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tionCet arti
le est le premier d'une série dont le thème prin
ipal est l'étude des hauteurssur 
ertaines variétés algébriques sur un 
orps de nombres. On voudrait notamment
omprendre la distribution des points rationnels de hauteur bornée.Pré
isément, soient X une variété algébrique proje
tive lisse sur un 
orps de nom-bres F , L un �bré en droites sur X et HL : X(F ) ! R�+ une fon
tion hauteur(exponentielle) pour L . Si U est un ouvert de Zariski de X, on 
her
he à estimer lenombre NU(L ; H) = #fx 2 U(F ) ; HL (x) � Hg



2 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELlorsque H tend vers +1. L'étude de nombreux exemples a montré que l'on peut s'at-tendre à un équivalent de la formeNU(L ; H) = �(L )Ha(L )(logH)b(L )�1(1 + o(1)); H ! +1(�)pour un ouvert U 
onvenable et lorsque par exemple L et !�1X (�bré anti
anonique)sont amples. On a en e�et un résultat de 
e genre lorsque X est une variété de dra-peaux [12℄, une interse
tion 
omplète lisse de bas degré (méthode du 
er
le), une variététorique [5℄, une variété horosphérique [22℄, et
. On dispose de plus d'une des
ription
onje
turale assez pré
ise des 
onstantes a(L ) et b(L ) en termes du 
�ne des diviseurse�e
tifs [2℄ ainsi que de la 
onstante �(L ) ([16℄, [6℄).En fait, on étudie plut�t la fon
tion zêta des hauteurs, dé�nie par la série de Diri
hletZU(L ; s) = Xx2U(F )HL (x)�sà laquelle on applique des théorèmes taubériens standard. Sur 
ette série, on peut seposer les questions suivantes : domaine de 
onvergen
e, prolongement méromorphe,ordre du premier p�le, terme prin
ipal, sans oublier la 
roissan
e dans les bandes ver-ti
ales à gau
he du premier p�le. Cela permet de proposer des 
onje
tures de pré
isionvariable.Il est naturel de vouloir tester la 
ompatibilité de 
ette 
onje
ture ave
 les 
onstru
-tions usuelles de la géométrie algébrique. Par exemple, on n'arrive pas à démontrer
ette 
onje
ture pour un é
latement X 0 d'une variété X pour laquelle 
ette 
onje
tureest 
onnue. Même pour un é
latement de 4 points dans le plan proje
tif, on n'a pas derésultat 
omplet !Dans 
et arti
le, nous 
onsidérons 
ertaines �brations lo
alement triviales 
onstru-ites de la façon suivante. Soient G un groupe algébrique linéaire sur F agissant sur unevariété proje
tive lisse X, B une variété proje
tive lisse sur F et T un G-torseur surB lo
alement trivial pour la topologie de Zariski. Ces données dé�nissent une variétéalgébrique proje
tive Y munie d'un morphisme Y ! B dont les �bres sont isomorphesà X. On donne au � 2.7 de nombreux exemples � 
on
rets � de variétés algébriquesprovenant d'une telle 
onstru
tion. Le 
÷ur du problème est de 
omprendre le 
om-portement de la fon
tion hauteur lorsqu'on passe d'une �bre à l'autre, 
omportementvraiment non trivial bien qu'elles soient toutes isomorphes.Pour dé�nir et étudier de façon systématique les fon
tions hauteurs sur Y , on estamené à dégager de nouvelles notions dans l'esprit de la géométrie d'Arakelov. Ap-paraissent notamment les notions de G-torseur arithmétique au � 1.1.3, ainsi que ladé�nition de la fon
tion L d'Arakelov atta
hée à un tel torseur arithmétique et à unefon
tion sur le groupe adélique G(AF ) invariante par G(F ) et par un sous-groupe 
om-pa
t 
onvenable (� 1.4). Elles généralisent les notions usuelles de �bré inversible métriséainsi que la fon
tion zêta des hauteurs introduits par S. Arakelov [1℄.
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i fait, on peut voir que les fon
tions hauteurs d'une �bre Yb de la proje
tionY ! B di�èrent de la fon
tion hauteur sur X par 
e que nous appelons torsionadélique, dans laquelle on retrouve expli
itement la 
lasse d'isomorphisme du G-torseurarithmétique Tb sur F (� 2.4).Dans un deuxième arti
le, nous appliquerons 
es 
onsidérations générales au 
asd'une �bration en variétés toriques provenant d'un torseur sous un tore pour l'ouvert Udé�ni par le tore. Le prin
ipe de l'étude généralise [22℄ et est le suivant. On 
onstruit leshauteurs à l'aide d'un prolongement du torseur géométrique en un torseur arithmétique,
e qui 
orrespond en l'o

uren
e au 
hoix de métriques hermitiennes sur 
ertains �brésen droites. On é
rit ensuite la fon
tion zêta 
omme la somme des fon
tions zêta des�bres ZU(L ; s) = Xb2B(F ) Xx2Ub(F )HL (x)�s = Xb2B(F )ZUb(L jUb; s):Chaque Ub est isomorphe au tore et on peut ré
rire la fon
tion zêta des hauteurs deUb à l'aide de la formule de Poisson adélique. De 
ette façon, la fon
tion zêta de Uapparaît 
omme une intégrale sur 
ertains 
ara
tères du tore adélique de la fon
tion Ld'Arakelov d'un torseur arithmétique sur B.Cette expression nous permettra d'établir des théorèmes de montée ou de des
ente :supposons que B véri�e une 
onje
ture, alors Y la véri�e ; ré
iproquement, supposonsque Y la véri�e, alors, B aussi. Bien sûr, la méthode reprend les outils utilisés dans ladémonstration de 
es 
onje
tures pour les variétés toriques ([5, 3, 4℄).Alors que le présent arti
le 
ontient des 
onsidérations générales de � théorie d'Arakelovéquivariante � dont on peut espérer qu'elles seront utiles dans d'autres 
ontextes, ledeuxième verra intervenir des outils de théorie analytique des nombres (formule dePoisson, théorème des résidus, estimations, et
.).Remer
iements. � Nous remer
ions J.-B. Bost pour d'utiles dis
ussions. Pendant la prépara-tion de 
et arti
le, le se
ond auteur(�) était invité à l'I.H.E.S. et à Jussieu ; il est re
onnaissantenvers 
es institutions pour leur hospitalité.Notations et 
onventionsSi X est un s
héma, on désigne par QCoh(X ) et Fibd(X ) les 
atégories desfais
eaux quasi-
ohérents (resp. des fais
eaux lo
alement libres de rang d) sur X .On note Pi
(X ) le groupe des 
lasses d'isomorphisme de fais
eaux inversibles surX . Si F est un fais
eau quasi-
ohérent sur X , on note V(F ) = Spe
 SymF etP(F ) = Proj SymF les �brés ve
toriels et proje
tifs asso
iés à F .On note dFibd(X ) la 
atégorie des �brés ve
toriels hermitiens sur X (
'est-à-diredes fais
eaux lo
alement libres de rang d munis d'une métrique hermitienne 
ontinue(�)partially supported by the N.S.A.



4 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELsur X (C) et invariante par la 
onjugaison 
omplexe). On note 
Pi
(X ) le groupe des
lasses d'isomorphisme de �brés en droites hermitiens sur X .Si X est un S-s
héma, et si � 2 S(C), on désigne par X� le C-s
héma X �� C.Cette notation servira lorsque S est le spe
tre d'un lo
alisé de l'anneau des entiers d'un
orps de nombres F , de sorte que � n'est autre qu'un plongement de F dans C.SiG est un s
héma en groupes sur S,X�(G) désigne le groupe des S-homomorphismesG! Gm (
ara
tères algébriques).SiX =S est lisse, le fais
eau 
anonique deX =S, noté !X =S est la puissan
e extérieuremaximale de 
1X =S. � 1. Torseurs arithmétiques1.1. Dé�nitionsRappelons la dé�nition d'un torseur en géométrie algébrique.Dé�nition 1.1.1. � Soient S un s
héma,B un S-s
héma etG un S-s
héma en groupesplat et lo
alement de présentation �nie.Un G-torseur sur un B est un B-s
héma � : T !B �dèlement plat et lo
alementde présentation �nie muni d'une a
tion de G au-dessus de B, m : G �S T ! T , desorte que le morphisme (m; p2) : G�S T ! T �B Tsoit un isomorphisme. On le suppose de plus lo
alement trivial pour la topologie deZariski.On note H1(B; G) l'ensemble des 
lasses d'isomorphisme de G-torseurs sur B.Situation 1.1.2. � Supposons que S est le spe
tre de l'anneau des entiers d'un
orps de nombres F et que G est un S-s
héma en groupes linéaire 
onnexe plat et deprésentation �nie. Fixons pour tout plongement 
omplexe de F , � 2 S(C), un sous-groupe 
ompa
t maximal K� de G(C) et notons K1 la 
olle
tion (K�)�. On supposeque pour deux plongements 
omplexes 
onjugués, les sous-groupes 
ompa
ts maximaux
orrespondants sont é
hangés par la 
onjugaison 
omplexe.Dé�nition 1.1.3. � On appelle (G;K1)-torseur arithmétique sur B la donnée d'unG-torseur T sur B ainsi que pour tout � 2 S(C), d'une se
tion du K�nG�(C)-�brésur B�(C) quotient à T�(C) par l'a
tion de K�. On suppose de plus que pour deuxplongements 
omplexes 
onjugués, les se
tions sont é
hangées par la 
onjugaison 
om-plexe.On note bH1(B; (G;K1)) l'ensemble des 
lasses d'isomorphisme de (G;K1)-torseursarithmétiques sur B.On note aussi bH0(B; (G;K1)) l'ensemble des se
tions g 2 H0(B; G) telles que pourtoute pla
e à l'in�ni �, g dé�nisse une se
tion B�(C)! K�.



TORSEURS ARITHMÉTIQUES ET ESPACES FIBRÉS 5Remarque 1.1.4. � Se donner une se
tion du K�nG�(C)-�bré asso
ié à T�(C) surB�(C) revient à �xer dans un re
ouvrement ouvert (Ui) pour la topologie 
omplexeles fon
tions de transition gij 2 �(Ui\Uj; G) à valeurs dans K�. Il en existe 
ar G�(C)est homéomorphe au produit de K� par un R-espa
e ve
toriel de dimension �nie, 
f.par exemple [7℄.D'autre part, on 
hoisit dans 
et arti
le de supposer la se
tion 
ontinue. Dans 
er-taines situations, il pourrait être judi
ieux de la supposer indé�niment di�érentiable.La dépendan
e de 
ette notion en les sous-groupes maximaux �xés est la suivante :toute famille (x�) 2Q� G�(C) telle que K 0� = x�K�x�1� détermine une bije
tion 
anon-ique bH1(B; (G;K1)) ' bH1(B; (G;K01)):(Rappelons que deux sous-groupes 
ompa
ts maximaux sont 
onjugués.)1.1.5. Variante adélique. � Il existe une variante adélique des 
onsidérations pré
é-dentes qui supprime en apparen
e la référen
e à un modèle sur Spe
 oF . En e�et, siB est propre sur Spe
 oF , remarquons que pour toute pla
e �nie de F , un G-torseurarithmétique sur B induit une se
tion du morphisme G(ov)nT (Fv)!B(Fv).Dé�nition 1.1.6. � Soit GF un F -s
héma en groupes de type �ni et �xons un sous-groupe 
ompa
t maximal(1) K = QvKv du groupe adélique G(AF ). Soit BF un F -s
héma propre.On appelle (GF ;K)-torseur adélique sur BF la donnée d'un GF -torseur TF ! BF ,ainsi que pour toute pla
e v de F , d'une se
tion 
ontinue de KvnTF (Fv) ! BF (Fv).On suppose de plus qu'il existe un ouvert non vide U de Spe
 oF , un U -s
héma engroupes plat et de présentation �ni G, un U -s
hémaB propre, plat et de type �ni, ainsiqu'un G-torseur T ! B qui prolongent respe
tivement GF , BF et TF et véri�ant :pour toute pla
e �nie v de F dominant U , G(ov) = Kv et la se
tion 
ontinue deKvnTF (Fv)!BF (Fv) est 
elle fournie par le modèle T !B.On note H1(BF ; (GF ;K)) l'ensemble des 
lasses d'isomorphisme de (GF ;K)-torseursadéliques sur BF .Bien sûr, si B est un oF -s
héma propre et G un oF -s
héma en groupes plat et deprésentation �nie, tout (G;K1)-torseur arithmétique surB dé�nit un (GF ;K)-torseuradélique où K est le 
ompa
t adélique Qv �nieG(ov)Q�K�.1.1.7. Exemples. � a) Quand G = GL(d), le torseur T 
orrespond naturellement à ladonnée d'un �bré ve
toriel E de rang d surB par la formule T = Isom(OnB; E ). Si l'on
hoisit K� = U(d), une se
tion du U(d;C)nGL(d;C)-�bré asso
ié 
orrespond à unemétrique hermitienne (
ontinue) sur E . Ainsi, les (GL(d);U(d))-torseurs arithmétiquessont en bije
tion naturelle ave
 les �brés ve
toriels hermitiens.(1)Cela signi�era pour nous que les Kv sont des sous-groupes 
ompa
ts ouverts aux pla
es �nies,et maximaux aux pla
es in�nies.



6 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELb) En parti
ulier, lorsque G = Gm, la famille des sous-groupes 
ompa
ts maximauxK1 est 
anoniquement dé�nie (
e qui permet de les omettre dans la notation) etbH1(B;Gm) = 
Pi
(B), le groupe des 
lasses d'isomorphisme de �brés en droites surB munis d'une métrique hermitienne 
ontinue 
ompatible à la 
onjugaison 
omplexe.Les Gm-torseurs adéliques s'identi�ent de même aux �brés inversibles munis d'unemétrique adélique. Nous rappelons 
ette théorie au paragraphe 1.3
) Dans 
e texte, nous ne 
onsidérons que des G-torseurs lo
alement triviaux pourla topologie de Zariski. Néanmoins, lorsque G=S est un S-s
héma abélien, un exemplede G-torseur lo
alement trivial pour la topologie étale sur B est fourni par un s
hémaabélien A =B obtenu par torsion de G=S, 
'est-à-dire tel qu'il existe un revêtementétale B0 ! B de sorte que A �B B0 soit isomorphe à G �S B0 (famille de s
hémasabéliens à module 
onstant). De tels exemples devraient bien sûr faire partie d'uneétude plus générale de la géométrie d'Arakelov des torseurs que nous reportons à uneo

asion ultérieure.1.2. PropriétésLes ensembles de 
lasses d'isomorphisme de (G;K1)-torseurs arithmétiques véri�entun 
ertain nombre de propriétés formelles, dont les analogues algébriques sont bien
onnus. Leur démonstration est standard et laissée au le
teur.Proposition 1.2.1. � L'oubli de la stru
ture arithmétique induit une appli
ationbH1(B; (G;K1))! H1(B; G):On a aussi une suite exa
te d'ensembles pointés :1! bH0(B; (G;K1))! H0(B; G)!  M� �(B�(C); K�nG�(C))!F1 !! bH1(B; (G;K1))! H1(B; G)! 1:Remarque 1.2.2. � Lorsque G = Gm, en identi�antGm(C)=K à R�+, nous retrouvonsla suite exa
te bien 
onnue pour 
Pi
 et Pi
 (
f. [14℄, 3.3.5 ou 3.4.2).D'autre part, on devrait pouvoir interpréter 
ette suite exa
te à l'aide de la mapping
ylinder 
ategory introduite par S. Li
htenbaum dans son étude des valeurs spé
ialesdes fon
tions zêta des 
orps de nombres. En e�et, 
ette 
atégorie est ( ? !) la 
atégoriedes fais
eaux en groupes abéliens sur, disons Spe
Z [ f1g.Proposition 1.2.3. � Supposons que le groupe G est 
ommutatif. Alors, les sous-groupes 
ompa
ts maximaux sont uniques et l'ensemble bH1(B; (G;K1)) hérite d'unestru
ture de groupe abélien 
ompatible ave
 la stru
ture de groupe abélien sur H1(B; G).Dans 
e 
as, la suite exa
te 1.2.1 est une suite exa
te de groupes abéliens.



TORSEURS ARITHMÉTIQUES ET ESPACES FIBRÉS 7Proposition 1.2.4. � (Changement de base) Tout morphisme de S-s
hémas B0 !B induit un fon
teur des (G;K1)-torseurs arithmétiques sur B vers les (G;K1)-torseurs arithmétiques sur B0, 
ompatible à l'oubli des stru
tures arithmétiques et aux
lasses d'isomorphisme.(Changement du 
orps de base) Si F 0 est une extension de F , S 0 = Spe
 oF 0 etsi on 
hoisit pour tout plongement 
omplexe �0 de F 0 K�0 = K�0jF , on dispose d'unfon
teur des (G;K1)-torseurs arithmétiques sur B vers les (G �S S 0;K1)-torseursarithmétiques sur B �S S 0, 
ompatible à l'oubli des stru
tures arithmétiques et aux
lasses d'isomorphisme.Proposition 1.2.5. � (Changement de groupe) Si p : G ! G0 est un morphismede S-s
hémas en groupes et que les sous-groupes 
ompa
ts maximaux K1 et K01 sont
hoisis de sorte que pour tout plongement 
omplexe �, tel que p(K 0�) � K 0�, il y a unfon
teur des (G;K1)-torseurs arithmétiques vers les (G0;K01)-torseurs arithmétiques,
ompatible à l'oubli des stru
tures arithmétiques et aux 
lasses d'isomorphisme.(Suite exa
te 
ourte) Soit 1! G00 �! G p! G0 ! 1une suite exa
te de S-s
hémas en groupes. Soient K1, K01 et K001 des familles desous-groupes 
ompa
ts maximaux pour G, G0 et G00 aux pla
es ar
himédiennes 
hoisisde sorte que K 00� = ��1(K�) et p(K�) = K 0� pour toute pla
e �.Si p admet lo
alement une se
tion (
omme S-s
héma), alors on a une suite exa
te
ourte 
anonique d'ensembles pointés :1! bH0(B; (G00;K001)) �! bH0(B; (G;K1)) p! bH0(B; (G0;K01)) Æ!! bH1(B; (G00;K001)) �! bH1(B; (G;K1)) �! bH1(B; (G0;K01)):Sur Spe
 oF , l'ensemble des 
lasses d'isomorphisme de (G;K1)-torseurs arithmé-tiques a une des
ription très simple, similaire à la des
ription 
lassique des 
lasses d'i-somorphisme de G-torseurs sur une 
ourbe proje
tive sur un 
orps �ni. Cela généralisela des
ription analogue du groupe 
Pi
(Spe
 oF ) (
f. [14℄, 3.4.3, p. 131, où le groupe
orrespondant est noté 
CH1(Spe
 oF )).Proposition 1.2.6. � On a des isomorphismes 
anoniquesbH1(Spe
 oF ; (G;K1)) ' G(F )nG(AF )=KG;où KG désigne le produit Qv �nieG(ov) Q� in�nieK�.De même, pour un sous-groupe 
ompa
t maximalK de G(AF ), on a un isomorphisme
anonique H1(Spe
F; (GF ;K)) ' G(F )nG(AF )=K:Démonstration. � Soit 
T un (G;K)-torseur arithmétique sur Spe
(oF ), lo
alementtrivial pour la topologie de Zariski. Commençons par �xer un se
tion �F 2 T (F ). Si v



8 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELest une pla
e �nie de F , 
omme H1(Spe
 ov; G) = 0, il existe une se
tion �v 2 T (ov),unique modulo l'a
tion de G(ov). Cette se
tion se relie à �F par un élement bien dé�nigv 2 G(Fv)=G(ov) tel que g�1v � �F = �v. Comme �F s'étend en une se
tion de T surun ouvert de Spe
 oF , on a gv 2 Kv pour presque toute pla
e v. D'autre part, si � estune pla
e in�nie, la se
tion de K�nT (C) donnée par la stru
ture de (G;K1)-torseurarithmétique est de la forme K�g�1� �F , pour un unique g� 2 G(C)=K�. On a ainsidé�ni un élement g dans G(AF )=KG. Il dépend de la se
tion �F , mais si on 
hoisitune autre se
tion, elle sera de la forme gF �F , 
e qui revient à 
hanger l'élément g parg�1F g. Nous avons don
 atta
hé au (G;K1)-torseur arithmétique 
T un élément dansG(F )nG(AF )=KG qui visiblement ne dépend que de la 
lasse d'isomorphisme de 
T .Pour la bije
tion ré
iproque, on 
hoisit un représentant de g 2 G(F )nG(AF )=KGoù pour toute pla
e �nie v, gv 2 G(F ), et où presque tous les gv valent 1. Soit alorsU le plus grand ouvert de Spe
 oF tel que pour toute pla
e �nie v, gv 2 G(U) ; si vest une pla
e �nie qui ne domine pas U , soit Uv = U [ fvg. On dé�nit un G-torseurT sur Spe
 oF 
omme isomorphe à G sur U et sur 
haque Uv, les isomorphismes detransition étant �xés par l'isomorphisme entre T jU = GjU et T jUv � U = GjU induitpar la multipli
ation à gau
he par g�1v . On munit 
e G-torseur de la K�-
lasse à gau
heK�g�1� dans la trivialisation 
anonique sur l'ouvert U qui 
ontient Spe
F , d'où un(G;K1)-torseur arithmétique sur Spe
 oF .On laisse au le
teur le soin de véri�er plus en détail que la 
lasse d'isomorphisme du(G;K1)-torseur arithmétique ainsi 
onstruit est indépendante du représentant 
hoisi,et que 
ela dé�nit e�e
tivement la bije
tion ré
iproque voulue.La variante adélique H1(Spe
F; (GF ;K)) se traite de même (et plus fa
ilement 
aron n'a pas de torseur à 
onstruire !).Remarque 1.2.7. � On aurait aussi pu 
onstruire le G-torseur T asso
ié à un pointadélique (gv) en dé
rétant que les se
tions de T sur un ouvert U de Spe
 oF sont les
 2 G(F ) tels que pour toute pla
e �nie v dominant U , 
gv 2 G(ov).1.3. Métriques adéliquesPour la 
ommodité du le
teur, nous rappelons la théorie des métriques adéliques surles �brés en droites. C'est un 
as parti
ulier bien 
onnu des 
onstru
tions pré
édenteslorsque le groupe est Gm, mais l'exposer nous permettra de �xer quelques notations.Dé�nition 1.3.1. � Soient F un 
orps valué, X un s
héma de type �ni sur F et L un�bré en droites sur X. Une métrique sur L est une appli
ation 
ontinue V(L _)(F )!R+ de sorte que pour tout x 2 X(F ), la restri
tion de 
ette appli
ation à la �bre en x(identi�ée naturellement à F ) soit une norme.Soient F un 
orps de nombres, X un s
héma proje
tif sur F et L un �bré endroites sur X. La donnée d'un s
héma proje
tif et plat eX sur le spe
tre S = Spe
 oFde l'anneau des entiers de F dont la �bre générique est X dé�nit pour toute pla
enon-ar
himédienne v de F une métrique sur le �bré en droites L 
 Fv sur X � Fv.



TORSEURS ARITHMÉTIQUES ET ESPACES FIBRÉS 9Dé�nition 1.3.2. � On appelle métrique adélique sur L toute 
olle
tion de métriques(k�kv)v sur L 
 Fv pour toutes les pla
es v de F qui est obtenue de 
ette façon pourpresque toutes les pla
es (non-ar
himédiennes) de F .On note Pi
(X) = H1(X;Gm) le groupe des 
lasses d'isomorphisme de �brés endroites sur X munis de métriques adéliques.Donnons nous une métrique adélique sur L . Tout morphisme f : Y ! X de F -s
hémas proje
tifs fournit par image ré
iproque une métrique adélique sur f �L . Si Yn'est pas proje
tive, on obtient tout de même de la sorte une 
olle
tion de métriquespour toutes les pla
es de F .Dé�nition 1.3.3. � Si L = (L ; (k�kv)v) est un �bré en droites sur X muni d'unemétrique adélique, on appelle fon
tion hauteur (exponentielle) asso
iée àL la fon
tionH(L ; �) : X(F )! R+; x 7!Yv kskv (x)�1;s étant une se
tion non nulle arbitraire de L jx ' F .Si s est une se
tion globale non nulle de L , on dé�nit une fon
tion hauteur (expo-nentielle) sur les points adéliques de X en posantH(L ; s; �) : X(AF ) n j div(s)j ! R+; x = (xv)v 7!Yv kskv (xv)�1:(Dans les deux 
as, le produit 
onverge en e�et 
ar il n'y a qu'un nombre �ni de termesdi�érents de 1.) D'autre part, elle est multipli
ative en le �bré en droites (resp. en lase
tion), 
e qui permettra de l'étendre aux groupes de Pi
ard tensorisés par C.Comme on a un isomorphisme 
anonique Pi
(Spe
F ) = 
Pi
(Spe
 oF ), on remarqueque H(L ; x) = exp(ddegL jx)où ddeg : 
Pi
(Spe
 oF ) ! R est l'homomorphisme �degré arithmétique� dé�ni dans[14℄, 3.4.3, p. 131. Par l'isomorphisme de lo
. 
it.,
Pi
(Spe
 oF )! F�nA�F=K;exp Æddeg 
orrespond à l'inverse de la norme.Dé�nition 1.3.4. � Soit X une variété sur F , L 2 Pi
(X)C (le groupe des �brésinversibles sur X munis d'une métrique adélique tensorisé par C). Si U � X est unouvert de Zariski, on appelle fon
tion zêta des hauteurs de U en L la sommeZU(L ) = Xx2U(F )H(L ; x)�1quand elle existe.Remarque 1.3.5. � La 
onvergen
e absolue de la série ne dépend que de la partieréelle de L dans Pi
(X)R (on peut 
omparer deux métriques adéliques). De plus,l'ensemble des L 2 Pi
(X)R pour lesquels la série 
onverge est une partie 
onvexe



10 ANTOINE CHAMBERT-LOIR et YURI TSCHINKEL(inégalité arithméti
o-géométrique). En�n, si L est ample, alors ZU(sL ) 
onvergepour <(s) assez grand et dé�nit une fon
tion analytique de s, notée ZU(L ; s) dansl'introdu
tion.Les 
onsidérations analogues sont évidemment valables pour le groupe de Pi
ard�Arakelov 
Pi
(X ) d'un modèle propre et plat X de X sur Spe
 oF .Exemple 1.3.6. � Lorsque X est une variété torique, Pi
(X)R est un espa
e ve
torielde dimension �nie et il y a des métriques 
anoniques sur les �brés en droites sur X(
f. [3℄), d'où un homomorphisme 
anonique Pi
(X)C ! Pi
(X)C. Batyrev et Ts
hinkelont montré dans [5℄ que la série dé�nissant la fon
tion zêta des hauteurs du tore
onverge dès que L 
 !X est dans l'intérieur du 
�ne e�e
tif �Æe�(X) � Pi
(X)R, le�bré en droites L étant muni de sa métrique adélique 
anonique. Elle dé�nit mêmeune fon
tion holomorphe dans le tube sur 
e 
�ne.1.4. Fon
tions L d'ArakelovOn se pla
e dans la situation 1.1.2. Soient B un s
héma propre et �dèlement platsur S = Spe
 oF et 
T un (G;K1)-torseur arithmétique sur B.Pour tout b 2 B(F ), il existe une unique se
tion "b : Spe
 oF ! B qui prolonge b.On dispose ainsi d'un (G;K1)-torseur arithmétique "�b
T sur Spe
 oF que l'on notera
T jb. En parti
ulier, si � est une fon
tion à valeurs 
omplexes surG(F )nG(AF )=KG ' bH1(Spe
 oF ; (G;K1));la 
omposition bH1(B; (G;K1)) "b�! bH1(Spe
 oF ; (G;K1)) ��!Cdé�nit un nombre 
omplexe �(
T jb).Dé�nition 1.4.1. � Soient � une fon
tion sur G(F )nG(AF )=KG et U une partie deB(F ). On appelle fon
tion L d'Arakelov l'expressionL(
T ; U; �) = Xb2U�B(F )�(
T jb);quand la série 
onverge (absolument).1.4.2. Exemple. � Soit
L 2 
Pi
(B) identi�é auGm-torseur arithmétique qu'il dé�nit.Si U est l'ensemble des points rationnels d'un ouvert de B, la fon
tion L d'ArakelovL(
L ; U; k�ks) dé�nie au � 1.4 (k�k désigne la norme adélique) n'est autre que la fon
tionzêta d'Arakelov ZU(L ; s), introduite par Arakelov et largement étudiée depuis.En revan
he, lorsque � est un quasi-
ara
tère arbitraire de 
Pi
(Spe
 oF ) (pour latopologie adélique), on obtient un nouvel invariant L(
L ; U; �) dont l'importan
e ap-paraîtra à la �n de 
et arti
le.



TORSEURS ARITHMÉTIQUES ET ESPACES FIBRÉS 11Remarque 1.4.3. � Bien entendu, on dé�nit de la même façon une fon
tion L d'Arakelov,L(T ; U;�) atta
hée à un torseur adélique T sur B (sur F ) et à une fon
tion � surG(F )nG(AF )=K.1.4.4. Fon
tions � et �. � Dans la suite de 
ette se
tion, on suppose pour simpli�erque F = Q. Un GL(d)-torseur arithmétique bE sur Spe
Z (pour le 
hoix du sous-groupe
ompa
t maximal U(d)) n'est autre qu'un Z-module libre de rang d muni d'une normeeu
lidienne, auquel on sait atta
her (au moins) deux invariants :�( bE; t) =Xe2 bE exp(��t kek2) et �( bE; s) = Xe2 bEnf0g 1keks :(Ces séries 
onvergent respe
tivement pour <(t) > 0 et <(s) > d.) Comme il est bien
onnu, la formule de Poisson standard implique l'équation fon
tionnelle�( bE; t) = 1td=2 vol( bE)�( bE_; 1=t)où vol( bE) = exp(�ddeg bE) est le 
ovolume du réseau bE dans bE
ZR ' Rd, bE_ désignele réseau dual (muni de la norme eu
lidienne duale) et où la détermination de td=2 estusuelle pour t > 0. Il est aussi bien 
onnu 
omment utiliser 
ette équation pour endéduire que la fon
tion dé�nie par�( bE; s) =qvol( bE)�( bE; s)��s=2�(s=2)possède un prolongement méromorphe à C, ave
 des p�les simples en s = 0 et s = dde résidus respe
tivement �2qvol( bE) et 2=qvol( bE) et véri�e l'équation fon
tionnelle�( bE; s) = �( bE_; d� s):Sur un 
orps de nombres quel
onque, il faudrait tenir 
ompte de la di�érente, 
ommedans l'arti
le ré
ent de van der Geer et S
hoof [13℄. Selon 
es mêmes auteurs, l'invariant�( bE; 1) mesure l'e�e
tivité du �bré ve
toriel hermitien bE. Ils interprètent en parti
ulierl'équation fon
tionnelle de la fon
tion � 
omme une formule de Riemann�Ro
h.1.4.5. Exemples exotiques de fon
tions L. � Soit maintenant bE 2dFibd(B). On peutdé�nir des fon
tions L d'Arakelov (pour une partie U � B(F ) �xée)�(bE ; s) = L(bE ; U; �(�; 1) vol(�)s) = Xb2U�B(F ) �(bE jb; 1) vol(bE jb)set Z(bE ; s) = L(bE ; U; �(�; ds) vol(�)s) = Xb2U�B(F ) �(bE jb; ds) vol(bE jb)set l'on a les égalités, où 
ha
un des membres 
onverge absolument quand l'autre 
on-verge absolument,�(bE ; s) = �(bE _; 1� s) et Z(bE ; s) = Z(bE _; 1� s):



12 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELPar exemple, pour B = P1Z et bE = OP(1) ave
 la métrique �max. des 
oordonnées �,on a �(bE ; s) =XN�1 2(1 + 2'(N))�(N2)N1�s;expression qui 
onverge pour <(s) > 3 et dans laquelle � désigne la fon
tion thêta deRiemann. � 2. Espa
es �brés2.1. Constru
tionsSituation 2.1.1. � Soient S un s
héma, G un S-s
héma en groupes linéaire et plat,dont on suppose pour simpli�er les �bres géométriquement 
onnexes f :X ! S un S-s
héma plat (quasi-
ompa
t et quasi-séparé), muni d'une a
tion de G=S. Soient aussig :B ! S un S-s
héma plat ainsi qu'un G-torseur T !B lo
alement trivial pour latopologie de Zariski.Constru
tion 2.1.2. � On dé�nit un S-s
héma Y , muni d'un morphisme � :Y ! B lo
alement isomorphe à X sur B, par le 
hangement de groupe stru
turalG! AutS(X ).En e�et, soit (Ui)i2I un re
ouvrement ouvert de B tel qu'il existe une trivialisation'i : G �S Ui ��! T jUi. Si i; j 2 I, soit gij 2 �(Ui \ Uj; G) l'unique se
tion telle que'i = gij'j sur Ui \ Uj. En parti
ulier, les gij donnent un 
o
y
le dont la 
lasse dansH1(B; G) représente la 
lasse d'isomorphisme du G-torseur T . Posons Yi =X �S Ui ;alors, gij agit sur X �S (Ui \ Uj) et induit un isomorphisme'ij : YjjUi\Uj ' YijUi\Ujque l'on utilise pour re
oller les Yi.On laisse véri�er que Y est un B-s
héma bien dé�ni, 
'est-à-dire qu'il ne dépendpas à isomorphisme 
anonique près du 
hoix des trivialisations lo
ales que l'on a fait.Lemme 2.1.3. � On a ��OY = g�f�OX .Remarque 2.1.4. � Dans 
ertains 
as, Y hérite d'une a
tion d'un sous-groupe de G,notamment quand G est 
ommutatif.Constru
tion 2.1.5. � Il résulte de la 
onstru
tion pré
édente une appli
ation# : Zd;G(X )! Zd(Y )des 
y
les G-invariants de 
odimension d sur X dans les 
y
les de 
odimension d surY .Dé�nition 2.1.6. � Une G-linéarisation d'un fais
eau quasi-
ohérent F sur X estune a
tion de G sur V(F ) qui relève l'a
tion de G sur X .



TORSEURS ARITHMÉTIQUES ET ESPACES FIBRÉS 13Un morphisme (resp. le produit tensoriel, le dual, la somme dire
te, le fais
eau deshomomorphismes, des extensions, et
.) de fais
eaux quasi-
ohérents G-linéarisés estdé�ni naturellement. On note QCohG(X ) (resp. FibGd (X ), resp. Pi
G(X )) la 
atégoriedes fais
eaux quasi-
ohérents (resp. de �brés ve
toriels de rang d, resp. des 
lassesd'isomorphisme de �brés inversibles) G-linéarisés sur X .Constru
tion 2.1.7. � On 
onstruit un fon
teur# : QCohG(X )! QCoh(Y )qui est 
ompatible ave
 les opérations standard sur les fais
eaux quasi-
ohérents.Soit F un fais
eau quasi-
ohérent G-linéarisé sur X . Reprenons les notations de la
onstru
tion 2.1.2 de Y . Posons Fi le fais
eau quasi-
ohérent sur Yi =X �S Ui imageré
iproque de F par la première proje
tion. Grâ
e à la G-linéarisation sur F , les gijinduisent des isomorphismes'�ijFjjX �(Ui\Uj) ' FijX�(Ui\Uj)qui fournissent par re
ollement un fais
eau quasi-
ohérent sur Y .On laisse véri�er que 
e fon
teur est bien dé�ni, 
'est-à-dire, est indépendant des
hoix que l'on a fait.Si F est un �bré ve
toriel G-linéarisé de rang d sur X , il est 
lair que le fais
eauobtenu sur Y est aussi un �bré ve
toriel de rang d.On laisse véri�er que 
ette appli
ation est 
ompatible aux opérations standard, eten parti
ulier qu'elle des
end en une appli
ation sur les 
lasses d'isomorphisme.Un 
as parti
ulier des 
onstru
tions pré
édentes est obtenu lorsque X = S, auquel
as Y = B. On notera �T l'appli
ation qui en résulte des fais
eaux quasi-
ohérentssur S ave
 a
tion de G=S vers les fais
eaux quasi-
ohérents sur B. Bien sûr, �T :Repd(G) ! Fibd(B) n'est autre que l'appli
ation usuelle de 
hangement de groupestru
tural (passage d'un G-torseur à un GL(d)-torseur).Proposition 2.1.8. � Le fais
eau 
1X =S est muni d'une linéarisation 
anonique deG. Par la 
onstru
tion 2.1.7, on obtient le fais
eau 
1X =B.Supposons en parti
ulier que X et B sont lisses sur S ; le fais
eau 
anonique surX =S est alors automatiquement G-linéarisé et on a un isomorphisme!Y =S ' #(!X =S)
 ��!B=S:Démonstration. � Si (Ui) est un re
ouvrement ouvert de B ave
 des isomorphismes('i; �) : ��1(Ui) ' X �S Ui 
omme dans la 
onstru
tion 2.1.2, on a un isomorphismenaturel 
1Y =Bj��1(Ui) = 
1��1(Ui)=Ui ' '�i
1X =Squi se re
ollent pré
isément 
omme dans la 
onstru
tion 2.1.7.Dans le 
as où X =S et B=S sont lisses, la suite exa
te0! 
1Y =B ! 
1Y =S ! 
1B=S ! 0



14 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELimplique que !Y =S ' det 
1Y =B 
 ��!B=S ' #(!X =B)
 ��!B=S:Lemme 2.1.9. � Si F 2 QCohG(X ), f�F est muni d'une a
tion naturelle de G etg�#(F ) est 
anoniquement isomorphe à �T (f�F ).Démonstration. � Laissée au le
teur.Proposition 2.1.10. � Soient (�; �) 2 Pi
G(X ) � Pi
(B). Le �bré en droites#(�)
 ��� sur Y est e�e
tif si et seulement si le �bré ve
toriel sur B�T (f��)
 �est e�e
tif. Cela implique que � est e�e
tif.Démonstration. � On a��(#(�)
 ���) = ��(#(�))
 � = �T (f��)
 �d'après le lemme 2.1.9.Notons � le morphisme de groupes naturel X�(G) ! Pi
G(X ) qui asso
ie à un
ara
tère � le �bré trivial muni de la linéarisation telle que G agit par � sur le se
ondfa
teur de X �S A1S.Proposition 2.1.11. � Pour tout 
ara
tère �, il existe un isomorphisme 
anoniquede fais
eaux inversibles #(�(�)) ' ���T (�):Démonstration. � Soit (Ui) un re
ouvrement ouvert de B ave
 des isomorphismes('i; �) : ��1(Ui) ' X �S Ui ; notons gij 2 G(Ui \ UJ) tel que 'i = gij � 'j : ��1(Ui \Uj) ! X . Alors, le �bré en droites #(�(�)) est obtenu en re
ollant A1 �X � Ui etA1 �X � Uj par le morphisme (t; x; u) 7! (�(gij)t; gij � x; u).D'autre part, �T (�) est un �bré en droite sur B obtenu en re
ollant A1 � Ui etA1 � Uj par (t; u) 7! (�(gij)t; u).2.2. Groupe de Pi
ardDans 
e paragraphe, on suppose que S est le spe
tre d'un 
orps F de 
ara
téristique 0.On 
her
he à exprimer le groupe de Pi
ard de Y en fon
tion de 
eux de X et B. Pour
ela, on se pla
e sous les hypothèses suivantes :2.2.1. Hypothèses sur X . � On suppose que1. X est propre, lisse, géométriquement intègre ;2. H1(X ;OX ) = 0 ;3. X (F ) est non vide ;4. tout �bré en droites sur X est G-linéarisable, et de même après toute extensionalgébrique de F ;
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(XF ) est sans torsion.Remarque 2.2.2. � Ces hypothèses 
on
ernant X sont véri�ées lorsque X est unevariété torique proje
tive déployée sur F , ou bien un espa
e de drapeaux généralisépour un groupe algébrique déployé sur F .Elles entraînent que les groupes de Pi
ard et de Néron-Séveri deXF 
oïn
ident (voirla preuve du lemme 2.2.3 plus bas). En parti
ulier, Pi
(XF ) est sous 
es hypothèsesun Z-module libre de rang �ni.D'autre part, il est prouvé dans [15℄, Cor. 1.6, p. 35, que sous l'hypothèse (i), tout�bré en droites sur X admet une puissan
e G-linéarisable. (Rappelons que G est 
on-nexe.) Le le
teur qui désirerait s'a�ran
hir de 
ette hypothèse véri�era que de nombreuxrésultats de la suite de 
e texte restent vrais, au moins après tensorisation par Q.Lemme 2.2.3. � Si les hypothèses 2.2.1 sont satisfaites, on a les deux assertions :� H0(X ;OX ) = F ;� pour tout F -s
héma 
onnexe U possédant un point F -rationnel, l'homomorphismenaturel Pi
(X )� Pi
(U)! Pi
(X �F U)est un isomorphisme.Démonstration. � La première proposition dé
oule de la fa
torisation de Stein. Pourla se
onde, on a d'après [8, 8.1/4℄ une suite exa
te0! Pi
(U)! Pi
(X �F U)! Pi
X =F (U)! 0:En parti
ulier, Pi
(X ) = Pi
X =F (F ). La nullité de H1(X ;OX ) implique que Pi
X =Fest de dimension 0, don
 que sa 
omposante neutre Pi
0X =F = 0 puisque F est de
ara
téristique nulle. Ainsi, Pi
X =F est dis
ret. Alors, tout point rationnel u 2 U(F )dé�nit un homomorphisme u� : Pi
X =F (U)! Pi
X =F (F ) qui par 
onnexité est l'inversede l'homomorphisme naturel Pi
X =F (F )! Pi
X =F (U).Théorème 2.2.4. � Si � désigne le morphisme de groupes X�(G) ! Pi
G(X ) in-troduit au paragraphe pré
édent, 
onsidérons l'homomorphismePi
G(X )� Pi
(B)! Pi
(Y ); (�; �) 7! #(�)
 ���:Si les hypothèses 2.2.1 sont satisfaites et si B(F ) est Zariski-dense dans B, alors lasuite 0! X�(G) (�;��T )����! Pi
G(X )� Pi
(B) #
�����! Pi
(Y )! 0est exa
te.Démonstration. � Si �(�) est trivial dans Pi
G(X ), il résulte de 
e que H0(X ;OX ) =F que � est né
essairement le 
ara
tère trivial. En parti
ulier, le premier homomor-phisme est inje
tif.La proposition 2.1.11 implique que la 
omposition des deux premiers homomor-phismes est nulle.



16 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELSi � est un �bré en droites G-linéarisé sur X et � est un �bré en droites sur B,#(�)
 ��� est un �bré en droites sur Y dont la 
lasse d'isomorphisme ne dépend quedes 
lasses d'isomorphismes de � dans Pi
G(X ) et � dans Pi
(B).Supposons qu'elle soit triviale. Soit b un point F -rationnel de B. En restreignant#(�) 
 ��� à ��1(b), la 
onstru
tion 2.1.5 de #(�) implique que � est trivial. La G-linéarisation de � est ainsi donnée par un 
ara
tère � de G et � = �(�). D'après laproposition 2.1.11, on a #(�) = ���T (�). Par suite, ��� ' ���T (�)�1, 
e qui prouvel'exa
titude au milieu.Montrons alors que la dernière �è
he est surje
tive. Soit L un �bré en droites surY . On peut re
ouvrir B par des ouverts 
onnexes non vides Ui assez petits de sorteque ��1(Ui) ' X �F Ui:La restri
tion de L à ��1(Ui) fournit alors pour tout i un élément dePi
(X �F Ui) = Pi
(X )� Pi
(Ui)puisque 
haque Ui a un point F -rationnel. On en déduit d'abord pour tout i un élémentde Pi
(X ) qui, 
omme on le voit en les restreignant à Ui\Uj, ne dépend pas de i. Notonsle �. Finalement, il existe un fais
eau inversible �i 2 Pi
(Ui) tel que la restri
tion deL à ��1(Ui) ' X �F Ui est isomorphe à p�1�
 p�2�i. Quitte à ra�ner le re
ouvrement(Ui), on peut de plus supposer que �i ' OUi.Choisissons une G-linéarisation sur �. On 
onstate que la restri
tion de L 
 #(�)�1à ��1(Ui) est triviale. Si l'on 
hoisit des trivialisations on obtient en les 
omparant sur��1(Ui \ Uj) un élément de�(��1(Ui \ Uj);O�Y ) = �(Ui \ Uj;O�B)
ar H0(X ;OX ) = F . Ces éléments dé�nissent un 2-
o
y
le de �e
h sur B à valeursdans le fais
eau O�B, d'où un �bré en droites � 2 Pi
(B) tel queL 
 #(�)�1 ' ���:Autrement dit, L appartient à l'image de l'homomorphisme #
 ��.Le théorème est ainsi démontré.Corollaire 2.2.5. � Supposons véri�ées les hypothèses 2.2.1 et supposons queB(F )est Zariski-dense dans B. On dispose alors de suites exa
tes de Z[Gal(F=F )℄-modules :0! X�(GF )! Pi
G(XF )! Pi
(XF )! 0(2.2.6) 0! X�(GF )! Pi
G(XF )� Pi
(BF )! Pi
(YF )! 0(2.2.7) 0! Pi
(BF ) ���! Pi
(YF )! Pi
(XF )! 0:(2.2.8)Démonstration. � Il su�t d'appliquer le théorème 2.2.4 sur F , et de 
onstater que lasuite exa
te obtenue est Gal(F=F )-équivariante.



TORSEURS ARITHMÉTIQUES ET ESPACES FIBRÉS 17Théorème 2.2.9. � Supposons véri�ées les hypothèses 2.2.1, que B(F ) est Zariski-dense dans B, et supposons de plus que G est un groupe algébrique F -résoluble(2), un�bré en droites sur Y est alors e�e
tif si et seulement s'il s'é
rit 
omme l'image d'un
ouple (�; �) 2 Pi
G(X )� Pi
(B) où � et � sont e�e
tifs.Démonstration. � Soient � 2 Pi
G(X ) et � 2 Pi
(B) e�e
tifs. On veut montrer que#(�) 
 ��� est e�e
tif. Il su�t de prouver que #(�) est e�e
tif, et pour 
ela, il su�tde prouver qu'il existe un diviseur de Cartier G-invariant D sur X tel que l'on aitun isomorphisme de �brés en droites G-linéarisés, � ' O(D). Autrement dit, il fautmontrer que la représentation de G sur f�� admet une F -droite stable, 
e qu'impliquele théorème de point �xe de Borel puisque G est F -résoluble.Soit maintenant L un �bré en droites e�e
tif sur Y . Comme G est 
onnexe etPi
(G) = 0, la démonstration de la proposition 1.5, p. 34, de [15℄ implique que tout�bré inversible sur X est G-linéarisable. Le théorème 2.2.4 implique don
 qu'il existe� 2 Pi
G(X ) et � 2 Pi
(B) tels que L = #(�) 
 ���. D'après la proposition 2.1.10,�T (f��)
 � est e�e
tif. Comme G est F -résoluble, toute représentation linéaire de Gest extension su

essive de représentations de dimension 1. Cela implique que �T (f��)est extension su

essive de �brés en droites ; notons les �i. Alors, �T (f��) 
 � estextension des �i 
 �, et l'e�e
tivité de L implique que l'un au moins des �i 
 � este�e
tif.Or, �i est asso
ié à un 
ara
tère �i de G ; si on rempla
e � par le �bré en droiteG-linéarisé � 
 �(�i)�1 où l'a
tion a été divisée par �i, on représente ainsi L sous laforme L ' #(�
 �(�i)�1)
 (�i 
 �);
e qui 
on
lut la démonstration, �
�(�i)�1 étant isomorphe à � 
omme �bré en droites,don
 e�e
tif.2.3. Métriques hermitiennesDans 
e paragraphe, nous étendons la 
onstru
tion 2.1.7 en supposant que S est lespe
tre d'un 
orps de nombres et en faisant intervenir des métriques hermitiennes.Dé�nition 2.3.1. � Soit G un groupe de Lie 
onnexe sur C ; �xons un sous-groupe
ompa
t maximal K de G. Soit X une variété analytique 
omplexe munie d'une a
tionde G.Si E est un �bré ve
toriel 
omplexe G-linéarisé sur X, on dit qu'une métrique her-mitienne est K-invariante si l'a
tion de K sur V(E )�X est isométrique.On remarquera que les 
onstru
tions usuelles (tensorielles) de �brés hermitiens préser-vent la K-invarian
e des métriques hermitiennes.(2)Cela signi�e que G est extension itérée de Gm et Ga, autrement dit, que G est résoluble etdéployé sur F .



18 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELRemarque 2.3.2. � Ave
 les notations de la dé�nition pré
édente, tout �bré ve
torielsur X admet une métrique hermitienne K-invariante : si k�k0 est une métrique hermi-tienne sur E , on peut en e�et 
hoisir une mesure de Haar sur K et poser pour toutese
tion s, ksk2 (x) = ZK kk � sk (x)2 dk:Rappelons l'énon
é de la situation 1.1.2 :Situation. � Supposons que S est le spe
tre de l'anneau des entiers d'un 
orps denombres F et que G est un S-s
héma en groupes linéaire 
onnexe. Fixons pour toutplongement 
omplexe de F � 2 S(C) un sous-groupe 
ompa
t maximal K� de G(C) etnotons K1 la 
olle
tion (K�)�.Dé�nition 2.3.3. � Supposons que G agit sur un S-s
héma plat X . On appelle �-bré ve
toriel hermitien (G;K1)-linéarisé un �bré ve
toriel E sur X muni d'une G-linéarisation et, pour tout � 2 S(C), d'une métrique hermitienne sur le �bré ve
torielE 
� C sur X (C) qui est K�-invariante.On notedFibG;K1d (X ) la 
atégorie des �brés ve
toriels hermitiens (G;K1)-linéarisésde rang d surX . Si d = 1, on notera 
Pi
G;K1(X ) le groupe des 
lasses d'isomorphismede �brés ve
toriels hermitiens de rang 1 (G;K1)-linéarisés sur X .Situation 2.3.4. � Plaçons-nous dans la situation 1.1.2. Soit f : X ! S un S-s
héma plat, muni d'une a
tion de G=S. Soient aussi g : B ! S un S-s
héma platainsi qu'un (G;K)-torseur arithmétique 
T sur B (voir la dé�nition 1.1.3).Constru
tion 2.3.5. � Le fon
teur # : FibGd (X )! Fibd(Y ) s'étend en un fon
-teur # :dFibG;K1d (X )!dFibd(Y )qui est 
ompatible ave
 les opérations tensorielles standard sur les �brés ve
toriels her-mitiens (G;K1)-linéarisés (resp. les �brés ve
toriels hermitiens).Soit F un �bré ve
toriel hermitien (G;K1)-linéarisé sur X . Soit � 2 S(C). Demanière analogue à 
e qu'on a fait dans la 
onstru
tion 2.1.5, 
hoisissons un re
ou-vrement ouvert (Ui) de B�(C) pour la topologie 
omplexe de sorte que la restri
tiondu torseur T à Ui est triviale et qu'il existe des trivialisations dont les fon
tions detransistions asso
iés gij 2 �(Ui \ Uj; G) soient à valeurs dans K�. Le 
hoix de tellestrivialisations induit des isomorphismes��1(Ui) 'X (C)� Ui; #(F )j��1(Ui) ' p�1F :Pour tout i, on a ainsi une métrique hermitienne naturelle sur #(F )j��1(Ui) par imageré
iproque de la métrique hermitienne sur F . Comme gij 2 K� et 
omme la métriquehermitienne sur F est K�-invariante, les métriques hermitiennes sur #(F )jUi\Uj in-duites par Ui et par Uj 
oïn
ident, d'où une métrique hermitienne bien dé�nie sur#(F ).



TORSEURS ARITHMÉTIQUES ET ESPACES FIBRÉS 19En�n, la proposition 2.1.11 admet une généralisation ave
 métriques hermitiennes :Proposition 2.3.6. � Pour tout 
ara
tère � 2 X�(G), l'isomorphisme 
anoniquede la proposition 2.1.11 est une isométrie.Démonstration. � Si l'on reproduit la démonstration de la proposition 2.1.11 pourun re
ouvrement ouvert pour la topologie 
omplexe (les gij étant don
 dans le sous-groupe 
ompa
t maximal), 
ha
un des �brés est dé�ni par re
ollement de la mêmemanière, et les métriques sur 
es �brés sont dé�nies de sorte que 
ette identi�
ationsoit une isométrie. Il en résulte que l'isomorphisme de 
ette proposition, qui 
onsistaiten l'appli
ation évidente sur les ouverts X � Ui est une isométrie.2.4. Torsion des métriques adéliquesPlaçons nous alors dans la situation 2.3.4, toujours ave
 S = Spe
 oF . Soit L un�bré en droites hermitien (G;K1)-linéarisé sur X . La restri
tion de L àXF est ainsimunie d'une métrique adélique naturelle.Proposition-Définition 2.4.1. � Soit g = (gv)v 2 G(AF ). On dé�nit une métriqueadélique sur L , appelée métrique adélique tordue par g en posant pour toute pla
e vde F , tout point x 2X (Fv) et toute se
tion s 2 Lx,ksk0v (x) = kgv � skv (gv � x):Démonstration. � Il est 
lair que pour toute pla
e v, on a dé�ni une métrique v-adique.L'ensemble des pla
es non-ar
himédiennes v telles que gv 2 G(ov) est par dé�nition de
omplémentaire �ni. Pour 
es pla
es, ksk0v (x) = kskv (x) 
ar gv étant un automorphismede L sur Spe
 ov, la se
tion gv � s est entière en gv � x si et seulement si la se
tion s estentière en x. Ainsi, hors d'un nombre �ni de pla
es, la nouvelle 
olle
tion de métriquesv-adiques est dé�nie par un modèle entier. Elle dé�nit don
 une métrique adélique.Remarquons que G(AF ) n'agit en fait qu'à travers G(AF )=KG.Exemple 2.4.2. � Soit E un F -espa
e ve
toriel de dimension �nie et notons P l'espa
eproje
tif des droites de E. Faisons agir GL(E) de manière naturelle sur P. Le fais
eauOP(1) possède une GL(E)-linéarisation naturelle dès qu'on a remarqué qu'une se
tionde OP(�1) en un point x 2 P 
orrespond à un point de la droite Dx dé�nie par x.De manière expli
ite, l'espa
e ve
toriel des se
tions globales de O(1) sur P s'identi�eau dual E� de E sur lequel la GL(E)-linéarisation sur O(1) induit la représentation
ontragrédiente ' 7! ' Æ g�1.Supposons que E est muni d'une métrique adélique. On a alors une métrique adéliquesur OP(1) par la formulek'k (x) = j'(e)jkekv ; ' 2 E�; e 2 Dx n f0g:



20 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELIl résulte de la formule du produit que la hauteur exponentielle d'un point x 2 P(F )est donnée par la formule H(x) =Yv kekv ; e 2 Dx n f0g:Soit alors (gv)v 2 GL(E)(AF ). La métrique v-adique tordue par gv sur OP(1) estainsi donnée par k'k0 (x) = j'(e)jkgv � ekv ; ' 2 E�; e 2 Dx n f0g:Autrement dit, la hauteur exponentielle tordue de x 2 P(F ) est dé�nie par l'expressionH 0(x) =Yv kgv � ekv ; e 2 Dx n f0g:Cette formule était donnée 
omme dé�nition de la hauteur tordue par Roy et Thunderdans [19℄.Dans 
ertains 
as, on peut 
omparer la métrique adélique initiale sur L et lamétrique adélique tordue.Proposition 2.4.3. � Supposons que s est une se
tion globale de L sur XF dontle diviseur est G-invariant. Il existe alors un unique 
ara
tère � 2 X�(G) F -rationnel(le poids de s) tel que pour tout g 2 G, g � s = �(g)s.Soit g 2 G(AF ), et 
onsidérons L 0 la métrique adélique tordue par g. Si x 2 X(F )n'appartient pas au diviseur de s, on a la formuleH(L 0; x) =Yv j�(gv)j�1v H(L ; s; g � x):Démonstration. � Comme le diviseur de s est G-invariant, il existe pour tout g 2 Gun élément �(g) 6= 0 tel que g � s = �(g)s. Il est alors 
lair que g 7! �(g) dé�nit un
ara
tère F -rationnel (algébrique) de g.D'autre part, on a pour toute pla
e v de F ,ksk0v (x) = kgv � skv (gvx) = k�(gv)skv (gvx) = j�(gv)jv kskv (gvx):La proposition en dé
oule en prenant le produit.Remarque 2.4.4. � Bien sûr, dans l'énon
é pré
édent, il su�t de supposer que la se
-tion s est propre pour les éléments gv. En parti
ulier, si G0 est un sous-groupe de G telque div(s) est invariant par G0, on aura une formule du même type pour les métriquesadéliques tordue par un élément de G(AF ).Remarque 2.4.5 (Choix des se
tions). � La formule pré
édente permet de 
omparerla restri
tion à G(AF )X (F ) des hauteurs sur les points adéliques asso
iées à deuxse
tions s1 et s2 de poids respe
tivement �1 et �2. En e�et, si x = g �x 2 G(AF )X (F ),



TORSEURS ARITHMÉTIQUES ET ESPACES FIBRÉS 21on a, L 0 désignant la métrique adélique tordue par g,H(L ; s1;x) =Yv j�1(gv)jv H(L 0; x) =Yv ���1��12 (gv)��v H(L ; s2;x):Appliquée à des se
tions de même poids �, 
ela permet d'étendre les fon
tionsH(L ; s; �)au 
omplémentaire dans G(AF )X (F ) de l'interse
tion des diviseurs des se
tions depoids �.Remarque 2.4.6. � Lorsque X est une variété torique, 
ompa
ti�
ation équivariantelisse d'un tore G, tout �bré en droites e�e
tif L qui est G-linéarisé possède une uniquedroite F -rationnelle de se
tions pour lesquelles G agit par le 
ara
tère trivial. On peututiliser 
ette se
tion pour dé�nir une hauteur sur les points adéliques du 
omplémen-taire de son diviseur, don
 en parti
ulier sur G(AF ).Expliquons maintenant 
omment la torsion des métriques adéliques intervient dansnos 
onstru
tions. Nous allons pré
iser un peu la situation 2.3.4 en faisant désormaisl'hypothèse suivante :Situation 2.4.7. � Nous faisons les hypothèses 
ontenues dans la situation 2.3.4.En parti
ulier, S est le spe
tre de l'anneau des entiers de 
orps de nombres F . De plus,supposons que X et B sont propres sur S.Soit b un point F -rationnel deB. CommeB est propre sur S, il en résulte une uniquese
tion "b : S ! B qui prolonge b. Toute trivialisation du GF -torseur GF ' T jbsur Spe
F (il en existe 
ar 
'est un torseur pour la topologie de Zariski) induit unisomorphisme XF ' Y jb. Fixons un tel isomorphisme '. Si � 2 Pi
G(X ), '�#(�) estun �bré en droite sur XF 
anoniquement isomorphe à �. En revan
he, les métriques(adéliques) sont en général distin
tes.Soit v une pla
e �nie de F , notons ov le 
omplété de l'anneau lo
al de oF en v.Soit "v : Spe
 ov ! B la restri
tion de "b à Spe
 ov. Alors, "�vT est un G
 ov-torseursur Spe
 ov, et est don
 trivialisable. Ainsi, "�vY est isomorphe à X 
 ov. Fixonsun isomorphisme 'v induit par une trivialisation du torseur. Il existe par dé�nitiongv 2 G(Fv) tel que ' = 'v Æ [gv℄; X 
 Fv ! Y jb 
 Fv;[gv℄ désignant l'automorphisme de X 
 Fv dé�ni par gv. La dé�nition de la métriquev-adique asso
iée à un modèle montre que 'v est une isométrie. Ainsi, en tant que �bréinversible métrisé sur X 
 Fv, '�(#(�)) est isomorphe (isométrique) à [gv℄��.Soit maintenant v une pla
e à l'in�ni. Comme on s'était �xé une trivialisation duG(C)=Kv-�bré sur B(C), on dispose d'un isomorphisme 'v bien dé�ni modulo Kv quipar dé�nition ne modi�e pas les métriques. La 
omparaison entre ' et 'v se fait 
ommepré
édemment par un élément gv 2 G(C).Il en résulte le théorème :



22 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELThéorème 2.4.8. � Soit g = (gv)v 2 G(AF ) l'élément du groupe adélique que nousvenons d'introduire. Il représente la 
lasse de la restri
tion à b du (G;K1)-torseurarithmétique 
T dans l'isomorphisme de la proposition 1.2.6. De plus, la métriqueadélique image ré
iproque sur '�#(�) s'identi�e à la métrique adélique tordue par gsur �.2.5. Nombres de TamagawaCommençons par rappeler la dé�nition, due à Peyre (
f. [16℄ et [18℄) des nombresde Tamagawa asso
iés à une métrique adélique sur le fais
eau anti
anonique.2.5.1. Hypothèses. � Soit X une variété propre, lisse et géométriquement intègre surF telle que H1(X;OX) = H2(X;OX) = 0 et que X(F ) soit Zariski-dense dans X. Sous
es 
onditions, Pi
(XF )Q est un Q-espa
e ve
toriel de dimension �nie.2.5.2. Dé�nition. � Munissons le �bré 
anonique !X d'une métrique adélique. Pourtoute pla
e v de F , une 
onstru
tion 
lassique de Weil fournit une mesure �X;v surX(Fv) à partir de la métrique v-adique sur !X . Notons Lv(s;Pi
(XF )) le fa
teur lo
alen v de la fon
tion L d'Artin de la représentation de Gal(F=F ) sur Pi
(XF )Q. Lethéorème de Weil sur la mesure de X(Fv) pour �X;v et le théorème de Deligne sur les
onje
tures de Weil 
on
ernant le nombre de points rationnels des variétés sur les 
orps�nis ont la 
onséquen
e suivante : il existe un ensemble �ni � de pla
es de F , 
ontenantles pla
es ar
himédiennes, tel queYv2� �X;v �Yv 62� �L�1v (1;Pi
(XF ))�X;v�dé�nisse une mesure �X;� sur X(AF ) pour laquelle X(AF ) a un volume �ni.Soit L�(s;Pi
(XF )) = Qv 62� Lv(s;Pi
(XF )) la fon
tion L partielle de Pi
(XF ). Leproduit eulérien 
onverge en e�et pour <(s) > 1 et L� a un p�le en s = 1 d'ordre ladimension t des invariants sous Gal(F=F ) de Pi
(XF )Q. NotonsL��(1;Pi
(XF )) = lims!1(s� 1)rL�(s;Pi
(XF )):On dé�nit alors le nombre de Tamagawa de X (asso
ié à la métrique adélique 
hoisiesur !X) par �(X) = L��(s;Pi
(XF )) ZX(F ) �X;�:Il est fa
ile de véri�er qu'il ne dépend pas de l'ensemble �ni de pla
es � 
hoisi.Nous aurons à utiliser le lemme suivant.Lemme 2.5.3. � Supposons réalisées les hypothèses 2.5.1. Soit U un ouvert non videde X. Notons U(F ) l'adhéren
e de U(F ) dans Qv U(Fv) pour la topologie produit (quiest la topologie induite sur Qv U(Fv) par la topologie adélique de X(AF )). Alors, on al'égalité ZU(F ) �X;� = ZX(F ) �X;�:



TORSEURS ARITHMÉTIQUES ET ESPACES FIBRÉS 23Démonstration. � Tout point x = (xv) 2 Qv U(Fv) possède par dé�nition un voisinage(pour la topologie induite) 
ontenu dans Qv U(Fv). Par suite, si une suite (x(n)) depoints de X(F ) 
onverge vers x, à partir d'un 
ertain rang, x(n) appartient à U(Fv)pour toute pla
e v, et don
 x(n) 2 U(F ). Cela montre que U(F ) = X(F ) \Qv U(Fv).Ainsi, le 
omplémentaire de U(F ) dans X(F ) est 
ontenu dans X(AF ) nQv U(Fv),don
 dans la réunion [v (X n U)(Fv)Yw 6=vX(Fw):La dé�nition de la mesure �X;v implique que (X nU)(Fv) est de mesure nulle pour �X;v.On voit don
 que X(F ) n U(F ) est réunion dénombrable d'ensembles de mesure nullepour la mesure de Tamagawa sur X(AF ), don
 est de mesure nulle.On se pla
e maintenant dans la situation 2.3.4, S étant le spe
tre Spe
 oF de l'anneaudes entiers d'un 
orps de nombres F .Lemme 2.5.4. � Si XF et BF satisfont les hypothèses 2.5.1 né
essaires pour la dé�-nition des nombres de Tamagawa, YF les satisfait aussi.Démonstration. � Que YF soit lisse, propre et géométrique intègre est 
lair. D'autrepart, les points rationnels de YF sont denses dans 
haque �bre au-dessus d'un pointrationnel de BF , lesquels sont supposés denses dans BF . Comme YF ! BF est pro-pre, un argument élémentaire de platitude puis de dimension implique que les pointsrationnels de YF sont Zariski-denses.D'autre part, les hypothèses sur XF impliquent que R0��OYF = OBF et queR1��OYF = R2��OYF = 0:La suite spe
trale des fon
teurs 
omposés implique que Hq(OBF ) est un quotient deLi+j=q Hi(BF ; Rj��OYF ). Si j = 1 ou si j = 2, on a Hi(Rj��) = 0 puisque Rj�� = 0.Si j = 0 et i 2 f1; 2g, Hi(R0��) = Hi(OBF ) = 0 en vertu des hypothèses faites surBF .Supposons don
 que XF et BF satisfont 
es hypothèses 2.5.1. Le fais
eau 
anoniquesur Y admet d'après la proposition 2.1.8 une dé
omposition!Y = #(!X =S)
 ��!B=S:Choisissons une stru
ture de �bré en droite hermitien (G;K1) linéarisé sur !X =S 
om-patible à la linéarisation 
anonique sur !X =S (autrement dit, pour toute pla
e ar
himé-dienne �, une métrique hermitienne K�-invariante sur X ��C). Choisissons aussi unemétrique hermitienne sur !B=S. Il en résulte une métrique hermitienne 
anonique sur!Y =S par la 
onstru
tion 2.3.5. Le fait de disposer d'un modèle sur oF induit de plusdes métriques v-adiques au pla
es �nies, d'où des métriques adéliques sur !XF , sur !BFet sur !YF .



24 ANTOINE CHAMBERT-LOIR et YURI TSCHINKELThéorème 2.5.5. � Muni de 
es métriques adéliques, on a l'égalité�(YF ) = �(XF )�(BF ):Démonstration. � Soit U un ouvert de Zariski non vide de BF tel que T jU ' G�SU .Notons V = ��1(U) � YF , de sorte que V est un ouvert non vide de Y jF isomorpheà XF � U , et que dans 
ette dé
omposition, la mesure�Y ;vj��1(U) = �X ;v 
 �B;vjU :(2.5.6)Pour toute pla
e v de F , il résulte du 
orollaire au théorème 2.2.4 la relation entrefa
teurs lo
aux Lv(s;Pi
(YF )) = Lv(s;Pi
(XF ))Lv(s;Pi
(BF )):(2.5.7)Alors, les équations (2.5.6) et (2.5.7) impliquent que la restri
tion de la mesure deTamagawa de X (AF ) à Qv V (Fv) s'é
rit 
omme le produit�Y ;�jQv V (Fv) = �X ;� 
 �B;�jQv U(Fv):Or, si U(F ) est l'adhéren
e de U(F ) dans le produit Qv U(Fv), l'adhéren
e de V (F )dans Qv V (Fv) s'identi�e à X (F ) � U(F ). Intégrons �Y ;� sur V (F ) ; en utilisant lelemme 2.5.3, on obtientZY (F ) �Y ;� = ZX (F ) �X ;� � ZB(F ) �B;�:L'équation (2.5.7) implique aussi que pour <(s) > 1,L�(s;Pi
(YF )) = L�(s;Pi
(XF ))L�(s;Pi
(BF )):Par suite, l'ordre du p�le en s = 1 pour la fon
tion L� de Y est la somme des ordesdes p�les pour X et B, et don
L��(1;Pi
(YF )) = L��(1;Pi
(XF ))L��(1;Pi
(BF )):Le théorème est don
 démontré.2.6. Torseurs trivialisantsLe paragraphe 2.4 a montré que le phénomène de torsion des métriques adéliquesintervient naturellement dans nos 
onstru
tions. Cependant, la hauteur tordue n'estfa
ile à 
al
uler que lorsqu'il existe des se
tions propres pour l'a
tion du groupe. L'ex-isten
e de se
tions 
anoniques permet 
omme on l'a vu de disposer d'une fon
tionhauteur sur les points adéliques.Les torseurs trivialisants que nous introduisons i
i ont pour fon
tion de fournir �au prix d'un 
hangement de variété � d'une droite 
anonique de se
tions.Dans 
e paragraphe, nous nous plaçons sur un 
orps F . Supposons que Pi
G(X ) 'Pi
(X )�X�(G) est un groupe de type �ni.Soit H un groupe algébrique sur F , X1 ! X un H-torseur qui induise par fon
-torialité 
ovariante des torseurs un isomorphisme X�(H) ! Pi
(X ). On suppose de
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tion de G qui relève l'a
tion de G sur X et qui 
om-mute à l'a
tion de H. On peut 
onstruire un tel X1 en �xant �1; : : : ; �h des �brésinversibles G-linéarisés sur X dont les 
lasses forment une base de Pi
(X ). On posealors X1 =Qhi=1(V(�_i ) n f0g) et H = Ghm.Soit T le plus grand quotient de G tel que l'homomorphisme naturelX�(T )! X�(G)est un isomorphisme. (C'est le quotient deG par l'interse
tion des noyaux des 
ara
tèresdeG). On pose fX = fX1�T et � : fX !X la 
omposition de la première proje
tion dede la proje
tion fX1 !X . C'est un H�T -torseur muni d'une a
tion de G (diagonale).Exemple 2.6.1. � Supposons que X = PnG est un espa
e de drapeaux généralisépour un groupe algébrique simplement 
onnexe semi-simple G sur F . On a Pi
(X ) 'X�(P ) et G!X est un P -torseur qui induit un isomorphisme X�(P ) ' Pi
(X ). Deplus, T = f1g. Ainsi, on peut prendre fX = G.Exemple 2.6.2. � Lorsque le groupe G est trivial, on retrouve les torseurs universelsintroduits dans le 
ontexte des hauteurs par Salberger et Peyre (
f. [20℄, [18℄).Fait 2.6.3. � Si � 2 Pi
G(X ), ��� admet une F -droite 
anonique de se
tions G-invariantes.Remarque 2.6.4. � L'isomorphisme 
anonique Pi
G(X ) ' X�(H � T ) = X�(H) �X�(G) admet une ré
iproque qu'il est fa
ile d'expli
iter. En e�et, soient �H et �G deux
ara
tères de H et G respe
tivement. On dé�nit un �bré inversible G-linéarisé sur X
omme suit : on quotiente fX �A1 = fX1 � T �A1 par l'a
tion de H donnée parh � (ex; t; u) = (h � ex; t; �H(h)�1u); h 2 H; (ex; t; u) 2 fX1 � T �A1et la G-linéarisation provient de l'a
tion de G sur fX �A1 fournie par(ex; t; u) � g = (g � ex; g � t; ��1G (g)u); g 2 G; (ex; t; u) 2 fX1 � T �A1:Par la 
onstru
tion 2.1.2, on obtient ainsi un F -s
hémafY ave
 une proje
tionfY !Y . Supposons que Y provient de la situation 2.3.4, on dispose en parti
ulier de �brésinversibles sur YF munis de métriques adéliques asso
iés aux �brés inversibles (G;K)-linéarisés sur X . En parti
ulier, on obtient sur fY des �brés inversibles ave
 métriquesadéliques. Le fait nouveau est que l'on dispose d'une hauteur sur les points adéliques defY asso
iée à 
es �brés inversibles. En e�et, une fois remontés àfY , 
es �brés inversiblespossèdent une droite de se
tions F -rationnelle 
anonique.2.7. Exemples2.7.1. A
tion d'un tore. � Pour les appli
ations auxquelles notre deuxième arti
lesera 
onsa
ré, on 
onsidère l'a
tion d'un tore T .Un tel tore peut agir non seulement sur des variétés toriques, mais aussi sur desvariétés de drapeaux généralisées PnG, via un morphisme T ! G.Dans le 
as des variétés toriques sur un 
orps de nombres F , on dispose de modèles
anoniques sur Spe
 oF (si le tore est déployé), et de métriques hermitiennes à l'in�ni
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anoniques sur les �brés en droites. Pour tout plongement � de F dans C, les points
omplexes T (C) du tore admettent un unique sous-groupe 
ompa
t maximalK�, et lesmétriques hermitiennes introduites sont automatiquement K�-invariantes. On obtientainsi des �brés hermitiens (T;K)-linéarisés (
f. par exemple [3℄).Dans le 
as des variétés de drapeaux PnG, une fois �xé des sous-groupes 
ompa
tsmaximaux deG aux pla
es à l'in�ni, il est aussi possible de munir les �brés en droites P -linéarisés de métriques hermitiennes invariantes pour 
es sous-groupes 
ompa
ts max-imaux et don
 pour le sous-groupe 
ompa
t maximal de T (C). Aux pla
es �nies, lesmétriques v-adiques qu'on obtient admettent une des
ription analogue en termes de ladé
omposition d'Iwasawa (
f. [12℄).D'autre part, un T -torseur sur un F -s
hémaB, du moins quand le tore est déployé, àla donnée d'un morphisme X�(T )! Pi
(B), et don
, une fois �xé une base de X�(T ),à des �brés en droites �1; : : : ; �t 2 Pi
(B). (On a noté t = dimT .) La trivialisation desT=K�-torseurs 
orrespond, ainsi qu'on l'a dit après la dé�nition 1.1.3 d'un T -torseurarithmétique, à une métrique hermitienne sur les �brés en droites �i.Dans le 
as où T agit sur une variété torique, on obtient alors par la 
onstru
tion 2.3.4une famille de variétés toriques sur B. On peut notamment 
ompa
ti�er ainsi unevariété semi-abélienne T ! B et 
onstruire sur la 
ompa
ti�
ation Y des fon
tionshauteurs 
anoniques. Dans 
e 
as, les �i sont des �brés en droites algébriquementéquivalent à 0 sur une variété abélienne B. Si on a pris soin de les munir, ainsi quetous les �brés en droites sur B, de leur métrique adélique 
anonique, pour laquelle lethéorème du 
ube est une isométrie, on obtient sur Y les hauteurs 
anoniques, au sensde la hauteur de Néron�Tate. (Dans 
e 
as parti
ulier, 
f. [9℄ où l'on trouvera 
ette
onstru
tion dans un esprit analogue, et [11℄, où est donnée une 
onstru
tion �à laTate � de 
es hauteurs 
anoniques, due à M. Walds
hmidt).Dans le 
as où T agit sur une variété de drapeaux généralisée, on obtient la variétéde drapeaux (généralisée) d'un �bré ve
toriel sur B 
onstruit naturellement à partirdes �i. Ce 
as était étudié (lorsque la base est aussi une variété de drapeaux) dans lathèse de M. Strau
h ([21℄).2.7.2. Variétés de drapeaux. � Tout �bré ve
toriel sur B donne lieu à des variétésde drapeaux généralisées. Dans 
e 
as, le groupe G est le groupe linéaire GL(d), Xest une variété PnG. On identi�e en e�et un �bré ve
toriel de rang n sur B à unGL(d)-torseur. Si l'on 
hoisit 
omme sous-groupe 
ompa
t à l'in�ni le groupe unitaireU(d), la trivialisation à l'in�ni du G=K-�bré 
orrespond à une métrique hermitiennesur le �bré ve
toriel.Il est à noter que 
ette situation se retrouve, mais dans l'autre sens, dans le 
al
uldu 
omportement de la fon
tion zêta des hauteurs d'une puissan
e symétrique d'une
ourbe C de genre g � 2. Dans 
e 
as en e�et, si d > 2g � 2, Symd C est un �bréproje
tif au-dessus de la ja
obienne de C asso
ié à un �bré ve
toriel de rang d+1� g.2.7.3. A
tion d'un groupe ve
toriel. � Dans [10℄ et [9℄, on étudie des 
ompa
ti�
a-tions d'extensions ve
torielles de variétés abéliennes. Expliquons 
omment 
e travail
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onstru
tions de 
et arti
le lorsque, pour simpli�er les notations, onprend G = Ga.Un Ga-torseur sur B 
orrespond à une extension de OB par lui-même, soit un �bréve
toriel E de rang 2 sur B. La trivialisation du Ga-torseur à l'in�ni 
orrespond àun s
indage C1 de l'extension sur B(C). D'autre part, Ga agit naturellement sur P1(via son plongement dans GL(2), a 7! ( 1 a0 1 )). On obtient ainsi une 
ompa
ti�
ation duGa-torseur en une famille de droites proje
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