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Negative values of truncations to L(1, χ)

Andrew Granville and K. Soundararajan

Abstract. For fixed large x we give upper and lower bounds for the minimum
of

P
n≤x χ(n)/n as we minimize over all real-valued Dirichlet characters χ.

This follows as a consequence of bounds for
P

n≤x f(n)/n but now minimizing

over all completely multiplicative, real-valued functions f for which −1 ≤
f(n) ≤ 1 for all integers n ≥ 1. Expanding our set to all multiplicative, real-
valued multiplicative functions of absolute value ≤ 1, the minimum equals
−0.4553 · · ·+o(1), and in this case we can classify the set of optimal functions.

1. Introduction

Dirichlet’s celebrated class number formula established that L(1, χ) is positive for
primitive, quadratic Dirichlet characters χ. One might attempt to prove this posi-
tivity by trying to establish that the partial sums

∑
n≤x χ(n)/n are all non-negative.

However, such truncated sums can get negative, a feature which we will explore in
this note.

By quadratic reciprocity we may find an arithmetic progression (mod 4
∏

p≤x p)

such that any prime q lying in this progression satisfies
(

p
q

)
= −1 for each p ≤ x.

Such primes q exist by Dirichlet’s theorem on primes in arithmetic progressions,
and for such q we have

∑
n≤x

(
n
q

)
/n =

∑
n≤x λ(n)/n where λ(n) = (−1)Ω(n) is the

Liouville function. Turán [6] suggested that
∑

n≤x λ(n)/n may be always positive,
noting that this would imply the truth of the Riemann Hypothesis (and previously
Pólya had conjectured that the related

∑
n≤x λ(n) is non-positive for all x ≥ 2,

which also implies the Riemann Hypothesis). In [Has58] Haselgrove showed that
both the Turán and Pólya conjectures are false (in fact x = 72, 185, 376, 951, 205 is
the smallest integer x for which

∑
n≤x λ(n)/n < 0, as was recently determined in

[BFM]). We therefore know that truncations to L(1, χ) may get negative.
Let F denote the set of all completely multiplicative functions f(·) with −1 ≤

f(n) ≤ 1 for all positive integers n, let F1 be those for which each f(n) = ±1, and
F0 be those for which each f(n) = 0 or±1. Given any x and any f ∈ F0 we may find
a primitive quadratic character χ with χ(n) = f(n) for all n ≤ x (again, by using
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quadratic reciprocity and Dirichlet’s theorem on primes in arithmetic progressions)
so that, for any x ≥ 1,

min
χ a quadratic

character

∑
n≤x

χ(n)
n

= δ0(x) := min
f∈F0

∑
n≤x

f(n)
n

.

Moreover, since F1 ⊂ F0 ⊂ F we have that

δ(x) := min
f∈F

∑
n≤x

f(n)
n

≤ δ0(x) ≤ δ1(x) := min
f∈F1

∑
n≤x

f(n)
n

.

We expect that δ(x) ∼ δ1(x) and even, perhaps, that δ(x) = δ1(x) for sufficiently
large x.

Trivially δ(x) ≥ −
∑

n≤x 1/n = −(log x+γ+O(1/x)). Less trivially δ(x) ≥ −1,
as may be shown by considering the non-negative multiplicative function g(n) =∑

d|n f(d) and noting that

0 ≤
∑
n≤x

g(n) =
∑
d≤x

f(d)
[x

d

]
≤

∑
d≤x

(
x

f(d)
d

+ 1
)
.

We will show that δ(x) ≤ δ1(x) < 0 for all large values of x, and that δ(x) → 0 as
x →∞.

Theorem 1. For all large x and all f ∈ F we have∑
n≤x

f(n)
n

≥ − 1
(log log x)

3
5
.

Further, there exists a constant c > 0 such that for all large x there exists a function
f(= fx) ∈ F1 such that ∑

n≤x

f(n)
n

≤ − c

log x
.

In other words, for all large x,

− 1
(log log x)

3
5
≤ δ(x) ≤ δ0(x) ≤ δ1(x) ≤ − c

log x
.

Note that Theorem 1 implies that there exists some absolute constant c0 > 0
such that

∑
n≤x f(n)/n ≥ −c0 for all x and all f ∈ F , and that equality occurs only

for bounded x. It would be interesting to determine c0 and all x and f attaining
this value, which is a feasible goal developing the methods of this article.

It would be interesting to determine more precisely the asymptotic nature of
δ(x), δ0(x) and δ1(x), and to understand the nature of the optimal functions.

Instead of completely multiplicative functions we may consider the larger class
F∗ of multiplicative functions, and analogously define

δ∗(x) := min
f∈F∗

∑
n≤x

f(n)
n

.

Theorem 2. We have

δ∗(x) =
(
1− 2 log(1 +

√
e) + 4

∫ √
e

1

log t

t + 1
dt

)
log 2 + o(1) = −0.4553 . . . + o(1).
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If f∗ ∈ F∗ and x is large then∑
n≤x

f∗(n)
n

≥ − 1
(log log x)

3
5
,

unless
∞∑

k=1

1 + f∗(2k)
2k

� (log x)−
1
20 .

Finally ∑
n≤x

f∗(n)
n

= δ∗(x) + o(1)

if and only if( ∞∑
k=1

1 + f∗(2k)
2k

)
log x+

∑
3≤p≤x1/(1+

√
e)

∞∑
k=1

1− f∗(pk)
pk

+
∑

x1/(1+
√

e)≤p≤x

1 + f∗(p)
p

= o(1).

2. Constructing negative values

Recall Haselgrove’s result [Has58]: there exists an integer N such that∑
n≤N

λ(n)
n

= −δ

with δ > 0, where λ ∈ F1 with λ(p) = −1 for all primes p. Let x > N2 be large and
consider the function f = fx ∈ F1 defined by f(p) = 1 if x/(N +1) < p ≤ x/N and
f(p) = −1 for all other p. If n ≤ x then we see that f(n) = λ(n) unless n = p` for
a (unique) prime p ∈ (x/(N + 1), x/N ] in which case f(n) = λ(`) = λ(n) + 2λ(`).
Thus ∑

n≤x

f(n)
n

=
∑
n≤x

λ(n)
n

+ 2
∑

x/(N+1)<p≤x/N

1
p

∑
`≤x/p

λ(`)
`

=
∑
n≤x

λ(n)
n

− 2δ
∑

x/(N+1)<p≤x/N

1
p
.

(2.1)

A standard argument, as in the proof of the prime number theorem, shows that∑
n≤x

λ(n)
n

=
1

2πi

∫ 2+i∞

2−i∞

ζ(2s + 2)
ζ(s + 1)

xs

s
ds � exp(−c

√
log x),

for some c > 0. Further, the prime number theorem readily gives that∑
x/(N+1)<p≤x/N

1
p
∼ log

( log(x/N)
log(x/(N + 1))

)
� 1

N log x
.

Inserting these estimates in (2.1) we obtain that δ(x) ≤ −c/ log x for large x (here
c � δ/N), as claimed in Theorem 1.

Remark 2.1. In [BFM] it is shown that one can take δ = 2.0757641 · · · · 10−9

for N = 72204113780255 and therefore we may take c ≈ 2.87 · 10−23.
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3. The lower bound for δ(x)

Proposition 3.1. Let f be a completely multiplicative function with −1 ≤
f(n) ≤ 1 for all n, and set g(n) =

∑
d|n f(d) so that g is a non-negative multiplica-

tive function. Then∑
n≤x

f(n)
n

=
1
x

∑
n≤x

g(n) + (1− γ)
1
x

∑
n≤x

f(n) + O
( 1

(log x)
1
5

)
.

Proof. Define F (t) = 1
t

∑
n≤t f(n). We will make use of the fact that F (t)

varies slowly with t. From [GS03, Corollary 3],we find that if 1 ≤ w ≤ x/10 then

(3.1)
∣∣∣|F (x)| − |F (x/w)|

∣∣∣ � ( log 2w

log x

)1− 2
π

log
( log x

log 2w

)
+

log log x

(log x)2−
√

3
.

We may easily deduce that

(3.2)
∣∣∣F (x)−F (x/w)

∣∣∣ � ( log 2w

log x

)1− 2
π

log
( log x

log 2w

)
+

log log x

(log x)2−
√

3
�

( log 2w

log x

) 1
4
.

Indeed, if F (x) and F (x/w) are of the same sign then (3.2) follows at once from
(3.1). If F (x) and F (x/w) are of opposite signs then we may find 1 ≤ v ≤ w with
|
∑

n≤x/v f(n)| ≤ 1 and then using (3.1) first with F (x) and F (x/v), and second
with F (x/v) and F (x/w) we obtain (3.2).

We now turn to the proof of the Proposition. We start with

(3.3)
∑
n≤x

g(n) =
∑
d≤x

f(d)
[x

d

]
= x

∑
d≤x

f(d)
d

−
∑
d≤x

f(d)
{x

d

}
.

Now ∑
d≤x

f(d)
{x

d

}
=

∑
j≤x

∑
x/(j+1)<d≤x/j

f(d)
(x

d
− j

)

=
∑

j≤log x

∫ x/j

x/(j+1)

x

t2

∑
x/(j+1)<d≤t

f(d)dt + O
( x

log x

)
.

From (3.2) we see that if j ≤ log x, and x/(j + 1) < t ≤ x/j then∑
x/(j+1)<d≤t

f(d) =
(
t− x

(j + 1)

) 1
x

∑
n≤x

f(n) + O
(x log(j + 1)

j(log x)
1
4

)
.

Using this above we conclude that
(3.4)∑

d≤x

f(d)
{x

d

}
=

( ∑
n≤x

f(n)
) ∑

j≤log x

(
log

(j + 1
j

)
− 1

j + 1

)
+ O

(x(log log x)2

(log x)
1
4

)
.

Since
∑

j≤J(log(1+1/j)−1/(j+1)) = log(J+1)−
∑

j≤J+1 1/j+1 = 1−γ+O(1/J),
when we insert (3.4) into (3.3) we obtain the Proposition. �
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Set u =
∑

p≤x(1 − f(p))/p. By Theorem 2 of A. Hildebrand [Hil87] (with f

there being our function g, K = 2, K2 = 1.1, and z = 2) we obtain that

1
x

∑
n≤x

g(n)�
∏
p≤x

(
1− 1

p

)(
1 +

g(p)
p

+
g(p2)
p2

+. . .
)
σ−

(
exp

( ∑
p≤x

max(0, 1− g(p))
p

))
+ O(exp(−(log x)β)),

where β is some positive constant and σ−(ξ) = ξρ(ξ) with ρ being the Dickman
function1. Since max(0, 1− g(p)) ≤ (1− f(p))/2 we deduce that

1
x

∑
n≤x

g(n) � (e−u log x)(eu/2ρ(eu/2)) + O(exp(−(log x)β))

� e−ueu/2
(log x) + O(exp(−(log x)β)),

(3.5)

since ρ(ξ) = ξ−ξ+o(ξ).
On the other hand, a special case of the main result in [HT91] implies that

(3.6)
1
x

∣∣∣ ∑
n≤x

f(n)
∣∣∣ � e−κu,

where κ = 0.32867 . . .. Combining Proposition 3.1 with (3.5) and (3.6) we imme-
diately get that δ(x) ≥ −c/(log log x)ξ for any ξ < 2κ. This completes the proof of
Theorem 1.

Remark 3.2. The bound (3.5) is attained only in certain very special cases,
that is, when there are very few primes p > xe−u

for which f(p) = 1 + o(1). In this
case one can get a far stronger bound than (3.6). Since the first part of Theorem 1
depends on an interaction between these two bounds, this suggests that one might
be able to improve Theorem 1 significantly by determining how (3.5) and (3.6)
depend upon one another.

4. Proof of Theorem 2

Given f∗ ∈ F∗ we associate a completely multiplicative function f ∈ F by setting
f(p) = f∗(p). We write f∗(n) =

∑
d|n h(d)f(n/d) where h is the multiplicative

function given by h(pk) = f∗(pk)− f(p)f∗(pk−1) for k ≥ 1. Now,∑
n≤x

f∗(n)
n

=
∑
d≤x

h(d)
d

∑
m≤x/d

f(m)
m

=
∑

d≤(log x)6

h(d)
d

∑
m≤x/d

f(m)
m

+ O
(

log x
∑

d>(log x)6

|h(d)|
d

)
.

(4.1)

Since h(p) = 0 and |h(pk)| ≤ 2 for k ≥ 2 we see that

(4.2)
∑

d>(log x)6

|h(d)|
d

≤ (log x)−2
∑
d≥1

|h(d)|
d

2
3

� (log x)−2.

1The Dickman function is defined as ρ(u) = 1 for u ≤ 1, and ρ(u) = (1/u)
R u

u−1 ρ(t)dt for

u ≥ 1.
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Further, for d ≤ (log x)6, we have (writing F (t) = 1
t

∑
n≤t f(n) as in section 3)∑

x/d≤n≤x

f(n)
n

= F (x)− F (x/d) +
∫ x

x/d

F (t)
t

dt =
log d

x

∑
n≤x

f(n) + O
( 1

(log x)
1
5

)
,

using (3.2). Using the above in (4.1) we deduce that∑
n≤x

f∗(n)
n

=
( ∑

n≤x

f(n)
n

) ∑
d≤(log x)6

h(d)
d
− 1

x

∑
n≤x

f(n)
∑

d≤(log x)6

h(d) log d

d
+O

( 1
(log x)

1
5

)
.

Arguing as in (4.2) we may extend the sums over d above to all d, incurring a
negligible error. Thus we conclude that∑

n≤x

f∗(n)
n

= H0

∑
n≤x

f(n)
n

+ H1
1
x

∑
n≤x

f(n) + O
( 1

(log x)
1
5

)
,

with

H0 =
∞∑

d=1

h(d)
d

, and H1 = −
∞∑

d=1

h(d) log d

d
.

Note that H0 =
∏

p(1 + h(p)/p + h(p2)/p2 + . . .) ≥ 0, and that H0, |H1| � 1.
We now use Proposition 3.1, keeping the notation there. We deduce that

(4.3)
∑
n≤x

f∗(n)
n

= H0
1
x

∑
n≤x

g(n) +
(
(1− γ)H0 + H1

) 1
x

∑
n≤x

f(n) + O
( 1

(log x)
1
5

)
.

If H0 ≥ (log x)−
1
20 then we may argue as in section 3, using (3.5) and (3.6). In that

case, we see that
∑

n≤x f∗(n)/n ≥ −1/(log log x)
3
5 . Henceforth we suppose that

H0 ≤ (log x)−
1
20 . Since

H0 � 1 +
h(2)

2
+

h(22)
22

+ . . . � 1 +
f∗(2)

2
+

f∗(22)
22

+ . . . ,

we deduce that (note h(2) = 0)

(4.4)
∞∑

k=2

2 + h(2k)
2k

�
∞∑

k=1

1 + f∗(2k)
2k

� (log x)−
1
20 .

This proves the middle assertion of Theorem 2.
Writing d = 2k` with ` odd,

H1 = −
∑
` odd

h(`)
`

∞∑
k=0

h(2k)
2k

(k log 2 + log `)

= − log 2
( ∞∑

k=1

kh(2k)
2k

) ∑
` odd

h(`)
`

+ O((log x)−
1
20 )

= 3 log 2
∏
p≥3

(
1 +

h(p)
p

+
h(p2)

p2
+ . . .

)
+ O

( log log x

(log x)
1
20

)
,
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where we have used (4.4) and that
∑∞

k=1 kh(2k)/2k = −3 + O(log log x/(log x)
1
20 ).

Using these observations in (4.3) we obtain that

∑
n≤x

f∗(n)
n

= H0
1
x

∑
n≤x

g(n) + 3 log 2
∏
p≥3

(
1 +

h(p)
p

+
h(p2)

p2
+ . . .

) 1
x

∑
n≤x

f(n) + o(1)

≥ 3 log 2
∏
p≥3

(
1 +

h(p)
p

+
h(p2)

p2
+ . . .

) 1
x

∑
n≤x

f(n) + o(1).

(4.5)

Let r(·) be the completely multiplicative function with r(p) = 1 for p ≤ log x,
and r(p) = f(p) otherwise. Then Proposition 4.4 of [GS01] shows that

1
x

∑
n≤x

f(n) =
∏

p≤log x

(
1− 1

p

)(
1− f(p)

p

)−1 1
x

∑
n≤x

r(n) + O
( 1

(log x)
1
20

)
.

Since f(2) = −1 + O(H0) we deduce from (4.5) and the above that

(4.6)
∑
n≤x

f∗(n)
n

≥ log 2
∏
p≥3

(
1− 1

p

)(
1 +

f∗(p)
p

+
f∗(p2)

p2
+ . . .

) 1
x

∑
n≤x

r(n) + o(1).

One of the main results of [GS01] (see Corollary 1 there) shows that

(4.7)
1
x

∑
n≤x

r(n) ≥ 1−2 log(1+
√

e)+4
∫ √

e

1

log t

t + 1
dt+o(1) = −0.656999 . . .+o(1),

and that equality here holds if and only if

(4.8)
∑

p≤x1/(1+
√

e)

1− r(p)
p

+
∑

x1/(1+
√

e)≤p≤x

1 + r(p)
p

= o(1).

Since the product in (4.6) lies between 0 and 1 we conclude that

(4.9)
∑
n≤x

f∗(n)
n

≥
(
1− 2 log(1 +

√
e) + 4

∫ √
e

1

log t

t + 1
dt

)
log 2 + o(1),

and for equality to be possible here we must have (4.8), and in addition that the
product in (4.6) is 1 + o(1). These conditions may be written as∑

3≤p≤x1/(1+
√

e)

∞∑
k=1

1− f∗(pk)
pk

+
∑

x1/(1+
√

e)≤p≤x

1− f∗(p)
p

= o(1).

If the above condition holds then, by (3.5),
∑

n≤x g(n) � x log x and so for equality
to hold in (4.5) we must have H0 = o(1/ log x). Thus equality in (4.9) is only
possible if( ∞∑

k=1

1 + f∗(2k)
2k

)
log x+

∑
3≤p≤x1/(1+

√
e)

∞∑
k=1

1− f∗(pk)
pk

+
∑

x1/(1+
√

e)≤p≤x

1− f∗(p)
p

= o(1).

Conversely, if the above is true then equality holds in (4.5), (4.6), and (4.7) giving
equality in (4.9). This proves Theorem 2.
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