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Abstract. We give a proof of Tate's theorems on homomorphisms of
abelian varieties over �nite �elds and the corresponding `-divisible
groups.

The aim of this note is to give a proof of Tate's theorems on homomorphisms

of abelian varieties over �nite �elds and the corresponding `-divisible groups

[27,12], using ideas of [32,33]. We give a uni�ed treatment for both ` 6= p and

` = p cases. In fact, we prove a slightly stronger version of those theorems with

��nite coe�cients�. We use neither the existence (and properties) of the Frobenius

endomorphism (for ` 6= p) nor Dieudonne modules (for ` = p).

The paper is organized as follows. (A rather long) Section 1 contains auxil-

iary results about �nite commutative group schemes and abelian varieties with

special reference to isogenies and polarizations. We discuss `-divisible groups (aka

Barsotti�Tate groups) in Section 2. Section 3 contains useful results that play a

crucial role in the proof of main results that are stated in Section 4.

The next �ve Sections contain proofs of results that were stated in Section

3. In Section 5 we discuss abelian subvarieties of a given abelian variety. Section

6 deals with the �niteness of the set of abelian varieties of given dimension and

�bounded degree� over a �nite �eld. In Section 7 we present a so called quater-

nion trick. In Section 8 we prove a crucial result about arbitrary �nite group

subschemes of abelian varieties over �nite �elds. In Section 9 we try to divide

endomorphisms of a given abelian variety modulo n.

The main results of this paper are proven in Section 10. Their variants for

Tate modules are discussed in Section 11. An example of non-isomorphic elliptic

curves over a �nite �eld with isomorphic `-divisible groups (for all primes `) is

discussed in Section 12.

I am grateful to Frans Oort and Bill Waterhouse for useful discussions and to

the referee, whose comments helped to improve the exposition. My special thanks

go to Dr. Boris Veytsman for his help with TEXnical problems.



1. De�nitions and statements

Throughout this paper K is a �eld and K̄ its algebraic closure. If X (resp. W )
is an algebraic variety (resp. group scheme) over K then we write X̄ (resp. W̄ )
for the corresponding algebraic variety X ×Spec(K) Spec(K̄) (resp. group scheme
W ×Spec(K) Spec(K̄)) over K̄. If f : X → Y is a a regular map of algebraic
varieties over K then we write f̄ for the corresponding map X̄ → Ȳ .

1.1. Finite commutative group schemes over �elds. We refer the reader to the
books of Oort [17], Waterhouse [31] and Demazure�Gabriel [3] for basic properties
of commutative group schemes; see also [25,21].

Recall that a group scheme V over K is called �nite if the structure morphism
V → Spec(K) is �nite. Since Spec(K) is a one-point set, it follows from the
de�nition of �nite morphism [7, Ch. II, Sect. 3] that V is an a�ne scheme and
Γ(V,OV ) is a �nite-dimensional commutative K-algebra. The K-dimension of the
Γ(V,OV ) is called the order of V and denoted by #(V ). An analogue of Lagrange
theorem [19] asserts that multiplication by #(V ) kills commutative V .

Let V and W be �nite commutative group schemes over K and let u : V → W
be a morphism of group K-schemes. Both V and W are a�ne schemes, A =
Γ(V,OV ) and B = Γ(W,OW ) are �nite-dimensional (commutative) K-algebras
(with 1), V = Spec(A),W = Spec(B) and u is induced by a certain K-algebra
homomorphism

u∗ : B → A.

Since V and W are commutative group schemes, A and B are cocommutative
Hopf K-algebras. Since u is a morphism of group schemes, u∗ is a morphism of
Hopf algebras. It follows that C := u∗(B) is a K-subalgebra and also a Hopf
subalgebra in A. It follows that U := Spec(C) carries the natural structure of
a �nite group scheme over K such that the natural scheme morphism U → V
induced by u∗ : B � u∗(B) = C is a morphism of group schemes. In addition,
the inclusion C ⊂ A induces the morphism of schemes V → U , which is also
a morphism of group schemes. The latter morphism is an epimorphism in the
category of �nite commutative group schemes over K, because the corresponding
map

C = Γ(U,OU ) → Γ(V,OV ) = A

is nothing else but the inclusion map C ⊂ A and therefore is injective [18] (see
also [5]).

On the other hand, the surjection B � C provides us with a canonical iso-
morphism U ∼= Spec(B/ ker(u∗)); in addition, we observe that Spec(B/ ker(u∗))
is a (closed) group subscheme of Spec(B) = W . We denote Spec(B/ ker(u∗)) by
u(V ) and call it the image of u or the image of V with respect to u and denote
by u(V ). Notice that the set theoretic image of u is closed and our de�nition of
the image of u coincides with the one given in [4, Sect. 5.1.1].

One may easily check that the closed embedding j : u(V ) ↪→ V induced by
B � B/ ker(u∗) is an image in the category of (a�ne) schemes over K. This



means that if α, β : W → S are two morphisms of schemes over K such that their
restrictions to u(V ) do coincide, i.e., αj = βj (as morphisms from u(V ) to S)
then αu = βu (as morphisms from U to S). It follows that j is also an image in
the category of �nite commutative group schemes. group [21, Sect. 10].

Theorem 1.2 (Theorem of Gabriel [18,5]). The category of �nite commutative
group schemes over a �eld is abelian.

Remark 1.3. Let V be a �nite commutative group scheme over K and let W be
its �nite closed group subscheme. If V → U is a surjective morphism of �nite
commutative group schemes over K then [5]

#(V ) = #(W ) ·#(U).

Recall that Γ(W,OW ) is the quotient of Γ(V,OV ). In particular, if the orders of
V and W do coincide then V = W .

1.4. Abelian varieties over �elds. We refer the reader to the books of Mumford
[16], Shimura [26] for basic properties of abelian varieties (see also Lang's book [8]
and papers of Waterhouse [30], Deligne [2], Milne [13] and Oort [20]). If X is an
abelian variety over K then we write End(X) for the ring of all K-endomorphisms
of X. If m is an integer then write mX for the multiplication by m in X; in
particular, 1X is the identity map. (Sometimes we will use notation m instead of
mX .)

If Y is an abelian variety over K then we write Hom(X, Y ) for the group of
all K-endomorphisms X → Y .

Remark 1.5. Warning: sometimes in the literature, including my own papers, the
notation End(X) is used for the ring of K̄-endomorphisms.

It is well known [16, Sect. 19, Theorem 3] that Hom(X, Y ) is a free com-
mutative group of �nite rank. We write Xt for the dual of X (See [13, Sect.
9�10] for the de�nition and basic properties of the dual of an abelian variety.) In
particular, Xt is also an abelian variety over K that is isogenous to X (over K).
If u ∈ Hom(X, Y ) then we write ut for its dual in Hom(Y, X). We have

X̄t = Xt.

If n is a positive integer then we write Xn for the kernel of nX ; it is a �nite
commutative (sub)group scheme (of X) over K of rank 2dim(X). By de�nition,
Xn(K̄) is the kernel of multiplication by n in X(K̄).

If n is not divisible by char(K) then Xn is an étale group scheme and it is
well-known [16, Sect. 4] that Xn(K̄) is a free Z/nZ-module of rank 2dim(X) and
all K̄-points of Xn are de�ned over a �nite separable extension of K. In particular,
Xn(K̄) carries a natural structure of Galois module.

1.6. Isogenies. Let W ⊂ X be a �nite group subscheme over K. It follows from the
analogue of Lagrange theorem that W ⊂ Xd for d = #(W ). The quotient Y :=
X/W is an abelian variety over K and the canonical isogeny π : X → X/W = Y



has kernel W and degree #(W ) ([16, Sect. 12, Corollary 1 to Theorem 1], [3,
Sect. 2, pp. 307-314]). In particular, every homomorphism of abelian varieties
u : X → Z over K with W ⊂ ker(u) factors through π, i.e., there exists a unique
homomorphism of abelian varieties v : Y → Z over K such that

u = vπ.

If m is a positive integer then

πmX = mY π ∈ Hom(X, Y ).

Let us put

m−1W := ker(πmX) = ker(mY π) ⊂ X.

For every commutative K-algebra R the group of R-points m−1W (R) is the set
of all x ∈ X(R) with

mx ∈ W (R) ⊂ X(R).

For example, if W = Xn then

Y = X, π = nX ,m−1Xn = Xnm.

In general, if W ⊂ Xn then m−1W is a closed group subscheme in Xnm. E.g.,
W is always a closed group subscheme of Xdm and therefore is a �nite group
subscheme of X over K. The order

#(m−1W ) = deg(πmX) = deg(π) deg(mX) = #(W ) ·m2dim(X).

We have

Xm ⊂ m−1W, mX(m−1W ) ⊂ W

and the kernel of mX : m−1W → W coincides with Xm.

Lemma 1.7. The image mX(m−1W ) = W .

Proof. Let us denote the image by G. By Remark 1.3, #(G) is the ratio

#(m−1W )/#(Xm) = dim(W ),

i.e., the orders of G and W do coincide. Since G ⊂ W , we have (by the same
Remark) G = W .

Example 1.8. If W = Xn then m−1Xn = Xnm and therefore m(Xnm) = Xn.

Lemma 1.9. If r is a positive integer then r(Xn) = Xn1 where n1 = n/(n, r).



Proof. We have r = (n, r) ·r1 where r1 is a positive integer such that n1 and r1 are
relatively prime. This implies that r1(Xn1) = Xn1 . By Lemma 1.9, (n, r)(Xn) =
Xn1 . This implies that

r(Xn) = r1(n, r)(Xn) = r1((n, r)(Xn)) = r1(Xn1) = Xn1 .

Lemma 1.10. Let X and Y be abelian varieties over a �eld K. Let u : X → Y be a
K-homomorphism of abelian varieties. Let n > 1 be an integer and un : Xn → Yn

the morphism of commutative group schemes over K induced by u.

(i) Suppose that u is an isogeny and deg(u) and n are relatively prime. Then
un : Xn → Yn is an isomorphism.

(ii) Suppose that un : Xn → Yn is an isomorphism. Then u is an isogeny and
deg(u) and n are relatively prime.

Proof. Let u be an isogeny such that m := deg(u) and n are relatively prime.
Then ker(u) ⊂ Xm. It follows that there exists a K-isogeny v : Y → X such that

vu = mX , uv = mY .

(i). Since multiplication by m is an automorphism of both Xn and Ym, we
conclude that un : Xn → Yn and vn : Yn → Xn are isomorphisms.

(ii). Suppose that un is an isomorphism. This implies that the orders of Xn

and Yn coincide and therefore dim(X) = dim(Y ). We need to prove that u is
isogeny and deg(u) and n are relatively prime. In order to do that, we may assume
that K is algebraically closed (replacing K, X, Y, u by K̄, X̄, Ȳ , ū respectively).
Let us put Z := u(Y ) ⊂ X: clearly, Z is a (closed) abelian subvariety of Y
and therefore dim(Z) ≤ dim(Y ). It is also clear that u : X → Y coincides with
the composition of the natural surjection X → u(X) = Z and the inclusion
map j : Z ↪→ X. This implies that un(Xn) is a (closed) group subscheme of
jn(Zn) ⊂ Yn. It follows that

#(un(Xn)) ≤ #(jn(Zn)) ≤ #(Zn) = n2dim(Z).

Since un is an isomorphism, un(Xn) = Yn and therefore

#(un(Xn)) = #(Yn) = n2dim(Y ).

It follows that

n2dim(Y ) ≤ n2dim(Z)

and therefore dim(Y ) ≤ dim(Z). (Here we use that n > 1.) Since Z is a closed
subvariety in Y , we conclude that dim(Z) = dim(Y ) and Y = Z. In other words,
u is surjective. Taking into account that dim(X) = dim(Y ), we conclude that u
ia an isogeny.



Now let m = dr where d is the largest common divisor of n and m. Then r
and n are relatively prime; in particular, multiplication by r is an automorphism
of Xn. Let us denote ker(u) by W : it is a �nite commutative group scheme over
K of order m and therefore

W ⊂ Xm.

This implies that for every commutative K-algebra R we have

m ·W (R) = {0}.

On the other hand, since un is an isomorphism, the kernel of W (R) n→ W (R)
is {0}. Since d | n, the kernel of W (R) d→ W (R) is also {0}. This implies that
r ·W (R) = {0} for all R. Hence W ⊂ Xr. It follows that deg(u) = #(W ) divides
#(Xr) = r2dim(X) and therefore is coprime to n.

The next statement will be used only in Section 12.

Proposition 1.11. Let X and Y be abelian varieties over a �eld K. Suppose that
for every prime ` there exists an isogeny X → Y , whose degree is not divisible by
`. Then for every positive integer n there exists an isogeny X → Y , whose degree
is coprime to n. In particular, Xn

∼= Yn.

Proof. Recall that the additive group Hom(X, Y ) is isomorphic to Zρ for some
nonnegative integer ρ. In our case, X and Y are isogenous over K and therefore
ρ > 0.

Let n be a positive integer and let P (n) be the (�nite) set of its prime divisors.
For each ` ∈ P (n) pick an isogeny v(`) : X → Y , whose degree is not divisible by
`. By Lemma 1.10(i), v(`) induces an isomorphism X`

∼= Y`. Now, by the Chinese
Remainder Theorem, there exists u ∈ Hom(X, Y ) ∼= Zρ such that

u− v(`) ∈ ` ·Hom(X, Y ) ∀ ` ∈ P.

This implies that for each ` ∈ P the homomorphisms u and v(`) induce the same
morphism X`

∼= Y`, which, as we know, is an isomorphism. It follows from Lemma
By Lemma 1.10(ii) that u is an isogeny, whose degree is not divisible by `. Hence
deg(u) and n are coprime. Applying again Lemma 1.10(i), we conclude that u
induces an isomorphism Xn

∼= Yn.

1.12. Polarizations. A homomorphism λ : X → Xt is a polarization if there exists
an ample invertible sheaf L on X̄ such that λ̄ coincides with

ΛL : X̄t → X̄t, z 7→ cl(T ∗z L⊗ L−1)

where Tz : X̄ → X̄ is the translation map

x 7→ x + z



and cl stands for the isomorphism class of an invertible sheaf. Recall [16, Sect, 6,
Proposition 1; Sect. 8, Theorem 1; Sect. 13, Corollary 5] that a polarization is an
isogeny. If λ is an isomorphism, i.e., deg(λ) = 1, we call λ a principal polarization
and the pair (X, λ) is called a principally polarized abelian variety (over K).

If n := deg(λ) = #(ker(λ)) then ker(λ) is killed by multiplication by n, i.e.,
ker(λ) ⊂ Xn. For every positive integer m we write λn for the polarization

Xm → (Xm)t = (Xt)m, (x1, . . . , xm) 7→ (λ(x1), . . . , λ(xm))

that corresponds to the ample invertible sheaf ⊗m
i=1pr∗iL where pri : Xm → X is

the ith projection map. We have

dim(Xm) = m · dim(X), deg(λm) = deg(λ)m

and ker(λm) = ker(λ)m ⊂ (Xm)n if ker(λ) ⊂ Xn.
There exists a Riemann form - a skew-symmetric pairing of group schemes

over K̄ [16, Sect. 23]

eλ : ker(λ̄)× ker(λ̄) → Gm

where Gm is the multiplicative group scheme over K̄.
If

eλm : ker(λ̄m)× ker(λ̄m) → Gm

is the Riemann form for λm then in obvious notation

eλm(x, y) =
m∏

i=1

eλ(xi, yi)

where

x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ ker(λ̄)m = ker(λ̄m).

We have

Matm(Z) ⊂ Matm(End(X̄)) = End(Xm).

One may easily check that every u ∈ Matm(Z) leaves the group subscheme
ker(λ̄m) invariant and

eλm(ux, y) = eλm(x, u∗y)

where u∗ is the transpose of the matrix u. Notice that u∗ viewed as an element of

Matm(Z) ⊂ Matm(End(Xt)) = End((Xt)m)

coincides with ut ∈ End((Xm)t).



1.13. Polarizations and isogenies. Let W ⊂ ker(λ) be a �nite group subscheme
over K. Recall that Y := X/W is an abelian variety over K and the canonical
isogeny π : X → X/W = Y has kernel W and degree #(W ).

Suppose that W̄ is isotropic with respect to eλ, i.e., the restriction of eλ to
W̄ × W̄ is trivial. Then there exists an ample invertible sheaf M on Ȳ such that
L ∼= π̄∗M̄ [16, Sect. 23, Corollary to Theorem 2, p. 231] and the K̄-polarization
ΛM̄ : Ȳ → Ȳ t satis�es

λ̄ = πtΛM̄π̄.

Since π̄t and π̄ are isogenies that are de�ned over K, the polarization ΛM̄ is also
de�ned over K, i.e., there exists a K-isogeny µ : Y → Y t such that ΛM̄ = µ̄ and

λ = πtµπ.

It follows that

deg(λ) = deg(π) deg(µ) deg(πt) = deg(π)2 deg(µ) = (#(W ))2 deg(µ).

Therefore µ is a principal polarization (i.e., deg(µ) = 1) if and only if

deg(λ) = (#(W ))2.

2. `-divisible groups, abelian varieties and Tate modules

Let h be a non-negative integer and ` a prime. The following notion was introduced
by Tate [28,25].

De�nition 2.1. An `-divisible group G over K of height h is a sequence {Gν , iν}∞ν=1

in which:

• Gν is a �nite commutative group scheme over K of order `hν .
• iν is a closed embedding Gν ↪→ Gν+1 that is a morphism of group schemes.
In addition, iν(Gν) is the kernel of multiplication by `ν in Gν+1.

Example 2.2. Let X be an abelian variety over K of dimension d. Then it is
known [28,25] that the sequence {X`ν}∞ν=1 is an `-divisible group over K of height
2d. Here iν is the inclusion map X`ν ↪→ X`ν+1 . We denote this `-divisible group
by X(`).

2.3. Homomorphisms of `-divisible groups and abelian varieties. If H =
{Hν , jν}∞ν=1 is an `-divisible group over K then a morphism u : G → H is a
sequence {u(ν)}∞ν=1 of morphisms of group schemes over K

u(ν) : Gν → Hν

such that the composition



u(ν+1)iν : Gν ↪→ Gν+1 → Hν+1

coincides with

jνu(ν) : Gν → Hν ↪→ Hν+1,

i.e., the diagram

Gν

u(ν)
//

iν

��

Hν

jν

��
Gν+1

u(ν+1)
// Hν+1

is commutative.

Remark 2.4. A morphism u is an isomorphism of `-divisible groups if and only if
all u(ν) are isomorphisms of the corresponding �nite group schemes.

The group Hom(G, H) of morphisms from G to H carries a natural struc-
ture of Z`-module induced by the natural structures of Z/`v = Z`/`ν-module
on Hom(Gν ,Hν). Namely, if u = {u(ν)}∞ν=1 ∈ Hom(G, H) and a ∈ Z` then
au = {(au)(ν)}∞ν=1 may be de�ned as follows. For each ν pick aν ∈ Z with
a− aν ∈ `νZ` and put

(au)(ν) := aνu(ν) : Gν → Hν .

Since multiplication by `ν kills Gν , the de�nition of (au)(ν) does not depend on
the choice of aν .

Let X and Y be abelian varieties over K. There is a natural homomorphism of
commutative groups Hom(X, Y ) → Hom(X(`), Y (`)). Namely, if u ∈ Hom(X, Y )
then u(X`ν ) lies in the kernel of multiplication by `ν , i.e. u(X`ν ) ⊂ Y`ν . In fact,
we get the natural homomorphism

Hom(X, Y )⊗ Z/`ν → Hom(X`ν , Y`ν ),

which is known to be an embedding. (See also Lemma 9.1 below.)
Since Hom(X(`), Y (`)) is a Z`-module, we get the natural homomorphism of

Z`-modules

Hom(X, Y )⊗ Z` → Hom(X(`), Y (`)).

Explicitly, if u ∈ Hom(X, Y )⊗ Z` then for each ν we may pick

w(ν) ∈ Hom(X, Y ) = Hom(X, Y )⊗ 1 ⊂ Hom(X, Y )⊗ Z`

such that



u−w(ν) ∈ `ν · {Hom(X, Y )⊗Z`} = {`ν ·Hom(X, Y )}⊗Z` = Hom(X, Y )⊗ `νZ`.

Then the corresponding morphism of group schemes u(ν) := w(ν) : X`ν → Y
does not depend on the choice of w(ν) and de�nes the corresponding morphism
of `-divisible groups

u(ν) : X`ν → Y`ν ; ν = 1, 2, . . . .

Remark 2.5. Since Hom(X, Y ) is a free commutative group of �nite rank, the
Z`-module Hom(X, Y )⊗ Z` is a free module of �nite rank.

The following assertion seems to be well known (at least, when ` 6= char(K)).

Lemma 2.6. The natural homomorphism of Z`-modules

Hom(X, Y )⊗ Z` → Hom(X(`), Y (`))

is injective.

Proof. If it is not injective and u lies in the kernel then u(ν) ∈ `ν · Hom(X, Y )
for all ν. Since u − u(ν) ∈ `ν · {Hom(X, Y ) ⊗ Z`}, we conclude that u ∈ `ν ·
{Hom(X, Y ) ⊗ Z`} for all ν. Since Hom(X, Y ) ⊗ Z` is a free Z`-module of �nite
rank, it follows that u = 0.

Corollary 2.7. The following conditions are equivalent:

(i) There exists an isogeny u : X → Y , whose degree is not divisible by `.
(ii) There exists w ∈ Hom(X, Y ) ⊗ Z` that induces an isomorphism of `-
divisible groups X(`) → Y (`).

Proof. Let u : X → Y be an isogeny, whose degree is not divisible by `. Applying
Lemma 1.10(i) to all n = `ν , we conclude that u induces an isomorphism X(`) ∼=
Y (`).

Now suppose that w ∈ Hom(X, Y ) ⊗ Z` that induces an isomorphism of `-
divisible groups X(`) → Y (`). In particular, w induces an isomorphism of �nite
group schemes w(1) : X`

∼= Y`. On the other hand, there exists u ∈ Hom(X, Y )
such that

w − u ∈ ` · {Hom(X, Y )⊗ Z`} = Hom(X, Y )⊗ `Z`.

This implies that u and w induce the same morphism of �nite group schemes
X` → Y`. It follows that the morphism

u` = u(1) : X` → Y`

induced by u coincides with w(1) and therefore is an isomorphism. Now Lemma
1.10(ii) implies that u is an isogeny, whose degree is not divisible by `.



2.8. Tate modules. In this subsection we assume that ` is a prime di�erent from
char(K). If n = `ν then Xn is an étale �nite group scheme of order n2dim(X)

and we will identify its with the Galois module of its K̄-points. (Actually, all
points of Xn are de�ned over a separable algebraic extension of K). The Tate
`-module T`(X) is de�ned as the projective limit of Galois modules X`ν where
the transition map X`ν+1 → X`ν is multiplication by `. The Tate module carries
a natural structure of free Z`-module of rank 2dim(X); it is also provided with
a natural structure of Galois module in such a way that natural homomorphisms
T`(X) → X`ν induce isomorphisms of Galois modules

T`(X)⊗ Z/`ν ∼= X`ν .

Explicitly, T`(X) is the set of all collections x = {xν}∞ν=1 with

xν ∈ X`ν , xν+1 = `xν ∀ν.

The map x 7→ xν de�nes the surjective homomorphism of Galois modules
T`(X) → X`ν , whose kernel coincides with `ν · T`(X) and therefore induces the
isomorphism of Galois modules T`(X)/`ν ∼= X`ν mentioned above.

If Y is an abelian variety over K then we write HomGal(T`(X), T`(Y )) for the
Z`-module of all homomorphisms of Z`-modules T`(X) → T`(Y ) that commute
with the Galois action(s), i.e., are also homomorphisms of Galois modules.

The Z`-module HomGal(T`(X), T`(Y )) is the set of collections w = {wν}∞ν=1

of homomorphisms of Galois modules

wν : T`(X)/`ν = X`ν → Y`ν = T`(Y )/`ν

such that

wν(xν) = ` · uwν+1(xν+1) ∀x = {xν}∞ν=1 ∈ T`(X).

Now if z ∈ X`ν then there exists x ∈ T`(X) with xν = z. We have `xν+1 =
xν = z and

wν(z) = wν(xν) = ` · wν+1(xν+1) = wν+1(`xν+1) = wν+1(xν) = wν+1(z),

i.e., the restriction of wν+1 to X`ν coincides with wν . This means that the collec-
tion {wν}∞ν=1 de�nes a morphism of `-divisible groups over K

X(`) → Y (`).

Conversely, if u = {u(ν)}∞ν=1 is a morphism X(`) → Y (`) over K then

u(ν) : X`ν → Y`ν

is a homomorphism of Galois modules; in addition, the restriction of u(ν+1) to
X`ν coincides with u(ν). This implies that for each {xν}∞ν=1 ∈ T`(X)



u(ν)(xν) = u(ν+1)(xν) = u(ν+1)(`xν+1) = `u(ν+1)(xν+1)

for all ν. This means that the collection {u(ν)}∞ν=1 de�nes a homomorphism of Ga-
lois modules T`(X) → T`(Y ). Those observations give us the natural isomorphism
of Z`-modules

Hom(X(`), Y (`)) = HomGal(T`(X), T`(Y )).

3. Useful results

Theorem 3.1 ([32,34,14]). Let X be an abelian variety of positive dimension over
a �eld K and Xt its dual. Then (X ×Xt)4 admits a principal K-polarization.

We prove Theorem 3.1 in Section 7.

Theorem 3.2 ([11]). Let X be an abelian variety over K. The set of abelian
K-subvarieties of X is �nite, up to the action of the group Aut(X) of K-
automorphisms of X.

We sketch the proof of Theorem 3.2 in Section 5.

Lemma 3.3 (Tate ([27], Sect. 2, p. 136)). Let K be a �nite �eld, and let g and d
be positive integers. The set of K-isomorphism classes of g-dimensional abelian
varieties over K that admit a K-polarization of degree d is �nite.

Lemma 3.3 will be proven in Section 6.

Theorem 3.4 ([32], Th. 4.1). Let K be a �nite �eld, g a positive integer. Then the
set of K-isomorphism classes of g-dimensional abelian varieties over K is �nite.

Proof of Theorem 3.4 (modulo Theorem 3.1 and Lemma 3.3). Suppose that X is
a g-dimensional abelian variety over K. By Lemma 3.3, the set of 4g-dimensional
abelian varieties over K of the form (X × Xt)4 is �nite, up to K-isomorphism.
The abelian variety X is isomorphic over K to an abelian subvariety of (X×Xt)4.
In order to �nish the proof, one has only to recall that thanks to Theorem 3.2,
the set of abelian subvarieties of a given abelian variety is �nite, up to a K-
isomorphism.

We need Theorem 1.2 in order to state the following assertion.

Corollary 3.5 (Corollary to Theorem 3.4). Let X be an abelian variety of positive
dimension over a �nite �eld K. There exists a positive integer r = r(X, K) that
enjoys the following properties:

(i) If Y is an abelian variety over K that is K-isogenous to X then there
exists a K-isogeny β : X → Y such that ker(β) ⊂ Xr.

(ii) If n is a positive integer and W ⊂ Xn is a group subscheme over K then
there exists an endomorphism u ∈ End(X) such that

rW ⊂ uXn ⊂ W.



Remark 3.6. The assertion 3.5(i) follows readily from Theorem 3.4.

We prove Corollary 3.5(ii) in Section 8.

4. Main results

Theorem 4.1. Let X be an abelian variety of positive dimension over a �nite
�eld K. There exists a positive integer r1 = r1(X, K) that enjoys the following
properties:

Let n be a positive integer and un ∈ End(Xn). Let us put m = n/(n, r1).
Then there exists u ∈ End(X) such that the images of u and un in End(Xm) do
coincide.

We prove Theorem 4.1 in Section 10.
Applying Theorem 4.1 to a product X = A×B of abelian varieties A and B,

we obtain the following statement.

Theorem 4.2. Let A,B be abelian varieties of positive dimension over a �nite
�eld K. There exists a positive integer r2 = r2(A,B) that enjoys the following
properties:

Suppose that n is a positive integer and un : An → Bn is a morphism of group
schemes over K. Let us put m = n/(n, r2). Then there exists a homomorphism
u : A → B of abelian varieties over K such that the images of u and un in
Hom(Am, Bm) do coincide.

The following assertions follow readily from Theorem 4.2.

Corollary 4.3 (First Corollary to Theorem 4.2). If n and r2 are relatively prime
(e.g., n is a prime that does not divide r2) then the natural injection

Hom(A,B)⊗ Z/n ↪→ Hom(An, Bn)

is bijective.

Corollary 4.4 (Second Corollary to Theorem 4.2). Let ` be a prime and `r(`) is
the exact power of ` dividing r2. Then for each positive integer i the image of

Hom(A`i+r(`) , B`i+r(`)) → Hom(A`i , B`i)

coincides with the image of

Hom(A,B)⊗ Z/`i ↪→ Hom(A`i , B`i).

5. Abelian subvarieties

We follow the exposition in [11].
The next statement is a corollary of a �niteness result of Borel and Harish-

Chandra [1, Theorem 6.9]; it may also be deduced from the Jordan�Zassenhaus
theorem [23, Theorem 26.4].



Proposition 5.1 ([11], p. 514). Let F be a �nite-dimensional semisimple Q-algebra,
M a �nitely generated right F -module, L a Z-lattice in M . Let G be the group of
those automorphisms σ of the F -module M for which σ(L) = L. Then the number
of G-orbits of the set of F -submodules of M is �nite.

Now let X be an abelian variety over K. We are going to apply Proposition
5.1 to

F = End(X)⊗Q, M = End(X)⊗Q, L = End(X).

One may identify G with the group Aut(X) = End(X)∗ of automorphisms of X:
here elements of End(X)∗ act as left multiplications on End(X)⊗Q = M .

On the other hand, to each abelian K-subvariety Y ⊂ X corresponds the
right ideal

I(Y ) = {u ∈ End(X) | u(X) ⊂ Y }

and the F -submodule

I(Y )Q = I(Y )⊗Q ⊂ End(X)⊗Q = M.

Using the theorem of Poincaré�Weil [13, Proposition 12.1], one may prove ([11,
p. 515] that I(Y )Q uniquely determines Y . Even better, if Y ′ is an abelian K-
subvariety of X and

uI(Y )Q = I(Y ′)Q

for u ∈ Aut(X) = End(X)∗ then Y ′ = u(Y ). Now Proposition 5.1 implies the
�niteness of the number of orbits of the set of abelian K-subvarieties of X under
the natural action of Aut(X). This proves Theorem 3.2. (See [10] for variants and
complements.)

6. Polarized abelian varieties

Lemma 6.1 (Mumford's lemma [15]). Let X be an abelian variety of positive di-
mension over a �eld K. If λ : X → Xt is a polarization then there exists an
ample invertible sheaf L on X such that

ΛL̄ = 2λ̄

where L̄ is the invertible sheaf on X̄ induced by L.

Proof. See [15, Ch. 6, Sect. 2, pp. 120�121] where a much more general case of
abelian schemes is considered. (In notation of [15], S is the spectrum of K.) Let me
just recall an explicit construction of L. Let P be the universal Poincaré invertible
sheaf on X ×Xt [13, Sect. 9]. Then L := (1X , λ)∗P where (1X , λ) : X → X ×Xt

is de�ned by the formula



x 7→ (x, λ(x)).

Proof of Lemma 3.3. So, let X be a g-dimensional abelian variety over a �nite
�eld K and let λ : X → Xt be a polarization of degree d. We follow the exposition
in [22, p. 243]. By Lemma 6.1, there exists an invertible ample sheaf L on X such
that the self-intersection index of L̄ equals 2gdg! [16, Sect. 16]. The invertible
sheaf L̄3 is very ample, its space of global section has dimension 6gd; the self-
intersection index of L equals 6gdg! [16, Sect. 16]. This implies that L3 is also
very ample and gives us an embedding (over K) of X into the 6gd−1-dimensional
projective space as a closed K-subvariety of degree 6gdg!. All those subvarieties
are uniquely determined by their Chow forms ([29, Ch. 1, Sect. 6.5], [6, Lecture
21, pp. 268�273]), whose coe�cients are elements of K. Since K is �nite and
the number of coe�cients depends only on the degree and dimension, we get the
desired �niteness result.

7. Quaternion trick

Let X be an abelian variety of positive dimension over a �eld K and λ : X → Xt

a K-polarization. Pick a positive integer n such that

ker(λ) ⊂ Xn.

Lemma 7.1. Suppose that there exists an integer a such that a2 + 1 is divisible by
n. Then X ×Xt admits a principal polarization that is de�ned over K.

Proof. Let

V ⊂ ker(λ)× ker(λ) ⊂ Xn ×Xn ⊂ X ×X

be the graph of multiplication by a in ker(λ). Clearly, V is a �nite group subscheme
over K that is isomorphic to ker(λ) and therefore its order is equal to deg(λ).
Notice that deg(λ) is the square root of deg(λ2).

For each commutative K̄-algebra R the group V̄ (R) of R-points coincides
with the set of all the pairs (x, ax) with x ∈ ker(λ̄) ⊂ X̄n. This implies that for
all (x, ax), (y, ay) ∈ V̄ (R) we have

eλ2((x, ax), (y, ay)) = eλ(x, y) · eλ(ax, ay) = eλ(x, y) · eλ(a2x, y) =

eλ(x, y) · eλ(−x, y) = eλ(x, y)/eλ(x, y) = 1.

In other words, V̄ is isotropic with respect to eλ2 ; in addition,

#(V̄ )2 = deg(λ)2 = deg(λ2).



This implies that X2/V is a principally polarized abelian variety over K. On the
other hand, we have an isomorphism of abelian varieties over K

f : X ×X → X ×X = X2, (x, y) 7→ (x, ax) + (0, y) = (x, ax + y)

and

V = f(ker λ× {0}) ⊂ f(X × {0}).

Thus, we obtain K-isomorphisms

X2/V ∼= X/ ker(λ)×X = Xt ×X = X ×Xt.

In particular, X ×Xt admits a principal K-polarization and we are done.

Proof of Theorem 3.1. Choose a quadruple of integers a, b, c, d such that

0 6= s := a2 + b2 + c2 + d2

is congruent to −1 modulo n. We denote by I the �quaternion�

I =


a −b −c −d
b a d c
c −d a b
d c −b a

 ∈ Mat4(Z) ⊂ Mat4(End(X) = End(X∗4)).

We have

I∗I = a2 + b2 + c2 + d2 = s ∈ Z ⊂ Mat4(Z) ⊂ Mat4(End(X) = End(X4).

Let

V ⊂ ker(λ4)× ker(λ4) ⊂ (X4)n × (X4)n ⊂ X4 ×X4 = X8

be the graph of

I : ker(λ4) → ker(λ4).

Clearly, V is a �nite group subscheme over K and its order is equal to deg(λ4).
Notice that deg(λ4) is the square root of deg(λ8).

For each commutative K̄-algebra R the group V̄ (R) of R-points consists
of all the pairs (x, Ix) with x ∈ ker(λ̄4) ⊂ (X̄4)n. This implies that for all
(x, Ix), (y, Iy) ∈ V̄ (R) we have

eλ4((x, Ix), (y, Iy)) = eλ4(x, y) · eλ4(Ix, Iy) = eλ4(x, y) · eλ(x, ItIy) =

eλ(x, y) · eλ(x, sy) = eλ(x, y) · eλ(x,−y) = eλ(x, y)/eλ(x, y) = 1.



In other words, V̄ is isotropic with respect to eλ4 ; in addition,

#(V̄ )2 = deg(λ4)2 = deg(λ8).

This implies that X8/V is a principally polarized abelian variety over K. On the
other hand, we have an isomorphism of abelian varieties over K

f : X4 ×X4 → X4 ×X4 = X8, (x, y) 7→ (x, Ix) + (0, y) = (x, Ix + y)

and

V = f(ker(λ4)× {0}) ⊂ f(X4 × {0}).

Thus, we obtain K-isomorphisms

X4/V ∼= X4/ ker λ4 ×X4 = (X4)t ×X4 = (X ×Xt)4.

In particular, (X ×Xt)4 admits a principal K-polarization and we are done.

Remark 7.2. We followed the exposition in [32, Lemma 2.5], [34, Sect. 5]. See [14,
Ch. IX, Sect. 1] where Deligne's proof is given.

8. Finite group subschemes of abelian varieties

Proof of Corollary 3.5(ii). Let r be as in 3.5(i). Let us consider the abelian variety
Y := X/W and the canonical K-isogeny π : X → X/W = Y . Clearly,

W = ker(π).

Since W ⊂ Xn, there exists a K-isogeny v : Y → X/Xn = X such that the
composition vπ coincides with multiplication by n in X; in addition,

πnX = nY π : X → Y

is a K-isogeny, whose degree is #(W )× n2dim(X). Here nX (resp. nY ) stands for
multiplication by n in X (resp. in Y ). Let us put

U = ker(πnX) = ker(nY π) ⊂ X;

it is a �nite commutative group K-(sub)scheme and

#(U) = #(W )× n2dim(X).

Then

Xn ⊂ U, W ⊂ U ; π(U) ⊂ Yn, nX(U) ⊂ W.



The order arguments imply that the natural morphisms of group K-schemes

π : U → Yn, nX : U → W

are surjective, i.e.,

π(U) = Yn, nU = W.

We have

v(Yn) = v(π(U)) = vπ(U) = nU = W,

i.e.,

v(Yn) = W.

By 3.5(i), there exists a K-isogeny β : X → Y with ker(β) ⊂ Xr. Then there
exists a K-isogeny γ : Y → X such that γβ = rX . This implies that

γrY = rXγ = γβγ = γ(βγ),

i.e.,

γrY = γ(βγ).

It follows that rY = βγ, because ker(γ) is �nite while (rY − βγ)Y is an abelian
subvariety. This implies that

β(Xn) ⊃ β(γ(Yn)) = βγ(Yn) = rYn.

Let us put

u = vβ ∈ End(X).

We have

Yn ⊃ β(Xn) ⊃ rYn.

This implies that

W = v(Yn) ⊃ v(β)(Xn) = u(Xn),

u(Xn) = v(β(Xn)) ⊃ v(rYn) = r(W )

and therefore

W ⊃ u(Xn) ⊃ r(W ).



9. Dividing homomorphisms of abelian varieties

Results of this Section will be used in the proof of Theorem 4.1 in Section 10.
Throughout this Section, Y is an abelian variety over a �eld K. The following

statement is well known.

Lemma 9.1. let u : Y → Y be a K-isogeny. Suppose that Z is an abelian variety
over K. Let v ∈ Hom(Y, Z) and ker(u) ⊂ ker(v) (as a group subscheme in Y ).
Then there exists exactly one w ∈ Hom(Y, T ) such that v = wu, i.e., the diagram

Y
u

//

v ��@
@@

@@
@@

Y

w

��
Z

is commutative. In addition, w is an isogeny if and only if v is an isogeny.

Proof. We have Y ∼= Y/ ker(u). Now the result follows from the universality prop-
erty of quotient maps.

Let n be a positive integer and u an endomorphism of Y . Let us consider the
homomorphism of abelian varieties over K

(nY , u) : Y → Y × Y, y 7→ (ny, uy).

Then

ker((nY , u)) = ker(Yn
u→ Yn) ⊂ Yn ⊂ Y.

Slightly abusing notation, we denote the �nite commutative group K-(sub)scheme
ker((nY , u)) by {ker(u)

⋂
Yn}.

Lemma 9.2. Let Y be an abelian variety of positive dimension over a �eld K. Then
there exists a positive integer h = h(Y, K) that enjoys the following properties:

If n is a positive integer, u, v ∈ End(Y ) are endomorphisms such that

{ker(u)
⋂

Yn} ⊂ {ker(v)
⋂

Yn}

then there exists a K-isogeny w : Y → Y such that

hv − wu ∈ n · End(Y ).

In particular, the images of hv and wu in End(Yn) do coincide.



Proof. Since O := End(Y ) is an order in the semisimple �nite-dimensional Q-
algebra End(Y )⊗Q, the Jordan�Zassenhaus theorem [23, Th. 26.4] implies that
there exists a positive integer M that enjoys the following properties:

if I is a left ideal in O that is also a subgroup of �nite index then there exists
aI ∈ O such that the principal left ideal a · O is a subgroup in I of �nite index
dividing M ; in particular,

M · I ⊂ aI · O ⊂ I.

Clearly, such aI is invertible in End(Y ) ⊗ Q and therefore is an isogeny. Let us
put

h := M3.

Let us consider the left ideals

I = nO + uO, J = nO + vO

in O. Then both I and J are subgroups of �nite index in O. So, there exist
K-isogenies

aI : Y → Y, aJ : Y → Y

such that

M · I ⊂ aI · O ⊂ I, M · I ⊂ aJ · O ⊂ J.

In particular, there exist b, c ∈ O such that

MaI − bu ∈ n · O, Mv = caJ .

In obvious notation

{ker(v)
⋂

Yn} ⊂ ker(aJ) ⊂ {ker(Mv)
⋂

YMn} = M−1{ker(v)
⋂

Yn} ⊂ Y,

{ker(u)
⋂

Yn} ⊂ ker(aI) ⊂ {ker(Mu)
⋂

YMn} = M−1{ker(u)
⋂

Yn} ⊂ Y.

This implies that

ker(aI) ⊂ M−1{ker(u)
⋂

Yn} ⊂ M−1{ker(v)
⋂

Yn} ⊂ M−1 ker (aJ) = ker(MaJ)

and therefore

ker(aI) ⊂ ker(MaJ).

By Lemma 9.1, there exists a K-isogeny z : Y → Y such that MaJ = zaI and
therefore M2aJ = MzaI . This implies that



M3v = M2caJ = Mc(MaJ) = Mc(zaI) = cz(MaI) =

cz[bu + (MaI − bu)] = (czb)u + cz(MaI − bu).

Since h = M3 and bu−MaI is divisible by n in O = End(Y ),

hv − (czb)u ∈ n · End(Y ).

So, we may put w = czb.

10. Endomorphisms of group schemes

Proof of Theorem 4.1. Let X be an abelian variety of positive dimension over a
�nite �eld K. Let us put Y := X × X. Let h = h(Y ) be as in Lemma 9.2 and
r = r(Y, K) be as in Corollary 3.5. Let us put

r1 = r1(X, K) := r(Y, K)h(Y, K).

Let n be a positive integer and un ∈ End(Xn). Let W be the graph of un in
Xn ×Xn = (X ×X)n = Yn, i.e., the image of

(1n, un) : Xn ↪→ Xn ×Xn = (X ×X)n = Yn.

Here 1n is the identity automorphism of Xn.
By Corollary 3.5, there exists v ∈ End(Y ) such that

rW ⊂ u(Yn) ⊂ W.

Let pr1,pr2 : Y = X ×X → X be the projection maps and

q1 : X = X × {0} ⊂ X ×X = Y, q2 : X = {0} ×X ⊂ X ×X = Y

be the inclusion maps. Let us consider the homomorphisms

pr1v,pr2v : Y → X

and the endomorphisms

v1 = q1pr1v, v2 = q1pr2v ∈ End(X ×X) = End(Y ).

Clearly,

v : Y → Y = X ×X

is �de�ned� by pair



(pr1v,pr2v) : Y → X ×X = Y.

Since W is a graph,

pr1(W ) = Xn, v(Yn) ⊂ W

and

{ker(pr1v)
⋂

Yn} ⊂ {ker(pr2v)
⋂

Yn}.

Since q1 and q2 are embeddings,

{ker(v1)
⋂

Yn} ⊂ {ker(v2)
⋂

Yn}.

By Lemma 9.2, there exists a K-isogeny w : Y → Y such that the restrictions of
hv2 and wv1 to Yn do coincide. Taking into account that

v1(X ×X) ⊂ X × {0}, v2(X ×X) ⊂ {0} ×X,

we conclude that if we put

w12 = pr2wq1 ∈ End(X)

then the images of h pr2v and w12pr1v in Hom(Yn, Xn) = Hom(Xn×Xn, Xn) do
coincide.

Since W is the graph of un and u(Yn) ⊂ W ,

pr2v = unpr1v ∈ Hom(Yn, Xn);

here both sides are viewed as morphisms of group schemes Yn → Xn. This implies
that in Hom(Yn, Xn) we have

w12pr1v = h pr2v = h unpr1v.

This implies that w12 = h un on

pr1v(Yn) ⊂ Xn.

We have

pr1v(Yn) ⊃ r pr1(r(W )) = r(Xn)

and therefore w12 = h un on r(Xn). By Lemma 1.8,

r(Xn) = Xn1 ,

where n1 = n/(n, r). So, w12 = h un on Xn1 . Let us put d := (n1, h). Clearly,
Xd ⊂ Xn1 and w12 = hun kills Xd, because d divides h. This implies that there



exists u ∈ End(X) such that w12 = d u. If we put m = n1/d then h/d is a
positive integer relatively prime to m and (h/d) u d = (h/d) un d on Xn1 and
therefore (h/d) u = (h/d) un on d(Xn1) = Xm. Since multiplication by (h/d) is
an automorphism of Xm, we conclude that u = un on Xm.

Corollary 10.1. Let K be a �nite �eld, X and Y abelian varieties over K. Let S
be the set of positive integers n such that the �nite commutative group K-schemes
Xn and Yn are isomorphic. If S is in�nite then X and Y are isogenous over K.
In addition, if S is the set of powers of a prime ` then there exists a K-isogeny
X → Y , whose degree is not divisible by `.

Proof. Pick n ∈ S such that n > r2 := r2(X, Y ) where r2 is as in Theorem 4.2.
Then m := n/(n, r2) is strictly greater than 1. (In addition, if n is a power of ` then
m is also a power of `.( Fix an isomorphism wn : Xn

∼= Yn. By Theorem 4.2, there
exists u ∈ Hom(X, Y ) such that the induced morphism um : Xm → Ym coincides
with the restriction (image) of wn to (in) Hom(Xm, Ym). But this restriction is an
isomorphism, since wn is an isomorphism. It follows that um is an isomorphism.
Now the desired result follows from Lemma 1.10(ii).

Theorem 10.2 (Tate's theorem on homomorphisms). Let K be a �nite �eld, `
an arbitrary prime, X and Y abelian varieties over K of positive dimension. Let
X(`) and Y (`) be the `-divisible groups attached to X and Y respectively. Then
the natural embedding

Hom(X, Y )⊗ Z` ↪→ Hom(X(`), Y (`))

is bijective.

Remark 10.3. Our proof will work for both cases ` 6= char(K) and ` = char(K).

Proof of Theorem 10.2. Any element of Hom(X(`), Y (`)) is a collection

{w(ν) ∈ Hom(X`ν , Y`ν )}∞ν=1

such that every w(ν) coincides with the �restriction� of w(ν+1) to X`ν . It follows
from Corollary 4.4 that there exists uν ∈ Hom(X, Y )⊗Z/`ν such that w(ν) = uν .
This implies that the image of uν+1 in Hom(X, Y ) ⊗ Z/`ν coincides with uν for
all ν. This means that if u is the projective limit of uν in Hom(X, Y ) ⊗ Z` then
u induces (for all ν) the morphism from X`ν to Y`ν that coincides with uν and
therefore with w(ν).

Corollary 10.4. Let K be a �nite �eld, ` an arbitrary prime, X and Y abelian
varieties over K of positive dimension. Then the following conditions are equiv-
alent:

• There exists a K-isogeny X → Y , whose degree is not divisible by `.
• The `-divisible groups X(`) and Y (`) are isomorphic.

Proof. It follows readily from Theorem 10.2 and Corollary 2.7.



11. Homomorphisms of Tate modules and isogenies

Throughout this Section, K is a �nite �eld and ` is a prime 6= char(K).
Combining Theorem 10.2 with results of Section 2.8, we obtain the following

statement.

Theorem 11.1 (Tate [27]). Let X and Y be abelian varieties over K. Then

Hom(X, Y )⊗ Z` = HomGal(T`(X), T`(Y )).

Let X be an abelian variety over K. Let us consider the Q`-vector space

V`(X) = T`(X)⊗Z`
Q`

provided with the natural structure of Galois module. We have

dimQ`
(V`(X)) = 2dim(X)

and the map

T`(X) ↪→ V`(X), z 7→ z ⊗ 1

identi�es T`(X) with a Galois-invariant Z`-lattice. This implies that the natural
map

HomGal(T`(X), T`(Y ))⊗Z`
Q` → HomGal(V`(X), V`(Y ))

is bijective. Here HomGal(V`(X), V`(Y )) is the Q`-vector space of Q`-linear ho-
momorphisms of Galois modules V`(X) → V`(Y ).

Applying Theorem 11.1, we obtain the following statement.

Theorem 11.2 (Tate [27]). Let X and Y be abelian varieties over K. Then the
natural map

Hom(X, Y )⊗Q` = HomGal(V`(X), V`(Y ))

is bijective.

The following assertion is very useful.

Corollary 11.3 (Tate's isogeny theorem [27]). Let X and Y be abelian varieties
over K. Then X and Y are isogenous over K if and only if the Galois modules
V`(X) and V`(Y ) are isomorphic.

Proof. If X and Y are isogenous over K then there exist a positive integer N and
isogenies

α : X → Y, β : Y → X



such that

βα = NX , αβ = NY .

By functoriality, α and β induce homomorphisms of Galois modules

α(`) : V`(X) → V`(Y ), β(`) : V`(Y ) → V`(X)

such that the compositions β(`)α(`) and α(`)β(`) coincide with multiplication
by N in V`(X) and V`(Y ) respectively. It follows that α(`) is an isomorphism of
Galois modules V`(X) and V`(Y ).

Suppose now that the Galois modules V`(X) and V`(Y ) are isomorphic. Then
their Q`-dimensions coincide and therefore

dim(X) = dim(Y ).

Choose an isomorphism

w : V`(X) ∼= V`(Y )

of Galois modules. Replacing (if necessary) w by `Mw for su�ciently large positive
integer M , we may and will assume that

w(T`(X)) ⊂ T`(Y ).

The image w(T`(X)) is a Z`-lattice in V`(Y ). This implies that w(T`(X)) is a sub-
group of �nite index in T`(Y ). So, we may view w as an injective homomorphism
T`(X) → T`(Y ) of Galois modules. There exists a positive integer M such that if

w′ ∈ HomGal(T`(X), T`(Y )), w′ − w ∈ `M ·HomGal(T`(X), T`(Y ))

then

w′ : T`(X) → T`(Y )

is also injective. Since Hom(X, Y ) is everywhere dense with respect to `-adic
topology in

Hom(X, Y )⊗ Z` = HomGal(T`(X), T`(Y )),

there exists u ∈ Hom(X, Y ) such that the induced (by u) homomorphism of Galois
modules

u(`) : T`(X) → T`(Y )

is injective. This implies that

rkZ`
(u(`)(T`(X))) = rkZ`

(T`(X)) = 2dim(X) = 2dim(Y ).



I claim that u is an isogeny. Indeed, let us put Z := u(X): it is a (closed) abelian
subvariety of Y that is de�ned over K. The homomorphism u : X → Y coincides
with the composition of the natural surjection X → Z and the inclusion map
j : Z ↪→ X. This implies that u(`)(T`(X)) is contained in j(`)(T`(Z)) where

j(`) : T`(Z) → T`(Y )

is the homomorphism of Tate modules induced by j. It follows that

2dim(Z) = rk(T`(Z)) ≥ rk(j(`)(T`(Z))) ≥

rk(u(`)(T`(X))) = 2dim(X) = 2dim(Y )

and therefore dim(Z) ≥ dim(Y ). (Hereafter rk stands for the rank of a free Z`-
module.)

Since Z is a closed subvariety of Y , we conclude that dim(Z) = dim(Y ) and
therefore Z = Y . This implies that u : X → Y is surjective. Since dim(X) =
dim(Y ), we conclude that u is an isogeny.

Corollary 11.3 admits the following �re�nement�.

Corollary 11.4. Let X and Y be abelian varieties over K. The following assertions
are equivalent.

• There exists an isogeny X → Y , whose degree is not divisible by `.
• The Galois modules T`(X) and T`(Y ) are isomorphic.

Proof. It follows readily from Corollary 10.4 and the last displayed formula in
Subsection 2.8.

12. An example

Corollaries 10.1 and Corollary 10.4 suggest the following question: if X and Y are
abelian varieties over a �nite �eld K such that Xn

∼= Yn for all n and X(`) ∼= Y (`)
for all ` then is it true that X and Y are isomorphic? The aim of this Section is to
give a negative answer to this question. Our construction is based on the theory
of elliptic curves with complex multiplication [24,9].

We start to work over the �eld C of complex numbers. Let F ⊂ C be an
imaginary quadratic �eld with the ring of integers OF . For every non-zero ideal
b ⊂ OF there exists an elliptic curve E(b) over C such that that its group of
complex points E(b)(C) (viewed as a complex Lie group) is C/b. There is a natural
ring isomorphism OF

∼= End(E(b)) where any a ∈ OF acts on E(b)(C) as

z + b 7→ az + b.

In particular, E(b) is an elliptic curve with complex multiplication and j(E(b)) ∈ C
is an algebraic integer.



Let us put E := E(OF ). There is a natural bijection of groups

b ∼= Hom(E,E(b)), c 7→ u(c),

where homomorphism u(c) acts on complex points as

u(c) : C/OF → C/b, z +OF 7→ cz + b.

In addition, for every non-zero c the homomorphism u(c) : E → E(b) is an isogeny,
whose degree is the order of the (�nite) quotient b/cOF . In particular, E and
E(b) are isomorphic if and only if b is a principal ideal. This implies that if b is
not principal then

j(E(b)) 6= j(E).

Lemma 12.1. For every prime ` there exists a non-zero c ∈ b such that the order
of b/cOF is not divisible by `.

Proof. We may assume that b is not principal. If `OF is a prime ideal in OF , pick
any c ∈ b \ `b. If `OF is a square L2 of a prime ideal L, pick any c ∈ b \ L · b. If
`OF is a product L1L2 of two distinct prime ideals L1,L2 ⊂ OF , pick

c1 ∈ L1 · b \ L2 · b, c2 ∈ L2 · b \ L1 · b

and put c = c1 + c2; clearly,

c 6∈ L1 · b, c 6∈ L2 · b.

In all three cases

cOF = M · b

where the ideal M =
∏

P PmP is a (�nite) product of powers of (non-zero) prime
ideals P, none of which divides `. It follows that b/cOF is a (�nite) OF /M-
module. By the Chinese Remainder Theorem,

OF /M = ⊕POF /PmP .

Therefore b/cOF is a product of �niteOF /PmP -modules. Since the multiplication
by the residual characteristic of P kills OF /P, it follows that the mPth power
of this characteristic kills every OF /PmP -module. This implies that the order of
b/cOF is a product of powers of residual characteristics of P's and therefore is
not divisible by `.

Corollary 12.2. For every prime ` there exists an isogeny E → E(b), whose degree
is not divisible by `.



12.3. The construction. Choose an imaginary quadratic �eld F with class number
> 1 and pick a non-principal ideal b ⊂ OF . We have

j(E(b)) 6= j(E).

There exists an algebraic number �eld L ⊂ C such that:

• L contains F , j(E) and j(E(b)).
• The elliptic curves E and E(b) are de�ned over L.
• All homomorphisms between E and E(b) are de�ned over L.

Let us choose a maximal ideal q ⊂ OF such that both E and E(b) have good
reduction at q and j(E)−j(E(b)) does not lie in q. (Those conditions are satis�ed
by all but �nitely many q.) Let K be the (�nite) residue �eld at q, let E and
E(b) be the reductions at q of E and E(b) respectively: they are elliptic curves
over K. Then j(E) and j(E(b)) are the reductions modulo q of j(E) and j(E(b))
respectively. Our assumptions on q imply that

j(E) 6= j(E(b)).

Therefore E and E(b) are not isomorphic over K and even over K̄!
On the other hand, it is known [9, Ch. 9, Sect. 3] that there is a natural

embedding

Hom(E,E(b)) ↪→ Hom(E,E(b))

that respects the degrees of isogenies. It follows from Corollary 12.2 that for every
prime ` there exists an isogeny E → E(b), whose degree is not divisible by `. Now
Proposition 1.11 implies that En

∼= E(b)
n for all positive integers n. It follows

from Corollary 10.4 that the `-divisible groups E(`) and E(b)(`) are isomorphic
for all `, including ` = char(K). Since both E(K̄) and E(b)(K̄) are torsion groups,
they are isomorphic as Galois modules. This implies that their subgroups of all
Galois invariants are isomorphic, i.e., the �nite groups E(K) and E(b)(K) are
isomorphic.
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