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Abstract. — We prove asymptotic formulas for the number of rational points
of bounded height on certain equivariant compactifications of the affine plane.

Résumé. — Nous établissons un développement asymptotique du nombre de
points rationnels de hauteur bornée sur certaines compactifications équivariantes
du plan affine.
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Introduction

Let X be a smooth projective algebraic variety defined over a number field
F and X(F ) the set of rational points of X. Let L be a metrized ample line
bundle and

HL : X(F ) → R>0

the associated exponential height (cf. [17], [18]). We are interested in the
asymptotic behavior of the counting function

N(U,L , B) := #{x ∈ U(F ) |HL (x) 6 B}
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as B → ∞, where U ⊂ X is some Zariski open subset. There is a conjectural
framework describing such asymptotics for varieties with ample (or, more gen-
erally, effective) anticanonical class (cf. [7], [1], [14], [17], [2] and references
therein). In particular, it is expected that

N(U,K−1
X , B) =

Θ(X)

r!
B(logB)r(1 + o(1)),

as B → ∞, for some appropriate U ⊂ X. Here K−1
X is the metrized anticanon-

ical line bundle on X, r = rk Pic(X)−1 and Θ(X) is a product of a Tamagawa
type number τ(KX) (which depends on the metrization), a rational number
α(X) defined in terms of the cone of effective divisors Λeff(X) and the order
of the non-trivial part of the Brauer group |Br(X)/Br(F )|. There is a similar
description for arbitrary polarizations L (cf. [2]).

These conjectures have been proved flag varieties ([7]), toric varieties ([2]),
and toric bundles induced from torsors ([21], [5], [4]). The proofs use a precise
combinatorial description of all geometric and arithmetic invariants of the vari-
eties: line bundles, metrizations of the line bundles etc. (for example, in terms
of lattices, cones and fans). Such a description is possible because representa-
tions of reductive groups are rigid (don’t admit deformations). Consequently,
the corresponding varieties don’t have moduli.

The only other known approach to asymptotics of rational points on alge-
braic varieties is the classical circle method in analytic number theory. Va-
rieties which can be treated by this method do admit moduli. However, one
of the drawbacks is that so far it works only for varieties which are complete
intersections of small degree d in projective spaces Pn of large dimension (very
roughly, n ≫ 2d) (mild singularities are allowed). In particular, these com-
plete intersections have Picard group Z. There is a promising generalization
of the circle method to complete intersections in other varieties (for example,
toric varieties) due to E. Peyre (cf. [15]), which should provide examples of
asymptotics for varieties with moduli and with Pic(X) of higher ranks, once
the necessary estimates are established. As a reference to the circle method
let us mention the papers by H. Davenport, R. Heath-Brown, Ch. Hooley
on smooth cubic hypersurfaces (cf. [6], [10], [11]), by B. Birch and by W.
Schmidt on general complete intersections (cf. [3], [20]).

In this paper we prove asymptotics of rational points of bounded height
on varieties which admit moduli and which at the same time are closely re-
latated to (non-reductive) linear algebraic groups. More precisely, we consider
equivariant compactifications of the additive group Gn

a . For n = 2 it can be
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shown that all such compactifications are obtained as blow-ups of P2, or Hirze-
bruch surfaces in points which are fixed under the action of G2

a. Notice that
a variety (even P2) may admit non-isomorphic structures as an equivariant
compactification of Gn

a . A similar “minimal model program” of equivariant
compactifications of Gn

a is a non-trivial problem already for n = 3 (work in
progress [9]).

In this paper we study in detail the example of a blow-up of P2 in r Q-
rational points which are all contained in the line at infinity P1 (with the
equation x0 = 0). The moduli space of such surfaces X is M0,r. It is easy
to see that X is a smooth projective equivariant compactification of G2

a with
Pic(X) = Zr+1, trivial Brauer group and a simplicial cone of effective divisors
Λeff(X). Denote by U ≃ G2

a ⊂ P2 the complement to x0 = 0. Then the series

Z(U,K−1
X , s) =

∑

x∈U(Q)

HK−1
X

(x)−s

is absolutely and uniformly convergent to a holomorphic function for Re(s) ≫
1. One of the main results of this paper is the following:

Theorem 1. —

Z(U,K−1
X , s) =

h(s)

(s− 1)r+1
,

where h(s) is holomorphic for Re(s) > 1 − δ (for some δ > 0) and

h(1) = α(X)τ(KX) 6= 0.

Corollary 2. — We have the following asymptotic formula:

N(U,K−1
X , B) =

α(X)τ(KX)

r!
B(logB)r(1 + o(1)),

as B → ∞.

In fact, we will prove asymptotics for every L on X such that its class
is contained in the interior of Λeff(X). We will also give estimates for the
growth of the function h(s) in vertical strips in the neighborhood of Re(s) = 1.
This implies more precise asymptotic expansions for the counting function
N(U,L , B).

We will address the compactifications of Gn
a (with n > 2) in subsequent

papers.
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1. Geometry

1.1. Generalities. — Let G be an algebraic group and X a smooth projec-
tive variety with an action of G. We denote by PicG(X) the (abelian) group
of isomorphy classes of G-linearized line bundles on X (cf. [13], Chap. 1, § 3,
Def. 1.6). We shall say that the variety X is an equivariant compactification
of G if X has an open dense subset U which is equivariantly isomorphic to G.
Well known examples are given by toric varieties which are equivariant com-
pactifications of tori (algebraic groups isomorphic to Gn

m over the algebraic
closure of F , where Gm = Spec(F [x, x−1]) is the multiplicative group scheme).

In this paper, we are interested in equivariant compactifications of Gn
a , where

Ga = Spec(F [x]) is the additive group scheme (we may call them addic vari-
eties(∗)).

Notice that a variety can be an equivariant compactification of a group G
in many non-isomorphic ways, as the following example shows.

Example 1.2. — The projective plane P2 is an equivariant compactification
of G2

a in (essentially) two non-isomorphic ways. One of the possible actions is
the standard translation action, fixing a line P1 at infinity. All 1-parameter
subgroups are lines. The other action has exactly one fixed point. Generic
1-parameter subgroups are conics (cf. [9] for more details, esp. Prop. 3.2).

We quote from [9] the following general geometrical facts about equivariant
compactifications of additive groups.

Proposition 1.3. — Let X be a smooth projective equivariant compactifica-
tion of Gn

a and D = X\Gn
a the boundary.

1. The boundary D is a pure codimension 1 subvariety.
2. The Picard group Pic(X) is freely generated by the irreducible components
D0, ..., Dr of D.

3. The closed cone of effective divisors Λeff(X) ⊂ Pic(X)R is given by

Λeff(X) = ⊕r
k=0R+[Dk].

(∗)Scherzhafter Vorschlag von Yu. I. Manin, Weihnachten 1998
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4. There exist integers nk > 1 such that the anticanonical class is given by

−[KX ] =

r
∑

k=0

nk[Dk].

1.4. Blow-ups. — The basic example of an equivariant compactification of
Gn
a is the projective space Pn, with Gn

a acting on Pn = Proj(F [x0, . . . , xn]) by
translation:

((t1, . . . , tn), (x0 : · · · : xn)) 7→ (x0 : x1 + t1x0 : · · · : xn + tnx0)

which stabilizes the “hyperplane at infinity” given by the equation x0 = 0.
In this paper we consider blow-ups of the projective space π : X → Pn in
a subscheme Z ⊂ Pn of pure codimension > 2, which is contained in this
hyperplane. We denote by IZ the ideal sheaf of Z in Pn so that the blow-up
is defined by the formula X = Proj(

⊕

j I
j
Z). As Z ⊂ Z0 is fixed by Gn

a , the
universal property of the blow-up implies that the action of Gn

a on Pn lifts
uniquely to an action on X.

The geometry of blow-ups of arbitrary subschemes can be very complicated.
We shall assume that IZ is the product of a finite number of ideals IZk

,
where the Zk are integral subschemes of the hyperplane at infinity in Pn. The
universal property of blow-ups says thatX is the “minimal” scheme mapping to
Pn on which IZ becomes invertible. An easy lemma in commutative algebra
implies that on X, the IZk

are themselves invertible. (The blow-up of a
product of ideals is the universal way to make these ideals invertible; it is the
same as blowing up successively Z1, then the strict transform of Z2, etc.) In
particular, π factors as X → Xk → Pn, Xk being the blow-up of Zk in Pn.

On X, we now have Cartier divisors Dk (which are the inverse images of
the Zk) and line bundles OX(Dk) equipped with a canonical section sDk

∈
Γ(X,OX(Dk)). Moreover, sDk

and OX(Dk) are pullbacks of similar objects on
Xk (which we will denote by the same letters). Note also that OX(−Dk) =
IZk

· OX ⊂ OX and that by definition, sDk
is obtained by dualizing the pull-

back of the canonical inclusion IZk
→ OPn .

Let D0 be the strict transform of Z0 in X. We have a canonical isomorphism:

π∗
OX(Z0) ≃ OX(D0 +

r
∑

k=1

Dk).(1.5)

Denoting by sD0 the canonical section of OX(D0), the tensor product
⊗r

k=0 sDk

equals the pull back on X of the canonical section of O(Z0).
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The Dk’s (0 6 k 6 r) form a basis of the Picard group of X. We identify
the anticanonical sheaf in these coordinates:

Proposition 1.6. — If Z is smooth, then X is a smooth variety and its
anticanonical sheaf is given by

K−1
X = π∗((n + 1)Z0) ⊗

r−1
⊗

k=1

O(−(codim(Zk) − 1)Dk)

=
r−1
⊗

k=0

O((2 + dim(Zk))Dk).

Proof. — See Hartshorne [8], Ex. 8.5, p. 188.

1.7. Metrizations on blow-ups. — Let S be the spectrum of a Dedekind
ring (which will be the ring of integers in F , or a localization of it, or a
completion) or the spectrum of a field which is equipped with a valuation. Let
X be a projective scheme over S. For a locally free sheaf E of finite rank on X,
there are several notions of metrizations corresponding to these various cases.
We recall briefly the definitions.

– If S = Spec(F ), the spectrum of a field endowed with a valuation, a
metric on a E is a family of norms on the fibres Ex for x ∈ X(F̄ ), which
vary continuously with x.

– If F̄ = C, one may ask that the dependence is C ∞, and—independently—
that the metrics are hermitian in the fibers.

– If S = Spec(F ), where F is the fraction field of a discrete valuation ring R,
any flat and projective model (X , E ) over Spec(R) determines a metric
according to which a section is of norm 6 1 at a point iff it is integral.

– If S = Spec(F ), F being a number field, an adelic metric on E is a
collection of metrics for all Xv/Fv, v being the different places of F .
Moreover, one assumes that there exists a model over Spec(oF ) which
gives the same metrics except at a finite number of places. At these
exceptional places the ratios of the two metrics are assumed to be bounded
functions on X.

The usual definitions of metrics on subsheafs, quotients, hom’s, etc. are com-
patible with these notions.

Let X be a quasi-projective flat scheme over S, I a sheaf of ideals on X
and Z = V (I ). Let π : Y → X be the blow-up of V (I ), Y = Proj(

⊕

n I n).
On Y , the inverse image of Z becomes a Cartier divisor D and the line bundle
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O(D) is equipped with a canonical section sD. We want to endow OY (D) with
a metric and to give a formula for the norm of sD at any point of Y \|D|. Note
that O(−D) = I · OY ⊂ OY and that sD is the pull-back of the canonical
inclusion I → OX .

Choose a locally free sheaf E of finite rank on X with a section σZ ∈ Γ(X, E )
whose scheme of zeroes is Z (existence follows from the quasi-projectivity of
X). This induces a surjective homomorphism ϕ : E ∨ → I and a closed
immersion Y →֒ P(E ∨) such that O(−D) = I ·OY = OP(1) and the universal
quotient map π∗E ∨ → OP(1) on Y is the pullback of ϕ. Hence, to metrize
OY (D) it is sufficient to endow E ∨ with a metric. The quotient metric on
OP(1) is defined as follows: for any local section s of OP(1), we pose

‖s‖ (y) = inf
t
‖t‖

where the infimum is on the local sections t of E ∨ mapping to s under the
canonical surjection π∗ϕ : π∗E ∨ → OP(1).

Restrict this to Y . This gives a norm on OP(1)|Y = OY (−D). The dual
norm on OY (D) of the canonical section sD is given by the formula

‖sD‖ = sup
s 6=0

|〈sD, s〉|
‖s‖ = sup

t

|〈sD, π∗ϕ(t)〉|
‖t‖

the last supremum being over the non-zero local sections t of π∗E ∨. But, away
from D on the blow-up, t comes from a local section of E ∨ and 〈sD, π∗ϕ(t)〉
is exactly the image of t under the surjection ϕ : E ∨ → I . Hence, ‖sD‖ is
equal to the norm of ϕ, viewed as a homomorphism E ∨ → OX , which by the
definition of the dual norm on E ∨ is exactly the norm of the original section
σZ ∈ Γ(X, E ).

(This can be simplified if one regards the blow-up as the closure of the graph
of the map X \ Z → P(E ∨) induced by σZ .)

Note the precise meaning of these calculations:

– they are valid if S is any field with a valuation;
– if S is a discrete valuation ring, arithmetic intersection on the integral

model gives a result which is compatible with the metrized theory on the
generic fibre if the metric on E comes from the model;

– if S is the ring of integers of a number field, they show that we have an
adelic metric in the sense of Arakelov geometry provided E is equipped
with an adelic metric.

Hence, we have the following theorem:



8 ANTOINE CHAMBERT-LOIR & YURI TSCHINKEL

Theorem 1.8. — Let X be an algebraic variety over a field F , I ⊂ OX a
sheaf of ideals on X and π : Y → X the blow-up of Y . Let E be a locally
free sheaf of finite rank on X with a section σZ ∈ Γ(X, E ) such that V (I ) =
div(σZ) as schemes.

Assume E is given a metric. Then the line sheaf OY (D) corresponding to
the exceptional divisor D on Y has a canonical metric such that the norm of
its canonical section sD is given by the formula:

‖sD‖ (y) = ‖σZ‖ (π(y)).(1.9)

In particular, if L1, . . . ,Lr are line bundles on X with sections si such that,
as a scheme, Z =

⋂

div(si), we may take E =
⊕

Li, σZ = (si). Assume the Li

to be metrized and endow E with the associated hermitian metric (resp. with
the ℓ∞-metric at non-archimedian places). The preceeding theorem implies
that OY (D) may be metrized in such a way that

‖sD‖2 (y) =

r
∑

i=1

‖si‖ (π(y)).(1.10)

In particular, if X = Pn, Li = OPn(ni), si corresponds to a homogeneous
polynomial gi of degree ni and, if π(y) = (x0 : · · · : xn),

‖sD‖2 (y) =
r
∑

i=1

|gi(x0, . . . , xn)|2
(
∑n

j=0 |xi|
2 )ni

.(1.11)

As a last example, assume that X = Pn and Z is an integral divisor in Z0.
Then, the homogeneous ideal of Z is of the form (x0, f(x1, . . . , xn)) for some
homogeneous polynomial f of degree d > 1. If π(y) = (1 : x1 : · · · : xn), then

‖sD‖2 (y) =
1

1 +
∑n

j=1 |xj |
2 +

|f(x1, . . . , xn)|2
(

1 +
∑n

j=1 |xj |
2 )d

.(1.12)

All these formulas have analogues at non-archimedian places with the sum
of the squares being replaced by their maximum.

1.13. Résumé. — Let F be a number field. For 1 6 k 6 r, choose a
finite family of homogeneous polynomials gk,j ∈ F [x0, . . . , xn] of degree dk,j
generating a prime ideal IZk

corresponding to an integral subscheme Zk ⊂ Pn.
Let π : X → Pn be the blow-up of the ideal I = IZ1 · · ·IZk

. On X, the
inverse image of Zk is a Cartier divisorDk whose associated line bundle OX(Dk)
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can be adelically metrized so that the norm of its canonical section sDk
at a

point x ∈ X mapping to (x0 : · · · : xn) ∈ Pn is given by

‖sDk
‖v (x) = max

j

|gk,j(x0, . . . , xn)|v
max(|x0|v , . . . , |xn|v)dk,j

at finite places v, and by

‖sDk
‖2
v (x) =

∑

j

|gk,j(x0, . . . , xn)|2v
(|x0|2v + · · · + |xn|2v)dk,j

if v is an archimedian place.
We shall henceforth assume that Zk is contained in the hyperplane at infinity

x0 = 0. Then one may assume that one of the gk,j = x0 and that the others
do not depend on x0. The universal property of the blow-up implies that
π : X → Pn is an isomorphism over Gn

a ≃ {x0 6= 0} and that the action of Gn
a

on Pn lifts to an action on X and to an action on the line bundles OX(Dk).
The following proposition can be deduced, either through explicit computa-

tions with the formulas defining ‖sDk
‖, or by an abstract argument involving

schemes over Spec oF .

Proposition 1.14. — Assume that the polynomials gk,j have coefficients in
oF and that they generate the homogeneous ideal IZk

∩oF [x0, . . . , xn].
(†) Then,

for each place v of F , the standard maximal compact subgroup of Gn
a(Fv) acts

isometrically on O(Dk).

Let D0 be the strict transform of the hyperplane at infinity under π. The
line bundle OX(D0) is the pull-back on X of the OPn(1) and we shall equip it
with its standard metric (given by the formulas above, the family of g0,j being
reduced to x0). By means of equations (1.5, 1.6), we then can metrize the line
bundles OX(D0) and K−1

X .

2. Heights, Poisson formula

2.1. Product formula and heights. — We recall some conventions con-
cerning absolute values in number fields.

(†)This means that the subscheme V ((gk,j)j) of P
n
oF

is projective, surjective and flat over

oF .
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Over R, we set |·|∞ to be the usual absolute value (such that |2|∞ = 2!). If
p is a prime number, the absolute value over Qp is normalized by |p|p = 1/p.
These absolute values extend uniquely to any algebraic extension of R or Qp.

If F is a number field, we denote by Val(F ) the set of places (equivalence
classes of valuations) of F . If v is a place of F , we will denote by |·|v be the
unique extension of |·|∞ or |·|p to Fv (according to v being archimedian or

not). We also set mv = evfv, the product of the ramification index by the
local degree at v. Now, for any x ∈ F and any valuation v of Q,

∏

w|v

|x|mw

w =
∣

∣NF/Q(x)
∣

∣

v
.

With these normalizations, we have the product formula: for any x ∈ F ∗,
∏

v∈Val(F )

|x|v =
∏

v∈Val(Q)

∣

∣NF/Q(x)
∣

∣ = 1.

Let X be a projective variety over F and L a metrized line bundle on X.
For any x ∈ X(F ), the (exponential, absolute) height of x with respect to the
metrized line bundle L is defined by

HL (x) =
∏

v∈Val(F )

‖s‖mv

v (x)

where s is any F -rational local section of L , defined and non-zero at x. The
product formula implies that the height doesn’t depend on the choice of s.

2.2. Heights on blow-ups. — We keep the notations of the preceeding
section. Moreover we identify Gn

a with its isomorphic inverse image in X
under the blow-up π : X → Pn.

The metrizations above allow us to define height functions corresponding to
complexified divisors D(s) = s0D0 + · · ·+ srDr. Namely, if x = (x1, . . . , xn) ∈
Gn
a(F ), its exponential height is defined by

HD(s)(x) =

r
∏

k=0

(

∏

v∈Val(F )

‖sDk
‖−mv

v (1 : x1 : · · · : xn)
)sk .

This definition extends to all x ∈ Gn
a(AF ) and gives a pairing

H : PicG(X)C ×Gn
a(AF ) −→ C∗
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which is multiplicative as a function on PicG(X) and which is invariant under
the action of the maximal compact subgroup of Gn

a(AF ). Such a pairing had
already appeared in the context of toric varieties.

The invariance of the heights is a crucial technical ingredient for the proofs
of analytic properties of the height zeta functions for toric varieties and for
equivariant compactifications of Gn

a considered in the present paper.
The “height zeta function” is the series

Z(s0, . . . , sr) =
∑

x∈Gn
a (F )

HD(s)(x)
−1.

Its convergence in some non empty open subset of Cr+1 is a consequence of
the following (well known) lemma.

Lemma 2.3. — Let V be a projective variety over a number field F and
(Li)16i6d a finite number of ample metrized line bundles on V . For x ∈ V (F ),

define H(s; x) =
∏d

i=1HLi
(x)si. Then there exists an open non-empty subset

Ω of Rd such that the series

Z(s) =
∑

x∈X(F )

H(s; x)−1

converges absolutely and uniformly for all s ∈ Cd with Re(s) contained in Ω.
Moreover, any other metrization on the Li gives the same domain of con-

vergence.

Proof. — The usual proof of Northcott’s theorem establishes a polynomial
bound for the number of rational points of bounded exponential height. Hence,
the height zeta function of (Pn,O(1)) converges for s≫ 0. (There is no need
to invoke Schanuel’s theorem [19] which gives the precise asymptotics. Below,
we give a new proof of Schanuel’s theorem.)

Therefore, there are real numbers αi such that Z(0, . . . , si, . . . , 0) converges
for Re(si) > αi. Now, Z(s) converges for any s = (s1, . . . , sd) ∈ Cd such that
for each i, Re(si) > αi.

2.4. Harmonic analysis on the additive group. — We recal basic facts
concerning harmonic analysis on the group of adelic points Gn

a(AF ) (cf., for
example, [22]). For any prime number p, we can view Qp/Zp as the p-Sylow
subgroup of Q/Z. This allows us to define a local character ψp of Ga(Qp) by
setting

ψp : xp 7→ exp(2πixp).
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At the infinite place of Q we put

ψ∞ : x∞ 7→ exp(−2πix∞),

(here x∞ is viewed as an element in R/Z). The product of local characters
gives a character ψ of Ga(AQ) and, by composition with the trace, a character
of Ga(AF ). For any a ∈ Gn

a(AF ) we obtain a character ψa of Gn
a(AF ) by

x 7→ ψ ◦ trF/Q(〈a,x〉).
The choice of ψ defines a self-duality of Gn

a(AF ) (Pontryagin duality). For
v ∈ Val(F ), we denote by µv the standard normalized local Haar measures
on Gn

a(Fv) and by µ =
∏

v µv the self-dual measure on Gn
a(AF ). The precise

normalization can be found in (cf. [22] or [12], p. 280); for F = Q, we have
µp(Zp) = 1 and µ∞([0; 1]) = 1.

For a function H on Gn
a(AF ) we denote by Ĥ its Fourier-transform (with

respect to the Haar measure µ)

Ĥ : Gn
a(AF ) → C, ψ 7→

∫

Gn
a (AF )

H(x)ψ(x) dµ(x),

whenever the integral converges. We shall also use the notation dx for dµ(x).
We will use the Poisson formula in following form (cf. [12], p. 280).

Theorem 2.5. — Let H be a continuous function on Gn
a(AF ) such that both

H and Ĥ are integrable and such that
∑

a∈Gn
a (F )

H(x + a)

is absolutely and uniformly convergent on compact subsets in Gn
a(AF )/Gn

a(F ).
Then

∑

x∈Gn
a (F )

H(x) =
∑

a∈Gn
a (F )

Ĥ(ψa).

For s ∈ Cr+1 and ψ ∈ Gn
a(AF ), we shall denote by Ĥ(s;ψ) the Fourier

transform of the height function H(s; ·)−1 on Gn
a(AF ) at the character ψ. It

is the product of the local Fourier transforms of the functions H(s; ·)−mv for
all v ∈ Val(F ).

Proposition 2.6. — With the above notations, for all characters ψ which
are non-trivial on the maximal compact subgroup of Gn

a(AF ), we have that

Ĥ(s, ψ) = 0.
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Proof. — This follows from the invariance of the height under the maximal
compact subgroups, see Prop. 1.14.

Consequently, we have the formal identity for the height zeta function:

Z(s) =
∑

a∈Gn
a (oF )

Ĥ(s;ψa).(2.7)

The following lemma verifies the two hypotheses of the Poisson formula 2.5
concerning H .

Lemma 2.8. — There exists a real α such that for any s ∈ Cr+1 satisfy-
ing Re(s0 − sk) > α and Re(sk) > α, and for any compact subset K of
Gn
a(AF )/Gn

a(F ), the series
∑

a∈Gn
a (F )

H(s; x+ a)

converges absolutely and uniformly for x ∈ K.

Proof. — If s ∈ Zr+1, the line bundle D(s) is ample iff all sk > 0 and s0 >
s1 + · · · + sr. Moreover, the ample line bundles D = (r + 1)D0 + D1 + · · · +
Dr, D+D1, . . . , D+Dr provide a basis of Pic(X)R. Hence, Lemma 2.3 implies
the existence of a real α > 0 such that the series converges absolutely when
x = 0, uniformly for all s ∈ Cr+1 such that Re(s0) > α, Re(s0 − sk) > α.

For any x, the function H(s;x+ ·) is another height function for D(s), called
“twisted height” in our paper [5], § 2.4, esp. proposition 2.4.3. This implies
the convergence for any x. The uniformity for x ∈ K follows from the fact
that the height functions can be mutually uniformly bounded.

Now, for the proof of the meromorphic continuation of the height zeta func-
tion it will be sufficient to prove that the Ĥ-series on the right-hand side of
Eq. 2.7 1o) converges for some Re(s0) > α, Re(s0 − sk) > α big enough, and
2o) continues meromorphically.

2.9. Integrability of local height functions. — The aim of this section is
to prove a general result concerning the integrability of local height functions
against a measure with singularities.

Proposition 2.10. — Let X be a proper smooth variety of dimension d
over a field Fv which is a finite extension of R or Qp. Fix a finite number of
metrized line bundles Lα on X together with sections sα. Assume that their
divisors div(sα) are smooth and that their sum is a divisor D with normal
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crossings and let U = X \D. Finally, let ω ∈ Γ(U,Ωd
X/Fv

) be a meromorphic
differential form of top degree. We assume that there are integers λα such that
the divisor of ω equals

∑

α λα div(sα). Denote by dω the associated measure
on U(Fv).

Then, the integral
∫

U(Fv)

∏

α

‖sα‖mvrα (x) dω

converges if and only if for all α, rα > λα − 1.

Proof. — Using a partition of unity on X for the Fv-topology, we may assume
that X is a relatively compact open subset Ω ⊂ F d

v , with local coordinates
x1, . . . , xd and that the divisor

∑

α div(sα) is given by the equation x1 . . . xa = 0
for some integer 0 6 a 6 d. The integral is then

IΩ =

∫

Ω

a
∏

i=1

|xi|mv(rα(i)−λα(i))
v exp

(

∑

α

hα(x)
)

dx1 . . .dxd

for some functions hα giving the metrics in our local trivialization and which
are therefore continuous and bounded.

Remark that the integral of |x|mvs
v over the unit ball of Fv converges if and

only if s > −1. The Fubini theorem shows that the integral IΩ converges if
and only if for each i ∈ {1, . . . , a}, rα(i) − λα(i) > −1. As any α appears in
some chart, the proposition is proved.

2.11. The local Fourier transform in the archimedian case

When Fv = R or C, we want to show that the local Fourier transform of the
height function as a function of ψa decreases rapidly when the norm of a ∈ F n

v

grows to infinity. The proof proceeds by integration by parts, which requires
some estimates.

Lemma 2.12. — Let X be a smooth projective variety over Fv and Z be a
smooth closed subscheme of X. Let ∂ be a global section of (Ω1

X)∨ ⊗ IZ , i.e.
a derivation on X vanishing on Z. Denote by π : Y → X the blow-up of IZ.

1) Then the derivation ∂|π−1(X\Z) extends uniquely to a derivation on Y .
2) Let E be a vector bundle on X equipped with a smooth hermitian metric

and s a global section of E whose divisor is Z. Then the function ∂ log ‖s‖
extends uniquely to a smooth function on Y .
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Proof. — Choose local analytic coordinates on X such that Z is defined by
x1 = · · · = xa = 0. Then, Y may be embedded in Pa−1 ×Ad with coordinates
((t1 : · · · : ta), (x1, . . . , xd)) and is given there by the equations tixj = tjxi for
i ∈ {1, . . . , a}. We consider the chart ta 6= 0. Then, local coordinates on Y are
t1, t2, . . . , ta−1, xa, xa+1, . . . , xd and π : Y → X is given by xi = tixa if i < a.

On X, the derivation ∂ has the form

∂ =
d
∑

i=1

hi
∂

∂xi
,

for some functions hi ∈ (x1, . . . , xa). Now, we have to verify that if i < a, ∂ti
is a regular function on Y . But

∂ti = ∂(xa/xi) = ha(x)
1

xi
− hi(x)

xa
x2
i

=
1

xa
ha(x)ti −

1

xa
hi(x)ti ∈ OY

since

hj(x) ∈ (t1xa, . . . , ta−1xa, xa) = (xa).

For the statement concerning norms, we may fix the coordinates so that
‖s‖2 (x) =

∑a
i=1 |xi|

2. Then,

∂ log ‖s‖ =
1

|x1|2 + · · ·+ |xa|2
(

a
∑

i=1

2xihi(x)
)

=
1

|t1|2 + · · ·+ |ta−1|2 + 1

(

a
∑

i=1

2ti
hi(x)

xa

)

is regular on Y .

Proposition 2.13. — For any compact subset K ⊂ Rr+1 where H(s; ·)−m
is integrable, and for any integer d > 1, there exists a constant c(d,K) such
that for any a ∈ Cn and any s ∈ Cr+1 with Re(s) ∈ K,

∣

∣

∣
Ĥ(s;ψa)

∣

∣

∣
6 c(d,K)

(

1 + ‖ℑ(s)‖
1 + ‖a‖

)d

.

Proof. — The 2 preceeding lemmas imply that ∂α(log ‖sD‖)(x) are bounded
on Gn

a(F ). Moreover, ‖sD‖ tends to 0 at infinity. We thus may integrate by
parts d-times.
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3. Projective space

This section is included to illustrate our approach in the simplest example.
We give yet another proof of asymptotics for the number of rational points of
bounded height on the standard projective space Pn over a number field F
with the standard metrization of the line bundle O(1) given by the model Pn

oF

at the finite places and by the L2-norms at the archimedian places.
To keep this section as self-contained as possible, we reprove the estimates

needed without referring to the general estimates of the preceeding section.
For simplicity, we assume moreover that F = Q.

We will denote by A the ring of adeles AQ, by p a prime number. We have
the normalized valuations | · |p with |p|p = p−1 and the usual absolute value
| · |∞. If a ∈ Gn

a(A), we denote by ψa the corresponding character by the
identification of Gn

a(A) with its Pontryagin dual.
We are interested in the height zeta function

Z(s) =
∑

x∈Gn
a (Q)

H(x)−s(3.1)

where H(x) = H∞(x)
∏

pHp(x) with

Hv(x) := ‖x‖v =

{

(1 +
∑n

j=1 |xj |
2
v)

1/2 if v|∞
max(1,maxj |xj |v) if v is finite.

The series (3.1) converges absolutely and uniformly to a holomorphic function
for Re(s) ≫ 0. For all s such that the both sides converge, we have the
Poisson-formula identity (cf. 2.5)

Z(s) =
∑

ψa

Ĥ(s;ψa),(3.2)

absolutely. This identity is the starting point for a meromorphic continuation
of Z(s). We now compute (resp. estimate) the local Fourier transforms.

Lemma 3.3. — Let p be a prime number. For all s with Re(s) > n, Hp(s; ·)
is integrable on Qn

p and its Fourier transform at the trivial character ψ0 is
given by

Ĥp(s;ψ0) =
1 − p−s

1 − p−(s−n)
.(3.4)
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Proof. — We decompose the domain of integration Qn
p into subdomains

U(α) =
{

x = (x1, ..., xn) ; ‖x‖p = pα
}

,

for α > 1 and

U(0) =
{

x = (x1, ..., xn) ; ‖x‖p 6 1
}

Then

Ĥp(s;ψ0) =

∫

U(0)

H(x)−s dx +
∑

α>1

∫

U(α)

H(x)−s dx,

= 1 +
∑

α>1

p−αs · vol(U(α)).

One has volU(0) = 1 and for α > 1,

vol(U(α)) = pαn vol(Zn
p \ (pZp)

n) = pαn(1 − p−n).

For all s with Re(s) > n, the geometric series converges absolutely and we
obtain

Ĥp(s;ψ0) = 1 + (1 − 1

pn
)
∑

α>1

p−α(s−n),

= 1 + (1 − 1

pn
) · 1

ps−n
· 1

1 − p−(s−n)
.

Simplifying, we obtain (3.4).

For all a = (a1, ..., an) ∈ Zn let S(a) be the set of all primes which divide
all aj .

Lemma 3.5. — For all a ∈ Zn \ {0}, all s with Re(s) > n and all p 6∈ S(a)
we have

Ĥp(s;ψa) = 1 − p−s.(3.6)

Proof. — As above, we have

Ĥp(s, ψa) = 1 +
∑

α>1

p−αs
∫

U(α)

ψa(x) dx.

We first integrate over the set V (α) of x ∈ Qn
p such that ‖x‖ 6 pα.

∫

V (α)

ψa(x) dx = pαn
∫

Zn
p

ψa/pα(x) dx.
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If α > 1, as p doesn’t divide all the aj , this is the integral of a non trivial
character on a compact group, hence 0. For α = 0, we get 1. Therefore, as
V (0) = U(0) and U(α) = V (α) \ V (α− 1) for α > 1,

∫

U(α)

ψa(x) dx =

{

0 for α > 2

−1 for α = 1.

This implies the lemma.

Lemma 3.7. — For all ε > 0 there exist constants c and δ > 0 such that
for all s with Re(s) > n+ ε and all a ∈ Zn \ {0} we have the estimate

∣

∣

∣

∣

∣

∣

∏

p∈S(a)

Ĥp(s;ψa)

∣

∣

∣

∣

∣

∣

6 c · (1 + ‖a‖)δ.(3.8)

Proof. — In the integral, we replace ψa by 1, s by Re(s) and use the compu-
tation in (3.3). For Re(s) > n + ε, we obtain

∣

∣

∣
Ĥp(s;ψa)

∣

∣

∣
6

1

1 − p−ε
.

If a is a positive integer, we have an inequality
∏

p|a

1

pε
≪ ln(1 + a)

which can be deduced e.g. from the Prime Number Theorem. This gives us
equation (3.8).

We now turn to the estimations of the local Fourier transform for the place at
infinity. For the trivial character, we can—as we could in the non-archimedian
case—explicitely compute the relevant integral:

Lemma 3.9. — For all s with Re(s) > n, H∞(s; ·) is integrable on Rn and
its Fourier transform at the trivial character ψ0 is given by

Ĥ∞(s;ψ0) = πn/2
Γ((s− n)/2)

Γ(s/2)
.

Lemma 3.10. — For all δ > 0 and all compacts K in the domain Re(s) > n
there exists a constant c(δ,K) such that for all a ∈ Zn and all s ∈ K we have

∣

∣

∣
Ĥ∞(s;ψa)

∣

∣

∣
6 c(δ,K)(1 + ‖a|)−δ
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Proof. — By a unitary change of variables, we may assume a = (‖a‖ , 0, . . . , 0).
Thus,

Ĥ∞(s;ψa) =

∫

Rn

(1 + ‖x‖2)−s/2 exp(−2πi ‖a‖ x1) dx

=

∫

R

∫

Rn−1

(1 + |x1|2 + ‖x′‖)−s/2 exp(−2πi ‖a‖ x1) dx1 dx′

=

∫

R

(1 + |x1|2)−(s−n+1)/2 exp(−2πi ‖a‖x1) dx1

∫

Rn−1

dy

(1 + ‖y‖2)s/2

For any k > 0, the kth derivative of t 7→ (1+t2)−s is of the form Pk(t)(1+t2)−s−k

with Pk a polynomial of degree k whose coefficients are polynomials in s. Thus
we can integrate by parts and get for any k an expression
∫

R

(1 + t2)−(s−n+1)/2 exp(−2πi ‖a‖ t) dt =
1

(πi ‖a‖)k
∫

R

Pk(t)

(1 + t2)k−
s−n+1

2

dt

which imply the lemma.

Remark 3.11. — It follows from the arguments above that the Fourier trans-
form has polynomial growth in vertical strips.

Theorem 3.12. — The series

Z(s) =
∑

ψa

Ĥ(s;ψa)

converges absolutely and uniformly to a holomorphic function for s with Re(s) >
n + 1. The function Z(s) admits a meromorphic continuation to the domain
Re(s) > n with exactly one simple pole at s = n + 1. The residue at this pole
equals

lim
s→n+1

(s− (n+ 1))Ĥ(s;ψ0) = lim
s→n+1

(s− (n+ 1))

∫

Gn
a (AQ)

H(s;x) dx.

Proof. — Choose a real number δ > n. From lemmas 4.5, 4.7 and 4.10, it
follows that for any compact K ∈ ]n; +∞[, any a ∈ Zn \ {0}, the product of
the local Fourier transforms at the character ψa converges to a holomorphic
function of s which satisfies the inequality

∣

∣

∣
Ĥ(s;ψa)

∣

∣

∣
6 c(K)(1 + |ℑ(s)|)δ(1 + ‖a‖)−δ, Re(s) ∈ K.

Hence, the sum over all non-trivial ψ converges absolutely and locally uni-
formly to a holomorphic function in the domain Re(s) > n.
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At the trivial character, we have, if Re(s) > n+ 1,

Ĥ(s;ψ0) =
ζ(s− n)Γ((s− n)/2)

ζ(s)Γ(s/2)
.

This has a simple pole at s = n and extends meromorphically to the domain
Re(s) > n, with no other pole there.

The identification of the residue and Peyre’s Tamagawa constant in [14] is

straightforward, granted the meromorphic continuation of Ĥ(s;ψ0).

4. Blow-ups of P2

4.1. Preliminaries. — We continue to work over Q and we keep the nota-
tions of previous sections.

Let us consider the projective plane P2 with coordinates (x0, x1, x2) and its
Zariski open subset U ⊂ P2 given by x0 6= 0. Denote by X the blow-up of
P2 in r distinct points Z1, . . . , Zr which are contained in the line at infinity
Z0 ⊂ P2 which is given by x = 0.

For all k ∈ {1, . . . , r}, there is a linear form ℓk ∈ Z[x1, x2] with primitive
coefficients such that Zk = V (x0, ℓk). For k = 1, . . . , r, we denote by Dk the
inverse image of Zk in X and by D0 the strict transform of the line Z0. The
variety X is smooth; the anticanonical class is given by

−[KX ] = 3[D0] + 2

r−1
∑

k=1

[Dk].

In the sequel, we shall identify a point x ∈ G2
a with the point with homo-

geneous coordinates (1 : x) in P2 or with its pre-image in the blow-up. It
follows from the general theory of height functions on blow-ups that for all
k ∈ {1, . . . , r}, a local height function for the divisor Dk at such a point x is
given by

Hk,p(x) =
max(1, ‖x‖p)

max(1, |ℓk(x)|p)
at a finite place p, and by an analogous formula where max(1, ·) is replaced by√

1 + ·2 at the infinite place. For D0, we have

H0,p(x) = max(1, ‖x‖p)
r
∏

k=1

H−1
k,p(x)
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(with the same convention if v = ∞). The global height is given by

Hk(x) = Hk,∞(x) ·
∏

p

Hk,p(x)

and for s = (s0, . . . , sr) ∈ Cr, we define

H(s;x) :=

r
∏

k=0

Hk(x)sk

the global height corresponding to the complexified line bundle D(s).
From 2.5, we see that the height zeta function for X has the following formal

“Fourier expansion”:
∑

x∈Q2

H(s;x)−1 =
∑

a∈Z2

Ĥ(s;ψa)

We have the decomposition

Ĥ(s;ψa) = Ĥ∞(s;ψa,∞) ·
∏

p

Ĥp(s;ψa,p).

As in the case of Pn, we compute the local Fourier transforms for almost all
places and estimate them at the remaining bad places.

Let S be the set of primes of bad reduction of the schematic closure of
⋃

k Zk
in P2

Z. A prime p belongs to S if there exist two linear forms ℓk and ℓj such
that p divides det(ℓk, ℓj).

4.2. Decomposition of the domain. — Fix a prime p 6∈ S which we may
omit from the notations for norms, etc. Define subsets of Q2

p as follows:

– U(0) = Z2
p;

– if 1 6 β 6 α and k ∈ {1, . . . , r}, Uk(α, β) is the set of x ∈ Q2
p such that

‖x‖ = pα and |ℓk(x)| = pα−β;
– if α > 1 and k ∈ {1, . . . , r}, Uk(α) is the set of x ∈ Q2

p such that ‖x‖ = pα

and |ℓk(x)| 6 1;
– if α > 1, U(α) is the set of x ∈ Q2

p such that ‖x‖ = pα and all |ℓj(x)| = pα.

As p 6∈ S, these sets furnish a partition of Q2
p. This decomposition is well

adjusted to our local heights since they are constant on each subset:

– on U(0), all Hk’s are 1;
– on Uk(α, β), Hk = pβ, the other Hj with j > 1 are 1 and H0 = pα−β;
– on Uk(α), Hk = pα, the other Hj are 1;
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– on U(α), H0 = pα and all other are 1.

In other words,

H(s;x) =



















1 if x ∈ U(0);

pαs0 if x ∈ U(α), α > 1;

pαs0+β(sk−s0) if x ∈ Uk(α, β), 1 6 β < α;

pαsk if x ∈ Uk(α, β), β > α.

(4.3)

The table on p. 29 summarizes this information.

4.4. Some integrals of characters. — We identify a ∈ Z2 with the linear
form it defines on G2

a as well as with the character ψa of G2
a(AQ) it determines.

We will say that a character is generic if a is not proportional to any ℓk. A
non trivial character is special if it is proportional to some (necessarily unique)
ℓk.

If a is generic, S(a) is the set of primes p such that p divides some determi-
nant det(ℓk, a).

If a is special for ℓk, S(a) is the set of primes such that p divides some
determinant det(ℓj , a) for j 6= k.

Note that S ⊂ S(a) for any non-trivial a and that if p|a, then p ∈ S(a).
We now compute the integral of ψa over the subsets defined in the previous

subsection, at least in the cases a = 0, a special and a generic.
Remark that for any a,

∫

U(0)
ψa(x) dx = 1.

Lemma 4.5 (Trivial character). — Let p be a prime not in S. Then,

volUk(α, β) = p2α−β (p− 1)2

p2
;(4.5a)

volUk(α) = pα
p− 1

p
;(4.5b)

volU(α) = p2α (p− 1)(p+ 1 − r)

p2
.(4.5c)



POINTS OF BOUNDED HEIGHT 23

Lemma 4.6 (Generic character). — Let a be a generic character and p 6∈
S(a). Then,

∫

Uk(α,β)

ψa = 0(4.6a)

∫

Uk(α)

ψa =

{

−1 if α = 1

0 else;
(4.6b)

∫

U(α)

ψa =

{

−1 + r if α = 1

0 else;
(4.6c)

Lemma 4.7 (Special character). — Let a a character which is special for
ℓk. If p 6∈ S(a) and j 6= k, one has

∫

Uj(α,β)

ψa = 0(4.7a)

∫

Uj(α)

ψa =

{

−1 if α = 1

0 else;
(4.7b)

∫

Uk(α,β)

ψa =

{

−pα p−1
p

if β = α− 1

0 else;
(4.7c)

∫

Uk(α)

ψa = pα
p− 1

p
(4.7d)

∫

U(α)

ψa =

{

−(p+ 1 − r) if α = 1

0 else;
(4.7e)

Proof. — We prove the three lemmas simultaneously. By a unitary change of
variables, we may assume that ℓk(x) = x1. Then one has

Uk(α, β) = pβ−αZ∗
p × p−αZ∗

p

and

Uk(α) = Zp × p−αZ∗
p,

hence their volumes as in formulas (4.5a) and (4.5b).
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If p doesn’t divide det(ℓk, a), we may change variables and even assume that
a = (0, 1). Then,

∫

Uk(α,β)

ψa(x) dx = p2α−β p− 1

p

∫

Z∗

p

exp(2πiu/pα) du

and the last integral has already been calculated when we studied the case of
Pn : one finds 0 if α > 2 and −1/p if α = 1. But α > β > 1, so α 6= 1. This
proves formulas (4.6a) and (4.7a).

Similarly,
∫

Uk(α)

ψa(x) dx = pα
∫

Z∗

p

exp(2πiu/pα) du

is −1 for α = 1 and 0 else. Formulas (4.6b) and (4.7b) are therefore proved.
We now treat the case of a character a which is special for ℓk. A unitary

change of variables allows to assume ℓk(x) = x1 and a = (1, 0). Then,
∫

Uk(α,β)

ψa(x) dx = p2α−β p− 1

p

∫

Z∗

p

exp(2πix/pα−β)

is 0 if α− β 6= 1 and is equal to

p2α−α+1 p− 1

p

(−1)

p
= −pα p− 1

p

if α = β − 1, as stated in (4.7c). Equation (4.7d) follows from
∫

Uk(α)

ψa(x) dx =

∫

Zp×p−αZ∗

p

exp(2πix1) dx = pα
p− 1

p
.

To compute the volume of U(α), it is useful to remark that U(α) is p−α times
the complementary subset in Z2

p of 1 + (p − 1)r disjoint balls of radius 1/p.
Therefore,

volU(α) = p2α
(

1 − 1 + (p− 1)r

p2

)

= p2α (p− 1)(p+ 1 − r)

p2
,

as in formula (4.5c).
If p ∤ a, remark that the integral of ψa over p−α(Z2

p \ pZ2
p) is −1 for α = 1

and 0 for α > 2. We now need to substract the integrals over the disjoint
subsets Uk(α, β) and Uk(α).
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For a generic character, one gets 0 if α > 2 and −1 + r if α = 1; this
establishes formula (4.6c). Finally, if a is special for ℓk, one has

∫

U(1)

ψa(x) dx = −1 + (r − 1) − (p− 1) = −(p+ 1 − r)

and
∫

U(α)
ψa = 0 for α > 2, as claimed in (4.7e).

4.8. The local Fourier transform at ψ0. — We still assume p 6∈ S and
compute the local Fourier transform at the trivial character ψ0. By the general
result 2.10 on Fourier transforms of height functions, H(s; ·)−1 is integrable on
Gn
a(Qp) as soon as Re(s0) > 2 and all Re(sk) > 1. We then have:

Ĥ(s;ψ0) =

∫

U(0)

+

(

r
∑

k=1

∑

16β<α

∫

Uk(α,β)

+
∞
∑

α=1

∫

Uk(α)

)

+
∞
∑

α=1

∫

U(α)

and we compute each sum separately. The integral over U(0) is 1. Now, for a
fixed k, the integral over all Uk(α, β) is

∑

16β<α

∫

Uk(α,β)

=
(p− 1)2

p2

∑

16β<α

p−αs0p−β(sk−s0)p2αp−β

=
(p− 1)2

p2

∞
∑

β=1

p−β(sk−s0+1)

∞
∑

α=β+1

p−α(s0−2)

=
(p− 1)2

p2

∞
∑

β=1

p−β(sk−s0+1)p−β(s0−2) 1

ps0−2 − 1

=
(p− 1)2

p2

1

ps0−2 − 1

∞
∑

β=1

p−β(sk−1)

=
(p− 1)2

p2

1

ps0−2 − 1

1

psk−1 − 1

The sum over all Uk(α) (k fixed) equals

∞
∑

α=1

∫

Uk(α)

=
p− 1

p

∞
∑

α=1

p−αskpα =
p− 1

p

∞
∑

α=1

p−α(sk−1) =
p− 1

p

1

psk−1 − 1
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Finally, the sum over all U(α) is
∞
∑

α=1

∫

U(α)

=
(p− 1)(p+ 1 − r)

p2

∞
∑

α=1

p−αs0p2α =
(p− 1)(p+ 1 − r)

p2

∞
∑

α=1

p−α(s0−2)

=
(p− 1)(p+ 1 − r)

p2

1

ps0−2 − 1
=

(p− 1)(p+ 1 − r)

p2

1

ps0−2 − 1

Putting all this together, we have

Ĥ(s;ψ0) = 1 +
p− 1

p2

1

ps0−2 − 1

r
∑

k=1

1

psk−1 − 1

(

(p− 1) + p(ps0−2 − 1)
)

+
(p− 1)(p+ 1 − r)

p2

1

ps0−2 − 1

= 1 +
p− 1

p2

ps0−1 − 1

ps0−2 − 1

r
∑

k=1

1

psk−1 − 1
+

(p− 1)(p+ 1 − r)

p2

1

ps0−2 − 1

= 1 +
p− 1

p2

1

ps0−2 − 1

(

(p+ 1 − r) +
r
∑

k=1

ps0−1 − 1

psk−1 − 1

)

= 1 +
p2 − 1

ps0 − p2
+

p− 1

ps0 − p2

r
∑

k=1

psk−1 − ps0−1

psk−1 − 1
(4.9)

We remark that if (s0, s1, . . . , sr) = (3, 2, . . . , 2), corresponding to the anti-
canonical class K−1

X , this gives

Ĥ(K−1
X , ψ0) = 1 +

p2 − 1

p3 − p2
+ r

p− 1

p3 − p2

p2 − p

p− 1
= 1 +

r + 1

p
+

1

p2
=

1

p2
#X(Fp),

the expected local density at p.

4.10. The local Fourier transform at a generic character. — Let a be
a generic character and p 6∈ S(a). In that case, the summation is easier. The
integrals over Uk(α, β) are 0, as are the integrals over Uk(α) or U(α) if α > 2.
Therefore

Ĥ(s;ψa) = 1 −
r
∑

k=1

p−sk + (r − 1)p−s0.(4.11)

For K−s
X , this specializes to

Ĥ(K−s
X , ψa) = 1 − rp−2s + (r − 1)p−3s.
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4.12. The local Fourier transform at a special character. — If a is
special for ℓk and p 6∈ S(a), it behaves as if it were generic for the other ℓj .
Besides U(0), U(1) and Uj(1) for j 6= k, remain the integrals over Uk(α, α− 1)
for α > 2 and the one over U(α) for α > 2.

Ĥ(s;ψa) = 1 −
∑

j 6=k

p−sj + (r − p− 1)p−s0

+
∞
∑

α=1

pα
p− 1

p
p−αsk −

∑

α>2

pα
p− 1

p
p−αs0−(α−1)(sk−s0)

= 1 −
∑

j 6=k

p−sj + (r − p− 1)p−s0

+
p− 1

p

1

psk−1 − 1
− p− 1

p
psk−s0

p−sk−1

psk−1 − 1

= 1 −
∑

j 6=k

p−sj + (r − p− 1)p−s0 + (p− 1)(1 − p1−s0)
1

psk − p
(4.13)

For K−s
X , one has

Ĥ(K−s
X , ψa) = 1 − (r − 1)p−2s + (r − p− 1)p−3s + (p− 1)

1 − p1−3s

p2s − 1
.

4.14. Bad reduction, general estimates. — If p ∈ S(a), then the previ-

ous analysis doesn’t say anything about the behaviour of Ĥ(s;ψa). However,
for any compact contained in the domain of integrability of the height function,
there is a uniform estimate

∣

∣

∣
Ĥp(s;ψa)

∣

∣

∣
6 C

where the constant C doesn’t depend on p ∈ S. For p ∈ S(a) \ S, we replace
ψa by 1 and insert the estimates for the trivial character.

It follows that
∏

p∈S(a)

∣

∣

∣
Ĥp(s;ψa)

∣

∣

∣
6 C ′(1 + ‖a‖)κ

for some constant C ′ and some κ > 0.
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4.15. Meromorphic continuation. — We split the sum over all characters
in r + 2 parts: the trivial character is treated separately; then the generic
characters; then the characters which are special for ℓk, k varying from 1 to r:

∑

a

Ĥ(s;ψa) = Ĥ(s;ψ0) +
∑

a generic

Ĥ(s;ψa) +

r
∑

k=1

∑

a special for ℓk

Ĥ(s;ψa).

Let Z0, Zgen and Zk (for 1 6 k 6 r) be the functions defined by the corre-
sponding series.

Each global Fourier transform at a generic character defines a holomorphic
function of s in the domain Re(s0) > 2 and Re(sk) > 1 for all 1 6 k 6 r.
Moreover, the estimate at infinity 2.13 ensures that the sum over all generic
characters converges locally uniformly. Therefore, Zgen extends to a holomor-
phic function in that domain.

For the characters which are special for ℓk, the product of the local Fourier
transform defines a holomorphic function of s in the domain Re(s0) > 2,
Re(sj) > 1 if j 6= k and Re(sk) > 2. It extends to a meromorphic function in
the domain Re(s0) > 2, Re(sj) > 1 and Re(sk) > 1 with a simple pole along
the hypersurface sk = 2.

And finally, for the trivial character, we have absolute convergence for
Re(s0) > 3 and Re(sk) > 2 for 1 6 k 6 r, and meromorphic continuation to the
domain Re(s0) > 2, Re(sk) > 1, with principal part 1/(s0−3)(s1−2) . . . (sr−2).

The estimates of Prop. 2.13 as well as standard estimates for the growth of
the Riemann zeta function in vertical strips imply that (away from poles) Z(s)
has polynomial growth in vertical strips.

Therefore, we have proven the following theorem:

Theorem 4.16. — The height zeta function Z(s) converges in the domain
Re(s0) > 3, Re(sk) > 2. Moreover, there exists a holomorphic function g in
the domain Re(s0) > 2, Re(sk) > 1 such that

Z(s) = g(s)
1

(s0 − 3)(s1 − 2) . . . (sr − 2)

and g(K−1
X ) 6= 0. Moreover, g has polynomial growth in vertical strips.

Corollary 4.17. — There exist a polynomial PX of degree r and an α > 0
such that the number of rational points in U of anticanonical height 6 B
satisfies

N(U,−KX , B) = BPX(logB) +O(B1−α).
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Moreover, if τ(KX) denotes the Tamagawa number, the leading coefficient of
PX is equal to

1

r!

τ(KX)

3 · 2r ,
as predicted by Peyre’s refinement of Manin’s conjecture.

Table 1

U(0) Uk(α, β) Uk(α) U(α)

volume 1 p2α−β (p−1)2

p2
pα p−1

p
p2α (p−1)(p+1−r)

p2

H0 1 pα−β 1 pα

Hj (j 6= k) 1 1 1 1

Hk 1 pβ pα 1

H(s; ·) 1 pαs0+β(sk−s0) pαsk pαs0

Integrals of a generic character ψa

α = 1 1 −1 −1 + r

α > 2 1 0 0 0

Integrals of a character ψa special for ℓk

any α 1 pα p−1
p

α = 1 −(p + 1 − r)

α > 2 0

α = β − 1 −pα p−1
p
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Antoine Chambert-Loir, Institut de mathématiques de Jussieu, Boite 247, 4, place
Jussieu, F-75252 Paris Cedex 05 • E-mail : chambert@math.jussieu.fr

Yuri Tschinkel, Dept. of Mathematics, U.I.C., Chicago, (IL) 60607-7045, U.S.A.
E-mail : yuri@math.uic.edu


