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Abstract. We give a proof of Tate’s theorems on homomorphisms of
abelian varieties over finite fields and the corresponding ¢-divisible
groups.

The aim of this note is to give a proof of Tate’s theorems on homomorphisms
of abelian varieties over finite fields and the corresponding /¢-divisible groups
[27,12], using ideas of [32,33]. We give a unified treatment for both ¢ # p and
¢ = p cases. In fact, we prove a slightly stronger version of those theorems with
“finite coefficients”. We use neither the existence (and properties) of the Frobenius
endomorphism (for ¢ # p) nor Dieudonne modules (for ¢ = p).

The paper is organized as follows. (A rather long) Section 1 contains auxil-
iary results about finite commutative group schemes and abelian varieties with
special reference to isogenies and polarizations. We discuss ¢-divisible groups (aka
Barsotti-Tate groups) in Section 2. Section 3 contains useful results that play a
crucial role in the proof of main results that are stated in Section 4.

The next five Sections contain proofs of results that were stated in Section
3. In Section 5 we discuss abelian subvarieties of a given abelian variety. Section
6 deals with the finiteness of the set of abelian varieties of given dimension and
“bounded degree” over a finite field. In Section 7 we present a so called quater-
nion trick. In Section 8 we prove a crucial result about arbitrary finite group
subschemes of abelian varieties over finite fields. In Section 9 we try to divide
endomorphisms of a given abelian variety modulo n.

The main results of this paper are proven in Section 10. Their variants for
Tate modules are discussed in Section 11. An example of non-isomorphic elliptic
curves over a finite field with isomorphic ¢-divisible groups (for all primes ¢) is
discussed in Section 12.

I am grateful to Frans Oort and Bill Waterhouse for useful discussions and to
the referee, whose comments helped to improve the exposition. My special thanks
go to Dr. Boris Veytsman for his help with TpXnical problems.



1. Definitions and statements

Throughout this paper K is a field and K its algebraic closure. If X (resp. W)
is an algebraic variety (resp. group scheme) over K then we write X (resp. W)
for the corresponding algebraic variety X Xgpec(x) Spec(K) (resp. group scheme
W Xgpec(ry Spec(K)) over K. If f : X — Y is a a regular map of algebraic

varieties over K then we write f for the corresponding map X — Y.

1.1. Finite commutative group schemes over fields. We refer the reader to the
books of Oort [17], Waterhouse [31] and Demazure—Gabriel [3] for basic properties
of commutative group schemes; see also [25,21].

Recall that a group scheme V over K is called finite if the structure morphism
V — Spec(K) is finite. Since Spec(K) is a one-point set, it follows from the
definition of finite morphism [7, Ch. II, Sect. 3] that V is an affine scheme and
I'(V, Oy ) is a finite-dimensional commutative K-algebra. The K-dimension of the
I'(V, Oy ) is called the order of V' and denoted by #(V'). An analogue of Lagrange
theorem [19] asserts that multiplication by # (V) kills commutative V.

Let V and W be finite commutative group schemes over K andlet w: V — W
be a morphism of group K-schemes. Both V' and W are affine schemes, A =
I'(V,0Ov) and B = I'(W, Ow) are finite-dimensional (commutative) K-algebras
(with 1), V' = Spec(A), W = Spec(B) and u is induced by a certain K-algebra
homomorphism

u* B — A.

Since V and W are commutative group schemes, A and B are cocommutative
Hopf K-algebras. Since u is a morphism of group schemes, u* is a morphism of
Hopf algebras. It follows that C' := u*(B) is a K-subalgebra and also a Hopf
subalgebra in A. It follows that U := Spec(C') carries the natural structure of
a finite group scheme over K such that the natural scheme morphism U — V
induced by v* : B — «*(B) = C is a morphism of group schemes. In addition,
the inclusion C' C A induces the morphism of schemes V' — U, which is also
a morphism of group schemes. The latter morphism is an epimorphism in the
category of finite commutative group schemes over K, because the corresponding
map

C=IU0y) —-T(V,0y)=A

is nothing else but the inclusion map C' C A and therefore is injective [18] (see
also [5]).

On the other hand, the surjection B — C' provides us with a canonical iso-
morphism U 2 Spec(B/ ker(u*)); in addition, we observe that Spec(B/ ker(u*))
is a (closed) group subscheme of Spec(B) = W. We denote Spec(B/ ker(u*)) by
u(V') and call it the image of w or the image of V' with respect to v and denote
by u(V'). Notice that the set theoretic image of u is closed and our definition of
the image of u coincides with the one given in [4, Sect. 5.1.1].

One may easily check that the closed embedding j : w(V) < V induced by
B — B/ker(u*) is an image in the category of (affine) schemes over K. This



means that if a, 5 : W — S are two morphisms of schemes over K such that their
restrictions to u(V) do coincide, i.e., aj = (5 (as morphisms from u(V) to S)
then au = Bu (as morphisms from U to S). It follows that j is also an image in
the category of finite commutative group schemes. group [21, Sect. 10].

Theorem 1.2 (Theorem of Gabriel [18,5]). The category of finite commutative
group schemes over a field is abelian.

Remark 1.3. Let V be a finite commutative group scheme over K and let W be
its finite closed group subscheme. If V' — U is a surjective morphism of finite
commutative group schemes over K then [5]

Recall that T'(W, Oy ) is the quotient of T'(V, Oy ). In particular, if the orders of
V and W do coincide then V = W.

1.4. Abelian varieties over fields. We refer the reader to the books of Mumford
[16], Shimura [26] for basic properties of abelian varieties (see also Lang’s book [8]
and papers of Waterhouse [30], Deligne [2], Milne [13] and Oort [20]). If X is an
abelian variety over K then we write End(X) for the ring of all K-endomorphisms
of X. If m is an integer then write mx for the multiplication by m in X; in
particular, 1x is the identity map. (Sometimes we will use notation m instead of
mx.)

If Y is an abelian variety over K then we write Hom(X,Y') for the group of
all K-endomorphisms X — Y.

Remark 1.5. Warning: sometimes in the literature, including my own papers, the
notation End(X) is used for the ring of K-endomorphisms.

Tt is well known [16, Sect. 19, Theorem 3] that Hom(X,Y") is a free com-
mutative group of finite rank. We write X! for the dual of X (See [13, Sect.
9-10] for the definition and basic properties of the dual of an abelian variety.) In
particular, X is also an abelian variety over K that is isogenous to X (over K).
If u € Hom(X,Y) then we write u' for its dual in Hom(Y, X). We have

Xt =X,

If n is a positive integer then we write X, for the kernel of nx; it is a finite
commutative (sub)group scheme (of X) over K of rank 2dim(X). By definition,
X, (K) is the kernel of multiplication by n in X (K).

If n is not divisible by char(K) then X, is an étale group scheme and it is
well-known [16, Sect. 4] that X,,(K) is a free Z/nZ-module of rank 2dim(X) and
all K-points of X,, are defined over a finite separable extension of K. In particular,

X, (K) carries a natural structure of Galois module.

1.6. Isogenies. Let W C X be a finite group subscheme over K. It follows from the
analogue of Lagrange theorem that W C X, for d = #(W). The quotient YV :=
X/W is an abelian variety over K and the canonical isogeny 7: X — X/W =Y



has kernel W and degree #(W) ([16, Sect. 12, Corollary 1 to Theorem 1], [3,
Sect. 2, pp. 307-314]). In particular, every homomorphism of abelian varieties
u: X — Z over K with W C ker(u) factors through 7, i.e., there exists a unique
homomorphism of abelian varieties v : Y — Z over K such that

If m is a positive integer then
mmyx = myn € Hom(X,Y).
Let us put
m W = ker(mmy) = ker(myn) C X.

For every commutative K-algebra R the group of R-points m~'W (R) is the set
of all x € X(R) with

mz € W(R) C X(R).
For example, if W = X, then
Y=X,m=nx,m X, = Xnm.
In general, if W C X,, then m~'W is a closed group subscheme in X, m. E.g.,
W is always a closed group subscheme of Xy, and therefore is a finite group
subscheme of X over K. The order
#(m™"W) = deg(mmux) = deg(m) deg(max) = #(W) - m2Hm(X),
We have

X Cm ' W, mx(m™'W)c W

and the kernel of myx : m~'W — W coincides with X,,.
Lemma 1.7. The image mx(m™'W) =W.

Proof. Let us denote the image by G. By Remark 1.3, #(G) is the ratio
#(m W) /#( X)) = dim(W),

i.e., the orders of G and W do coincide. Since G C W, we have (by the same
Remark) G = W. O

Example 1.8. If W = X,, then m~!X,, = X,,,,, and therefore m(X,,,) = X,,.

Lemma 1.9. If r is a positive integer then r(X,,) = X, where ny =n/(n,r).



Proof. We have r = (n,r)-r; where r; is a positive integer such that n; and ry are
relatively prime. This implies that r1(X,,) = X,,,. By Lemma 1.9, (n,7)(X,) =
Xy, . This implies that

r(Xn) = ri(n,1)(Xn) = r1((n,7)(Xn)) = 11(Xny) = Xy
O

Lemma 1.10. Let X andY be abelian varieties over a field K. Let u : X — Y be a
K-homomorphism of abelian varieties. Let n > 1 be an integer and u,, : X,, — Y,
the morphism of commutative group schemes over K induced by u.

(i) Suppose that u is an isogeny and deg(u) and n are relatively prime. Then
Uy : Xn — Y, is an isomorphism.

(i) Suppose that u, : X, — Y, is an isomorphism. Then u is an isogeny and
deg(u) and n are relatively prime.

Proof. Let u be an isogeny such that m := deg(u) and n are relatively prime.
Then ker(u) C X,,. It follows that there exists a K-isogeny v : Y — X such that

VU = My, UV = My.

(i). Since multiplication by m is an automorphism of both X,, and Y,,, we
conclude that u,, : X,, — Y, and v, :Y,, — X,, are isomorphisms.

(ii). Suppose that u, is an isomorphism. This implies that the orders of X,
and Y, coincide and therefore dim(X) = dim(Y). We need to prove that u is
isogeny and deg(u) and n are relatively prime. In order to do that, we may assume
that K is algebraically closed (replacing K, X,Y,u by K, X,Y u respectively).
Let us put Z = u(Y) C X: clearly, Z is a (closed) abelian subvariety of ¥
and therefore dim(Z) < dim(Y). It is also clear that u : X — Y coincides with
the composition of the natural surjection X — u(X) = Z and the inclusion
map j : Z — X. This implies that u,(X,) is a (closed) group subscheme of
Jn(Zyn) C Y,. It follows that

#(un(Xn)) < #0in(Zn)) < #(Zy) = n>m2),

Since u,, is an isomorphism, u, (X,) =Y, and therefore
#(un(Xn)) = #(}/n) = n2dim(Y)'

It follows that

nQdim(Y) < n2dim(Z)

and therefore dim(Y) < dim(Z). (Here we use that n > 1.) Since Z is a closed
subvariety in Y, we conclude that dim(Z) = dim(Y) and Y = Z. In other words,
u is surjective. Taking into account that dim(X) = dim(Y'), we conclude that u
ia an isogeny.



Now let m = dr where d is the largest common divisor of n and m. Then r
and n are relatively prime; in particular, multiplication by r is an automorphism
of X,,. Let us denote ker(u) by W: it is a finite commutative group scheme over
K of order m and therefore

w - XnL-
This implies that for every commutative K-algebra R we have
m - W(R) = {0}.

On the other hand, since wu,, is an isomorphism, the kernel of W(R) =% W (R)
is {0}. Since d | n, the kernel of W (R) <, W(R) is also {0}. This implies that
r-W(R) = {0} for all R. Hence W C X,. It follows that deg(u) = #(W) divides
#(X,) = r23m(X) and therefore is coprime to n. O

The next statement will be used only in Section 12.

Proposition 1.11. Let X and Y be abelian varieties over a field K. Suppose that
for every prime £ there exists an isogeny X — Y, whose degree is not divisible by
L. Then for every positive integer n there exists an isogeny X — Y, whose degree
is coprime to n. In particular, X, 2Y,.

Proof. Recall that the additive group Hom(X,Y") is isomorphic to Z? for some
nonnegative integer p. In our case, X and Y are isogenous over K and therefore
p > 0.

Let n be a positive integer and let P(n) be the (finite) set of its prime divisors.
For each ¢ € P(n) pick an isogeny v : X — Y, whose degree is not divisible by
¢. By Lemma 1.10(i), v¥) induces an isomorphism X, 2 Y;. Now, by the Chinese
Remainder Theorem, there exists v € Hom(X,Y') = Z” such that

u—v"9 el -Hom(X,Y)V e P.

This implies that for each £ € P the homomorphisms u and v(© induce the same
morphism X, = Y}, which, as we know, is an isomorphism. It follows from Lemma
By Lemma 1.10(ii) that u is an isogeny, whose degree is not divisible by ¢. Hence
deg(u) and n are coprime. Applying again Lemma 1.10(i), we conclude that u
induces an isomorphism X,, 2 Y,,. O

1.12. Polarizations. A homomorphism \ : X — X? is a polarization if there exists
an ample invertible sheaf £ on X such that A coincides with

Ap: X' = X! 2 c(TPL® LY
where T, : X — X is the translation map

rT— T+ 2z



and cl stands for the isomorphism class of an invertible sheaf. Recall [16, Sect, 6,
Proposition 1; Sect. 8, Theorem 1; Sect. 13, Corollary 5] that a polarization is an
isogeny. If A is an isomorphism, i.e., deg(\) = 1, we call A a principal polarization
and the pair (X, \) is called a principally polarized abelian variety (over K).

If n := deg(\) = #(ker()\)) then ker(\) is killed by multiplication by n, i.e.,
ker(\) C X,,. For every positive integer m we write A" for the polarization

XM — (X™E = (XD™, (21, 2m) = (A21), .., AM(T0m))

that corresponds to the ample invertible sheaf ®;*,pr;L where pr; : X™ — X is
the ith projection map. We have

dim(X™) = m - dim(X), deg(A™) = deg(\)™
and ker(A™) = ker(\)™ C (X™),, if ker(\) C X,.

There exists a Riemann form - a skew-symmetric pairing of group schemes
over K [16, Sect. 23]

ex : ker(A) x ker(A) — G,

where G, is the multiplicative group scheme over K.
1If

eam @ ker(A™) x ker(A\™) — G

is the Riemann form for \™ then in obvious notation

exn(,y) = H ex(@i, yi)
i=1
where
x= (21, ., Tm), Y= (Y1,---,Ym) € ker(j\)m = ker(j\m).
We have

Mat,,(Z) C Mat,, (End(X)) = End(X™).

One may easily check that every u € Mat,,(Z) leaves the group subscheme
ker(A™) invariant and

exm(ux,y) = exm(z,u™y)
where u* is the transpose of the matrix u. Notice that ©* viewed as an element of
Mat,, (Z) C Mat,,(End(X*)) = End((X")™)

coincides with u® € End((X™)").



1.13. Polarizations and isogenies. Let W C ker(\) be a finite group subscheme
over K. Recall that Y := X/W is an abelian variety over K and the canonical
isogeny m: X — X/W =Y has kernel W and degree #(W).

Suppose that W is isotropic with respect to ey, i.e., the restriction of ey to
W x W is trivial. Then there exists an ample invertible sheaf M on Y such that
L = 7* M [16, Sect. 23, Corollary to Theorem 2, p. 231] and the K-polarization
Ay Y — Y satisfies

A= tAMTT.

Since 7t and 7 are isogenies that are defined over K, the polarization A y; is also
defined over K, i.e., there exists a K-isogeny p:Y — Y such that A =z and

\=ntur.
It follows that

deg(A) = deg(m) deg() deg(n") = deg(m)? deg(u) = (#(W))? deg(p).

Therefore  is a principal polarization (i.e., deg(u) = 1) if and only if

deg(X) = (#(W))>.

2. (-divisible groups, abelian varieties and Tate modules

Let h be a non-negative integer and ¢ a prime. The following notion was introduced
by Tate [28,25].

Definition 2.1. An ¢-divisible group G over K of height h is a sequence {G,, i, }52
in which:
e G, is a finite commutative group scheme over K of order ¢V,
e i, is a closed embedding G, — G, 41 that is a morphism of group schemes.
In addition, i, (G, ) is the kernel of multiplication by ¢” in G, 41.

Example 2.2. Let X be an abelian variety over K of dimension d. Then it is
known [28,25] that the sequence { X, }52 ; is an ¢-divisible group over K of height
2d. Here i, is the inclusion map Xy — Xp+1. We denote this ¢-divisible group
by X (¢).

2.3. Homomorphisms of /(-divisible groups and abelian varieties. If H =
{H,,j,}32, is an (-divisible group over K then a morphism v : G — H is a
sequence {u(,)};2; of morphisms of group schemes over K

’U,(V) : Gl, — H,,

such that the composition



u(u+1)iu Gy — GVJrl - Hl/+1
coincides with
jyu(y) : Gl/ i HV — Hl/+17

i.e., the diagram

U(v)

G, — H,

U(v+1)
GV+1 _—> Hqul

is commutative.

Remark 2.4. A morphism u is an isomorphism of ¢-divisible groups if and only if
all u(,y are isomorphisms of the corresponding finite group schemes.

The group Hom(G, H) of morphisms from G to H carries a natural struc-
ture of Zy-module induced by the natural structures of Z/¢" = Z,/¢”-module
on Hom(G,, H,). Namely, if u = {uq)};2,; € Hom(G,H) and a € Z; then
au = {(au))}p2; may be defined as follows. For each v pick a, € Z with
a—ay, € {¥Zy and put

(au) @) == ayupy : G, — H,.

Since multiplication by ¢ kills G, the definition of (au)(,) does not depend on
the choice of a,,.

Let X and Y be abelian varieties over K. There is a natural homomorphism of
commutative groups Hom(X,Y) — Hom(X (¢),Y (¢)). Namely, if u € Hom(X,Y)
then u(Xyv) lies in the kernel of multiplication by ¢¥, i.e. u(Xp) C Ypv. In fact,
we get the natural homomorphism

Hom(X,Y)® Z/¢" — Hom (X, Yy ),
which is known to be an embedding. (See also Lemma 9.1 below.)
Since Hom(X (£),Y (£)) is a Z,-module, we get the natural homomorphism of
Zy-modules
Hom(X,Y) ® Zy — Hom(X (¢),Y (¢)).
Explicitly, if v € Hom(X,Y') ® Z, then for each v we may pick

w(v) € Hom(X,Y) = Hom(X,Y) ® 1 C Hom(X,Y) ® Z,

such that



u—w(v) € £’ - {Hom(X,Y)®Zs} = {¢” -Hom(X,Y)} ®Zy = Hom(X,Y) @ (" Z,.

Then the corresponding morphism of group schemes ug,) := w(v) : Xpo — Y
does not depend on the choice of w(v) and defines the corresponding morphism
of ¢-divisible groups

Uy Xew = Yoo v=1,2,....

Remark 2.5. Since Hom(X,Y) is a free commutative group of finite rank, the
Zp-module Hom(X,Y) ® Z, is a free module of finite rank.

The following assertion seems to be well known (at least, when ¢ # char(K)).

Lemma 2.6. The natural homomorphism of Z,-modules
Hom(X,Y) ® Z; — Hom(X (£),Y (¢£))
1§ injective.

Proof. If it is not injective and u lies in the kernel then u(, € ¢ - Hom(X,Y)
for all v. Since u — ug,) € ¢ - {Hom(X,Y) ® Z}, we conclude that u € ¢¥ -
{Hom(X,Y) ® Z,} for all v. Since Hom(X,Y) ® Z, is a free Z;~module of finite
rank, it follows that u = 0. O

Corollary 2.7. The following conditions are equivalent:

(i) There exists an isogeny u: X — Y, whose degree is not divisible by .
(i) There exists w € Hom(X,Y) ® Z; that induces an isomorphism of (-
divisible groups X (¢) — Y (¢).

Proof. Let u : X — Y be an isogeny, whose degree is not divisible by £. Applying
Lemma 1.10(i) to all n = ¢¥, we conclude that u induces an isomorphism X () =
Y (¢).

Now suppose that w € Hom(X,Y) ® Z, that induces an isomorphism of ¢-
divisible groups X (¢) — Y'(¢). In particular, w induces an isomorphism of finite
group schemes w(yy : X; = Y,. On the other hand, there exists u € Hom(X,Y")
such that

w—u €l - {Hom(X,Y)®Z;} = Hom(X,Y) ® {Z,.

This implies that v and w induce the same morphism of finite group schemes
Xy — Y. It follows that the morphism

up =) Xp — Yy

induced by u coincides with w(;) and therefore is an isomorphism. Now Lemma
1.10(ii) implies that w is an isogeny, whose degree is not divisible by £. O



2.8. Tate modules. In this subsection we assume that ¢ is a prime different from
char(K). If n = ¢ then X,, is an étale finite group scheme of order n2d™(X)
and we will identify its with the Galois module of its K-points. (Actually, all
points of X,, are defined over a separable algebraic extension of K). The Tate
f-module T;(X) is defined as the projective limit of Galois modules X, where
the transition map X, +1 — Xy is multiplication by ¢. The Tate module carries
a natural structure of free Z,-module of rank 2dim(X); it is also provided with
a natural structure of Galois module in such a way that natural homomorphisms
Ty(X) — X induce isomorphisms of Galois modules

Tg(X) (9 Z/@V =~ X
Explicitly, T;(X) is the set of all collections x = {z, }52; with
z, € Xpv, xp41 =Llx, V.
The map = — x, defines the surjective homomorphism of Galois modules
Ty(X) — Xy, whose kernel coincides with ¢ - Ty(X) and therefore induces the
isomorphism of Galois modules T;(X)/¢¥ = X, mentioned above.

If Y is an abelian variety over K then we write Homaa (7 (X), T¢(Y)) for the
Zy-module of all homomorphisms of Zy-modules T;(X) — T;(Y) that commute
with the Galois action(s), i.e., are also homomorphisms of Galois modules.

The Zy-module Homaa (T¢(X), T;(Y)) is the set of collections w = {w, }32
of homomorphisms of Galois modules

Wy - Tg(X)/fV = Xgu — }/Eu = TE(Y)/EV
such that

wy(xy) =€ vwyp1 (1) Yo ={x,}02, € To(X).

Now if z € Xy then there exists € Ty(X) with z, = z. We have fx, 1 =
z, = z and

wy(z) = wV(Iu) =/ wv+1(xu+1) = wt/+1(£93v+1) = wv+1(zu) = wu+1(z)a

i.e., the restriction of w,; to Xy coincides with w,. This means that the collec-
tion {w, }52; defines a morphism of ¢-divisible groups over K

X(0) = Y(¥).
Conversely, if u = {u(,)}52, is a morphism X (£) — Y () over K then
’u,(l,) :Xeu — Yveu

is a homomorphism of Galois modules; in addition, the restriction of (1) to
Xyv coincides with u,y. This implies that for each {x,}72, € T;(X)



Uy (T0) = Uus1) (@) = Upr1) (@041) = Qi) (Tr41)

for all v. This means that the collection {u(,)};; defines a homomorphism of Ga-
lois modules Ty(X) — T;(Y). Those observations give us the natural isomorphism
of Zy-modules

Hom(X (¢),Y (£)) = Homga (Ty(X), Te(Y)).

3. Useful results

Theorem 3.1 ([32,34,14]). Let X be an abelian variety of positive dimension over
a field K and Xt its dual. Then (X x XY)* admits a principal K -polarization.

We prove Theorem 3.1 in Section 7.

Theorem 3.2 ([11]). Let X be an abelian variety over K. The set of abelian
K -subvarieties of X is finite, up to the action of the group Aut(X) of K-
automorphisms of X.

We sketch the proof of Theorem 3.2 in Section 5.

Lemma 3.3 (Tate ([27], Sect. 2, p. 136)). Let K be a finite field, and let g and d
be positive integers. The set of K-isomorphism classes of g-dimensional abelian
varieties over K that admit a K-polarization of degree d is finite.

Lemma 3.3 will be proven in Section 6.

Theorem 3.4 ([32], Th. 4.1). Let K be a finite field, g a positive integer. Then the
set of K-isomorphism classes of g-dimensional abelian varieties over K is finite.

Proof of Theorem 8.4 (modulo Theorem 3.1 and Lemma 3.8). Suppose that X is
a g-dimensional abelian variety over K. By Lemma 3.3, the set of 4g-dimensional
abelian varieties over K of the form (X x X*)?* is finite, up to K-isomorphism.
The abelian variety X is isomorphic over K to an abelian subvariety of (X x X*)%.
In order to finish the proof, one has only to recall that thanks to Theorem 3.2,
the set of abelian subvarieties of a given abelian variety is finite, up to a K-
isomorphism. O

We need Theorem 1.2 in order to state the following assertion.

Corollary 3.5 (Corollary to Theorem 3.4). Let X be an abelian variety of positive
dimension over o finite field K. There exists a positive integer r = r(X, K) that
enjoys the following properties:

(i) If Y is an abelian variety over K that is K-isogenous to X then there
exists a K-isogeny B : X — Y such that ker(5) C X,

(i5) If n is a positive integer and W C X,, is a group subscheme over K then
there exists an endomorphism u € End(X) such that

rW C uX,, C W.



Remark 3.6. The assertion 3.5(i) follows readily from Theorem 3.4.

We prove Corollary 3.5(ii) in Section 8.

4. Main results

Theorem 4.1. Let X be an abelian variety of positive dimension over a finite
field K. There exists a positive integer r1 = r1(X, K) that enjoys the following
properties:

Let n be a positive integer and u, € End(X,). Let us put m = n/(n,ry).
Then there exists u € End(X) such that the images of u and u, in End(X,,) do
coincide.

We prove Theorem 4.1 in Section 10.
Applying Theorem 4.1 to a product X = A x B of abelian varieties A and B,
we obtain the following statement.

Theorem 4.2. Let A, B be abelian varieties of positive dimension over a finite
field K. There exists a positive integer ro = r9(A, B) that enjoys the following
properties:

Suppose that n is a positive integer and u,, : A, — B, is a morphism of group
schemes over K. Let us put m = n/(n,rq). Then there exists a homomorphism
u : A — B of abelian varieties over K such that the images of u and wu, in
Hom(A,,, B,,) do coincide.

The following assertions follow readily from Theorem 4.2.

Corollary 4.3 (First Corollary to Theorem 4.2). If n and ro are relatively prime
(e.g., n is a prime that does not divide ) then the natural injection

Hom(A, B) ® Z/n — Hom(A,, B,,)
is bijective.

Corollary 4.4 (Second Corollary to Theorem 4.2). Let £ be a prime and (70 is
the exact power of { dividing ro. Then for each positive integer i the image of

HOHI(AW+T(/(;) s Bw-ﬁ(z)) — HOm(Agi s ng)
coincides with the image of

Hom(A, B) ® Z/¢" — Hom(Ay:, By:).

5. Abelian subvarieties

We follow the exposition in [11].

The next statement is a corollary of a finiteness result of Borel and Harish-
Chandra [1, Theorem 6.9]; it may also be deduced from the Jordan—Zassenhaus
theorem [23, Theorem 26.4].



Proposition 5.1 ([11], p. 514). Let F be a finite-dimensional semisimple Q-algebra,
M a finitely generated right F-module, L a Z-lattice in M. Let G be the group of
those automorphisms o of the F-module M for which (L) = L. Then the number
of G-orbits of the set of F-submodules of M is finite.

Now let X be an abelian variety over K. We are going to apply Proposition
5.1 to

F=FEnd(X)®Q, M =End(X)®Q, L =End(X).

One may identify G with the group Aut(X) = End(X)* of automorphisms of X:
here elements of End(X)* act as left multiplications on End(X) ® Q = M.

On the other hand, to each abelian K-subvariety ¥ C X corresponds the
right ideal

IY) ={u € End(X) | u(X) C Y}
and the F-submodule
IV)o=IY)®QCEnd(X)® Q=M.

Using the theorem of Poincaré—Weil [13, Proposition 12.1], one may prove ([11,
p. 515] that I(Y)g uniquely determines Y. Even better, if Y’ is an abelian K-
subvariety of X and

ul(Y)g =1(Y')g

for v € Aut(X) = End(X)* then Y’ = w(Y). Now Proposition 5.1 implies the
finiteness of the number of orbits of the set of abelian K-subvarieties of X under
the natural action of Aut(X). This proves Theorem 3.2. (See [10] for variants and
complements.)

6. Polarized abelian varieties

Lemma 6.1 (Mumford’s lemma [15]). Let X be an abelian variety of positive di-
mension over a field K. If A\ : X — X' is a polarization then there exists an
ample invertible sheaf L on X such that

where L is the invertible sheaf on X induced by L.

Proof. See [15, Ch. 6, Sect. 2, pp. 120-121] where a much more general case of
abelian schemes is considered. (In notation of [15], S is the spectrum of K.) Let me
just recall an explicit construction of L. Let P be the universal Poincaré invertible
sheaf on X x X' [13, Sect. 9]. Then £ := (1x,\)*P where (1x,\): X — X x X!
is defined by the formula



x = (x,\x)).

O

Proof of Lemma 3.3. So, let X be a g-dimensional abelian variety over a finite
field K and let A : X — X! be a polarization of degree d. We follow the exposition
in [22, p. 243]. By Lemma 6.1, there exists an invertible ample sheaf £ on X such
that the self-intersection index of £ equals 29dg! [16, Sect. 16]. The invertible
sheaf £ is very ample, its space of global section has dimension 69d; the self-
intersection index of £ equals 69dg! [16, Sect. 16]. This implies that £3 is also
very ample and gives us an embedding (over K) of X into the 69d — 1-dimensional
projective space as a closed K-subvariety of degree 69dg!. All those subvarieties
are uniquely determined by their Chow forms ([29, Ch. 1, Sect. 6.5], [6, Lecture
21, pp. 268-273]), whose coefficients are elements of K. Since K is finite and
the number of coefficients depends only on the degree and dimension, we get the
desired finiteness result. O

7. Quaternion trick

Let X be an abelian variety of positive dimension over a field K and A : X — X!
a K-polarization. Pick a positive integer n such that

ker(\) C X,.

Lemma 7.1. Suppose that there exists an integer a such that a®> + 1 is divisible by
n. Then X x X' admits a principal polarization that is defined over K.

Proof. Let
V C ker(A\) x ker(\) € X, x X, C X x X

be the graph of multiplication by a in ker(\). Clearly, V is a finite group subscheme
over K that is isomorphic to ker(\) and therefore its order is equal to deg(\).
Notice that deg(A) is the square root of deg()\?). B

For each commutative K-algebra R the group V(R) of R-points coincides
with the set of all the pairs (x,ax) with € ker(\) C X,,. This implies that for
all (z,ax), (y,ay) € V(R) we have

exz((x, ax), (y, ay)) = ex(x,y) - ex(az, ay) = ex(,y) - ex(a’z,y) =

ex(z,y) - ex(—=z,y) = ex(z,y)/ex(z,y) = 1.
In other words, V is isotropic with respect to ey2; in addition,

#(V)? = deg())? = deg(\?).



This implies that X2/V is a principally polarized abelian variety over K. On the
other hand, we have an isomorphism of abelian varieties over K

f:XxX = XxX=X2% (z,y) = (z,ax) + (0,y) = (z,az +y)
and
V = flker A x {0}) C f(X x {0}).
Thus, we obtain K-isomorphisms
X2V X/ker(A) x X = X" x X = X x X',

In particular, X x X* admits a principal K-polarization and we are done. O

Proof of Theorem 8.1. Choose a quadruple of integers a, b, ¢, d such that
0+#s:=a>+b>+c+d?

is congruent to —1 modulo n. We denote by Z the “quaternion”

a—b—c—d
b a d c 4
7= c—da b |E€ Mat4(Z) C Maty(End(X) = End(X%")).
d ¢ —=b a
We have

T =a* + b+ +d*> = s € Z C Maty(Z) C Maty(End(X) = End(X*).

Let
V C ker(A) x ker(A\?) € (X*), x (X%),, € X* x X* = X8
be the graph of
7 : ker(A\*) — ker(\?).

Clearly, V is a finite group subscheme over K and its order is equal to deg(\*).
Notice that deg(A?) is the square root of deg(\®). B

For each commutative K-algebra R the group V(R) of R-points consists
of all the pairs (z,Zx) with z € ker(A') C (X*),. This implies that for all
(z,Zx),(y,Zy) € V(R) we have

6/\4((37,II), (yvzy)) =€)\ (x’y) : €>\4(Z$,Zy) =€)\ (Tvy) : ek('raztz-y) =

ex(z,y) - ex(z, sy) = ex(x,y) - exlx, —y) = ex(x,y)/ex(z,y) = 1.



In other words, V is isotropic with respect to eys; in addition,
#(V)? = deg(X")? = deg()®).

This implies that X®/V is a principally polarized abelian variety over K. On the
other hand, we have an isomorphism of abelian varieties over K

X" x Xt = X X = X8 (z,y) — (2,Tx) + (0,y) = (z,Z2 + v)
and
V = flker(X*) x {0}) € F(X* x {0}).
Thus, we obtain K-isomorphisms
XYV 2 X1/ ker M x X' = (X! x X = (X x X)L
In particular, (X x X*)* admits a principal K-polarization and we are done. [J

Remark 7.2. We followed the exposition in [32, Lemma 2.5], [34, Sect. 5]. See [14,
Ch. IX, Sect. 1] where Deligne’s proof is given.

8. Finite group subschemes of abelian varieties

Proof of Corollary 3.5(ii). Let r be as in 3.5(1). Let us consider the abelian variety
Y := X/W and the canonical K-isogeny 7 : X — X/W =Y. Clearly,

W = ker(n).

Since W C X,,, there exists a K-isogeny v : ¥ — X/X,, = X such that the
composition vm coincides with multiplication by n in X; in addition,

™mx =nynm: X —Y

is a K-isogeny, whose degree is #(W) x n2dim(X)

multiplication by n in X (resp. in Y'). Let us put

. Here nx (resp. ny) stands for

U =ker(mnx) = ker(nyn) C X;
it is a finite commutative group K-(sub)scheme and
#(U) = #(W) x n2m0),
Then

X, cU WcU; n(U)CY,, nx(U)CW.



The order arguments imply that the natural morphisms of group K-schemes
T:U—=Y, nx :U—->W
are surjective, i.e.,
7(U) =Y,, nU=W.
We have
v(Yy) = v(x(U)) = vr(U) = nU = W,
ie.,
v(Y,) =W.

By 3.5(i), there exists a K-isogeny 8 : X — Y with ker(8) C X,. Then there
exists a K-isogeny v :Y — X such that v3 = rx. This implies that

yry =rxy =76y = v(87),
ie.,
yry = v(87)-

It follows that ry = [, because ker(vy) is finite while (ry — 7)Y is an abelian
subvariety. This implies that

B(Xn) 2 B(v(Yn)) = By(Yn) = r¥n.
Let us put
u = € End(X).
We have
Y, D B(X,) D rY,.

This implies that

and therefore



9. Dividing homomorphisms of abelian varieties

Results of this Section will be used in the proof of Theorem 4.1 in Section 10.
Throughout this Section, Y is an abelian variety over a field K. The following
statement is well known.

Lemma 9.1. let v : Y — Y be a K-isogeny. Suppose that Z is an abelian variety
over K. Let v € Hom(Y, Z) and ker(u) C ker(v) (as a group subscheme inY ).
Then there exists exactly one w € Hom(Y,T) such that v = wu, i.e., the diagram

Y

u
R
w
v

is commutative. In addition, w is an isogeny if and only if v is an isogeny.

N<— X

Proof. We have Y = Y/ ker(u). Now the result follows from the universality prop-
erty of quotient maps.
O

Let n be a positive integer and v an endomorphism of Y. Let us consider the
homomorphism of abelian varieties over K

(ny,u): Y =Y xY, y— (ny,uy).
Then
ker((ny,u)) = ker(Y,, 5 Y,) CY, CY.

Slightly abusing notation, we denote the finite commutative group K-(sub)scheme
ker((ny,u)) by {ker(u)(Yn}.

Lemma 9.2. Let Y be an abelian variety of positive dimension over a field K. Then
there exists a positive integer h = h(Y, K) that enjoys the following properties:
If n is a positive integer, u,v € End(Y') are endomorphisms such that

{ker(u) () Ya} C {ker(v) () Ya}
then there exists a K-isogeny w:Y — Y such that
hv —wu € n - End(Y).

In particular, the images of hv and wu in End(Y,,) do coincide.



Proof. Since O := End(Y') is an order in the semisimple finite-dimensional Q-
algebra End(Y) ® Q, the Jordan—Zassenhaus theorem [23, Th. 26.4] implies that
there exists a positive integer M that enjoys the following properties:
if I is a left ideal in O that is also a subgroup of finite index then there exists
ay € O such that the principal left ideal a - O is a subgroup in I of finite index
dividing M ; in particular,
M-TCar-OCl.

Clearly, such ay is invertible in End(Y) ® Q and therefore is an isogeny. Let us
put

h:= M?>.
Let us consider the left ideals
I =n04+u0, J=n0O+v0

in O. Then both I and J are subgroups of finite index in O. So, there exist
K-isogenies

ar:Y =Y a;:Y —>Y
such that
M-ICa;y-OCI, M-ICay-OCJ.
In particular, there exist b, c € O such that
Ma;—buen-0O, Mv=cay.
In obvious notation

{ker(v) ﬂYn} C ker(ay) C {ker(Mv) ﬂYMn} = M {ker(v) ﬂYn} cy,

{ker(u) (| Yn} C ker(ar) C {ker(Mu) () Yarm} = M~ {ker(u)[]|Yn} C Y.
This implies that
ker(ar) € M~ {ker(u) (| Yn} € M~ {ker(v) (| Yn} C M~ ker (a;) = ker(Ma,)
and therefore
ker(as) C ker(Ma,y).

By Lemma 9.1, there exists a K-isogeny z : Y — Y such that Ma; = za; and
therefore M?2a; = Mza;. This implies that



M3y = M?ca; = Mc(May) = Mc(zay) = cz(May) =

czlbu + (Mar — bu)] = (ezb)u + cz(May — bu).
Since h = M3 and bu — May is divisible by n in O = End(Y),
hv — (czb)u € n- End(Y).

So, we may put w = czb. O

10. Endomorphisms of group schemes
Proof of Theorem 4.1. Let X be an abelian variety of positive dimension over a
finite field K. Let us put Y := X x X. Let h = h(Y) be as in Lemma 9.2 and
r =r(Y, K) be as in Corollary 3.5. Let us put

™ = 7‘1(X, K) = ’I“(Yv,f()h(yr7 K)

Let n be a positive integer and u,, € End(X,). Let W be the graph of u,, in
X, x X, = (X x X), =Y, ie., the image of

1p,upn) : Xpn — Xy x X, = (X x X)), =Y,.

Here 1, is the identity automorphism of X,.
By Corollary 3.5, there exists v € End(Y") such that

rW C u(Y,) C W.
Let pry,pry : Y = X x X — X be the projection maps and
G X=Xx{0}CXxX=Y,@:X={0}xXCXxX=Y
be the inclusion maps. Let us consider the homomorphisms
priv,pryv: Y — X
and the endomorphisms
U1 = @1pr1v, V2 = ¢1pryv € End(X x X) = End(Y).
Clearly,
v:Y -Y=XxX

is “defined” by pair



(priv,pryv) Y = X x X =Y.
Since W is a graph,
pri (W) = Xp, v(Yn) CW
and
{ker(pr,v) ﬂ Y.} C {ker(pryv) ﬂ Y.}
Since ¢; and ¢ are embeddings,
{ker(vy) ﬂ Y.} C {ker(vq) ﬂ Y.}

By Lemma 9.2, there exists a K-isogeny w : Y — Y such that the restrictions of
hve and wuv; to Y,, do coincide. Taking into account that

v1(X x X) C X x {0}, vo(X x X) C {0} x X,
we conclude that if we put
W12 = pProwq; € End(X)
then the images of h pryv and wiopryv in Hom(Y,,, X,,) = Hom(X,, x X,,, X,,) do
coincide.
Since W is the graph of u,, and u(Y;,) C W,

prov = u,pryv € Hom(Y,, X,,);

here both sides are viewed as morphisms of group schemes Y,, — X,,. This implies
that in Hom(Y,,, X,,) we have

w12pr;v = h pryv = h u,pryv.
This implies that w2 = h u,, on
prio(Ys,) C Xop.
We have
pr0(Yn) D7 pry(r(W)) = r(Xn)
and therefore wis = h u, on r(X,,). By Lemma 1.8,
r(Xn) = Xn,,

where ny = n/(n,r). So, wi2 = h u, on X,,. Let us put d := (ny, h). Clearly,
X4 C X,, and wia = hu, kills X4, because d divides h. This implies that there



exists v € End(X) such that wis = d u. If we put m = ny/d then h/d is a
positive integer relatively prime to m and (h/d) u d = (h/d) u, d on X,,, and
therefore (h/d) uw = (h/d) uy, on d(X,,) = Xp,. Since multiplication by (h/d) is
an automorphism of X,,, we conclude that u = u,, on X,,.

O

Corollary 10.1. Let K be a finite field, X and Y abelian varieties over K. Let S
be the set of positive integers n such that the finite commutative group K-schemes
X, and Y, are isomorphic. If S is infinite then X and Y are isogenous over K.
In addition, if S is the set of powers of a prime { then there exists a K-isogeny
X — Y, whose degree is not divisible by €.

Proof. Pick n € S such that n > r9 := r9(X,Y) where 79 is as in Theorem 4.2.
Then m := n/(n,re) is strictly greater than 1. (In addition, if n is a power of £ then
m is also a power of £.( Fix an isomorphism w,, : X,, 2 Y,,. By Theorem 4.2, there
exists v € Hom(X,Y') such that the induced morphism u,, : X,, — Y, coincides
with the restriction (image) of w,, to (in) Hom(X,,, ¥s,). But this restriction is an
isomorphism, since w, is an isomorphism. It follows that u,, is an isomorphism.
Now the desired result follows from Lemma 1.10(ii).

O

Theorem 10.2 (Tate’s theorem on homomorphisms). Let K be a finite field, ¢
an arbitrary prime, X and Y abelian varieties over K of positive dimension. Let
X(£) and Y (0) be the (-divisible groups attached to X and Y respectively. Then
the natural embedding

Hom(X,Y) ® Zy — Hom(X (¢),Y (¢))

is bijective.
Remark 10.3. Our proof will work for both cases ¢ # char(K) and ¢ = char(K).
Proof of Theorem 10.2. Any element of Hom(X (¢),Y (¢)) is a collection

{wy € Hom(Xpw, Yor ) 102,

such that every w(,) coincides with the “restriction” of w,1) to X¢v. It follows
from Corollary 4.4 that there exists u, € Hom(X,Y)®Z/¢" such that w,) = u,.
This implies that the image of u,4+1 in Hom(X,Y) ® Z/¢¥ coincides with u, for
all v. This means that if u is the projective limit of u, in Hom(X,Y) ® Z, then
u induces (for all v) the morphism from X, to Y that coincides with w, and
therefore with w,,. O

Corollary 10.4. Let K be o finite field, ¢ an arbitrary prime, X and Y abelian
varieties over K of positive dimension. Then the following conditions are equiv-
alent:

o There exists a K-isogeny X — Y, whose degree is not divisible by £.
o The (-divisible groups X (£) and Y (£) are isomorphic.

Proof. 1t follows readily from Theorem 10.2 and Corollary 2.7. O



11. Homomorphisms of Tate modules and isogenies

Throughout this Section, K is a finite field and ¢ is a prime # char(K).
Combining Theorem 10.2 with results of Section 2.8, we obtain the following
statement.

Theorem 11.1 (Tate [27]). Let X and Y be abelian varieties over K. Then
Hom(X,Y) ® Zy = Homga (Te(X), Te(Y)).
Let X be an abelian variety over K. Let us consider the Qg-vector space
Ve(X) = To(X) @z, Qe
provided with the natural structure of Galois module. We have
dimg, (V2(X)) = 2dim(X)
and the map
Ti(X) = Vi(X), z2— 21

identifies Ty(X) with a Galois-invariant Z,-lattice. This implies that the natural
map

Homga (T¢(X), Ty(Y)) ®z, Q¢ — Homga (Ve(X), V2(Y))

is bijective. Here Homga (Vy(X), Ve(Y)) is the Qp-vector space of Qg-linear ho-
momorphisms of Galois modules Vp(X) — Vp(Y).
Applying Theorem 11.1, we obtain the following statement.

Theorem 11.2 (Tate [27]). Let X and Y be abelian varieties over K. Then the
natural map

Hom(X,Y) ® Q¢ = Homga (Ve(X), Vi(Y))
15 bijective.
The following assertion is very useful.

Corollary 11.3 (Tate’s isogeny theorem [27]). Let X and Y be abelian varieties
over K. Then X and Y are isogenous over K if and only if the Galois modules
Ve(X) and Vy(Y') are isomorphic.

Proof. If X and Y are isogenous over K then there exist a positive integer N and
isogenies

a: X—-Y, f:Y - X



such that
[)’Oz = Nx, Ozﬁ = Ny.
By functoriality, o and 3 induce homomorphisms of Galois modules
a(l) : Ve(X) = Ve(Y), B() : Ve(Y) — Vi(X)

such that the compositions S(¢)a(f) and «(¢)B3(¢) coincide with multiplication
by N in V;(X) and V,(Y') respectively. It follows that «(¢) is an isomorphism of
Galois modules V;(X) and V,(Y).

Suppose now that the Galois modules V(X)) and V(Y are isomorphic. Then
their Q,-dimensions coincide and therefore

dim(X) = dim(Y).

Choose an isomorphism

w: Vo(X) 2 V(Y)

of Galois modules. Replacing (if necessary) w by ¢Mw for sufficiently large positive
integer M, we may and will assume that

U}(TZ(X» C Tg(Y)
The image w(Ty(X)) is a Z,-lattice in V;(Y"). This implies that w(T;(X)) is a sub-
group of finite index in Ty(Y). So, we may view w as an injective homomorphism
Ty(X) — Tp(Y) of Galois modules. There exists a positive integer M such that if
w' € Homga (To(X), To(Y)), w' —w € (M - Homga (Ty(X), T,(Y))
then

w’ : Tg(X) - Tg(Y)

is also injective. Since Hom(X,Y') is everywhere dense with respect to f-adic
topology in

Hom(X, Y) X ZZ = HomGaI(TZ(X)v TK(Y))v

there exists u € Hom(X,Y') such that the induced (by «) homomorphism of Galois
modules

u(l) : To(X) — Ty(Y)
is injective. This implies that

rkz, (u(0)(Ty(X))) = kg, (Ty(X)) = 2dim(X) = 2dim(Y).



I claim that u is an isogeny. Indeed, let us put Z := u(X): it is a (closed) abelian
subvariety of Y that is defined over K. The homomorphism u : X — Y coincides
with the composition of the natural surjection X — Z and the inclusion map
j: Z — X. This implies that u(¢)(T;(X)) is contained in j(¢)(T¢(Z)) where

3(0) : Te(Z) — To(Y)
is the homomorphism of Tate modules induced by j. It follows that

2dim(Z) = rk(T4(2)) > tk(j(0)(T4(2))) =

rk(u(f)(Ty(X))) = 2dim(X) = 2dim(Y)

and therefore dim(Z) > dim(Y"). (Hereafter rk stands for the rank of a free Z,-
module.)

Since Z is a closed subvariety of Y, we conclude that dim(Z) = dim(Y) and
therefore Z = Y. This implies that u : X — Y is surjective. Since dim(X) =
dim(Y"), we conclude that « is an isogeny. O

Corollary 11.3 admits the following “refinement”.

Corollary 11.4. Let X andY be abelian varieties over K. The following assertions
are equivalent.

e There exists an isogeny X — Y, whose degree is not divisible by £.
o The Galois modules Ty(X) and T¢(Y) are isomorphic.

Proof. Tt follows readily from Corollary 10.4 and the last displayed formula in
Subsection 2.8. O

12. An example

Corollaries 10.1 and Corollary 10.4 suggest the following question: if X and Y are
abelian varieties over a finite field K such that X,, 2 Y}, for all n and X (¢) 2 Y (¢)
for all ¢ then is it true that X and Y are isomorphic? The aim of this Section is to
give a negative answer to this question. Our construction is based on the theory
of elliptic curves with complex multiplication [24,9].

We start to work over the field C of complex numbers. Let F' C C be an
imaginary quadratic field with the ring of integers Op. For every non-zero ideal
b C Op there exists an elliptic curve E(®) over C such that that its group of
complex points E(®)(C) (viewed as a complex Lie group) is C/b. There is a natural
ring isomorphism Op 2 End(E(®)) where any a € Of acts on E(®)(C) as

z+b—az+b.

In particular, E(®) is an elliptic curve with complex multiplication and j(E(®) € C
is an algebraic integer.



Let us put E := E(©F)_ There is a natural bijection of groups
b = Hom(E, E™), ¢ u(c),
where homomorphism u(c) acts on complex points as
u(c) : C/Op — C/b, 2+ Op — cz+b.
In addition, for every non-zero ¢ the homomorphism u(c) : E — E(®) is an isogeny,
whose degree is the order of the (finite) quotient b/cOp. In particular, E and

E®) are isomorphic if and only if b is a principal ideal. This implies that if b is
not principal then

JEW) #j(B).

Lemma 12.1. For every prime { there ezists a non-zero ¢ € b such that the order
of b/cOp is not divisible by £.

Proof. We may assume that b is not principal. If /O is a prime ideal in Op, pick
any ¢ € b\ (b. If /O is a square £2 of a prime ideal £, pick any c € b\ £-b. If
{OF is a product £1£s of two distinct prime ideals £, £5 C Op, pick

1 €L1-b\Ly-b, co€Ly-b\L1-0
and put ¢ = ¢1 + co; clearly,
cd £1-b, cg Lo b.
In all three cases
cOp =M -b
where the ideal M = [ [y, PB* is a (finite) product of powers of (non-zero) prime

ideals 93, none of which divides ¢. It follows that b/cOp is a (finite) Op /M-
module. By the Chinese Remainder Theorem,

Op/M = @m@p/%mm.

Therefore b/cOp is a product of finite O /PB"*-modules. Since the multiplication
by the residual characteristic of P kills O /B, it follows that the mypth power
of this characteristic kills every Op /P™%-module. This implies that the order of
b/cOr is a product of powers of residual characteristics of P’s and therefore is
not divisible by /. O

Corollary 12.2. For every prime { there exists an isogeny E — E(®) whose degree
is not divisible by (.



12.3. The construction. Choose an imaginary quadratic field F’ with class number
> 1 and pick a non-principal ideal b C Op. We have

J(E®) #i(E).

There exists an algebraic number field L C C such that:

e L contains F, j(F) and j(E(®).
e The elliptic curves E and E(®) are defined over L.
e All homomorphisms between E and E(®) are defined over L.

Let us choose a maximal ideal ¢ C O such that both F and E(®) have good
reduction at q and j(E) —j(E®)) does not lie in q. (Those conditions are satisfied
by all but finitely many q.) Let K be the (finite) residue field at q, let E and
E® be the reductions at q of E and E(® respectively: they are elliptic curves
over K. Then j(E) and j(E®) are the reductions modulo q of j(E) and j(E(®))
respectively. Our assumptions on ¢ imply that

i(EB) #J(E).

Therefore E and E(®) are not isomorphic over K and even over K!
On the other hand, it is known [9, Ch. 9, Sect. 3] that there is a natural
embedding

Hom(E, E®) — Hom(E, E®)

that respects the degrees of isogenies. It follows from Corollary 12.2 that for every
prime ¢ there exists an isogeny E — E(®) whose degree is not divisible by ¢. Now
Proposition 1.11 implies that E, = E®) for all positive integers n. It follows
from Corollary 10.4 that the (-divisible groups E(¢) and E(")(¢) are isomorphic
for all £, including ¢ = char(K). Since both E(K) and E(*)(K) are torsion groups,
they are isomorphic as Galois modules. This implies that their subgroups of all
Galois invariants are isomorphic, i.e., the finite groups E(K) and E(®)(K) are
isomorphic.
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