
ON THE COX RING OF DEL PEZZO SURFACES

ULRICH DERENTHAL

Abstract. Let Sr be the blow-up of P2 in r general points, i.e., a
smooth Del Pezzo surface of degree 9 − r. For r ≤ 7, we determine
the quadratic equations defining its Cox ring explicitly. The ideal of
the relations in Cox(S8) is calculated up to radical. As conjectured by
Batyrev and Popov, all the generating relations are quadratic.
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1. Introduction

A Del Pezzo surface Sr of degree d = 9 − r over an algebraically closed
field K is the blow-up of P2 in r points in general position1 (1 ≤ r ≤ 8). Its
Picard group is a free Z-module of rank r + 1.

Once we have chosen representatives L0, . . . ,Lr for a basis of Pic(Sr), we
can define its Cox ring, or total coordinate ring, as

Cox(Sr) :=
⊕

(ν0,...,νr)∈Zr+1

Γ(Sr,L⊗ν0
0 ⊗ · · · ⊗ L⊗νr

r ).

The multiplication of sections induces the multiplication in Cox(Sr). The
Cox ring is graded by Pic(Sr) and is independent of the choice of the basis.

The intersection form is a non-degenerate bilinear form on Pic(Sr). We
will write it as (D1, D2) for D1, D2 ∈ Pic(Sr). (We will often use the same
notation for divisors and their class in Pic(Sr). It will be clear from the
context what is meant.) A prime divisor D whose self-intersection number
(D,D) is negative is called a negative curve. On smooth Del Pezzo surfaces,
every negative curve has self-intersection number −1.

For r ∈ {3, . . . , 7}, Cox(Sr) is generated by non-zero sections of the Nr

negative curves ([BP04, Theorem 3.2]), see Table 1 for the values of Nr. For
r = 8, we must add two independent sections of Γ(S8,−KS8). Let Rr be

Date: January 27, 2006.
1I.e., no three points on one line, no six points on a conic, no eight points with one of

them a double point on a cubic.
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the free polynomial ring whose variables correspond to these generators of
Cox(Sr). We want to determine the relations between these generators.

For r ≤ 3, the Cox ring is a polynomial ring in r + 3 generators. This is
due to the fact that in these cases, Sr is toric (see [Cox95] for Cox rings of
toric varieties).

Definition 1.1. For n ≥ 1, a divisor class D is called an (n)-ruling if
D = D1 + D2 for two negative curves D1, D2 whose intersection number
(D1, D2) is n ≥ 1. A (1)-ruling is also called a ruling.

Each (n)-ruling defines a quadratic relation between generators of Cox(Sr),
see Lemma 2.1. Relations coming from (1)-rulings define an ideal Ir ⊂ Rr.
For r ∈ {4, 5, 6}, Cox(Sr) = Rr/ rad(Ir) by [BP04, Theorem 4.9]. We extend
this result to r ∈ {7, 8} as follows:

Theorem 1.2. For r ∈ {4, . . . , 8}, we have Cox(Sr) = Rr/ rad(Jr), where
• for r ∈ {4, 5, 6}, Jr := Ir;
• the ideal J7 is generated by the 504 quadratic relations coming from

the 126 rulings, and 25 quadratic relations coming from the (2)-ruling
−KS7;

• the ideal J8 is generated by the 10800 quadratic relations coming
from the 2160 rulings, 6480 quadratic relations coming from 240
(2)-rulings, and 119 quadratic relations coming from the (3)-ruling
2 · (−KS8).

It is known that the ideal I4 is radical (see [BP04]). Batyrev proved that
the same holds for I5 (unpublished). Here we prove:

Theorem 1.3. For r ∈ {4, . . . , 7}, the ideals Jr are radical, and

Cox(Sr) = Rr/Jr.

It was conjectured by Batyrev and Popov that the ideal of relations defin-
ing Cox(Sr) is generated by quadrics for r ∈ {4, . . . , 8}, see [BP04, Conjec-
ture 4.3]. To prove this conjecture, it now remains to show that J8 is radical.

After recalling some general results on Del Pezzo surfaces in Section 2,
we will handle the cases r ∈ {6, 7, 8} separately.
Acknowledgments. I am grateful to V. Batyrev for providing me with
similar calculations for the case of degree 4 Del Pezzo surfaces. I thank H.-
C. Graf v. Bothmer for help with the calculation of the quadratic relations
in case of the cubic surface.

2. Smooth Del Pezzo surfaces

In this section, we summarize some facts on smooth Del Pezzo surfaces.
• Let E1, . . . , Er be the exceptional divisors of the blowup of P2 in
r points p1, . . . , pr in general position. A basis of Pic(Sr) is given
by (the classes of) H,E1, . . . , Er, where H is the pullback of the
hyperplane section in P2.

• In terms of this basis, the intersection form is given by a diagonal ma-
trix of size r+1 whose diagonal is (1,−1, . . . ,−1). The anticanonical
divisor is −KSr = 3H − (E1 + · · ·+ Er).
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• The curves with self-intersection number −1 are described in [BP04,
Theorem 2.1]. There are no curves whose self-intersection is ≤ −2.

• The Weyl group Wr acting on Pic(Sr) depends on r:

r 1 2 3 4 5 6 7 8
Wr A1 A2 A2 + A1 A4 D5 E6 E7 E8

For more details, see [BP04, Section 2].
As explained in the introduction, for r ≤ 6, all relations in the Cox ring

are induced by rulings, and these relations also play an important role for r ∈
{7, 8}. More precisely, by the discussion following [BP04, Remark 4.7], each
ruling is represented in r−1 different ways as the sum of two negative curves,
giving r−3 linearly independent quadratic relation in Cox(Sr). Therefore, if
each of the Nr negative curves intersects nr negative curves with intersection
number 1, we have N ′

r = (Nr · nr)/2 pairs, the number of rulings is N ′′
r =

N ′
r/(r − 1), and the number of quadratic relations coming from rulings is

N ′′
r · (r − 3) (see Table 1).

r 3 4 5 6 7 8
Nr 6 10 16 27 56 240
nr 2 3 5 10 27 126
N ′′

r 3 5 10 27 126 2160
relations 0 5 20 81 504 10800

Table 1. The number of relations coming from rulings.

Now we describe how to obtain explicit equations for Cox(Sr) and how
to prove Theorems 1.2 and Theorem 1.3. We isolate the steps that must be
carried out for each of the degrees 3, 2, and 1 and complete the proofs in
the following sections.

Choice of coordinates. Choose coordinates for p1, . . . , pr ∈ P2. We
may assume that the first for points are

(2.1) p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1), p4 = (1 : 1 : 1).

By the general position requirement, the other points must have non-zero
coordinates, and we can write pj = (1 : αj : βj) for j ∈ {5, . . . , r}.

Curves in P2. As explained in the introduction, Cox(Sr) is generated
by sections of the negative curves for r ≤ 7. For a negative curve D, we
denote the corresponding section by ξ(D), and for a generating section ξ,
let D(ξ) be the corresponding divisor. For r = 8, we need two further
generators: linearly independent sections κ1, κ2 of −KS8 . Let K1 := D(κ1),
K2 := D(κ2) be the corresponding divisors in the divisor class −KS8 .

Let Ψr be the set of sections generating Cox(Sr), and Dr the set of cor-
responding divisors (including κ1, κ2 respectively K1,K2 if r = 8).

We need an explicit description of the image of each generator D of
Cox(Sr) under the projection π : Sr → P2. According to the seven cases
in [BP04, Theorem 2.1], π(D) can be a curve, determined by a form fD

of degree d ∈ {1, . . . , 6}, or a point (if D = Ei). If π(D) is a point, the
convention to choose fD as a non-zero constant will be useful later.
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For r = 8, we have the following situation: The image of Ki is a cubic
through the eight points p1, . . . , p8. The choice of two linearly independent
sections κ1, κ2 corresponds to the choice of two independent cubic forms
fK1 , fK2 vanishing in the eight points. Every cubic through these points has
the form a1fK1+a2fK2 where (a1, a2) 6= (0, 0), and the cubic does not change
if we replace (a1, a2) be a non-zero multiple. This gives a one-dimensional
projective space of cubics through the eight points.

Let X1, . . . , Xn be the monomials of degree d in three variables x0, x1, x2.
For D ∈ Dr, we can write

fD =
n∑

i=1

ai ·Xi

for suitable coefficients ai, which we can calculate in the following way: If
pj lies on π(D), this gives a linear condition on the coefficients ai by substi-
tuting the coordinates of pj for x0, x1, x2. If pj is a double point of π(D), all
partial derivatives of fD must vanish at this point, giving three more linear
conditions. If pj is a triple point, we get six more linear conditions from the
second derivatives. With p1, . . . , pr in general position, we check that these
conditions determine fD uniquely up to a non-zero constant.

Relations corresponding to (n)-rulings. Suppose that an (n)-ruling
D can be written as Dj + D′

j for k different pairs Dj , D
′
j ∈ Dr where j ∈

{1, . . . , k}. Then the products

fD1 · fD′
1
, . . . , fDk

· fD′
k

are k homogeneous forms of the same dimension d, and they span a vector
space of degree n+ 1 in the space of homogeneous polynomials of degree d.
Therefore, there are k− (n+ 1) independent relations between them, which
we write as

k∑
j=1

aj,i · fDj · fD′
j

= 0 for i ∈ {1, . . . , k − (n+ 1)}.

for suitable constants aj,i. They give an explicit description of the quadric
relations coming from D:

Lemma 2.1. In this situation, the (n)-ruling D gives the following k−(n+1)
quadratic relations in Cox(Sr):

qi :=
k∑

j=1

aj,i · ξ(Dj) · ξ(D′
j) = 0 for i ∈ {1, . . . , k − (n+ 1)}.

We will describe the (n)-rulings in more detail in the subsequent sections.
Let Jr be the ideal in Rr which is generated by the (n)-rulings (where

n = 1 for r ≤ 6, n ∈ {1, 2} for r = 7, and n ∈ {1, 2, 3} for r = 8).
The proof of Theorem 1.2. For r ∈ {4, 5, 6}, this is [BP04, Theo-

rem 4.9]. For r ∈ {7, 8}, we use a refinement of its proof.
Let Zr = Spec(Rr/ rad(Jr)) ⊂ Spec(Rr). We want to prove that Zr equals

A(Sr) ⊂ Spec(Rr). Obviously, 0 ∈ Spec(Rr) is contained in both Zr and
A(Sr). Its complement Spec(Rr) \ {0} is covered by the open sets

UD := {ξ(D) 6= 0}, where D ∈ Dr.
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In the case r = 8, we will show that it suffices to consider the sets UD for
D ∈ D8 \ {K1,K2}.

We want to show

Zr ∩ UD
∼= Zr−1 × (A1 \ {0}).

Note that we can identify the negative curves Dr−1 of Sr−1 with the subset
D′

r of Dr containing the negative curves which do not intersect D. We define

ψ : Zr ∩ UD → Zr−1 × (A1 \ {0})
(ξ(D′) | D′ ∈ Dr) 7→ ((ξ(D′) | D′ ∈ Dr−1), ξD) .

For r ∈ {7, 8}, we will prove:

Lemma 2.2. Every ξ(D′′) for D′′ ∈ Dr intersecting D is determined by

ξ(D) and {ξ(D′) | D′ ∈ Dr with (D′, D) = 0},
provided that ξ(D) 6= 0 and using the relations generating Jr.

By the proof of [BP04, Prop. 4.4],

A(Sr) ∩ UD
∼= A(Sr−1)× (A1 \ {0}).

By induction, Zr−1 = A(Sr−1). Therefore, Zr ∩ UD = A(Sr) ∩ UD for
every negative curve D, which implies Zr = A(Sr), completing the proof of
Theorem 1.2 once Lemma 2.2 is proved.

Proof of Theorem 1.3. We want to show that the ideal Jr is radical.

Lemma 2.3. The Hilbert polynomial of Sr/Jr has degree r + 2.

For r = 5, this was proved by Batyrev. We will prove it for r ∈ {6, 7}.

Remark 2.4. The problem of calculating the Hilbert polynomial of J8 seems
out of reach of the current computer algebra packages. It is the only step
missing in the proof of Theorem 1.3 for Del Pezzo surfaces of degree 1.

Under the condition of the proof of Lemma 2.3, the depth of Rr/Jr is r+3.
As Spec(Rr/Jr) is irreducible by [BP04], and Cox(Sr) = Spec(Rr/ rad(Jr))
by Theorem 1.2, the Rr-module Rr/Jr is Cohen-Macaulay. Therefore, we
need to check the following claim in order to prove that the ideal Jr is radical:

Lemma 2.5. Rr/Jr has a smooth point.

3. Degree 3

We consider the case r = 6, i.e. smooth cubic surfaces. The set D6 of
negative curves on S6 consists of the following 27 divisors:

• exceptional divisors E1, . . . , E6, preimages of p1, . . . , p6 ∈ P2,
• transforms mi,j = H−Ei−Ej of the 15 lines m′

i,j through the points
pi, pj (i 6= j ∈ {1, . . . , 6}), and

• transforms Qk = H − (E1 + · · · + E6) + Ek of the six conics Q′
k

through all of the blown-up points except pk.
With respect to the anticanonical embedding S6 ↪→ P3, the negative curves
are the 27 lines.

Together with information from Section 2, it is straightforward to derive:
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Lemma 3.1. The extended Dynkin diagram of negative curves has the fol-
lowing structure:

(1) It has 27 vertices corresponding to the 27 lines Ei,mi,j , Qi. Each of
them has self-intersection number −1.

(2) Every line intersects exactly 10 other lines: Ei intersects mi,j and
Qj (for j 6= i); mi,j intersects Ei, Ej , Qi, Qj and mk,l (for {i, j} ∩
{k, l} = ∅); Qi intersects mi,j and Ej (for j 6= i). Correspondingly,
there are 135 edges in the Dynkin diagram.

(3) There are 45 triangles, i.e., triples of lines which intersect pair-
wise: 30 triples Ei,mi,j , Qj and 15 triples mi1,j1 ,mi2,j2 ,mi3,j3 where
{i1, j1, i2, j2, i3, j3} = {1, . . . , 6}. This corresponds to 45 triangles in
the Dynkin diagram, where each edge is contained in exactly one of
the triangles, and each vertex belongs to exactly five triangles.

Lemma 3.2. The 27 rulings of S6 are given by −KS6−D for D ∈ D6. Two
negative curves D′, D′′ fulfill D′ +D′′ = −KS6 −D if and only if D,D′, D′′

form a triangle in the sense of Lemma 3.1(3). There are five such pairs for
any given D.

Proof. We can check directly that D +D′ +D′′ = −KS6 if D,D′, D′′ form
a triangle. Therefore, −KS6 − D is a ruling, and as any D is contained
in exactly five triangles, it can be expressed in five corresponding ways as
D′ +D′′.

On the other hand, by Table 1, the total number of rulings is 27, and
each ruling can be expressed in exactly five ways as the sum of two negative
curves. �

Let D be one of the 27 lines of S6, and consider the projection ψD : S6 99K
P2 from D. Then

ψ∗D(OP2(1)) = −KS6 −D =


H − Ei, ` = Qi,

2H − (E1 + · · ·+ E6) + Ei + Ej , ` = mi,j ,

3H − (E1 + · · ·+ E6)− Ei, ` = Ei.

These are exactly the rulings.
A generating set Ψ of Cox(S6) is given by section ηi, µi,j , λi corresponding

to the 27 lines Ei,mi,j , Qi, respectively. Let

R6 := K[ηi, µi,j , λi].

The quadratic monomials in Γ(S6,−KS6 − D) corresponding to the five
ways to express −KS6 −D as the sum of the negative curves are

• µi,jηj if D = Qi

• ηiλj , ηjλi, µk1,k2µk3,k4 ifD = µi,j (with {i, j, k1, . . . , k4} = {1, . . . , 6})
• µi,jλj if D = Ei

In order to calculate the 81 relations in J6 explicitly as described in
Lemma 2.1, we use the coordinates of (2.1) for p1, . . . , p4, and

p5 = (1 : a : b), p6 = (1 : c : d).

We write

E := (b− 1)(c− 1)− (a− 1)(d− 1) and F := bc− ad
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for simplicity. The three relations corresponding to the lines ` will be denoted
by q`, q′`, q

′′
` .

qQ1 = −η2µ1,2 − η3µ1,3 + η4µ1,4

q′Q1
= −aη2µ1,2 − bη3µ1,3 + η5µ1,5

q′Q1
= −cη2µ1,2 − dη3µ1,3 + η6µ1,6

qQ2 = η1µ1,2 − η3µ2,3 + η4µ2,4

q′Q2
= η1µ1,2 − bη3µ2,3 + η5µ2,5

q′′Q2
= η1µ1,2 − dη3µ2,3 + η6µ2,6

qQ3 = η1µ1,3 + η2µ2,3 + η4µ3,4

q′Q3
= η1µ1,3 + aη2µ2,3 + η5µ3,5

q′′Q3
= η1µ1,3 + cη2µ2,3 + η6µ3,6

qQ4 = η1µ1,4 + η2µ2,4 + η3µ3,4

q′Q4
= (1− b)η1µ1,4 + (a− b)η2µ2,4 + η5µ4,5

q′′Q4
= (1− d)η1µ1,4 + (c− d)η2µ2,4 + η6µ4,6

qQ5 = 1/bη1µ1,5 + a/bη2µ2,5 + η3µ3,5

q′Q5
= (1− b)/bη1µ1,5 + (a− b)/bη2µ2,5 + η4µ4,5

q′′Q5
= (b− d)/bη1µ1,5 + F/bη2µ2,5 + η6µ5,6

qQ6 = 1/dη1µ1,6 + c/dη2µ2,6 + η3µ3,6

q′Q6
= (1− d)/dη1µ1,6 + (c− d)/dη2µ2,6 + η4µ4,6

q′′Q6
= (b− d)/dη1µ1,6 + F/dη2µ2,6 + η5µ5,6

qm1,2 = µ4,5µ3,6 − µ3,5µ4,6 + µ3,4µ5,6

q′m1,2
= (b− d)µ3,5µ4,6 + (d− 1)µ3,4µ5,6 + η2λ1

q′′m1,2
= Fµ3,5µ4,6 + a(d− c)µ3,4µ5,6 + η1λ2

qm1,3 = µ4,5µ2,6 − µ2,5µ4,6 + µ2,4µ5,6

q′m1,3
= (c− a)µ2,5µ4,6 + (1− c)µ2,4µ5,6 + η3λ1

q′′m1,3
= −Fµ2,5µ4,6 + b(c− d)µ2,4µ5,6 + η1λ3

qm2,3 = µ4,5µ1,6 − µ1,5µ4,6 + µ1,4µ5,6

q′m2,3
= (a− c)µ1,5µ4,6 + a(c− 1)µ1,4µ5,6 + η3λ2

q′′m2,3
= (b− d)µ1,5µ4,6 + b(d− 1)µ1,4µ5,6 + η2λ3
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qm1,4 = µ3,5µ2,6 − µ2,5µ3,6 + µ2,3µ5,6

q′m1,4
= −Eµ2,5µ3,6 + (b− 1)(c− 1)µ2,3µ5,6 + η4λ1

q′′m1,4
= −Fµ2,5µ3,6 + bcµ2,3µ5,6 + η1λ4

qm2,4 = µ3,5µ1,6 − µ1,5µ3,6 + µ1,3µ5,6

q′m2,4
= Eµ1,5µ3,6 + (a− b)(c− 1)µ1,3µ5,6 + η4λ2

q′′m2,4
= (b− d)µ1,5µ3,6 − bµ1,3µ5,6 + η2λ4

qm3,4 = µ2,5µ1,6 − µ1,5µ2,6 + µ1,2µ5,6

q′m3,4
= −Eµ1,5µ2,6 + (a− b)(1− d)µ1,2µ5,6 + η4λ3

q′′m3,4
= (c− a)µ1,5µ2,6 + aµ1,2µ5,6 + η3λ4

qm1,5 = µ3,4µ2,6 − µ2,4µ3,6 + µ2,3µ4,6

q′m1,5
= −Eµ2,4µ3,6 + (a− c)(1− b)µ2,3µ4,6 + η5λ1

q′′m1,5
= (d− c)µ2,4µ3,6 + cµ2,3µ4,6 + η1λ5

qm2,5 = µ3,4µ1,6 − µ1,4µ3,6 + µ1,3µ4,6

q′m2,5
= aEµ1,4µ3,6 + (a− b)(c− a)µ1,3µ4,6 + η5λ2

q′′m2,5
= (1− d)µ1,4µ3,6 − µ1,3µ4,6 + η2λ5

qm3,5 = µ2,4µ1,6 − µ1,4µ2,6 + µ1,2µ4,6

q′m3,5
= −bEµ1,4µ2,6 + (a− b)(b− d)µ1,2µ4,6 + η5λ3

q′′m3,5
= (c− 1)µ1,4µ2,6 + µ1,2µ4,6 + η3λ5

qm4,5 = µ2,3µ1,6 − µ1,3µ2,6 + µ1,2µ3,6

q′m4,5
= b(c− a)µ1,3µ2,6 + a(b− d)µ1,2µ3,6 + η5λ4

q′′m4,5
= (c− 1)µ1,3µ2,6 + (1− d)µ1,2µ3,6 + η4λ5

qm1,6 = µ3,4µ2,5 − µ2,4µ3,5 + µ2,3µ4,5

q′m1,6
= −Eµ2,4µ3,5 + (a− c)(1− d)µ2,3µ4,5 + η6λ1

q′′m1,6
= (b− a)µ2,4µ3,5 + aµ2,3µ4,5 + η1λ6

qm2,6 = µ3,4µ1,5 − µ1,4µ3,5 + µ1,3µ4,5

q′m2,6
= cEµ1,4µ3,5 + (a− c)(d− c)µ1,3µ4,5 + η6λ2

q′′m2,6
= (1− b)µ1,4µ3,5 − µ1,3µ4,5 + η2λ6
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qm3,6 = µ2,4µ1,5 − µ1,4µ2,5 + µ1,2µ4,5

q′m3,6
= −dEµ1,4µ2,5 + (d− b)(d− c)µ1,2µ4,5 + η6λ3

q′′m3,6
= (a− 1)µ1,4µ2,5 + µ1,2µ4,5 + η3λ6

qm4,6 = µ2,3µ1,5 − µ1,3µ2,5 + µ1,2µ3,5

q′m4,6
= d(c− a)µ1,3µ2,5 + c(b− d)µ1,2µ3,5 + η6λ4

q′′m4,6
= (a− 1)µ1,3µ2,5 + (1− b)µ1,2µ3,5 + η4λ6

qm5,6 = µ2,3µ1,4 − µ1,3µ2,4 + µ1,2µ3,4

q′m5,6
= d(c− 1)µ1,3µ2,4 + c(1− d)µ1,2µ3,4 + η6λ5

q′′m5,6
= b(a− 1)µ1,3µ2,4 + a(1− b)µ1,2µ3,4 + η5λ6

qE1 = (d− b)/Eµ1,2λ2 + (c− a)/Eµ1,3λ3 + µ1,4λ4

q′E1
= (d− 1)/Eµ1,2λ2 + (c− 1)/Eµ1,3λ3 + µ1,5λ5

q′′E1
= (b− 1)/Eµ1,2λ2 + (a− 1)/Eµ1,3λ3 + µ1,6λ6

qE2 = F/Eµ1,2λ1 + (c− a)/Eµ2,3λ3 + µ2,4λ4

q′E2
= (c− d)/Eµ1,2λ1 + (c− 1)/Eµ2,3λ3 + µ2,5λ5

q′′E2
= (a− b)/Eµ1,2λ1 + (a− 1)/Eµ2,3λ3 + µ2,6λ6

qE3 = F/Eµ1,3λ1 + (b− d)/Eµ2,3λ2 + µ3,4λ4

q′E3
= (c− d)/Eµ1,3λ1 + (1− d)/Eµ2,3λ2 + µ3,5λ5

q′′E3
= (a− b)/Eµ1,3λ1 + (1− b)/Eµ2,3λ2 + µ3,6λ6

qE4 = F/(a− c)µ1,4λ1 + (b− d)/(a− c)µ2,4λ2 + µ3,4λ3

q′E4
= c/(a− c)µ1,4λ1 + 1/(a− c)µ2,4λ2 + µ4,5λ5

q′′E4
= a/(a− c)µ1,4λ1 + 1/(a− c)µ2,4λ2 + µ4,6λ6

qE5 = (d− c)/(c− 1)µ1,5λ1 + (d− 1)/(c− 1)µ2,5λ2 + µ3,5λ3

q′E5
= −c/(c− 1)µ1,5λ1 − 1/(c− 1)µ2,5λ2 + µ4,5λ4

q′′E5
= −1/(c− 1)µ1,5λ1 − 1/(c− 1)µ2,5λ2 + µ5,6λ6

qE6 = (b− a)/(a− 1)µ1,6λ1 + (b− 1)/(a− 1)µ2,6λ2 + µ3,6λ3

q′E6
= −a/(a− 1)µ1,6λ1 − 1/(a− 1)µ2,6λ2 + µ4,6λ4

q′′E6
= −1/(a− 1)µ1,6λ1 − 1/(a− 1)µ2,6λ2 + µ5,6λ5
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Proof of Lemma 2.3. We calculate the Hilbert polynomial of R6/J6

over the field of fractions of the polynomial ring Q[a, b, c, d] using Magma:

h(t) =
1
8!

(372t8 + 4464t7 + 25200t6 + 86184t5 + 193788t4

+ 291816t3 + 284640t2 + 161856t+ 40320).

Its degree is r + 2 = 8 as required.

Proof of Lemma 2.5. The point p with coordinates

(η5, η6, µ1,2, µ1,4, µ2,3, µ3,4, λ5, λ6) = (c(d− 1), a(b− 1), 1,−1, 1, 1, 1, 1),

and all other coordinates zero is a smooth point of R6/J6. Indeed, we check
that p fulfills all the relations generating Jr (which is obvious for all of them
except qm5,6 , q

′
m5,6

, q′′m5,6
), and we calculate directly that the 81×27 Jacobian

matrix has full rank 18 at this point.

4. Degree 2

Let S7 be a smooth Del Pezzo surface of degree d = 2, i.e. the blow-up of
P2 in r = 7 points. The set D7 contains 56 negatives curves which are the
transforms of the following curves in P2:

• blow-ups E1, . . . , E7 of p1, . . . , p7;
• 21 lines m′

i,j through pi, pj , where

mi,j = H − Ei − Ej ;

• 21 conics Q′
i,j through five of the seven points, missing pi, pj , where

Qi,j = 2H − (E1 + · · ·+ E7) + Ei + Ej ;

• 7 singular cubics C ′
i through all seven points, where pi is a double

point, and

Ci = 3H − (E1 + · · ·+ E7)− Ei.

The Cox ring Cox(S7) is generated by the sections ηi, µi,j , νi,j , λi corre-
sponding to the 56 negative curves Ei,mi,j , Qi,j , Ci, respectively. Let

R7 := K[ηi, µi,j , νi,j , λi]

be the polynomial ring in 56 generators.
Consider the ideal I7 ⊂ R7 generated by the quadratic relations corre-

sponding to rulings. In view of Lemma 2.1, we need to know the six different
ways to write each of the 126 rulings as a sum of two negative curves in order
to describe I7 explicitly. Here, we do not write the resulting 504 relations
down because of the length of this list.

Lemma 4.1. Each of the 126 rulings can be written in six ways as a sum
of two negative curves:

(1) For the seven rulings H − Ei:

{Ej +mi,j | j 6= i}.
(2) For the 35 rulings 2H − (E1 + · · ·+ E7) + Ei + Ej + Ek:

{Ei +Qj,k, Ej +Qi,k, Ek +Qi,j ,ml1,l2 +ml3,l4 | {i, j, k, l1, l2, l3, l4} = {1, . . . , 7}}
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(3) For the 42 rulings 3H − (E1 + · · ·+ E7) + Ei − Ej:

{Ei + Cj , Qi,k +mj,k | k 6= i, j}.
(4) For the 35 rulings 4H − (E1 + · · ·+ E7)− Ei − Ej − Ek:

{Ci +mj,k, Cj +mi,k, Ck +mi,j , Ql1,l2 +Ql3,l4 | {i, j, k, l1, l2, l3, l4} = {1, . . . , 7}}

(5) For the seven rulings 5H − 2(E1 + · · ·+ E7) + Ei:

{Cj +Qi,j | j 6= i}.

However, we have more quadratic relations in Cox(S7): Note that the
point q, with η1 = λ1 = 1 and other coordinates zero, satisfies the 504
relations. Indeed, (E1, C1) = 2, but all quadratic monomials which occur
in the relations correspond to pairs of divisors whose intersection number
is 1. Therefore, all these monomials and all the relations vanish in q. On
the other hand, we check that the 504× 56 Jacobian matrix has rank 54 in
this point, which means that q is contained in a component of the variety
defined by I7 which has dimension 2. As A(S7) is irreducible of dimension
10, we must find other relations to exclude such components.

As E1+C1 = −KS7 , we look for more relations in degree−KS7 of Cox(S7):
We check that in this degree, we have exactly 28 monomials:

{ηiλi | 1 ≤ i ≤ 7} ∪ {µj,kνj,k | 1 ≤ j < k ≤ 7},
corresponding to −KS7 = Ei + Ci = mj,k +Qj,k. As dim Γ(S7,−KS7) = 3,
and as none of the relations coming from rulings induces a relation in this
degree, we obtain 25 independent relations. Note that −KS7 is the unique
(2)-ruling of S7.

We can calculate the relations explicitly as they correspond to the rela-
tions between the polynomials fEi · fCi and fmi,j · fQi,j , which are homoge-
neous of degree 3, as described in Lemma 2.1.

Let J7 be the ideal generated by these 529 relations.

Proof of Lemma 2.2. In order to prove that Cox(S7) is described by
rad(J7), we must prove Lemma 2.2 in the case r = 7.

For any D ∈ D7, consider a coordinate ξ(D′) where (D,D′) = 1. This is
determined by the ruling D + D′. Indeed, this ruling induces a relation of
the form

ξ(D)ξ(D′) =
∑

aiξ(Di)ξ(D′
i),

where Di +D′
i = D +D′. Therefore,

(D,Di +D′
i) = (D,D +D′) = (D,D) + (D,D′) = −1 + 1 = 0,

which implies (D,Di) = (D,D′
i) = 0 since the only divisor with a negative

intersection number with D is D itself. Since ξ(D) 6= 0, the only unknown
variable ξ(D′) is determined by this relation.

Furthermore, there is exactly one coordinate ξ(D′′) where (D,D′′) = 2.
The unique (2)-ruling D +D′′ = −KS7 induces a relation of the form

ξ(D)ξ(D′′) =
∑

aiξ(Di)ξ(D′
i),

where ξ(D′′) is the only unknown variable.
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Proof of Lemma 2.3. In a special case, we can calculate the Hilbert
polynomial:

Example 4.2. Over the field F101 with p1, . . . , p4 as in (2.1) and

p5 = (1 : 2 : 3), p6 = (1 : 5 : 7), p7 = (1 : 13 : 17)

in general position, we can use Macaulay to calculate the Hilbert polynomial
of J7 as

(4.1) h(t) =
1
9!
· (9504t9 + 85536t8 + 412992t7 + 1294272t6 + 2860704t5

+ 4554144t4 + 5125248t3 + 3863808t2 + 1752192t+ 362880).

The Hilbert polynomial does not depend on the choice of the field or the
points. Therefore, h(t) is the Hilbert polynomial of R7/J7. Its degree is
r + 2 = 9.

5. Degree 1

In this section, we consider blow-ups of P2 in r = 8 points in general
position, i.e., Del Pezzo surfaces S8 of degree 1.

The set D8 contains the transforms of the following 242 curves:
• Blow-ups E1, . . . , E8 of p1, . . . , p8;
• 28 lines m′

i,j through pi, pj :

mi,j = H − Ei − Ej ;

• 56 conics Q′
i,j,k through 5 points, missing pi, pj , pk:

Qi,j,k = 2H − (E1 + · · ·+ E8) + Ei + Ej + Ek;

• 56 cubics C ′
i,j through 7 points missing pj , where pi is a double point:

Ci,j = 3H − (E1 + · · ·+ E8)− Ei + Ej ;

• 56 quartics V ′
i,j,k through all points, where pi, pj , pk are double

points:

Vi,j,k = 4H − (E1 + · · ·+ E8)− (Ei + Ej + Ek);

• 28 quintics F ′
i,j through all points, where pi, pj are simple points and

the other six are double points:

Fi,j = 5H − 2(E1 + · · ·+ E8) + Ei + Ej ;

• 8 sextics T ′
i , where pi a triple point and the other seven points are

double points:

Ti = 6H − 2(E1 + · · ·+ E8)− Ei;

• two independent cubics K ′
1,K

′
2 through the eight points:

[K1] = [K2] = −KS8 = 3− (E1 + · · ·+ E8).

The Cox ring of S8 is generated by the 242 sections

ηi, µi,j , νi,j,k, λi,j , φi,j,k, ψi,j , σi, κi

of Ei, mi,j , Qi,j,k, Ci,j , Vi,j,k, Fi,j , Ti,Ki, respectively.

Lemma 5.1. Each of the 2160 rulings can be expressed in the following
seven ways as a sum of two negative curves:
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• 8 rulings of the form H − Ei:

{Ej +mi,j | j 6= i}.

•
(
8
4

)
= 70 rulings of the form 2H − (Ei + Ej + Ek + El):{
mi,j +mk,l,mi,k +mj,l,

mi,l +mj,k, Ea +Qb,c,d

∣∣∣∣∣{a, b, c, d, i, j, k, l} = {1, . . . , 8}

}
.

• 8 ·
(
7
2

)
= 168 rulings of the form 3H− (E1 + · · ·+E8)−Ei +Ej +Ek:

{Ej + Ci,k, Ek + Ci,j ,mi,l +Qj,k,l | l /∈ {i, j, k}}.

• 8 ·
(
7
3

)
= 280 rulings 4H − (E1 + · · ·+ E8) + Ei − (Ej + Ek + El):{

Ei + Vj,k,l, Qi,a,b +Qi,c,d,

Cj,i +mk,l, Ck,i +mj,l, Cl,i +mj,k

∣∣∣∣∣{a, b, c, d, i, j, k, l} = {1, . . . , 8}

}
,

and 8 rulings of the form 4H − (E1 + · · ·+ E8)− 2Ei:

{mi,j + Ci,j | j 6= i}.
• 8 · 7 = 56 rulings of the form 5H − 2(E1 + · · ·+ E8) + 2Ei + Ej:

{Ei + Fi,j , Ck,i +Qi,j,k | k /∈ {i, j}},

and 8 ·
(
7
3

)
= 280 rulings 5H− (E1 + · · ·+E8)−2Ei− (Ej +Ek +El):{

mi,j + Vi,k,l,mi,k + Vi,j,l,

mi,l + Vi,j,k, Ci,a +Qb,c,d

∣∣∣∣∣{a, b, c, d, i, j, k, l} = {1, . . . , 8}

}
.

•
(
8
2

)
·
(
6
2

)
= 420 rulings 6H − 2(E1 + · · ·+E8)− (Ei +Ej) +Ek +El:

{mi,j + Fk,l, Vi,j,m +Qk,l,m, Ci,k + Cj,l, Ci,l + Cj,k | m /∈ {i, j, k, l}}.
• 8 · 7 = 56 rulings of the form 7H − 2(E1 + · · ·+ E8)− 2Ei − Ej:

{mi,j + Ti, Ci,k + Vi,j,k | k /∈ {i, j}},

and 8 ·
(
7
3

)
= 280 rulings of the form 7H − 3(E1 + · · ·+E8) + 2Ei +

Ej + Ek + El:{
Fi,j +Qi,k,l, Fi,k +Qi,j,l,

Fi,l +Qi,j,k, Ca,i + Vb,c,d

∣∣∣∣∣{a, b, c, d, i, j, k, l} = {1, . . . , 8}

}
.

• 8 ·
(
7
3

)
= 280 rulings 8H − 3(E1 + · · ·+ E8)− Ei + Ej + Ek + El:{

Ci,j + Fk,l, Ci,k + Fj,l, Ci,l + Fj,k,

Ti +Qj,k,l, Vi,a,b + Vi,c,d

∣∣∣∣∣{a, b, c, d, i, j, k, l} = {1, . . . , 8}

}
,

and 8 rulings of the form 8H − 3(E1 + · · ·+ E8) + 2Ei:

{Fi,j + Cj,i | j 6= i}.

• 8·
(
7
2

)
= 168 rulings of the form 9H−3(E1+· · ·+E8)+Ei−(Ej+Ek):

{Sj + Ck,i, Sk + Cj,i, Fi,l + Vj,k,l | l /∈ {i, j, k}}.

•
(
8
4

)
= 70 rulings of the form 10H−4(E1+· · ·+E8)+Ei+Ej+Ek+El:

{Fi,j +Fk,l, Fi,k +Fj,l, Fi,l +Fj,k, Sa+Vb,c,d | {a, b, c, d, i, j, k, l} = {1, . . . , 8}}.
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• 8 rulings of the form 11H − 4(E1 + · · ·+ E8) + Ei:

{Sj + Fi,j | j 6= i}.
There is no way to write a ruling as the sum of −KS8 and negative curves.

Proof. Because of the Weyl group symmetry, we only need to prove the last
statement in one case, say H − E1. In this case, it is obvious.

By Table 1, there can be no other rulings, and each ruling can be expressed
in no further ways as the sum of two negative curves. �

With this information, Lemma 2.1 allows us to determine the 10800 rela-
tions coming from rulings explicitly.

We can find more quadratic relations in the degrees corresponding to (2)-
rulings: Because of the Weyl group symmetry, it is enough to consider the
(2)-ruling D := E2 + C2,1. This can also be written as Ej + Cj,1 for any
j 6= 1 and as mi,j + Q1,i,j for any i, j 6= 1, giving 28 section in Γ(S8, D).
As D = −KS8 + E1, we get two further section η1κ1, η1κ2. As the previous
quadratic relations do not induce relations in this degree of Cox(S8), and
because we calculate dim Γ(S8, D) = 3 for this nef degree, we obtain 27
relations, which can be calculated explicitly as before.

Every negative curve has intersection number 2 with exactly 56 other
curves (e.g. (E1, D) = 2 if and only if D ∈ {C1,i, V1,i,j , Fi,j , Ti} for i, j 6= 1),
so it occurs in exactly 56 (2)-rulings. On the other hand, as every (2)-ruling
can be written in 28 ways as the sum of two negative curves, the total
number of (2)-rulings is 240·56

2·28 = 240. Therefore, we obtain another 6480
relations from the (2)-rulings. To determine them explicitly, we need the
following more detailed information:

Lemma 5.2. Each of the 240 (2)-rulings can be written as a sum of two
negative curves in the following 28 ways:

• 8 (2)-rulings of the form

−KS8 + Ei = 3H − (E1 + · · ·+ E8) + Ei :

{Ej + Cj,i,mj,k +Qi,j,k | j, k 6= i}.
•

(
8
2

)
= 28 (2)-rulings of the form

−KS8 +mi,j = 4H − (E1 + · · ·+ E8)− (Ei + Ej) :{
Ek + Vi,j,k,mi,k + Cj,k,

mj,k + Ci,k, Qa,b,c +Qd,e,f

∣∣∣∣∣ k /∈ {i, j},{i, j, a, b, c, d, e, f} = {1, . . . , 8}

}
.

•
(
8
3

)
= 56 (2)-rulings of the form

−KS8 +Qi,j,k = 5H − 2(E1 + · · ·+ E8) + Ei + Ej + Ek :{
Ei + Fj,k, Ej + Fi,k, Ek + Fi,j ,ma,b + Vc,d,e,

Qi,j,l + Cl,k, Qi,k,l + Cl,j , Qj,k,l + Cl,i

∣∣∣∣∣ {i, j, k, a, b, c, d, e}= {1, . . . , 8}, l /∈ {i, j, k}

}
.

• 8 · 7 = 56 (2)-rulings of the form

−KS8 + Ci,j = 6H − 2(E1 + · · ·+ E8)− Ei + Ej :

{Ej + Ti,mi,k + Fj,k, Qj,k,l + Vi,k,l, Ci,k + Ck,j | k, l /∈ {i, j}}.
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•
(
8
3

)
= 56 (2)-rulings of the form

−KS8 + Vi,j,k = 7H − 2(E1 + · · ·+ E8)− (Ei + Ej + Ek) :{
Ti +mj,k, Sj +mi,k, Sk +mi,j , Fa,b +Qc,d,e,

Vi,j,l + Ck,l, Vi,k,l + Cj,l, Vj,k,l + Ci,l

∣∣∣∣∣ {i, j, k, a, b, c, d, e}
= {1, . . . , 8}, l /∈ {i, j, k}

}
.

•
(
8
2

)
= 28 (2)-rulings of the form

−KS8 + Fi,j = 8H − 3(E1 + · · ·+ E8) + Ei + Ej :{
Sk +Qi,j,k, Fi,k + Ck,j ,

Fj,k + Ck,i, Va,b,c + Vd,e,f

∣∣∣∣∣ k /∈ {i, j},{i, j, a, b, c, d, e, f} = {1, . . . , 8}

}
.

• 8 (2)-rulings of the form

−KS8 + Ti = 9H − 3(E1 + · · ·+ E8)− Ei :

{Sj + Ci,j , Fj,k + Vi,j,k | j, k 6= i}.

Furthermore, the 242 generators give the 123 quadratic monomials

ηiσi, µi,jψi,j , νi,j,kφi,j,k, λi,jλj,i, κ2
1, κ1κ2, κ

2
2

in the 4-dimensional subspace Γ(S8, 2 · (−KS8)) of Cox(S8). Note that
2 · (−KS8) is the unique (3)-ruling. As the relations coming from rulings
and (2)-rulings do induce relations, we obtain another 119 relations. Their
equations can be calculated in the same way as before.

Lemma 5.3. There are exactly 17399 quadratic relations in Cox(S8).

Proof. The relations in Cox(S8) are generated by relations which are homo-
geneous with respect to the Pic(S8)-grading. A quadratic relation involving
a term δ1 · δ2 whose variables correspond to the negative curves D1, D2 has
degree D = D1 + D2. The relations of degree D1 + D2 depend on the
intersection number n = (D1, D2):

• If n = 1, then D is a ruling. As described above, we have exactly
10800 corresponding relations.

• If n = 2, thenD is a (2)-ruling. We have described the 6480 resulting
relations.

• If n = 3, then D = 2 ·(−KS8), which results in exactly 119 quadratic
relations.

• If n = 0, then D = D1 +D2 is not nef since (D,D1) = −1. However,
by results of [HT04, Section 3], the relations in Cox(S8) are generated
by relations in nef degrees.

• If n = −1, then D1 = D2, and (D,D1) = −2, so D is not nef, giving
no generating relations as before.

There are no other quadratic relations involving κi because the 240 degrees
−KS8 +D1 for some negative curve D1 are exactly the (2)-rulings, and the
degree 2 · (−KS8) has also been considered. �

Let J8 be the ideal generated by these 17399 quadratic relations in

R8 = K[ηi, µi,j , νi,j,k, λi,j , φi,j,k, ψi,j , σi, κi].
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Proof of Lemma 2.2. Let D ∈ D8 \ {K1,K2} be any negative curve.
We call a variable ξ(D′) for a negative curve D′ ∈ D8 an (n)-variable if
(D,D′) = n.

As for r = 7 in the previous section, we show that the rulings determine
the (1)-variables in terms of the (0)-variables and ξ(D) 6= 0.

For the two variables κi = ξ(Ki) corresponding to −KS8 , we use the (2)-
ruling −KS8 +D: As (D,−KS8 +D) = 0, we have (D,Di) = (D,D′

i) = 0 for
any other possibility to write −KS8 +D as the sum of two negative curves
Di, D

′
i. Since (−KS8 +D,−KS8) = 2, by [BP04, Prop. 3.4], the quadratic

monomials ξ(Di)ξ(D′
i) span the 3-dimensional space Γ(S8,−KS8 + D), so

this (2)-ruling induces relations of the form

κiξ(D) =
∑

aiξ(Di)ξ(D′
i).

Therefore, κ1, κ2 are determined by ξ(D) and the (0)-variables.
Any (2)-coordinates ξ(D′) is determined by the (2)-ruling D + D′: As

(D,D + D′) = 1, we have (D,Di) = 0 and (D,D′
i) = 1 for every other

possibility to write D +D′ as the sum of two negative curves Di, D
′
i. Fur-

thermore, if D + D′ = −KS8 + D′′, then (D,D′′) = 0. Therefore, the
relations corresponding to this (2)-ruling determine ξ(D′) in terms of the
(0)- and (1)-variables and κ1, κ2, ξ(D).

Finally, there is a unique (3)-coordinate D′, where D+D′ = 2 · (−KS2) is
the (3)-ruling. As all the other variables are known at this point, the rela-
tions corresponding to 2 · (−KS8) containing the term ξ(D)ξ(D′) determine
ξ(D′).

Consider a point in UKj , i.e., with κj 6= 0. As above, by [BP04, Prop.
3.4], Γ(S8, 2·(−KS8)) is spanned by the monomials ξ(Di)ξ(D′

i) for (3)-rulings
Di, D

′
i. Therefore, we have relations of the form

κ2
j =

∑
aiξ(Di)ξ(D′

i),

which shows that ξ(Di) 6= 0 for some i. This proves that Z8 \ {0} is covered
by the sets UD for D ∈ D8 \ {K1,K2}.

Proof of Lemma 2.5. Let p ∈ SpecR8 be the point whose coordinates
are zero, except that η8, µ1,3, µ2,3, µ3,4, µ3,5, µ3,6, µ3,8 are 1 and

(η1, η2, η4, η5, η6) =
(
α3α4

α
,
α4

α
,
(1− α3)α4

α
,
(α1 − α3)α4

α1α
,
(α2 − α3)α4

α2α

)
,
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where α := α4−α3. This point satisfies the five equations corresponding to
the ruling H − E3:

η1µ1,3 −
α3α4

α3 − α4
η7µ3,7 +

α3α4

α3 − α4
η8µ3,8,

η2µ2,3 −
α3

α3 − α4
η7µ3,7 +

α4

α3 − α4
η8µ3,8,

η4µ3,4 +
α3α4 − α3

α3 − α4
η7µ3,7 +

−α3α4 + α4

α3 − α4
η8µ3,8,

η5µ3,5 +
−α1α3 + α3α4

α1α3 − α1α4
η7µ3,7 +

α1α4 − α3α4

α1α3 − α1α4
η8µ3,8,

η6µ3,6 +
−α2α3 + α3α4

α2α3 − α2α4
η7µ3,7 +

α2α4 − α3α4

α2α3 − α2α4
η8µ3,8.

Consider intersection numbers between the negative curves corresponding
to the twelve non-zero coordinates. They are zero except for the 6 pairs
corresponding to the ruling H − E3. Therefore, no pair of non-zero coor-
dinates occurs in relations corresponding to other (n)-rulings, which shows
that p ∈ A(S8). We check directly that the Jacobian in p has full rank 231.
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