des métriques adéliques sur
les fibrés en droites. C’est un cas particulier bien connu des constructions précédentes
lorsque le groupe est G,,, mais I’exposer nous permettra de fixer quelques notations.

Définition 1.3.1. Soient F' un corps valué, X un schéma de type fini sur F' et .Z un
fibré en droites sur X. Une métrique sur . est une application continue V(.ZV)(F) —
R, de sorte que pour tout x € X (F'), la restriction de cette application a la fibre en x
(identifiée naturellement & F') soit une norme.

Soient F' un corps de nombres, X un schéma projectif sur F et . un fibré en
droites sur X. La donnée d’un schéma projectif et plat X sur le spectre S = Specop
de I'anneau des entiers de F' dont la fibre générique est X définit pour toute place
non-archimédienne v de F' une métrique sur le fibré en droites .Z ® F, sur X x F,,.
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Définition 1.53.2. — On appelle métrique adélique sur .Z toute collection de métriques
(IIl,)» sur £ @ F, pour toutes les places v de F' qui est obtenue de cette fagon pour
presque toutes les places (non-archimédiennes) de F.

On note Pic(X) = H'(X, G,,) le groupe des classes d’isomorphisme de fibrés en
droites sur X munis de métriques adéliques.

Donnons nous une métrique adélique sur .#. Tout morphisme f : Y — X de F-
schémas projectifs fournit par image réciproque une métrique adélique sur f*.Z. Si YV
n’est pas projective, on obtient tout de méme de la sorte une collection de métriques
pour toutes les places de F'.

Définition 1.3.3. Si Z = (Z,(|I'll,).) est un fibré en droites sur X muni d'une
métrique adélique, on appelle fonction hauteur (exponentielle) associée a £ la fonction
H(Z;) s X(F) > Re, oo [ sl ()7,

v
s étant une section non nulle arbitraire de .Z|, ~ F.
Si s est une section globale non nulle de .%Z, on définit une fonction hauteur (expo-
nentielle) sur les points adéliques de X en posant

H(Z,s;-) : X(Ap)\ [div(s)] = Ry,  x = (), = H Isll,, ()"
v
(Dans les deux cas, le produit converge en effet car il n’y a qu’un nombre fini de termes
différents de 1.) D’autre part, elle est multiplicative en le fibré en droites (resp. en la
section), ce qui permettra de I’étendre aux groupes de Picard tensorisés par C.
Comme on a un isomorphisme canonique Pic(Spec F') = Pic(Spec ox), on remarque
que

H(Z;z) = exp(deg . Z|,)

ot deg : f/’i\c(Spec 0r) — R est 'homomorphisme «degré arithmétique» défini dans
[14], 3.4.3, p. 131. Par I'isomorphisme de loc. cit.,

Pic(Spec o) — FX\AL/K,
exp od/e\g correspond a l'inverse de la norme.

Définition 1.3.4.  Soit X une variété sur F, .Z € Pic(X)c (le groupe des fibrés
inversibles sur X munis d’une métrique adélique tensorisé par C). Si U C X est un
ouvert de Zariski, on appelle fonction zéta des hauteurs de U en .Z la somme

Zu(Z)= Y H(Zx)"
zeU(F)
quand elle existe.
Remarque 1.3.5. La convergence absolue de la série ne dépend que de la partie

réelle de .Z dans Pic(X)g (on peut comparer deux métriques adéliques). De plus,
I'ensemble des .Z € Pic(X)r pour lesquels la série converge est une partie convexe
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(inégalité arithmético-géométrique). Enfin, si .2 est ample, alors Zy(s.%) converge

pour R(s) assez grand et définit une fonction analytique de s, notée Zy (2, s) dans
I'introduction.

Les considérations analogues sont évidemment valables pour le groupe de Picard—
Arakelov Pic(2") d'un modéle propre et plat 2" de X sur Specoy.

Ezemple 1.5.6. Lorsque X est une variété torique, Pic(X)gr est un espace vectoriel
de dimension finie et il y a des métriques canoniques sur les fibrés en droites sur X
(cf. [3]), d’ott un homomorphisme canonique Pic(X)c — Pic(X)c. Batyrev et Tschinkel
ont montré dans [5] que la série définissant la fonction zéta des hauteurs du tore
converge dés que .Z ® wy est dans l'intérieur du cone effectif A (X) C Pic(X)g, le
fibré en droites . étant muni de sa métrique adélique canonique. Elle définit méme
une fonction holomorphe dans le tube sur ce cone.

1.4. Fonctions I d’Arakelov

On se place dans la situation 1.1.2. Soient % un schéma propre et fidélement plat
sur S = Specop et 7 un (G, K )-torseur arithmétique sur 4.

Pour tout b € A(F), il existe une unique section ¢, : Specop — % qui prolonge b.
On dispose ainsi d'un (G, K)-torseur arithmétique ei/j sur Spec or que I’on notera
,/7\\,,. En particulier, si ® est une fonction a valeurs complexes sur

G(F)\G(Ar)/Kg ~ H'(Specop, (G, Ku)),

la composition
H'(%, (G, K.)) 2 H (Specop, (G, Ku)) 5 C
définit un nombre complexe @(/7\|b)

Définition 1.4.1. Soient ® une fonction sur G(F)\G(Ar)/Kg et U une partie de
PB(F). On appelle fonction L d’Arakelov 1'expression

LT Ux) = S &7,

beUCHA(F)

quand la série converge (absolument).

1.4.2. Ezemple. Soit & € Pic(#) identifié au G,,-torseur arithmétique qu’il définit.
Si U est 'ensemble des points rationnels d’'un ouvert de 4, la fonction L d’Arakelov
L(g, U, ||-||’) définie au § 1.4 (||-|| désigne la norme adélique) n’est autre que la fonction
zéta d’Arakelov Zy (%, s), introduite par Arakelov et largement étudiée depuis.

En revanche, lorsque y est un quasi-caractére arbitraire de P/’ﬂé(Spec or) (pour la
topologie adélique), on obtient un nouvel invariant L(@, U, x) dont I'importance ap-
paraitra a la fin de cet article.



TORSEURS ARITHMETIQUES ET ESPACES FIBRES 11

Remarque 1.4.3. — Bien entendu, on définit de la méme facon une fonction L d’Arakelov,
L(7,U,®) attachée a un torseur adélique .7 sur % (sur F) et a une fonction ® sur
G(F)\G/(Ar)/K.

1.4.4. Fonctions 0 et (. — Dans la suite de cette section, on suppose pour simplifier
que F' = Q. Un GL(d)-torseur arithmétique E sur Spec Z (pour le choix du sous-groupe
compact maximal U(d)) n’est autre qu'un Z-module libre de rang d muni d’une norme
euclidienne, auquel on sait attacher (au moins) deux invariants :

OB 1) =Y exp(—t]el’) et ((Bs)= Y

eck ecE\{0}

1

el

5.

(Ces séries convergent respectivement pour R(t) > 0 et R(s) > d.) Comme il est bien
connu, la formule de Poisson standard implique I’équation fonctionnelle

~ 1 ~
0(B,t) = ——0(EY,1/1)
t4/2 ol (E)

~

ou vol(E) = exp(—ge\g E) est le covolume du réseau E dans F ®z R ~ R¢, EV désigne
le réseau dual (muni de la norme euclidienne duale) et oil la détermination de %2 est
usuelle pour ¢ > 0. Il est aussi bien connu comment utiliser cette équation pour en
déduire que la fonction définie par

A(E, s) = \/vol(E)C(E, s)m*/*T'(s/2)
posséde un prolongement méromorphe a C, avec des poles simples en s = 0 et s = d
de résidus respectivement —24/vol(E) et 2/1/vol(E) et vérifie 'équation fonctionnelle

A(E, s) = A(EY,d — s).

Sur un corps de nombres quelconque, il faudrait tenir compte de la différente, comme
dans P'article récent de van der Geer et Schoof |[13|. Selon ces mémes auteurs, 'invariant
H(ZA?, 1) mesure I’ effectivité du fibré vectoriel hermitien E. s interprétent en particulier
I’équation fonctionnelle de la fonction f# comme une formule de Riemann—Roch.

1.4.5. Exemples exotiques de fonctions L. — Soit maintenant & e ﬁd(@) On peut
définir des fonctions L d’Arakelov (pour une partie U C Z(F) fixée)

O(&,5) = L(E, U 0(, 1) vol()*) = Y (&, 1) vol(&1,)°

beU C B(F)

et

Z(&,5) = L(&,U, (- ds)vol(-)*) = > ((&]y,ds) vol(&],)°
beUCB(F)
et I'on a les égalités, ott chacun des membres converge absolument quand 1'autre con-
verge absolument,

-~ ~

O(&,s)=0(8Y,1—s) et Z(&s)=2Z(&EY,1—s).
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Par exemple, pour 4 = P et & = Op (1) avec la métrique « max. des coordonnées »,
on a
O(F,5) = 3 2(1 + 26(N)B(N)N' .
N>1
expression qui converge pour $(s) > 3 et dans laquelle # désigne la fonction théta de
Riemann.

§ 2. Espaces fibrés

2.1. Constructions

SITUATION 2.1.1. — Soient S un schéma, G un S-schéma en groupes linéaire et plat,
dont on suppose pour simplifier les fibres géométriquement connexes f : 2 — S un S-
schéma plat (quasi-compact et quasi-séparé), muni d’une action de G/S. Soient aussi
g: B — S un S-schéma plat ainsi qu’'un G-torseur I — A localement trivial pour la
topologie de Zariski.

CONSTRUCTION 2.1.2. On définit un S-schéma %, muni d’un morphisme 7 :
Y — B localement isomorphe a X sur A, par le changement de groupe structural

G — Alltg((%).

En effet, soit (U;);e; un recouvrement ouvert de 2 tel qu’il existe une trivialisation
¢i+ GxsU = Ty, Sii,j € I, soit gij € '(U;NU;,G) Punique section telle que
i = gijp; sur U; NU;. En particulier, les g;; donnent un cocycle dont la classe dans
H'(%,G) représente la classe d’isomorphisme du G-torseur .7. Posons %, = 2 x g U; ;

alors, g;; agit sur 2" xg (U; NUj;) et induit un isomorphisme

vij © ¥

UiﬁUj ~ % U,‘ﬁU]'

que 'on utilise pour recoller les %;.
On laisse vérifier que % est un %-schéma bien défini, c’est-a-dire qu’il ne dépend
pas a isomorphisme canonique prés du choix des trivialisations locales que 'on a fait.

LEMME 2.1.3. — On a .0y = g* f.O 4.

Remarque 2.1.4. — Dans certains cas, % hérite d’une action d’un sous-groupe de G,
notamment quand G est commutatif.

CONSTRUCTION 2.1.5. — Il résulte de la construction précédente une application
9 2N — 29

des cycles G-invariants de codimension d sur 2 dans les cycles de codimension d sur

Y.

Définition 2.1.6. — Une G-linéarisation d’un faisceau quasi-cohérent % sur 2~ est
une action de G sur V(%) qui reléve l'action de G sur 2.
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Un morphisme (resp. le produit tensoriel, le dual, la somme directe, le faisceau des
homomorphismes, des extensions, etc.) de faisceaux quasi-cohérents G-linéarisés est
défini naturellement. On note QCoh®(.2") (resp. Fib§ (2), resp. Pic”(.2Z)) la catégorie
des faisceaux quasi-cohérents (resp. de fibrés vectoriels de rang d, resp. des classes
d’isomorphisme de fibrés inversibles) G-linéarisés sur 2.

CONSTRUCTION 2.1.7. On construit un foncteur
¥ : QCoh“(Z") — QCoh (%)
qui est compatible avec les opérations standard sur les faisceaur quasi-cohérents.

Soit .% un faisceau quasi-cohérent G-linéarisé sur .2". Reprenons les notations de la
construction 2.1.2 de %. Posons .%; le faisceau quasi-cohérent sur %; = 2" x s U; image
réciproque de .# par la premiére projection. Grace a la G-linéarisation sur .#, les g;;
induisent des isomorphismes

%
%_jegj\%x((fmui) = =%\%x(UmUj)

qui fournissent par recollement un faisceau quasi-cohérent sur %.

On laisse vérifier que ce foncteur est bien défini, c¢’est-a-dire, est indépendant des
choix que I'on a fait.

Si % est un fibré vectoriel G-linéarisé de rang d sur 2, il est clair que le faisceau
obtenu sur % est aussi un fibré vectoriel de rang d.

On laisse vérifier que cette application est compatible aux opérations standard, et
en particulier qu’elle descend en une application sur les classes d’isomorphisme.

Un cas particulier des constructions précédentes est obtenu lorsque 2~ = S, auquel
cas % = 2. On notera ns l'application qui en résulte des faisceaux quasi-cohérents
sur S avec action de G/S vers les faisceaux quasi-cohérents sur Z. Bien sir, ngs :
Rep,(G) — Fiby(#) n’est autre que 'application usuelle de changement de groupe
structural (passage d’'un G-torseur a un GL(d)-torseur).

PROPOSITION 2.1.8. Le faisceau Q]%/s est muni d’une linéarisation canonique de
G. Par la construction 2.1.7, on obtient le faisceau Q}%/@.

Supposons en particulier que Z et B sont lisses sur S ; le faisceau canonique sur
Z]S est alors automatiquement G-linéarisé et on a un isomorphisme

Wy s ~ VN was) @ Twag)s.

Démonstration. — Si (U;) est un recouvrement ouvert de % avec des isomorphismes
(i, m) : w1 (U;) =~ 2 xg U; comme dans la construction 2.1.2, on a un isomorphisme
naturel
Q%&/@H”(Ui) = lerl(Ui)/U,- = 90::‘9,19(/5
qui se recollent précisément comme dans la construction 2.1.7.
Dans le cas o Z7/S et #/S sont lisses, la suite exacte

0= QY5 = Vs = Vgyg =0
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implique que
Wy s ~ det Q]gy/(@ Q Trwags = VN wez) @ T we)s. O

LEMME 2.1.9. — Si . % € QCoh“ (%), f..Z est muni d’une action naturelle de G et
9:9(F) est canoniquement isomorphe a ng (fo.F).

Démonstration. — Laissée au lecteur. O
PROPOSITION 2.1.10. —  Soient (\,a) € Pic®(Z") x Pic(#). Le fibré en droites
V(N) @ T sur ¥ est effectif si et seulement si le fibré vectoriel sur A

est effectif. Cela implique que X est effectif.

Démonstration. On a
(0N @) = m(I(N) ® a =n7(f)) ® a
d’apreés le lemme 2.1.9. O

Notons ¢ le morphisme de groupes naturel X*(G) — Pic“(2") qui associe & un
caractere y le fibré trivial muni de la linéarisation telle que G agit par y sur le second
facteur de 2" xg AL.

PROPOSITION 2.1.11. Pour tout caractere x, il existe un isomorphisme canonique
de faisceauz tnversibles
D(u(x)) ~ 70z (x).

Démonstration. — Soit (U;) un recouvrement ouvert de Z avec des isomorphismes
(i) HU;) ~ 2 x5 U;; notons g;; € G(U; NUy) tel que o; = gij - @i H(U; N
U;j) = Z . Alors, le fibré en droites ¥(1(x)) est obtenu en recollant A' x 2" x U; et
Al x 2 x U; par le morphisme (¢, 2, u) — (x(9ij)t, gij - ¥, u).

D’autre part, nz(x) est un fibré en droite sur % obtenu en recollant A! x U; et
Al Uj par () > (x(gy)t ). O

2.2. Groupe de Picard

Dans ce paragraphe, on suppose que S est le spectre d’un corps F' de caractéristique 0.
On cherche & exprimer le groupe de Picard de % en fonction de ceux de 2" et %. Pour
cela, on se place sous les hypothéses suivantes :

2.2.1. Hypotheses sur 2. — On suppose que
1. 2 est propre, lisse, géométriquement intégre ;
2. H(Z',04) =0;
3. Z(F) est non vide;

4. tout fibré en droites sur 2" est G-linéarisable, et de méme apreés toute extension
algébrique de F';
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5. Pic(%Z%) est sans torsion.

Remarque 2.2.2. — Ces hypothéses concernant 2 sont vérifiées lorsque 2 est une
variété torique projective déployée sur F', ou bien un espace de drapeaux généralisé
pour un groupe algébrique déployé sur F'.

Elles entrainent que les groupes de Picard et de Néron-Séveri de 2% coincident (voir
la preuve du lemme 2.2.3 plus bas). En particulier, Pic(2%) est sous ces hypothéses
un Z-module libre de rang fini.

D’autre part, il est prouvé dans [15], Cor. 1.6, p. 35, que sous I’hypothése (i), tout
fibré en droites sur .2~ admet une puissance G-linéarisable. (Rappelons que G est con-
nexe.) Le lecteur qui désirerait s’affranchir de cette hypothése vérifiera que de nombreux
résultats de la suite de ce texte restent vrais, au moins aprés tensorisation par Q.

LEMME 2.2.3. Si les hypothéses 2.2.1 sont satisfaites, on a les deux assertions :
- HY(Z,04)=F;
— pour tout F'-schéma connexe U possédant un point F'-rationnel, [’homomorphisme
naturel
Pic(Z") x Pic(U) — Pic(Z xp U)

est un isomorphisme.

Démonstration. La premiére proposition découle de la factorisation de Stein. Pour
la seconde, on a d’aprés [8, 8.1/4] une suite exacte

0 — Pic(U) — Pic(Z xpU) — Picy/p(U) — 0.

En particulier, Pic(2") = Picg/r(F). La nullité de H(2", @) implique que Picy/p
est de dimension 0, donc que sa composante neutre Pic%/F = 0 puisque F' est de
caractéristique nulle. Ainsi, Picy/p est discret. Alors, tout point rationnel u € U(F)
définit un homomorphisme u* : Picy/p(U) — Picg,p(F) qui par connexité est I'inverse
de I'homomorphisme naturel Picy/p(F) — Picap(U). O

THEOREME 2.2.4. Si 1 désigne le morphisme de groupes X*(G) — Pic®(Z) in-
troduit au paragraphe précédent, considérons [’homomorphisme

Pic?(2") @ Pic(#) — Pic(#), () a) — 9()\) @ m*a.
Si les hypothéses 2.2.1 sont satisfaites et si B(F) est Zariski-dense dans B, alors la

suite
0= X*(Q) "7 Pict(2) @ Pic(B) " Pie(¥) — 0

est exacte.

Démonstration.  Si t(x) est trivial dans Pic®(.2), il résulte de ce que H*(2", Oy) =
F que y est nécessairement le caractére trivial. En particulier, le premier homomor-
phisme est injectif.

La proposition 2.1.11 implique que la composition des deux premiers homomor-
phismes est, nulle.
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Si A est un fibré en droites G-linéarisé sur 2" et « est un fibré en droites sur 4,
Y(A) ® m* v est un fibré en droites sur 2 dont la classe d’isomorphisme ne dépend que
des classes d’isomorphismes de A dans Pic”(.2") et o dans Pic(4).

Supposons qu’elle soit triviale. Soit b un point F-rationnel de Z. En restreignant
I(N) @ ma a 7 '(b), la construction 2.1.5 de ¥(\) implique que \ est trivial. La G-
linéarisation de A est ainsi donnée par un caractére y de G et A = i(x). D’aprés la

! ce qui prouve

proposition 2.1.11, on a ¥(A\) = 7*nz(x). Par suite, 7*a ~ 7*n(x)~
I'exactitude au milieu.

Montrons alors que la derniére fleche est surjective. Soit £ un fibré en droites sur
2% . On peut recouvrir Z par des ouverts connexes non vides U; assez petits de sorte

que
7T7](UZ') ~Z Xp Uz
La restriction de .Z a w~(U;) fournit alors pour tout i un élément de

Pic(2 xp U;) = Pic(2) x Pic(U;)

puisque chaque U; a un point F-rationnel. On en déduit d’abord pour tout 7 un élément
de Pic(Z") qui, comme on le voit en les restreignant a U;NU;, ne dépend pas de i. Notons
le A. Finalement, il existe un faisceau inversible «; € Pic(U;) tel que la restriction de
L an Y U;) =~ Z xr U est isomorphe a pi A @ pja;. Quitte a raffiner le recouvrement
(U;), on peut de plus supposer que «; ~ Oy.,.

Choisissons une G-linéarisation sur A. On constate que la restriction de .Z @ ¥(\) ™!
a m1(U;) est triviale. Si l'on choisit des trivialisations on obtient en les comparant sur
7 (U; N U;) un élément de

L(x Y(U;nU;),04) =T(UNU;, O)

car H'(Z",0y) = F. Ces éléments définissent un 2-cocycle de Cech sur % a valeurs
dans le faisceau @', d’oit un fibré en droites o € Pic(4) tel que

LRI\ ~1*a.

Autrement dit, .Z appartient a 'image de 'homomorphisme 9 ® 7*.
Le théoreme est ainsi démontré. O

COROLLAIRE 2.2.5. Supposons vérifiées les hypothéses 2.2.1 et supposons que B(F')
est Zariski-dense dans 9. On dispose alors de suites exactes de Z|Gal(F /F)]-modules :

(2.2.6) 0 — X*(G%) — Pic“(2%) — Pic(2%) — 0

(2.2.7) 0 — X*(G#) — Pic%(2%) @ Pic(%5) — Pic(%) — 0

(2.2.8) 0 — Pic(%y) = Pic(%;) — Pic(2;5) — 0.

Démonstration. — 11 suffit d’appliquer le théoréme 2.2.4 sur F, et de constater que la

suite exacte obtenue est Gal(F/F)-équivariante. O
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THEOREME 2.2.9. — Supposons vérifiées les hypotheses 2.2.1, que B(F) est Zariski-
dense dans A, et supposons de plus que G est un groupe algébrique F-résoluble®, un

fibré en droites sur % est alors effectif si et seulement s’il s’écrit comme ['image d’un
couple (N, o) € Pic?(Z) x Pic(B) ou A et o sont effectifs.

Démonstration.  Soient A € Pic?(2") et a € Pic(4) effectifs. On veut montrer que
Y(A) @ T est effectif. 11 suffit de prouver que ¥(\) est effectif, et pour cela, il suffit
de prouver qu’il existe un diviseur de Cartier G-invariant D sur .2~ tel que 'on ait
un isomorphisme de fibrés en droites G-linéarisés, A ~ &'(D). Autrement dit, il faut
montrer que la représentation de GG sur f,\ admet une F'-droite stable, ce qu'implique
le théoréeme de point fixe de Borel puisque G est F-résoluble.

Soit maintenant .Z un fibré en droites effectif sur . Comme G est connexe et
Pic(G) = 0, la démonstration de la proposition 1.5, p. 34, de |15] implique que tout
fibré inversible sur 2" est G-linéarisable. Le théoréme 2.2.4 implique donc qu’il existe
A € Pic (%) et a € Pic(4) tels que £ = J(\) @ 7" .. D’aprés la proposition 2.1.10,
nz(f)) @ a est effectif. Comme G est F-résoluble, toute représentation linéaire de G
est extension successive de représentations de dimension 1. Cela implique que ng(f.\)
est extension successive de fibrés en droites; notons les A;. Alors, 77 (f.\) ® « est
extension des )\; ® a, et leffectivité de .Z implique que I'un au moins des \; ® « est
effectif.

Or, \; est associé a un caractére y; de GG; si on remplace A par le fibré en droite
G-linéarisé A ® «(x;)~" ou laction a été divisée par y;, on représente ainsi . sous la
forme

L ~I9A2u(xi) )\ ®a),

ce qui conclut la démonstration, A®:(y;) ' étant isomorphe a A comme fibré en droites,
donc effectif. O

2.3. Métriques hermitiennes

Dans ce paragraphe, nous étendons la construction 2.1.7 en supposant que S est le
spectre d’un corps de nombres et en faisant intervenir des métriques hermitiennes.

Définition 2.3.1. — Soit G un groupe de Lie connexe sur C; fixons un sous-groupe
compact maximal K de G. Soit X une variété analytique complexe munie d’une action
de G.

Si & est un fibré vectoriel complexe G-linéarisé sur X, on dit qu'une métrique her-
mitienne est K-invariante si Uaction de K sur V(&) x X est isométrique.

On remarquera que les constructions usuelles (tensorielles) de fibrés hermitiens préser-
vent la K-invariance des métriques hermitiennes.

(?)Cela signifie que G est extension itérée de G,, et G,, autrement dit, que G est résoluble et
déployé sur F.
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Remarque 2.3.2. — Avec les notations de la définition précédente, tout fibré vectoriel
sur X admet une métrique hermitienne K-invariante : si ||-||, est une métrique hermi-
tienne sur &, on peut en effet choisir une mesure de Haar sur K et poser pour toute
section s,

s (2) = / Ik - 5| ()2 dk.
J K

Rappelons I’énoncé de la situation 1.1.2 :

SITUATION. Supposons que S est le spectre de 'anneau des entiers d’un corps de
nombres F' et que G est un S-schéma en groupes linéaire connexe. Fizons pour tout
plongement complexe de F o € S(C) un sous-groupe compact mazimal K, de G(C) et
notons K, la collection (Ky),.

Définition 2.3.3. — Supposons que G agit sur un S-schéma plat 2. On appelle fi-
bré vectoriel hermitien (G, Ky)-linéarisé un fibré vectoriel & sur 2" muni d’une G-
linéarisation et, pour tout o € S(C), d'une métrique hermitienne sur le fibré vectoriel
& ®, C sur Z'(C) qui est K, -invariante.

On note ﬂ?K"O(%) la catégorie des fibrés vectoriels hermitiens (G, K )-linéarisés
de rang d sur 2. Si d = 1, on notera PicCKe (Z) le groupe des classes d’isomorphisme
de fibrés vectoriels hermitiens de rang 1 (G, K )-linéarisés sur 2"

SITUATION 2.3.4. Plagons-nous dans la situation 1.1.2. Soit f : 2 — S un S-
schéma plat, muni d’une action de G/S. Soient aussi g : B — S un S-schéma plat
ainsi qu'un (G, K)-torseur arithmétique T sur % (voir la définition 1.1.3).

CONSTRUCTION 2.3.5. — Le foncteur 9 : Fib§ (Z") — Fiby(%) s’étend en un fonc-
teur

9 : Fibe < (27) = Fiby(#)

qui est compatible avec les opérations tensorielles standard sur les fibrés vectoriels her-
mitiens (G, K )-linéarisés (resp. les fibrés vectoriels hermitiens).

Soit % un fibré vectoriel hermitien (G, Ko )-linéarisé sur 2. Soit o € S(C). De
maniére analogue a ce qu’on a fait dans la construction 2.1.5, choisissons un recou-
vrement ouvert (U;) de %,(C) pour la topologie complexe de sorte que la restriction
du torseur .7 a Uj; est triviale et qu’il existe des trivialisations dont les fonctions de
transistions associés g;; € I'(U; N U, G) soient a valeurs dans K,. Le choix de telles
trivialisations induit des isomorphismes

7T71(Ui) ~ (%(C) X Ui, 19(:9)“—1([]7:) ~ p?g

Pour tout i, on a ainsi une métrique hermitienne naturelle sur 9(.%)|,-1(y,) par image
réciproque de la métrique hermitienne sur .%#. Comme g;; € K, et comme la métrique

hermitienne sur .# est K,-invariante, les métriques hermitiennes sur J(.%)|y,np, in-

duites par U; et par U; coincident, d’oti une métrique hermitienne bien définie sur

I(F).
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Enfin, la proposition 2.1.11 admet une généralisation avec métriques hermitiennes :

PROPOSITION 2.3.6. — Pour tout caractére x € X*(G), lisomorphisme canonique
de la proposition 2.1.11 est une isométrie.

Démonstration. — Si 'on reproduit la démonstration de la proposition 2.1.11 pour
un recouvrement ouvert pour la topologie complexe (les g;; étant donc dans le sous-
groupe compact maximal), chacun des fibrés est défini par recollement de la méme
maniére, et les métriques sur ces fibrés sont définies de sorte que cette identification
soit une isométrie. Il en résulte que I'isomorphisme de cette proposition, qui consistait
en l'application évidente sur les ouverts .2 x U, est une isométrie. O

2.4. Torsion des métriques adéliques

Plagons nous alors dans la situation 2.3.4, toujours avec S = Specop. Soit .Z un
fibré en droites hermitien (G, K )-linéarisé sur 2. La restriction de .Z & Zr est ainsi
munie d’'une métrique adélique naturelle.

PROPOSITION-DEFINITION 2.4.1. — Soitg = (g,)v € G(Ar). On définit une métrique
adélique sur £, appelée métrique adélique tordue par g en posant pour toute place v
de F, tout point x € 2 (F,) et toute section s € £,

||S||:) ('Z‘) - ||g’u . S||1, (.(]11 . .Z')

Démonstration. Il est clair que pour toute place v, on a défini une métrique v-adique.
L’ensemble des places non-archimédiennes v telles que g, € G(0,) est par définition de
complémentaire fini. Pour ces places, |s||! (x) = ||s||, (¥) car g, étant un automorphisme
de .Z sur Speco,, la section g, - s est entiére en g, - = si et seulement si la section s est
entiére en x. Ainsi, hors d’un nombre fini de places, la nouvelle collection de métriques
v-adiques est définie par un modéle entier. Elle définit donc une métrique adélique. [

Remarquons que G(Ay) n’agit en fait qu’a travers G(Ap)/Ke.

Ezemple 2.4.2. Soit E un F-espace vectoriel de dimension finie et notons P ’espace
projectif des droites de E. Faisons agir GL(E) de maniére naturelle sur P. Le faisceau
Op(1) posséde une GL(F)-linéarisation naturelle dés qu’on a remarqué qu’une section
de Op(—1) en un point x € P correspond a un point de la droite Dy définie par x.
De maniére explicite, I'espace vectoriel des sections globales de &'(1) sur P s’identifie
au dual E* de E sur lequel la GL(E)-linéarisation sur ¢(1) induit la représentation
contragrédiente ¢ +— @ o g L

Supposons que E est muni d’'une métrique adélique. On a alors une métrique adélique

sur Op (1) par la formule

ol o = 29O e g e py for.

e

v
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Il résulte de la formule du produit que la hauteur exponentielle d'un point x € P(F)
est donnée par la formule

H(x)=[]llell,. € D\ {0}.

Soit alors (g,), € GL(F)(Ar). La métrique v-adique tordue par g, sur &p(1) est
ainsi donnée par

lol ) = 129 o B ee Do\ {0},

190 - ell,

Autrement dit, la hauteur exponentielle tordue de x € P(F) est définie par I'expression
H'(x) =[] llg,-ell,, € Dc\{0}.

Cette formule était donnée comme définition de la hauteur tordue par Roy et Thunder
dans |19].

Dans certains cas, on peut comparer la métrique adélique initiale sur £ et la
métrique adélique tordue.

PROPOSITION 2.4.3. — Supposons que s est une section globale de & sur Zr dont
le diviseur est G-invariant. Il existe alors un unique caractére x € X*(G) F-rationnel
(le poids de s) tel que pour tout g € G, g-s = x(g)s.

Soit g € G(Ay), et considérons L' la métrique adélique tordue par g. Si v € X (F)
n’appartient pas au diviseur de s, on a la formule

H(Z:2) = [[ x(9))," H(Z.s.8 ).

Démonstration. — Comme le diviseur de s est G-invariant, il existe pour tout g € G
un élément x(g) # 0 tel que g -s = x(g)s. Il est alors clair que g — x(g) définit un
caractére F-rationnel (algébrique) de g.

D’autre part, on a pour toute place v de F',

Isll, () = llgo - sll,, (902) = lIx(g0)sll, (9u7) = Ix(90)], lIsll, (g02)-
La proposition en découle en prenant le produit. O

Remarque 2.4.4. Bien siir, dans 1’énoncé précédent, il suffit de supposer que la sec-
tion s est propre pour les éléments g,. En particulier, si G’ est un sous-groupe de G tel
que div(s) est invariant par G’, on aura une formule du méme type pour les métriques
adéliques tordue par un élément de G(Ap).

Remarque 2.4.5 (Choix des sections). La formule précédente permet de comparer
la restriction & G(Ar)Z (F) des hauteurs sur les points adéliques associées a deux
sections s; et sy de poids respectivement x; et xo. En effet, six = g-z € G(Ar) 2 (F),
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on a, .Z' désignant la métrique adélique tordue par g,

H(Z,s1;x H|X1 g)l, H(Z ) =T Ixixa ' (90)], H(Z,s2:%).

Appliquée a des sections de méme poids x, cela permet d’étendre les fonctions H(?, s;)
au complémentaire dans G(Ap)Z (F) de l'intersection des diviseurs des sections de
poids x.

Remarque 2.4.6. — Lorsque 2~ est une variété torique, compactification équivariante
lisse d’un tore GG, tout fibré en droites effectif . qui est G-linéarisé posséde une unique
droite F-rationnelle de sections pour lesquelles G agit par le caractére trivial. On peut
utiliser cette section pour définir une hauteur sur les points adéliques du complémen-
taire de son diviseur, donc en particulier sur G(Ay).

Expliquons maintenant comment la torsion des métriques adéliques intervient dans
nos constructions. Nous allons préciser un peu la situation 2.3.4 en faisant désormais
I’hypothése suivante :

SITUATION 2.4.7. Nous faisons les hypothéses contenues dans la situation 2.3.4.
En particulier, S est le spectre de ['anneau des entiers de corps de nombres F'. De plus,
supposons que X et B sont propres sur S.

Soit b un point F-rationnel de 4. Comme £ est propre sur S, il en résulte une unique
section €, : S — 2 qui prolonge b. Toute trivialisation du Gg-torseur Gp ~ 7|,
sur Spec F' (il en existe car c¢’est un torseur pour la topologie de Zariski) induit un
isomorphisme 27 ~ % |,. Fixons un tel isomorphisme ¢. Si A € Pic®(2Z"), ¢*9()\) est
un fibré en droite sur Z% canoniquement isomorphe a A. En revanche, les métriques
(adéliques) sont en général distinctes.

Soit v une place finie de F', notons o, le complété de 'anneau local de or en wv.
Soit g, : Spec 0, — & la restriction de g, & Speco,. Alors, €;.7 est un G ® 0,-torseur
sur Speco,, et est donc trivialisable. Ainsi, £;% est isomorphe a Z ® o0,. Fixons
un isomorphisme ¢, induit par une tr1v1ahsat10n du torseur. Il existe par définition
gy € G(F,) tel que

SOZ(;OUO[.(]'UL =%®E1_>W|b®}?m

[gn] désignant 1'automorphisme de 2" ® F,, défini par g,. La définition de la métrique
v-adique associée & un modéle montre que g, est une isométrie. Ainsi, en tant que fibré
inversible métrisé sur 2" ® F,, ¢*(9())) est isomorphe (isométrique) a [g,]*\.

Soit maintenant v une place a l'infini. Comme on s’était fixé une trivialisation du
G(C)/K,-fibré sur #(C), on dispose d'un isomorphisme ¢, bien défini modulo K, qui
par définition ne modifie pas les métriques. LLa comparaison entre @ et ¢, se fait comme
précédemment par un élément g, € G(C).

Il en résulte le théoréme :
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THEOREME 2.4.8. — Soit g = (9,)» € G(AR) l’élément du groupe adélique que nous
venons d’introduire. Il représente la classe de la restriction o b du (G,K)-torseur
arithmétique 7 dans l’isomorphisme de la proposition 1.2.6. De plus, la métrique
adélique image réciproque sur p*I(A\) s’identifie a la métrique adélique tordue par g
sur .

2.5. Nombres de Tamagawa

Commengons par rappeler la définition, due a Peyre (cf. [16] et [18]) des nombres
de Tamagawa associés a une métrique adélique sur le faisceau anticanonique.

2.5.1. Hypotheéses. — Soit X une variété propre, lisse et géométriquement intégre sur
F telle que H'(X, Ox) = H*(X, Ox) = 0 et que X (F) soit Zariski-dense dans X . Sous
ces conditions, Pic(X7)q est un Q-espace vectoriel de dimension finie.

2.5.2. Définition. — Munissons le fibré canonique wx d’une métrique adélique. Pour
toute place v de F', une construction classique de Weil fournit une mesure py, sur
X (F,) a partir de la métrique v-adique sur wy. Notons L, (s, Pic(X)) le facteur local
en v de la fonction L d’Artin de la représentation de Gal(F/F) sur Pic(X7)q. Le
théoréme de Weil sur la mesure de X (F,) pour py, et le théoréme de Deligne sur les
conjectures de Weil concernant le nombre de points rationnels des variétés sur les corps
finis ont la conséquence suivante : il existe un ensemble fini ¥ de places de F', contenant
les places archimédiennes, tel que

H KX X H 1 PIC ))MX 1))

vEX vgY

définisse une mesure piyy sur X (Ag) pour laquelle X(Ar) a un volume fini.

Soit Ls(s, Pic(X7)) = [],gn Lu(s, Pic(X7)) la fonction L partielle de Pic(X). Le
produit eulérien converge en effet pour R(s) > 1 et Ly a un pole en s = 1 d’ordre la
dimension t des invariants sous Gal(F/F) de Pic(X7)q. Notons

L3,(1, Pie(Xg)) = lim(s — 1)" L(s, Pic(X7)).

On définit alors le nombre de Tamagawa de X (associé a la métrique adélique choisie
sur wy) par

7(X) = L (s, Pic(X5)) / px s

JX(F)
Il est facile de vérifier qu’il ne dépend pas de 'ensemble fini de places ¥ choisi.
Nous aurons a utiliser le lemme suivant.

LEMME 2.5.3. — Supposons réalisées les hypothéses 2.5.1. Soit U un ouvert non vide
de X. Notons U(F) l'adhérence de U(F) dans [[, U(F,) pour la topologie produit (qui
est la topologie induite sur [[, U(F,) par la topologie adélique de X (Ar)). Alors, on a

l’égalité
/ Ux s = / Uxs-
JUF) JX(F)
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Démonstration. — Tout point x = (z,) € [[, U(F,) posséde par définition un voisinage
(pour la topologie induite) contenu dans [, U(F,). Par suite, si une suite (™) de
points de X (F) converge vers x, a partir d'un certain rang, =(™ appartient a U(F,)
pour toute place v, et donc 2™ € U(F). Cela montre que U(F) = X (F)N[[, U(F,).
Ainsi, le complémentaire de U(F) dans X (F) est contenu dans X (Az) \ [[, U(F,),

donc dans la réunion
U\ [ X
v wWH#Y

La définition de la mesure px, implique que (X \U)(F,) est de mesure nulle pour jix .
On voit donc que X (F) \ U(F) est réunion dénombrable d’ensembles de mesure nulle
pour la mesure de Tamagawa sur X (Ar), donc est de mesure nulle. O

On se place maintenant dans la situation 2.3.4, S étant le spectre Spec o de 'anneau
des entiers d'un corps de nombres F.

LEMME 2.5.4. Si Zr et Br satisfont les hypothéses 2.5.1 nécessaires pour la défi-
nition des nombres de Tamagawa, %5 les satisfait aussi.

Démonstration. Que %} soit lisse, propre et géométrique intégre est clair. D’autre
part, les points rationnels de %% sont denses dans chaque fibre au-dessus d’un point
rationnel de %, lesquels sont supposés denses dans %r. Comme % — ABr est pro-
pre, un argument élémentaire de platitude puis de dimension implique que les points
rationnels de %% sont Zariski-denses.

D’autre part, les hypothéses sur 2 impliquent que R°m, 0, = O, et que

Rlﬂ'*ﬁgyp = RQW*ﬁgyF =0.

La suite spectrale des foncteurs composés implique que HY(0,.) est un quotient de
Dy T (Br, R 7.0y,). Si j=1ousij=2, onaH(Rnr,) =0 puisque R/, = 0.
Sij=0etie {1,2}, H(R"r,) = H(0z,) = 0 en vertu des hypothéses faites sur
Br. O

Supposons donc que .Zr et B satisfont ces hypothéses 2.5.1. Le faisceau canonique
sur % admet d’aprés la proposition 2.1.8 une décomposition

wy =V we [S) @ T'was.

Choisissons une structure de fibré en droite hermitien (G, K) linéarisé sur w4 /g com-
patible a la linéarisation canonique sur wy- /¢ (autrement dit, pour toute place archimé-
dienne o, une métrique hermitienne K,-invariante sur 2" x, C). Choisissons aussi une
métrique hermitienne sur wg/g. Il en résulte une métrique hermitienne canonique sur
wy s par la construction 2.3.5. Le fait de disposer d’'un modele sur oy induit de plus
des métriques v-adiques au places finies, d’ott des métriques adéliques sur wg,., sur wg,
et sur wy,,.
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THEOREME 2.5.5. — Muni de ces métriques adéliques, on a l’égalité
T(g/p) — T(%p)’]’(:@p).

Démonstration. — Soit U un ouvert de Zariski non vide de A tel que 7|y ~ G xgU.
Notons V = 71 (U) C %, de sorte que V est un ouvert non vide de #|r isomorphe
a Zr x U, et que dans cette décomposition, la mesure

(256) /LZV,U|7r*1(U) = Hxw ® Haw|U-

Pour toute place v de F, il résulte du corollaire au théoréme 2.2.4 la relation entre
facteurs locaux

(2.5.7) L,(s,Pic(#5)) = L, (s, Pic(Z%)) L, (s, Pic(%r)).

Alors, les équations (2.5.6) et (2.5.7) impliquent que la restriction de la mesure de
Tamagawa de 2" (Ap) a [[, V(F,) s’écrit comme le produit

N@/,2|Hv V() = by @ has|T], U(F)-

Or, si U(F) est 'adhérence de U(F') dans le produit [[, U(F,), 'adhérence de V (F')
dans [[, V(F,) s'identifie & 2 (F) x U(F). Intégrons py x sur V(F); en utilisant le

lemme 2.5.3, on obtient
/ Hy > = / Ha s X / Haz 5.
JT ST JBF)

L’équation (2.5.7) implique aussi que pour R(s) > 1,
Ls (s, Pic(%%)) = Lx(s, Pic(2%))Lx (s, Pic(%5)).

Par suite, 'ordre du poéle en s = 1 pour la fonction Ly, de % est la somme des ordes
des poles pour 2" et %, et donc

L%(1, Pic(%)) = Li(1, Pic(25)) La(1, Pic(%5)).

Le théoréme est donc démontré. O

2.6. Torseurs trivialisants

Le paragraphe 2.4 a montré que le phénomeéne de torsion des métriques adéliques
intervient naturellement dans nos constructions. Cependant, la hauteur tordue n’est
facile a calculer que lorsqu’il existe des sections propres pour ’action du groupe. I’ex-
istence de sections canoniques permet comme on I'a vu de disposer d'une fonction
hauteur sur les points adéliques.

Les torseurs trivialisants que nous introduisons ici ont pour fonction de fournir
au prix d’un changement de variété  d’une droite canonique de sections.

Dans ce paragraphe, nous nous placons sur un corps F. Supposons que PicG(,%) ~
Pic(Z") x X*(G) est un groupe de type fini.

Soit H un groupe algébrique sur F, 27 — % un H-torseur qui induise par fonc-
torialité covariante des torseurs un isomorphisme X*(H) — Pic(:Z"). On suppose de
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plus que 27 est muni d’une action de G qui reléve 'action de G sur 2" et qui com-
mute a 'action de H. On peut construire un tel 27 en fixant \;,...,\, des fibrés
inversibles G-linéarisés sur .2~ dont les classes forment une base de Pic(Z"). On pose
alors 27 = [, (V(AY) \ {0}) et H = G,

Soit 7' le plus grand quotient de G tel que ’homomorphisme naturel X*(7') — X*(G)
est un isomorphisme (C est le quotlent de GG par l'intersection des noyaux des caractéres
de G). On pose X = % xTetm: 2 — 2 la composition de la premiére projection de
de la projection % — 2. C’est un H x T-torseur muni d’une action de G (diagonale).

Ezemple 2.6.1. Supposons que 2~ = P\G est un espace de drapeaux généralisé
pour un groupe algébrique simplement connexe semi-simple G sur F. On a Pic(Z") ~
X*(P) et G — Z est un P-torseur qui induit un isomorphisme X*(P) ~ Pic(Z"). De
plus, T'= {1}. Ainsi, on peut prendre X =G.

Ezemple 2.6.2. Lorsque le groupe G est trivial, on retrouve les torseurs universels
introduits dans le contexte des hauteurs par Salberger et Peyre (cf. [20], [18]).

FAIT 2.6.3. Si A € Pic%(Z), X admet une F-droite canonique de sections G-
invariantes.

Remarque 2.6.4. L’isomorphisme canonique Pic®(.2") ~ X*(H x T) = X*(H) x
X*(G) admet une réciproque qu’il est facile d’expliciter. En effet, soient xy et yg deux
caractéres de H et G respectivement. On définit un fibré inversible G-linéarisé sur z
comme suit, : on quotiente X x Al = % x T x A' par I'action de H donnée par

h-(Z,t,u) = (h-Z,t,xug(h) 'u), heH, (Z,tu)c Zix T x Al
et la G-linéarisation provient de 1’action de GG sur 2 x A fournie par
(i,t,U)(]:((]%,qt,xa]((])’d), qEGJ (i,t,U)Ej\J%XTXA]

Par la construction 2.1.2, on obtient ainsi un F-schéma % avec une projection % —
% . Supposons que % provient de la situation 2.3.4, on dispose en particulier de fibrés
inversibles sur %} munis de métriques adéliques associés aux fibrés inversibles (G, K)-
linéarisés sur .2". En particulier, on obtient sur % des fibrés inversibles avec métriques
adéliques. Le fait nouveau est que 'on dispose d’une hauteur sur les points adéliques de
% associée a ces fibrés inversibles. En effet, une fois remontés a %, ces fibrés inversibles
possédent une droite de sections F-rationnelle canonique.

2.7. Exemples

2.7.1. Action d’un tore. Pour les applications auxquelles notre deuxiéme article
sera consacré, on considére 1’action d’'un tore T'.

Un tel tore peut agir non seulement sur des variétés toriques, mais aussi sur des
variétés de drapeaux généralisées P\G, via un morphisme 7' — G.

Dans le cas des variétés toriques sur un corps de nombres F', on dispose de modéles
canoniques sur Spec o (si le tore est déployé), et de métriques hermitiennes a l'infini
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canoniques sur les fibrés en droites. Pour tout plongement o de F' dans C, les points
complexes T'(C) du tore admettent un unique sous-groupe compact maximal K, et les
métriques hermitiennes introduites sont automatiquement K, -invariantes. On obtient
ainsi des fibrés hermitiens (7, K)-linéarisés (cf. par exemple [3]).

Dans le cas des variétés de drapeaux P\G, une fois fixé des sous-groupes compacts
maximaux de G aux places a I'infini, il est aussi possible de munir les fibrés en droites P-
linéarisés de métriques hermitiennes invariantes pour ces sous-groupes compacts max-
imaux et donc pour le sous-groupe compact maximal de T(C). Aux places finies, les
métriques v-adiques qu’on obtient admettent une description analogue en termes de la
décomposition d'ITwasawa (cf. [12]).

D’autre part, un T-torseur sur un F-schéma %, du moins quand le tore est déployé, a
la donnée d’un morphisme X*(T) — Pic(4), et donc, une fois fixé une base de X*(7T),
a des fibrés en droites Ay, ..., \; € Pic(Z4). (On a noté ¢t = dim7.) La trivialisation des
T/ K ,-torseurs correspond, ainsi qu’on 1’a dit aprés la définition 1.1.3 d’un T-torseur
arithmétique, a une métrique hermitienne sur les fibrés en droites ;.

Dans le cas ou T' agit sur une variété torique, on obtient alors par la construction 2.3.4
une famille de variétés toriques sur 4. On peut notamment compactifier ainsi une
variété semi-abélienne .7 — 4 et construire sur la compactification % des fonctions
hauteurs canoniques. Dans ce cas, les \; sont des fibrés en droites algébriquement
équivalent & 0 sur une variété abélienne 4. Si on a pris soin de les munir, ainsi que
tous les fibrés en droites sur 4, de leur métrique adélique canonique, pour laquelle le
théoréme du cube est une isométrie, on obtient sur % les hauteurs canoniques, au sens
de la hauteur de Néron Tate. (Dans ce cas particulier, cf. [9] ou I'on trouvera cette
construction dans un esprit analogue, et [11], ou est donnée une construction «a la
Tate» de ces hauteurs canoniques, due a M. Waldschmidt).

Dans le cas ot T' agit sur une variété de drapeaux généralisée, on obtient la variété
de drapeaux (généralisée) d’un fibré vectoriel sur % construit naturellement & partir
des A;. Ce cas était étudié (lorsque la base est aussi une variété de drapeaux) dans la
thése de M. Strauch (]|21]).

2.7.2. Variétés de drapeaur. — Tout fibré vectoriel sur £ donne lieu a des variétés
de drapeaux généralisées. Dans ce cas, le groupe G est le groupe linéaire GL(d), 2~
est une varieté P\G. On identifie en effet un fibré vectoriel de rang n sur # a un
GL(d)-torseur. Si 'on choisit comme sous-groupe compact a U'infini le groupe unitaire
U(d), la trivialisation a U'infini du G/K-fibré correspond a une métrique hermitienne
sur le fibré vectoriel.

Il est a noter que cette situation se retrouve, mais dans l'autre sens, dans le calcul
du comportement de la fonction zéta des hauteurs d’'une puissance symétrique d’une
courbe € de genre g > 2. Dans ce cas en effet, si d > 2¢g — 2, Sym?% est un fibré
projectif au-dessus de la jacobienne de % associé a un fibré vectoriel de rang d+1 — g¢.

2.7.3. Action d’un groupe vectoriel. Dans [10] et [9], on étudie des compactifica-
tions d’extensions vectorielles de variétés abéliennes. Expliquons comment ce travail
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s’insére dans les constructions de cet article lorsque, pour simplifier les notations, on
prend G = G,.

Un G,-torseur sur 4 correspond a une extension de &' par lui-méme, soit un fibré
vectoriel & de rang 2 sur #. La trivialisation du G,-torseur a l'infini correspond a
un scindage € de I'extension sur %(C). D’autre part, G, agit naturellement sur P’
(via son plongement dans GL(2), a — (} ¢)). On obtient ainsi une compactification du
G,-torseur en une famille de droites projectives sur 4.
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