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Abstract. We give an introduction to zeta functions over finite fields,
focusing on moment zeta functions and zeta functions of affine toric
hypersurfaces.

1. Introduction

These are the notes from the summer school in Gottingen sponsored by NATO
Advanced Study Institute on Higher-Dimensional Geometry over Finite Fields
that took place in 2007. The aim was to give a short introduction to zeta functions
over finite fields, focusing on moment zeta functions and zeta functions of affine
toric hypersurfaces. Along the way, both concrete examples and open problems
are presented to illustrate the general theory. For simplicity, we have kept the
original lecture style of the notes. It is a pleasure to thank Phong Le for taking
the notes and for his help in typing up the notes.

2. Zeta Functions over Finite Fields
Definitions and Examples

Let p be a prime, ¢ = p* and F, be the finite field of ¢ elements. For the afline
line A', we have A'(F,) = F, and #A'(F,) = ¢.

Fix an algebraic closure F,. Frob, : F, — F,, defined by Frob,(z) = x?. For
ke Z>07

Fye = Fix (Frobj[F, ), A'(F,) = F, = D F,..

. . . = . eg(w)—
Given a geometric point z € Fy, the orbit {x,29,... ,qu ¢ 1} of x under

Frob, is called the closed point of A' containing z. The length of the orbit is
called the degree of the closed point. We may correspond this uniquely to the
monic irreducible polynomial (t — x)(t — z?)...(t — queg(l)fl). Let |A'| denote



the set of closed points of Al over F,. Similarly, let |A!|, denote the set of closed
points of A! of degree k. Hence

AY = || A"k
k=1

Example 2.1. The zeta function of Al over F, is

0o k
Z(Al,T) = exXp Zk:l %#Al(wq’“D
0o k
= exp Zk:l Tqu

= 1_1qT € Q(T).

The reciprocal pole is a Weil g-number. There is also a product decomposition

it 1
1 —
Z(AYT) = k]i[l =TT

More generally, let X be quasi-projective over [Fy, or a scheme of finite type
over F,. By birational equivalence and induction, one can often (but not always)
assume that X is a hypersurface {f(z1,...,2,) = O|z; € F,}. Consider the Frobe-

nius action on X (IF,;). Let |X| be the set of all closed points of X and |X|; be
the set of closed points on X of degree k. As in the previous case, we have

X(Fy) = | | XFp), 1X]= || IX]s-
k=1 k=1
Definition 2.2. The zeta functions of X is

Z(X,T) = exp (Z k#X(JFqk)>
k=1

“ 11 w €1+ TZ|T))
k=1

Question 2.3. What does Z(X,T) look like?

The answer was proposed by André Weil in his celebrated Weil conjectures.
More precisely, Dwork [7] proved that Z(X,T) is a rational function. Deligne [6]
proved that the reciprocal zeros and poles of Z (X, T) are Weil g—numbers.



Moment Zeta Functions

Let f : X — Y/F,. One has

Similarly

X(Fq) = |_| f_l(y)(]Fq)'

yeY (Fq)

From this we get

#XFp)= > # W) (Fe)

y€Y (F 1)

for k =1,2,3,.... This number is known as the first moment of f over .

Definition 2.4. For d € Zq, the d-th moment of f over IF x is

My(f@Fp)= Y #f'(y)(Fu)

yEY (F 1)

k=1,2,3,...

Definition 2.5. The d-th moment zeta function of f over Fy is

Za(£,7) = exp (S50, T Malf @ F )
= HUE‘Yl A (ffl(y) ®]queg(y) ]qu,xdeg(y) 5 Tng(y)) e 1 —+ TZHT”.

Geometrically Mg(f ®@Fgx) can be thought of as certain point counting along
the fibres of f. Note that M,(f, k) will increase as d increases. Figure 2 illustrates
this. The sequence of moment zeta functions Z;(f,T) measures the arithmetic
variation of rational points along the fibres of f. It naturally arises from the study
of Dwork’s unit root conjecture [28].

Question 2.6.

1. For a given f, what is Zy(f,T)7
2. How does Zy(f,T) vary with d?
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Figure 1. f~1(y)

Figure 2. f_l(y)(qu)
As d increases the area where we count points will also increase.

f1
f:X —_— X1
“fi N :
X;
fn :
Xn

Figure 3. f: X — X3 X ... X X,

Partial Zeta Functions

Agsume f: X — X x...xX, defined by z — (f1(x),..., fu(x)) is an embedding.
There are many ways to satisfy this property. For example the addition of the
identity function f, : X — X will assure f is an embedding.

Let dy,...,dn € Z~o. For k=1,2,3,..., let



My,,...a,(f@Fp) =

#{‘T € X(]Fq)‘fl(l) € Xl(qulk)v e vfn(x) € Xn(qun")} <0

Definition 2.7. Define the partial zeta function of f over F, to be

Zay,...d, ([, T) = exp Z ?Mdl,...,dn(f @Fx) |-

k=1

The partial zeta function measures the distribution of rational points of X
independently along the fibres of the n-tuple of morphisms (f1,-- -, fn)-

Example 2.8. If f1 : X — X; and fo =1d: X — X, then Z1 4(f,T) = Z4(f1,T).
Thus, partial zeta functions are generalizations of moment zeta functions.

Question 2.9.

1. What is Zd1,..-.,dn (f, T)?
2. How does Zy, ... a, (f,T) vary as {d1,...,d,} varies?

We have

Theorem 2.10 ([26]). The partial zeta function Zq, 4, (f,T) is a rational func-
tion. Furthermore, its reciprocal zeros and poles are Weil g-numbers.

3. General Properties of Z(f,T).
Trace Formula

By Grothendieck [14], Z(X,T') can be expressed in terms of [-adic cohomology.
More precisely, let X = X ®p, F,. Then,

Theorem 3.1. There are finite dimensional vector spaces H!(X) with invertible
linear action by Frob, such that

2dim(X) _
Z(X,T)= [] det(I - Frob, 'T|Hi(X))"1"",
=0

where

HZ(X) _ HCL(Yan)’ l#paprime
¢ Hrig,c(Xa Qp)a l =D

This is used to show that Z(X,T) € Q(T). One should note:

1. Z(X,T) is independent of the choice of .
2. det(I — Frobng\HZ(X)) may depend on the choice of | due to possible
cancellation. The conjectural independence on [ is still open in general.



Riemann Hypothesis

Fix an embedding of Q; — C. Let b; = dimH’(X). Consider the factorization

det(I — Frob, "T|H}(X)) = [ [ (1 — a;;T), a; € C.
j=1
The a;;’s are Weil g-numbers, that is,

1. The a;;’s are algebraic integers over Q.
2. For 0 € Gal(Q/Q), |ovij| = |o(cj)] = /g”" for some integer w;;, called
the weight of a;; with 0 <w;; <i,Vj =1,...b;.

The I # p case was proved by Deligne [6] and the | = p case by Kedlaya [19].
Slopes (p-adic Riemann Hypothesis)

Consider an embedding Q; < C,. Then what is the ord,(c;;) € Q>0? This is
referred to as the slope of ;.
By Riemann Hypothesis,

s
QijQ; =q",

0 < ordy(ay;) < ordg(oyjas;) = wij <1,

Further, Deligne’s integrality theorem implies that

i — dim(X) < ordg(ay;).

Question 3.2. Given X/F,, the following questions arise:

1. What is bi,l = blr?
2. What is wij?
3. What is the slope ord,(c;)?

Example 3.3. If X is a smooth projective variety over Iy, then:

1. H{(X) is pure of weight i, i.e. w;; = i for 1 < j < b;. Thus b;; is indepen-
dent of {.

2. The g-adic Newton polygon (NP) of det(I — Frobng\Hé(X)) € Z[[T]] lies
above the Hodge polygon of H!(X). This was conjectured by Katz [17]
and proven by Mazur [20] and Ogus [2]. We will discuss this more later.



4. Moment Zeta Functions

Let f: X — Y/F,. For d € Z, recall the d-th moment of f ® [F x is

My(f ® Fqk) = Z #f_l(y) (qu"’)'

yEY (F k)

Question 4.1.

1. How does My(f ® Fyr) vary as k varies?
2. How does My(f ® Fx) vary with d?
3. How does My(f ® F«) vary with both d and k?

Definition 4.2. Define the d-th moment zeta function of f to be

Zd(fv T) = exp <Z ?Md(f (%9 Fqk)> .

k=1

Observe for d =1 we have Z1(f,T) = Z(X,T). Recall that Z4(f,T) € Q(T)
and its reciprocal zeros and poles are Weil ¢g-numbers. This follows from the
following more precise cohomological formula.

Theorem 4.3. Let | # p. Let ' = R'fiQ; be the i-th relative l-adic cohomology
with compact support. Let 04; = Sym?=IF @ N §'. Then Z4(f,T) =

2dim(X/Y) 4 2dim(Y)

[I I IT det(z = Frobg 7Y 00,) 070
i=0  j=0 k=0

Proof. For an l-adic sheaf § on Y, let L(F,T) denote the L-function of §. The
trace formula in [14] applies to the L-function L(F,T):

2dim(Y) »
LET)= [[ det(I - Frob, 'T|HI(Y,5) D"
i=0
The d-th Adams operation of a sheaf § can be written as the virtual sheaf [23]

811 =S (-1G - 1) [Symdjs o N3l

Jj=20

It follows that



Za(f,T) = Hye\Yl (fil(y) ®queg<y> Fgaeswa, Tdeg(y))
_ (=1
= HyG\Y| Hizo det (I - (FrOquleg(y) )deeg(y) ‘S;/>
N
=10 1 ey det (I — Tl (FI"Ob;dleg<y>)|[§§,}d)
=i LEV/YT)E
= Hizo szo L (0d7j7i,T)(71) T(G-1)
= [} L5 IT;50 det (I — TFroby ' |HE(Y  0a,5.:, T))

i—1

(~1)IHIHEL )

O

To use this formula, one needs to know:

1. The total degree of Z4(f, T): number of zeros + number of poles.

2. The high weight trivial factor which gives the main term.

3. The vanishing of nontrivial high weight term which gives a good error
bound.

1. There is an explicit upper bound for the total degree of Z;(f,T), which
grows exponentially in d, see [9].

2. There exists a total degree bound of the form ¢;d? which is a polynomial
in d. However, the constant ¢y is not yet known to be effective if dimY > 2,
see [9].

Question 4.4. How do we make c; effective?

Example: Artin-Schreier hypersurfaces

Let

g(zla"'vxnvyla"'vyn/) € ]F(][zla"'7$n7y1a"'7yn/]~

We may also rewrite this as ¢ = g +gm—1+- - -+ 9o, where g; is the homogeneous
part of degree ¢ and g, # 0.
Consider:

X {1’8710 :g(zl,...,xn,yl,...,yn/)} c_>An+n’+1
YA
[ XY (20,21, Ty Y1y ooy Yn) = (Y1se e Ynr)

One may then ask:
My(f) = #{zi € Fpa,y; € Folaf — xo = g(z,9)} =7
Ideally for nice g, one hopes:

Ma(f) = g+ + 0(q )



Theorem 4.5 (Deligne, [5]). Assume that g is a Deligne polynomial of degree m,
i.e., the leading form g, is a smooth projective hypersurface in P**™ and p{m.
Then

ntn’ nin! ntn’
IMi(f)—¢" ™ < (p—1)(m—1)"""g = .

For d > 1, a similar estimate can be obtained in some cases.
Assume f~!(y) is a Deligne polynomial of degree m for all y € A™ (F,). Then,
applying Deligne’s estimate fibre by fibre, one deduces

#F W) ([Fga) = ¢ + Ey(d),

dan
2

|Ey(d)] < (p—1)(m—1)"¢q2,

where E,(d) is some error term. From this, we get

My(f) = ZyeAn/(Fq) #fil(y)(qu)
= qdn+n + ZyEA"/(IFq) Ey(d)
Thus, we get the “trivial” estimate:

dn

|Ma(f) — ¢™ ™| < (p— 1)(m — 1)"g =+

Ideally, one would hope to replace n’ by n’/2 in the above error bound.
If one applies the Katz type estimate via monodromy calculation as in [18],

one gets ,/q savings in good cases, i.e., with error term O(qd‘T"Jr"/_%). This is still

far from the expected error bound O(g g )ifn' > 2.

Definition 4.6. The d-th fibered sum of g is

d
@g:g(xlla~~'7x1nay17~~~7yn’)+~~~+g(xd17~"7xdn7y1w~'ayn/)~
Y

Observe the y; values remain the same while the x;; values vary.

Theorem 4.7 (Fu-Wan, [9]). Assume @f, g is a Deligne polynomial of degree m.
Then

L [Ma(f) = g+ < (p = 1)(m — 1)dnn’g ™5
! n dn4n’
2. | My(f) — qdn+n | < c(p7n,n/)d3(m+1) _1q+

The constant ¢ is not known to be effective if n' > 2.

If p does not divide d, then @f/ g is a Deligne polynomial for a generic g of
degree m. Thus, the assumption is satisfied for many ¢ if p does not divide d.
However, if p | d, there are no such g.

Question 4.8. If p|d, what would be the best estimate My(f)?



Example: Toric Calabi-Yau hypersurfaces

This geometric example is studied in a joint work with A. Rojas-Leon [21]. Let
n > 2. We consider

1
X:{xl—&—...—i—xn—i—xi—y:O}%G:;xAl,

1..-Lnp
Y = Al

f:(x17"' 7$nay> — Y.

For y # (n+ 1)¢, with ("*! = 1, we have
-1 1
)iz +. e+ ————y=0
T1...Tp

is an affine Calabi-Yau hypersurface in G},,.
For n = 2, we have an elliptic curve. For n = 3, we have a K3 surface. For
n = 4, we have a Calabi-Yau 3-fold. Recall

Ma(f) =Y #I7 ' (y)(Fga)-
y€F,

For d =1, we have M;(f) = #X(F,y) = (¢ — 1)". For every y € F,, we have

(¢~ 1"~ (-1)"
qd

#FH () ([Fyga) = + Ey(d),

where E,(d) is some error term with |E, (d)| < ng?™~Y/2. Thus,

d_1\n _ (_1\n
My(f) = g T = ED S ),

q yeF,
From this, we obtain the “trivial” estimate

o1 - (1)

n
o | < ngdn=1/2+1,

() — Y

Theorem 4.9 (Rojas-Leon and Wan, [21]). Ifpt(n+ 1), then

d_1\n_(_1\n )
1. |Md(f) - (%4‘%(1+(—1)d)qd(”_1)/2+1) < qu(n—l)/2+§

where D is an explicit constant depending only on n and d.
2. The purity decomposition of Zy(f,T) is determined.

Question 4.10. How do M,(f) and Zy(f,T) vary with d?



5. Zeta Functions of Fibres

We continue with the previous example.

Example 5.1. For y € IFy, let

1 ,
iy =a1 4.4z, + ——— —y=0=Gn.

r1...Tp

This is singular when y € {(n + 1)¢|¢""! = 1}. This family forms the mirror
family of

{a0t + . a2t —yxg ..z, = 0},

Let pt(n+1),y € F,\ {(n+ 1)¢[¢"! = 1}. Then

257/ 1) = 2 ({ UL }w_ T) BT,

where Py(T) € 14+ TZ[T) of degree n, pure of weight (n — 1). Write

Py(T) =1 -ar(T)...(1—an®)T), loai(y)l =g .
Then we get the following:

Corollary 5.2.

() (F) — U7 ”"q‘ D" /T

The star decomposition in [22], [27] implies

Theorem 5.3. There is a nonzero polynomial H,(y) € F,ly] such that if H,(y) # 0
for some y € Fy, then ordg(a;(y)) =i—1 for 1 <i<n.

Equivalently, this family of polynomials f~!(y) is generically ordinary. An
alternative proof can be found in Yu [31].

Moment Zeta Functions

For d > 0, recall

Ma(f) =Y #F (1) (Fga),

yeF,

My(f@Fgp)= > #f () (Fqa), b =1,2,3,...,

YEF &



% ik
Z4(f,T) = exp (Z %Md(f ® Fq")) € Q(T).
k=1

Let
[%4] 1—qdkT n—1 G _1)i+1 .
suT) = I =g [L0 - )00,
k=0 =0

Theorem 5.4 (Rojas-Leon and Wan, [21]). Assume that (n + 1) divides (¢ — 1).
Then, the d-th moment zeta function for the above one parameter toric CY family
f has the following factorization

Qa(T)
P(d,T)

. n+1
25D = ) (FA) T Aa(nSu(r)

We now explain each of the above factors. First, Py(T) is the non-trivial factor
which has the form

b—1
Py(T) = H Py (T)D" 101
a+b=d,0<b<n

and each Py, (T) is a polynomial in 1+ TZ[T), pure of weight d(n—1) + 1, whose
degree 1 is given explicitly and which satisfies the functional equation

P,(T) = iTrq(d(n*1)+1)r/2Pa7b(1/qd(n71)+1T)'

Second, P(d,T) € 1+TZ[T] is the d-th Adams operation of the “non-trivial” factor
in the zeta function of a singular fibre X, where t = (n+1)(y41 and C:fill =1.1It
is a polynomial of degree (n— 1) whose weights are completely determined. Third,
the quasi-trivial factor Qq(T) coming from a finite singularity has the form

Qa(T) = H Qa,b(T)(—l)b*I(b—1)7

a+b=d,0<b<n

where Qq,(T') is a polynomial whose degree D,, .1, and the weights of its roots are
given. Finally, the trivial factor A4(T) is given by:

A(T) = 1 — g™ T2 1)1 — ¢™ T2 T (1 — ¢*“T241T) if n and d are even.
A7) = (1-q¢™F 2)“T) if n is even and d is odd.
Aq(T)=(1- d T) if n and d are odd.
n—1
Ay(T) = (1 - = )‘HT) if n s odd and d is even.
Corollary 5.5. Letn =2 and [ : {x1 + 22 + s Y= 0} — y with pt 3. Then,
Ra(T)

Za(f, )" = Ad(ﬂm,

where Ay(T) is a trivial factor and Rq(T) € 1+ TZ[T) is a non-trivial factor
which is pure of weight d + 1 and degree 2(d — 1).



For all d < 1, Ry(T) = 1. Ro(T) is a polynomial of degree 2 and weight
3. This suggests that Ro(T') comes from a rigid Calabi-Yau variety. In general,
R4(T) is of weight d + 1 and degree 2(d — 1).

As always, we may ask what are the slopes of Ry(T)?

The above one parameter family of Calabi-Yau hypersurfaces is the only
higher dimensional example for which the moment zeta functions are determined
so far. It shows that the calculation of the moment zeta function can be quite
complicated in general. A related example is the one parameter family of higher
dimensional Kloosterman sums, see [10], [11] for the L-function of higher sym-
metric power which gives the main piece of the moment zeta function.

l-adic Moment Zeta Function (I # p)

Fix a prime [ # p. Given a € Z} and d; = dy mod (I — 1)I*¥~ for some k, then
a® = a% mod [*.
By rationality of Z(f~!(y),T) it follows that

#H ) F) =D cily) =D Biy)*
i J
for some l-adic algebraic integers a;(y) and 3;(y). Consider

My(f)= > #F'W)(Fp).
yGY(]Fq)
This can be rewritten as
= > [ D= 8w
y€eY (Fq) @ J

We may take some Dj(f) € Z~g such that if d; = dy mod D;(f)I*~! then

1. My, (f) = Mg, (f) mod I*.
2. Zg,(f,T) = Z4,(f,T) mod I*¥ € 1+ TZ[[T]].

Definition 5.6. The [-adic weight space is defined to be
Wi(f) = (Z/Di(f)Z) x Zu.

Let s = (s1, s2) € Wi(f). Take a sequence of d; € Z~ such that

1. dj, — 00 in C,
2. d; = s1 mod Di(f),
3. d; — 8o € 7.

With this we may define the [-adic moment zeta function
GU1T) = Jim Z5,(7.T) € 1+ T2,

This function is analytic in the l-adic open unit disk |T|; < 1.



Question 5.7. Is (s(f,T) analytic on |T|; < 1?7 What about in |T|; < co?

Embed Z in Wi(f) in the following way:

Z — Wi(f),

d— (d,d).
Proposition 5.8. If d € Z~o — Wi(f), then (u(f,T) = Za(f,T) € Q(T).

Question 5.9. What if s € Wi(f) \ Z? This is open even when f is a non-trivial
family of elliptic curves over F,,.

p-adic Moment Zeta Functions (I =p)

As in the [-adic case, one has a p-adic continuous result.
If di = ds mod D,(f)p*~1,d1 > ds > csk for some k and sufficiently large
constant cy, then

Mg, (f) = Ma, (f) mod p*.
Also, define in the same way as above
Cop(F.T) = lim Z4,(1.T) € 1+ T2, [[T]].
As before consider the embedding:

L — Wp(f),

dw— (d,d).
The following result was conjectured by Dwork [8§].

Theorem 5.10 (Wan, [23][24][25]). If s = d € Z — W,(f), then (4, (f,T) is p-adic
meromorphic in |T|, < co.

Furthermore, we have

Theorem 5.11 ([25]). Assume the p-rank < 1. Then for each s € W,(f), (sp(f,T)
is p-adic meromorphic in |T|, < co.

This can be extended a little further as suggested by Coleman.

Theorem 5.12 (Grosse-Klonne, [13]). Assume the p-rank < 1. For s = (s1,52)
with s1 € Z/D,(f) and sy € Z,,/p° (small denominator), then (s ,(f,T) is p-adic
meromorphic in |T|, < co.

Question 5.13. In the case s € W,(f) — Z and p-rank > 1, it is unknown if
Cs,p(f, T) is p-adic meromorphic, even on the closed unit disk |T|, < 1.



6. Moment Zeta Functions over Z

Consider
fiX e Y/Z[]
X = —|.
N
The d-th moment zeta function of f is:

Cd(fvs) = H Zd(f®Fp7pis)'

ptN

Is this C-meromorphic in s € C? Is {4(f, s) or its special values p-adic continuous
in some sense? If so, its p-adic limit (;(f)(s € Z,) is a p-adic zeta function of f.

Example 6.1. Consider the map
1
filritoe+ —— —y=0}—y.
T1X9

Then

Rd(f ® Fpa T)
Ri_o(f @Fp, pT)

Za(f ©F,, )™ = Aq(T)

where Aq(T) is a trivial factor and Ry is a non-trivial factor of degree 2(d — 1)
and weight d + 1.

1
Rd(T)Hf®d:{1‘11 + 212 + =...=241 + %42 +
11212 Td1Td2

Example 6.2. For d = 2, we have

1
Ti+Tot ——=y1+y2+ .
122 Yi1y2

As Matthias Schuett observed during the workshop, Ry (T') < the unique new
form of weight 4 and level 9.
Conjecture 6.3. Hp Ry (f @ Fp,p~?°) is meromorphic in s € C for all d.

This conjecture is known to be true if d < 2. It should be realistic to prove
the conjecture for all positive integers d.
7. l-adic Partial Zeta Functions

We now consider the system of maps where X — X; x ... x X, is an embedding
(See Figure 4).



Figure 4. f: X — X3 X ... x X,

This allows us to define the partial zeta function

0 k
Ziyt, (£.T) = exp (Z T e XEIfiw) € Xqudik)}) € Q).

k=1

Question 7.1. Is there any p-adic or l-adic continuity result as {d;,...,d,} varies
p-adically or [-adically?

Example 7.2. Consider the surface and three projection maps:

froy+azo+

1
3=
ToT2 Fas
\ -
I3

Thus

—x3=0,z; Equi Z:1,2,3}

Mdl»d27d3(f) = #{(ac17x27x3)|x1 + 2+

X1To

Is there a continuity result as {d;,ds,d3} vary?

8. Zeta Functions of Toric Affine Hypersurfaces

Let A C R™ be an n-dimensional integral polytope. Let f € I, [:clil, oo 2] with

f= > aX"a,cF,

u€EANZ™
such that A(f) = A. That is, a, # 0 for each u which is a vertex of A.

Question 8.1. Consider the toric affine hypersurface

Up : {f(z1,...,2,) =0} — GJ,.
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Figure 5. C(A)

L #Uy(Fq) =7
2. Z(Us, T) =2

Definition 8.2.
1. If AY C Ais a face of A, define

A=) aux

uEN'NZL™

2. fis A-regular if for every face A’ (of any dimension) of A, the system

, afs e
A = = = —
o =n 0z —...—J;naxn 0

has no common zeros in G, (F,).

Theorem 8.3 (GKZ, [12]).

1. There is a nonzero polynomial disca € Zlay|u € A NZ"] such that f is
A-regular if and only if disca(f) # 0 in Fy. In other words, disca is an
integer coefficient polynomial that will determine /A\-reqularity.

2. A(disca) is determined. This is referred to as the secondary polytope.

Question 8.4. For which p, disca ® F,, # 07
Definition 8.5. Let C(A) be the cone in R™*! generated by 0 and (1,A)
1. Define
Wa(k) = #{(k,kA)YNZ "} k=0,1,...

The Hodge numbers of A are defined by

hoa (k) = Wa (k) — <n41_1>WA(k;—l)+ (7H2—2>WA(k—2)—...,



ha(k) = 0,if & >n + 1.
2. deg(D) =d(A) =nlVol(A) =31 g ha(k).

Theorem 8.6 (Adolphson-Sperber [1], Denef-Loesser [4]). Assume f/F, is A-
reqular. Then
1. Z(U;,T) = [['of (1= ¢T) 0" () Py D" with Py(T) € 1+ TZ[T)
is of degree d(A) — 1.
2. Pp(T) = Hi:f_l)(l — i (/)T), |ai(f)] < V@~ In particular,

(-1D"—(=D"
q

#U(F) — | < (d(A) - 1)g"

The precise weights of the o;(f)’s were also determined by Denef-Loesser.

Question 8.7. For i =1,2,...,d(A) — 1, what is ordg (e (f)) =?

9. Newton and Hodge Polygons
Write
Pr(T)=1+cT+cT?*+....

The g-adic Newton polygon of P;(T') is the lower convex closure in R? of the points
(k,ordg(ck)), (k = 0,1,...,d(A) — 1). Denote this Newton polygon by NP(f).
Note that NP(f) = NP(f ® F ) for all k.

Proposition 9.1. Let h denote the horizontal length of the slope s side in NP(f).
Then, Ps(T') has ezactly h, reciprocal zeros o;(f) such that ord,(c;(f)) = s for
each s € Q.

Definition 9.2. The Hodge polygon of A, denoted by HP(A), is the polygon in
R? with a side of slope k — 1 with horizontal length ha (k) for 1 < k < n and
vertices

k k
(0,0), <Z ha(m), Z(m— 1)hA(m)> Jk=1,2,...,n.

Theorem 9.3 (Adolphson-Sperber [1]). The g-adic Newton polygon lies above the
Hodge polygon, i.e., NP(f) > HP(A). In addition, the endpoints of the two
cotncide.

Definition 9.4. If NP(f) = HP(A), then f is called ordinary.

Question 9.5. When is f ordinary? One hopes this is often.



Figure 6. Newton Polygon
Let
Mp(D) = {f €Fplat™, - a7 1IA(f) = D, f A —regular}.

Theorem 9.6 (Grothendieck, [18]). There exists a generic Newton polygon, de-
noted by GNP(A,p), such that

GNP(A,p) =if{NP(f)|f € Mp(D)}
Hence for any f € My(A),
NP(f) 2 GNP(A,p) = HP(D),

where the first inequality is an equality for most [ (generic f).

Question 9.7. Given A, for which p, is GNP(A,p) = HP(A)? In other words,
when is f generically ordinary?

This suggests the following conjecture.
Conjecture 9.8 (Adolphson-Sperber [1]). For each p > 0, GNP(A,p) = HP(A).
This is false in general. Some counterexamples can be found in [22].

Definition 9.9.



1. S(A) =the semigroup C(A)NZ"*1.
S1(A) = the semigroup generated by (1,A) N Z" 1.
2. Define the exponents of A as

I(A) =inf{D > 0|Du € S1(D),Vu € S(A)}
Io(A) =inf{D > 0|Du € S1(A),Vu € S(A),u > 0}

Conjecture 9.10. If p =1 mod I(A) orif p=1 mod I (A) for p> 0, then

1. disca ® Fp # 0,
2. GNP(A,p) = HP()).

Part (2) is a weaker version of the conjecture in [22].

10. Generic Ordinarity
Toric Hypersurface

Let A C R™ be a n-dimensional integral polytope and p a prime. Let d(A) =
n!Vol(A). Define

My(A) ={f e Fplai,..,a IA(f) = &, f A — regular}.

For each f € My(A), let NP(f) be the Newton polygon of the interesting
factor Py(T') of the zeta function Z(Uy,T). Note that changing the ground field
will not change the Newton polygon. Recall that

NP(f) > GNP(A,p) > HP(D).

Note that NP(f) is defined in a completely arithmetic fashion and is de-
pendent on the coefficients of the polynomial f. On the other hand, GNP(A,p)
is independent of coefficients while HP(A) is obtained combinatorially. If
GNP(A,p) = HP(A), we refer to p as ordinary for A.

Conjecture 10.1 (Adolphson-Sperber). For any A, p is ordinary for all p > 0.
This conjecture is too strong as Example 10.2 illustrates.

Example 10.2. Let f = ag + a121 + ... + apxy + app12122 ..., and
A = Conv((0,...,0),(1,...,0),...,(0,...,1),(1,1,...,1)).

Therefore d(A) = n for n > 2. Furthermore, A is an empty simplex, i.e., a simplex
with no lattice points other than vertices. It follows that

1. pis ordinary for A if and only if p =1 mod (n — 1). This implies
2. If n > 4, then the Adolphson-Sperber conjecture is false.



NP

HP

Figure 7. NP > HP
Convezx Triangulation

Definition 10.3.

1. A triangulation of A is a decomposition

such that each A, is a simplex, A;NA; is a common face for both A; and
A

2. The triangulation is called convex if there is a piecewise linear function
¢ : A — R such that

(a) ¢ is convex i.e. ¢(3z + 12') < 1o(z) + o(2), for all z,2" € A,
(b) The domains of linearity of ¢ are precisely the n-dimensional simplices
N for 1 <4< m.

Examples of convex triangulations include the star decomposition, the hyper-
plane decomposition and the collapsing decomposition [27].

Basic Decomposition Theorem

The decomposition methods in [22], [27] generalize to prove the following decom-
position theorem.



1 P2 ¢3

Figure 8. Piecewise projection down

Theorem 10.4.

1. Let A = U, A, be a convex integral triangulation of A. If p is ordinary
for each N;, 1 < i < m, then p is ordinary for A.
2. If A is a simplex and p = 1 mod d(4), then p is ordinary.

Corollary 10.5. If p =1 mod (lem(d(A1),...,d(An))), then p is ordinary.

Example 10.6. Let A be the convex closure of (—1,—1), (1,0) and (0,1) in R
The star decomposition in Figure 9 is convex and integral.

More generally,

Example 10.7. Consider f: {z1+ 22+ ...+ 2, +1/z122... 2, —y = 0} over F),.
This is generically ordinary for all p. The proof uses the same star decomposition.

Example 10.8. Let A = {(d,0,...,0),(0,d,0,...,0),...,(0,...,d),(0,...,0)}.
We may make a parallel hyperplane cut as in Figure 10. This will make d(A;) =1
for each piece A; of the decomposition, see [22]. This proves that the universal
family of affine (or projective) hypersurfaces of degree d and n variables over F,

AN

Figure 9. Star decomposition of A



Figure 10. Parallel Hyperplane Decomposition into simplices

is also generically ordinary for every p. The projective hypersurface (complete
intersection) case was first proved by Tllusie [15].

Corollary 10.9. If n = dim(A) = 2, then p is ordinary for A for all p.

Corollary 10.10. If n = dim(A) = 3, then p is ordinary for p > 6Vol(A).

This corollary is proven by showing stability of the p-action on the weight.
This is a different argument than by proving d(A;) = 1 argument.

Definition 10.11. Let A be an n-dimensional integral convex polytope in R™.
Assume that 0 (origin) is in the interior of A. Given such a situation, define
A* C R™ by:

AN ={(z1,...,2,) €R"| szyl > -1, Y(y1,...,yn) € A}
i=1
Observe A* is also a convex polytope in R", though it may not have integral
vertices. Also observe (A*)* = A.

Definition 10.12. A is called reflexive if A* is also integral.

Corollary 10.13. If n = dim(A) = 4 and if A is reflezive then p is ordinary for
A for all p > 12V ol(A).

Slope Zeta Function

The concept of slope zeta functions was developed for arithmetic mirror symmetry
as we will describe here. More information can be found in [29], [30].

Let (X,Y) be a mirror pair over F,. Candelas, de la Ossa and Rodriques-
Villegas in [3] desired a possible mirror relation of the type

1
Z(Y,T)

Z(X,T) =



for 3 dimensional Calabi-Yau varieties. This is not true. If this were the case then

k k
SO HX(E) = 3 (Y (E,).
Therefore

#X(Fq) = _#Y(Fq)7

which is impossible for large ¢ on nonempty varieties.
The question is then to modify the zeta function suitably so that the desired
mirror relation holds. The slope zeta function was introduced for this purpose.

Definition 10.14. Write Z(X,T) = [[;,(1 — auT)** € C,(T).

1. The slope zeta function of X is defined to be the following two variable
function:

S(X,U,T) = [J(1 — verdatedr)*t,

i

2. If f: X — Y defined over F, (a nice family) then the slope zeta function
of f is the generic one among S(f~!(y),U,T) from all y € Y, denoted by
S(f.U,T).

Conjecture 10.15. Let X be a 3-dimensional Calabi-Yau variety over Q. Assume
that X has a mirror over Q. Then the generic family containing X as a member
is generically ordinary for all p > 0.

This conjecture implies the following

Conjecture 10.16 (Arithmetic Mirror Conjecture). Let {f, g} be two generic mir-
ror families of o 3-dimensional Calabi-You variety over Q. Then for all p > 0,

1

SUSEUTD = grar o)
Py
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