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Abstract. We give an introduction to zeta functions over �nite �elds,
focusing on moment zeta functions and zeta functions of a�ne toric
hypersurfaces.

1. Introduction

These are the notes from the summer school in Göttingen sponsored by NATO
Advanced Study Institute on Higher-Dimensional Geometry over Finite Fields
that took place in 2007. The aim was to give a short introduction to zeta functions
over �nite �elds, focusing on moment zeta functions and zeta functions of a�ne
toric hypersurfaces. Along the way, both concrete examples and open problems
are presented to illustrate the general theory. For simplicity, we have kept the
original lecture style of the notes. It is a pleasure to thank Phong Le for taking
the notes and for his help in typing up the notes.

2. Zeta Functions over Finite Fields

De�nitions and Examples

Let p be a prime, q = pa and Fq be the �nite �eld of q elements. For the a�ne
line A1, we have A1(Fq) = Fq and #A1(Fq) = q.

Fix an algebraic closure Fq. Frobq : Fq 7→ Fq, de�ned by Frobq(x) = xq. For
k ∈ Z>0,

Fqk = Fix
(
Frobk

q |Fq

)
, A1(Fq) = Fq =

∞⋃
k=1

Fqk .

Given a geometric point x ∈ Fq, the orbit {x, xq, . . . , xqdeg(x)−1} of x under
Frobq is called the closed point of A1 containing x. The length of the orbit is
called the degree of the closed point. We may correspond this uniquely to the

monic irreducible polynomial (t − x)(t − xq) . . . (t − xqdeg(x)−1
). Let |A1| denote



the set of closed points of A1 over Fq. Similarly, let |A1|k denote the set of closed

points of A1 of degree k. Hence

|A1| =
∞⊔

k=1

|A1|k.

Example 2.1. The zeta function of A1 over Fq is

Z(A1, T ) = exp
(∑∞

k=1
T k

k #A1(Fqk)
)

= exp
(∑∞

k=1
T k

k qk
)

= 1
1−qT ∈ Q(T ).

The reciprocal pole is a Weil q-number. There is also a product decomposition

Z(A1, T ) =
∞∏

k=1

1
(1− T k)#|A1|k

.

More generally, let X be quasi-projective over Fq, or a scheme of �nite type

over Fq. By birational equivalence and induction, one can often (but not always)

assume that X is a hypersurface {f(x1, . . . , xn) = 0|xi ∈ Fq}. Consider the Frobe-
nius action on X(Fq). Let |X| be the set of all closed points of X and |X|k be

the set of closed points on X of degree k. As in the previous case, we have

X(Fq) =
∞⊔

k=1

X(Fqk), |X| =
∞⊔

k=1

|X|k.

De�nition 2.2. The zeta functions of X is

Z(X, T ) = exp

( ∞∑
k=1

T k

k
#X(Fqk)

)

=
∞∏

k=1

1
(1− T k)#|X|k

∈ 1 + TZ[[T ]].

Question 2.3. What does Z(X, T ) look like?

The answer was proposed by André Weil in his celebrated Weil conjectures.

More precisely, Dwork [7] proved that Z(X, T ) is a rational function. Deligne [6]

proved that the reciprocal zeros and poles of Z(X, T ) are Weil q−numbers.



Moment Zeta Functions

Let f : X 7→ Y/Fq. One has

X(Fq) =
⊔

y∈Y (Fq)

f−1(y)(Fq).

Similarly

X(Fq) =
⊔

y∈Y (Fq)

f−1(y)(Fq).

From this we get

#X(Fqk) =
∑

y∈Y (F
qk )

#f−1(y)(Fqk)

for k = 1, 2, 3, . . .. This number is known as the �rst moment of f over Fqk .

De�nition 2.4. For d ∈ Z>0, the d-th moment of f over Fqk is

Md(f ⊗ Fqk) =
∑

y∈Y (F
qk )

#f−1(y)(Fqdk)

k = 1, 2, 3, . . .

De�nition 2.5. The d-th moment zeta function of f over Fq is

Zd(f, T ) = exp
(∑∞

k=1
T k

k Md(f ⊗ Fqk)
)

=
∏

y∈|Y | Z
(
f−1(y)⊗F

qdeg(y) Fqd×deg(y) , T deg(y)
)
∈ 1 + TZ[[T ]].

Geometrically Md(f ⊗Fqk) can be thought of as certain point counting along

the �bres of f . Note that Md(f, k) will increase as d increases. Figure 2 illustrates

this. The sequence of moment zeta functions Zd(f, T ) measures the arithmetic

variation of rational points along the �bres of f . It naturally arises from the study

of Dwork's unit root conjecture [28].

Question 2.6.

1. For a given f , what is Zd(f, T )?
2. How does Zd(f, T ) vary with d?
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As d increases the area where we count points will also increase.
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Figure 3. f : X 7→ X1 × . . .×Xn

Partial Zeta Functions

Assume f : X 7→ X1×. . .×Xn de�ned by x 7→ (f1(x), . . . , fn(x)) is an embedding.
There are many ways to satisfy this property. For example the addition of the
identity function fn : X 7→ X will assure f is an embedding.

Let d1, . . . , dn ∈ Z>0. For k = 1, 2, 3, . . ., let



Md1,...,dn(f ⊗ Fqk) :=
#{x ∈ X(Fq)|f1(x) ∈ X1(Fqd1k), . . . , fn(x) ∈ Xn(Fqdnk)} < ∞

De�nition 2.7. De�ne the partial zeta function of f over Fq to be

Zd1,...,dn(f, T ) = exp

( ∞∑
k=1

T k

k
Md1,...,dn(f ⊗ Fqk)

)
.

The partial zeta function measures the distribution of rational points of X
independently along the �bres of the n-tuple of morphisms (f1, · · · , fn).

Example 2.8. If f1 : X 7→ X1 and f2 = Id : X 7→ X, then Z1,d(f, T ) = Zd(f1, T ).

Thus, partial zeta functions are generalizations of moment zeta functions.

Question 2.9.

1. What is Zd1,...,dn(f, T )?
2. How does Zd1,...,dn

(f, T ) vary as {d1, . . . , dn} varies?

We have

Theorem 2.10 ([26]). The partial zeta function Zd1,...,dn
(f, T ) is a rational func-

tion. Furthermore, its reciprocal zeros and poles are Weil q-numbers.

3. General Properties of Z(f, T ).

Trace Formula

By Grothendieck [14], Z(X, T ) can be expressed in terms of l-adic cohomology.
More precisely, let X = X ⊗Fq Fq. Then,

Theorem 3.1. There are �nite dimensional vector spaces Hi
c(X) with invertible

linear action by Frobq such that

Z(X, T ) =
2dim(X)∏

i=0

det(I − Frob−1
q T |Hi

c(X))(−1)i−1
,

where

Hi
c(X) =

{
Hi

c(X, Ql), l 6= p, prime
Hrig,c(X, Qp), l = p.

This is used to show that Z(X, T ) ∈ Q(T ). One should note:

1. Z(X, T ) is independent of the choice of l.
2. det(I − Frob−1

q T |Hi
c(X)) may depend on the choice of l due to possible

cancellation. The conjectural independence on l is still open in general.



Riemann Hypothesis

Fix an embedding of Ql ↪→ C. Let bi = dimHi
c(X). Consider the factorization

det(I − Frob−1
q T |Hi

c(X)) =
bi∏

j=1

(1− αijT ), αij ∈ C.

The αij 's are Weil q-numbers, that is,

1. The αij 's are algebraic integers over Q.
2. For σ ∈ Gal(Q/Q), |αij | = |σ(αij)| =

√
qωij for some integer ωij , called

the weight of αij with 0 ≤ ωij ≤ i,∀j = 1, . . . bi.

The l 6= p case was proved by Deligne [6] and the l = p case by Kedlaya [19].

Slopes (p-adic Riemann Hypothesis)

Consider an embedding Ql ↪→ Cp. Then what is the ordq(αij) ∈ Q≥0? This is
referred to as the slope of αij .

By Riemann Hypothesis,

αijαij = qωij ,

0 ≤ ordq(αij) ≤ ordq(αijαij) = ωij ≤ i,

Further, Deligne's integrality theorem implies that

i− dim(X) ≤ ordq(αij).

Question 3.2. Given X/Fq, the following questions arise:

1. What is bi,l := bi?
2. What is ωij?
3. What is the slope ordq(αij)?

Example 3.3. If X is a smooth projective variety over Fq, then:

1. Hi
c(X) is pure of weight i, i.e. ωij = i for 1 ≤ j ≤ bi. Thus bi,l is indepen-

dent of l.
2. The q-adic Newton polygon (NP) of det(I−Frob−1

q T |Hi
c(X)) ∈ Z[[T ]] lies

above the Hodge polygon of Hi
c(X). This was conjectured by Katz [17]

and proven by Mazur [20] and Ogus [2]. We will discuss this more later.



4. Moment Zeta Functions

Let f : X → Y/Fq. For d ∈ Z>0, recall the d-th moment of f ⊗ Fqk is

Md(f ⊗ Fqk) =
∑

y∈Y (F
qk )

#f−1(y)(Fqdk).

Question 4.1.

1. How does Md(f ⊗ Fqk) vary as k varies?

2. How does Md(f ⊗ Fqk) vary with d?

3. How does Md(f ⊗ Fqk) vary with both d and k?

De�nition 4.2. De�ne the d-th moment zeta function of f to be

Zd(f, T ) = exp

( ∞∑
k=1

T k

k
Md(f ⊗ Fqk)

)
.

Observe for d = 1 we have Z1(f, T ) = Z(X, T ). Recall that Zd(f, T ) ∈ Q(T )
and its reciprocal zeros and poles are Weil q-numbers. This follows from the

following more precise cohomological formula.

Theorem 4.3. Let l 6= p. Let Fi = Rif!Ql be the i-th relative l-adic cohomology

with compact support. Let σd,j,i = Symd−jFi ⊗
∧j

Fi. Then Zd(f, T ) =

2dim(X/Y )∏
i=0

d∏
j=0

2dim(Y )∏
k=0

det
(
I − Frob−1

q T |Hk
c (Y , σd,j,i)

)(−1)i+j+k−1(j−1)

Proof. For an l-adic sheaf F on Y , let L(F, T ) denote the L-function of F. The

trace formula in [14] applies to the L-function L(F, T ):

L(F, T ) =
2dim(Y )∏

i=0

det(I − Frob−1
q T |Hi

c(Ȳ ,F))(−1)i−1
.

The d-th Adams operation of a sheaf F can be written as the virtual sheaf [23]

[F]d =
∑
j≥0

(−1)j(j − 1)

[
Symd−jF⊗

j∧
F

]
.

It follows that



Zd(f, T ) =
∏

y∈|Y | Z
(
f−1(y)⊗F

qdeg(y) Fqdeg(y)d , T deg(y)
)

=
∏

y∈|Y |
∏

i≥0 det
(
I − (Frob−1

qdeg(y))dT deg(y)|Fi
y

)(−1)i−1

=
∏

i≥0

∏
y∈|Y | det

(
I − T deg(y)(Frob−1

qdeg(y))|[Fi
y]d
)(−1)i−1

=
∏

i≥0 L([Fi]d/Y, T )(−1)i

=
∏

i≥0

∏
j≥0 L (σd,j,i, T )(−1)i+j(j−1)

=
∏

k

∏
i≥0

∏
j≥0 det

(
I − TFrob−1

q |Hk
c (Y , σd,j,i, T )

)(−1)i+j+k−1(j−1)
.

�

To use this formula, one needs to know:

1. The total degree of Zd(f, T ): number of zeros + number of poles.
2. The high weight trivial factor which gives the main term.
3. The vanishing of nontrivial high weight term which gives a good error

bound.

Note:

1. There is an explicit upper bound for the total degree of Zd(f, T ), which
grows exponentially in d, see [9].

2. There exists a total degree bound of the form c1d
c2 which is a polynomial

in d. However, the constant c1 is not yet known to be e�ective if dimY ≥ 2,
see [9].

Question 4.4. How do we make c1 e�ective?

Example: Artin-Schreier hypersurfaces

Let

g(x1, . . . , xn, y1, . . . , yn′) ∈ Fq[x1, . . . , xn, y1, . . . , yn′ ].

We may also rewrite this as g = gm+gm−1+ . . .+g0, where gi is the homogeneous
part of degree i and gm 6= 0.

Consider:

X : {xp
0 − x0 = g(x1, . . . , xn, y1, . . . , yn′)} ↪→ An+n′+1

Y : An′

f : X 7→ Y, (x0, x1, . . . , xn, y1, . . . , yn′) 7→ (y1, . . . , yn′)

One may then ask:

Md(f) = #{xi ∈ Fqd , yi ∈ Fq|xp
0 − x0 = g(x, y)} =?

Ideally for nice g, one hopes:

Md(f) = qdn+n′ + O(q(dn+n′)/2)



Theorem 4.5 (Deligne, [5]). Assume that g is a Deligne polynomial of degree m,
i.e., the leading form gm is a smooth projective hypersurface in Pn+n′ and p - m.
Then

|M1(f)− qn+n′ | ≤ (p− 1)(m− 1)n+n′q
n+n′

2 .

For d > 1, a similar estimate can be obtained in some cases.
Assume f−1(y) is a Deligne polynomial of degree m for all y ∈ An′(Fq). Then,

applying Deligne's estimate �bre by �bre, one deduces

#f−1(y)(Fqd) = qdn + Ey(d),

|Ey(d)| ≤ (p− 1)(m− 1)nq
dn
2 ,

where Ey(d) is some error term. From this, we get

Md(f) =
∑

y∈An′ (Fq) #f−1(y)(Fqd)
= qdn+n′ +

∑
y∈An′ (Fq) Ey(d)

Thus, we get the �trivial� estimate:

|Md(f)− qdn+n′ | ≤ (p− 1)(m− 1)nq
dn
2 +n′

Ideally, one would hope to replace n′ by n′/2 in the above error bound.
If one applies the Katz type estimate via monodromy calculation as in [18],

one gets
√

q savings in good cases, i.e., with error term O(q
dn
2 +n′− 1

2 ). This is still

far from the expected error bound O(q
dn+n′

2 ) if n′ ≥ 2.

De�nition 4.6. The d-th �bered sum of g is

d⊕
Y

g = g(x11, . . . , x1n, y1, . . . , yn′) + . . . + g(xd1, . . . , xdn, y1, . . . , yn′).

Observe the yi values remain the same while the xij values vary.

Theorem 4.7 (Fu-Wan, [9]). Assume
⊕d

Y g is a Deligne polynomial of degree m.
Then

1. |Md(f)− qdn+n′ | ≤ (p− 1)(m− 1)dn+n′q
dn+n′

2

2. |Md(f)− qdn+n′ | ≤ c(p, n, n′)d3(m+1)n−1q
dn+n′

2

The constant c is not known to be e�ective if n′ ≥ 2.

If p does not divide d, then
⊕d

Y g is a Deligne polynomial for a generic g of
degree m. Thus, the assumption is satis�ed for many g if p does not divide d.
However, if p | d, there are no such g.

Question 4.8. If p|d, what would be the best estimate Md(f)?



Example: Toric Calabi-Yau hypersurfaces

This geometric example is studied in a joint work with A. Rojas-Leon [21]. Let
n ≥ 2. We consider

X : {x1 + . . . + xn +
1

x1 . . . xn
− y = 0} ↪→ Gn

m × A1,

Y = A1,

f : (x1, · · · , xn, y) −→ y.

For y 6= (n + 1)ζ, with ζn+1 = 1, we have

f−1(y) : x1 + . . . + xn +
1

x1 . . . xn
− y = 0

is an a�ne Calabi-Yau hypersurface in Gn
m.

For n = 2, we have an elliptic curve. For n = 3, we have a K3 surface. For
n = 4, we have a Calabi-Yau 3-fold. Recall

Md(f) =
∑
y∈Fq

#f−1(y)(Fqd).

For d = 1, we have M1(f) = #X(Fq) = (q − 1)n. For every y ∈ Fq, we have

#f−1(y)(Fqd) =
(qd − 1)n − (−1)n

qd
+ Ey(d),

where Ey(d) is some error term with |Ey(d)| ≤ nqd(n−1)/2. Thus,

Md(f) = q
(qd − 1)n − (−1)n

qd
+
∑
y∈Fq

Ey(d).

From this, we obtain the �trivial� estimate

|Md(f)− (qd − 1)n − (−1)n

qd−1
| ≤ nqd(n−1)/2+1.

Theorem 4.9 (Rojas-Leon and Wan, [21]). If p - (n + 1), then

1. |Md(f) −
(

(qd−1)n−(−1)n

qd−1 + 1
2 (1 + (−1)d)qd(n−1)/2+1

)
≤ Dqd(n−1)/2+ 1

2

where D is an explicit constant depending only on n and d.
2. The purity decomposition of Zd(f, T ) is determined.

Question 4.10. How do Md(f) and Zd(f, T ) vary with d?



5. Zeta Functions of Fibres

We continue with the previous example.

Example 5.1. For y ∈ Fq, let

f−1(y) = x1 + . . . + xn +
1

x1 . . . xn
− y = 0 ↪→ Gn

m.

This is singular when y ∈ {(n + 1)ζ|ζn+1 = 1}. This family forms the mirror
family of

{xn+1
0 + . . . + xn+1

n − yx0 . . . xn = 0}.

Let p - (n + 1), y ∈ Fq \ {(n + 1)ζ|ζn+1 = 1}. Then

Z(f−1(y)/Fq, T ) = Z

({
(qk − 1)n − (−1)n

qk

}∞
k=1

, T

)
Py(T )(−1)n

,

where Py(T ) ∈ 1 + TZ[T ] of degree n, pure of weight (n− 1). Write

Py(T ) = (1− α1(y)T ) . . . (1− αn(y)T ), |αi(y)| =
√

qn−1.

Then we get the following:

Corollary 5.2.

|#f−1(y)(Fq)−
(q − 1)n − (−1)n

q
| ≤ n

√
qn−1.

The star decomposition in [22], [27] implies

Theorem 5.3. There is a nonzero polynomial Hp(y) ∈ Fp[y] such that if Hp(y) 6= 0
for some y ∈ Fq, then ordq(αi(y)) = i− 1 for 1 ≤ i ≤ n.

Equivalently, this family of polynomials f−1(y) is generically ordinary. An
alternative proof can be found in Yu [31].

Moment Zeta Functions

For d > 0, recall

Md(f) =
∑
y∈Fq

#f−1(y)(Fqd),

Md(f ⊗ Fqk) =
∑

y∈F
qk

#f−1(y)(Fqdk), k = 1, 2, 3, . . . ,



Zd(f, T ) = exp

( ∞∑
k=1

T k

k
Md(f ⊗ Fqk)

)
∈ Q(T ).

Let

Sd(T ) =
[ n−2

2 ]∏
k=0

1− qdkT

1− qdk+1T

n−1∏
i=0

(1− qdi+1T )(−1)i+1( n
i+1).

Theorem 5.4 (Rojas-Leon and Wan, [21]). Assume that (n + 1) divides (q − 1).
Then, the d-th moment zeta function for the above one parameter toric CY family
f has the following factorization

Zd(f, T )(−1)n−1
= Pd(T )

(
Qd(T )
P (d, T )

)n+1

Ad(T )Sd(T ).

We now explain each of the above factors. First, Pd(T ) is the non-trivial factor
which has the form

Pd(T ) =
∏

a+b=d,0≤b≤n

Pa,b(T )(−1)b−1(b−1),

and each Pa,b(T ) is a polynomial in 1+TZ[T ], pure of weight d(n−1)+1, whose
degree r is given explicitly and which satis�es the functional equation

Pa,b(T ) = ±T rq(d(n−1)+1)r/2Pa,b(1/qd(n−1)+1T ).

Second, P (d, T ) ∈ 1+TZ[T ] is the d-th Adams operation of the �non-trivial� factor
in the zeta function of a singular �bre Xt, where t = (n+1)ζn+1 and ζn+1

n+1 = 1. It
is a polynomial of degree (n−1) whose weights are completely determined. Third,
the quasi-trivial factor Qd(T ) coming from a �nite singularity has the form

Qd(T ) =
∏

a+b=d,0≤b≤n

Qa,b(T )(−1)b−1(b−1),

where Qa,b(T ) is a polynomial whose degree Dn,a,b and the weights of its roots are
given. Finally, the trivial factor Ad(T ) is given by:

Ad(T ) = (1− q
d(n−1)

2 T )(1− q
d(n−1)

2 +1T )(1− q
d(n−2)

2 +1T ) if n and d are even.

Ad(T ) = (1− q
d(n−2)

2 +1T ) if n is even and d is odd.

Ad(T ) = (1− q
d(n−1)

2 T ) if n and d are odd.

Ad(T ) = (1− q
d(n−1)

2 +1T )−1 if n is odd and d is even.

Corollary 5.5. Let n = 2 and f : {x1 + x2 + 1
x1x2

− y = 0} 7→ y with p - 3. Then,

Zd(f, T )−1 = Ad(T )
Rd(T )

Rd−2(qT )
,

where Ad(T ) is a trivial factor and Rd(T ) ∈ 1 + TZ[T ] is a non-trivial factor
which is pure of weight d + 1 and degree 2(d− 1).



For all d ≤ 1, Rd(T ) = 1. R2(T ) is a polynomial of degree 2 and weight
3. This suggests that R2(T ) comes from a rigid Calabi-Yau variety. In general,
Rd(T ) is of weight d + 1 and degree 2(d− 1).

As always, we may ask what are the slopes of Rd(T )?
The above one parameter family of Calabi-Yau hypersurfaces is the only

higher dimensional example for which the moment zeta functions are determined
so far. It shows that the calculation of the moment zeta function can be quite
complicated in general. A related example is the one parameter family of higher
dimensional Kloosterman sums, see [10], [11] for the L-function of higher sym-
metric power which gives the main piece of the moment zeta function.

l-adic Moment Zeta Function (l 6= p)

Fix a prime l 6= p. Given α ∈ Z∗l and d1 ≡ d2 mod (l − 1)lk−1 for some k, then
αd1 ≡ αd2 mod lk.

By rationality of Z(f−1(y), T ) it follows that

#f−1(y)(Fqd) =
∑

i

αi(y)d −
∑

j

βj(y)d

for some l-adic algebraic integers αi(y) and βj(y). Consider

Md(f) =
∑

y∈Y (Fq)

#f−1(y)(Fqd).

This can be rewritten as

=
∑

y∈Y (Fq)

∑
i

αi(y)d −
∑

j

βj(y)d

 .

We may take some Dl(f) ∈ Z>0 such that if d1 ≡ d2 mod Dl(f)lk−1 then

1. Md1(f) ≡ Md2(f) mod lk.
2. Zd1(f, T ) ≡ Zd2(f, T ) mod lk ∈ 1 + TZ[[T ]].

De�nition 5.6. The l-adic weight space is de�ned to be

Wl(f) = (Z/Dl(f)Z)× Zl.

Let s = (s1, s2) ∈ Wl(f). Take a sequence of di ∈ Z>0 such that

1. di →∞ in C,
2. di ≡ s1 mod Dl(f),
3. di → s2 ∈ Zl.

With this we may de�ne the l-adic moment zeta function

ζs(f, T ) = lim
i→∞

Zdi
(f, T ) ∈ 1 + TZl[[T ]].

This function is analytic in the l-adic open unit disk |T |l < 1.



Question 5.7. Is ζs(f, T ) analytic on |T |l ≤ 1? What about in |T |l < ∞?

Embed Z in Wl(f) in the following way:

Z ↪→ Wl(f),

d 7→ (d, d).

Proposition 5.8. If d ∈ Z>0 ↪→ Wl(f), then ζd(f, T ) = Zd(f, T ) ∈ Q(T ).

Question 5.9. What if s ∈ Wl(f) \ Z? This is open even when f is a non-trivial
family of elliptic curves over Fp.

p-adic Moment Zeta Functions (l = p)

As in the l-adic case, one has a p-adic continuous result.
If d1 ≡ d2 mod Dp(f)pk−1, d1 ≥ d2 ≥ cfk for some k and su�ciently large

constant cf , then

Md1(f) ≡ Md2(f) mod pk.

Also, de�ne in the same way as above

ζs,p(f, T ) = lim
i→∞

Zdi
(f, T ) ∈ 1 + TZp[[T ]].

As before consider the embedding:

Z ↪→ Wp(f),

d 7→ (d, d).

The following result was conjectured by Dwork [8].

Theorem 5.10 (Wan, [23][24][25]). If s = d ∈ Z ↪→ Wp(f), then ζd,p(f, T ) is p-adic
meromorphic in |T |p < ∞.

Furthermore, we have

Theorem 5.11 ([25]). Assume the p-rank ≤ 1. Then for each s ∈ Wp(f), ζs,p(f, T )
is p-adic meromorphic in |T |p < ∞.

This can be extended a little further as suggested by Coleman.

Theorem 5.12 (Grosse-Klönne, [13]). Assume the p-rank ≤ 1. For s = (s1, s2)
with s1 ∈ Z/Dp(f) and s2 ∈ Zp/pε (small denominator), then ζs,p(f, T ) is p-adic
meromorphic in |T |p < ∞.

Question 5.13. In the case s ∈ Wp(f) − Z and p-rank > 1, it is unknown if
ζs,p(f, T ) is p-adic meromorphic, even on the closed unit disk |T |p ≤ 1.



6. Moment Zeta Functions over Z

Consider

f : X 7→ Y/Z[
1
N

].

The d-th moment zeta function of f is:

ζd(f, s) =
∏
p-N

Zd(f ⊗ Fp, p
−s).

Is this C-meromorphic in s ∈ C? Is ζd(f, s) or its special values p-adic continuous
in some sense? If so, its p-adic limit ζs(f)(s ∈ Zp) is a p-adic zeta function of f .

Example 6.1. Consider the map

f : {x1 + x2 +
1

x1x2
− y = 0} 7→ y.

Then

Zd(f ⊗ Fp, T )−1 = Ad(T )
Rd(f ⊗ Fp, T )

Rd−2(f ⊗ Fp, pT )

where Ad(T ) is a trivial factor and Rd is a non-trivial factor of degree 2(d − 1)
and weight d + 1.

Rd(T ) ↔ f⊗d = {x11 + x12 +
1

x11x12
= . . . = xd1 + xd2 +

1
xd1xd2

}

Example 6.2. For d = 2, we have

x1 + x2 +
1

x1x2
= y1 + y2 +

1
y1y2

.

As Matthias Schuett observed during the workshop, R2(T ) ↔ the unique new
form of weight 4 and level 9.

Conjecture 6.3.
∏

p Rd (f ⊗ Fp, p
−s) is meromorphic in s ∈ C for all d.

This conjecture is known to be true if d ≤ 2. It should be realistic to prove
the conjecture for all positive integers d.

7. l-adic Partial Zeta Functions

We now consider the system of maps where X 7→ X1 × . . .×Xn is an embedding
(See Figure 4).



f : X
f1

//

fi ((

fn !!CC
CC

CC
CC

C
X1

Xi

Xn

Figure 4. f : X 7→ X1 × . . .×Xn

This allows us to de�ne the partial zeta function

Zd1,...,dn(f, T ) = exp

( ∞∑
k=1

T k

k
#{x ∈ X(Fq)|fi(x) ∈ Xi(Fqdik)}

)
∈ Q(T ).

Question 7.1. Is there any p-adic or l-adic continuity result as {d1, . . . , dn} varies
p-adically or l-adically?

Example 7.2. Consider the surface and three projection maps:

f : x1 + x2 +
1

x2x2
− x3 = 0

f1
//

f2
RRR

((RR

f3 ""EE
EE

EE
E

x1

x2

x3

Thus

Md1,d2,d3(f) = #{(x1, x2, x3)|x1 + x2 +
1

x1x2
− x3 = 0, xi ∈ Fqdi , i = 1, 2, 3}.

Is there a continuity result as {d1, d2, d3} vary?

8. Zeta Functions of Toric A�ne Hypersurfaces

Let4 ⊂ Rn be an n-dimensional integral polytope. Let f ∈ Fq[x±1
1 , . . . , x±1

n ] with

f =
∑

u∈4∩Zn

auXu, au ∈ Fq

such that 4(f) = 4. That is, au 6= 0 for each u which is a vertex of 4.

Question 8.1. Consider the toric a�ne hypersurface

Uf : {f(x1, . . . , xn) = 0} ↪→ Gn
m.
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1. #Uf (Fq) =?
2. Z(Uf , T ) =?

De�nition 8.2.

1. If 4′ ⊂ 4 is a face of 4, de�ne

f4
′
=

∑
u∈4′∩Zn

auXu.

2. f is 4-regular if for every face 4′ (of any dimension) of 4, the system

f4
′
= x1

∂f4
′

∂x1
= . . . = xn

∂f4
′

∂xn
= 0

has no common zeros in Gn
m(Fq).

Theorem 8.3 (GKZ, [12]).

1. There is a nonzero polynomial disc4 ∈ Z[au|u ∈ 4 ∩ Zn] such that f is
4-regular if and only if disc4(f) 6= 0 in Fq. In other words, disc4 is an
integer coe�cient polynomial that will determine 4-regularity.

2. 4(disc4) is determined. This is referred to as the secondary polytope.

Question 8.4. For which p, disc4 ⊗ Fp 6= 0?

De�nition 8.5. Let C(4) be the cone in Rn+1 generated by 0 and (1,4)

1. De�ne

W4(k) = #{(k, k4) ∩ Zn+1}, k = 0, 1, . . .

The Hodge numbers of ∆ are de�ned by

h4(k) = W4(k)−
(

n + 1
1

)
W4(k − 1) +

(
n + 2

2

)
W4(k − 2)− . . . ,



h4(k) = 0, if k ≥ n + 1.

2. deg(4) = d(4) = n!V ol(4) =
∑n

k=0 h4(k).

Theorem 8.6 (Adolphson-Sperber [1], Denef-Loesser [4]). Assume f/Fq is 4-
regular. Then

1. Z(Uf , T ) =
∏n−1

i=0 (1− qiT )(−1)n−i( n
i+1)Pf (T )(−1)n

with Pf (T ) ∈ 1 + TZ[T ]
is of degree d(4)− 1.

2. Pf (T ) =
∏d(4−1)

i=1 (1− αi(f)T ), |αi(f)| ≤ √
qn−1. In particular,

|#Uf (Fq)−
(q − 1)n − (−1)n

q
| ≤ (d(4)− 1)

√
q

n−1
.

The precise weights of the αi(f)'s were also determined by Denef-Loesser.

Question 8.7. For i = 1, 2, . . . , d(4)− 1, what is ordq(αi(f)) =?

9. Newton and Hodge Polygons

Write

Pf (T ) = 1 + c1T + c2T
2 + . . . .

The q-adic Newton polygon of Pf (T ) is the lower convex closure in R2 of the points
(k, ordq(ck)), (k = 0, 1, . . . , d(4) − 1). Denote this Newton polygon by NP (f).
Note that NP (f) = NP (f ⊗ Fqk) for all k.

Proposition 9.1. Let hs denote the horizontal length of the slope s side in NP (f).
Then, Pf (T ) has exactly hs reciprocal zeros αi(f) such that ordq(αi(f)) = s for
each s ∈ Q≥0.

De�nition 9.2. The Hodge polygon of 4, denoted by HP (∆), is the polygon in
R2 with a side of slope k − 1 with horizontal length h4(k) for 1 ≤ k ≤ n and
vertices

(0, 0),

(
k∑

m=1

h4(m),
k∑

m=1

(m− 1)h4(m)

)
, k = 1, 2, . . . , n.

Theorem 9.3 (Adolphson-Sperber [1]). The q-adic Newton polygon lies above the
Hodge polygon, i.e., NP (f) ≥ HP (4). In addition, the endpoints of the two
coincide.

De�nition 9.4. If NP (f) = HP (∆), then f is called ordinary.

Question 9.5. When is f ordinary? One hopes this is often.
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Figure 6. Newton Polygon

Let

Mp(4) = {f ∈ Fp[x±1
1 , · · · , x±1

n ]|4(f) = 4, f 4− regular}.

Theorem 9.6 (Grothendieck, [18]). There exists a generic Newton polygon, de-
noted by GNP (∆, p), such that

GNP (4, p) = inf{NP (f)|f ∈ Mp(4)}

Hence for any f ∈ Mp(4),

NP (f) ≥ GNP (4, p) ≥ HP (4),

where the �rst inequality is an equality for most f (generic f).

Question 9.7. Given 4, for which p, is GNP (4, p) = HP (4)? In other words,
when is f generically ordinary?

This suggests the following conjecture.

Conjecture 9.8 (Adolphson-Sperber [1]). For each p � 0, GNP (4, p) = HP (∆).

This is false in general. Some counterexamples can be found in [22].

De�nition 9.9.



1. S(4) =the semigroup C(4) ∩ Zn+1.
S1(4) = the semigroup generated by (1,4) ∩ Zn+1.

2. De�ne the exponents of 4 as

I(4) = inf{D > 0|Du ∈ S1(4),∀u ∈ S(4)}
I∞(4) = inf{D > 0|Du ∈ S1(4),∀u ∈ S(4), u � 0}

Conjecture 9.10. If p ≡ 1 mod I(4) or if p ≡ 1 mod I∞(4) for p � 0, then

1. disc4 ⊗ Fp 6= 0,
2. GNP (4, p) = HP (4).

Part (2) is a weaker version of the conjecture in [22].

10. Generic Ordinarity

Toric Hypersurface

Let 4 ⊂ Rn be a n-dimensional integral polytope and p a prime. Let d(4) =
n!V ol(4). De�ne

Mp(4) = {f ∈ Fp[x±1
1 , . . . , x±1

n ]|4(f) = 4, f 4− regular}.

For each f ∈ Mp(4), let NP (f) be the Newton polygon of the interesting
factor Pf (T ) of the zeta function Z(Uf , T ). Note that changing the ground �eld
will not change the Newton polygon. Recall that

NP (f) ≥ GNP (4, p) ≥ HP (4).

Note that NP (f) is de�ned in a completely arithmetic fashion and is de-
pendent on the coe�cients of the polynomial f . On the other hand, GNP (4, p)
is independent of coe�cients while HP (4) is obtained combinatorially. If
GNP (4, p) = HP (4), we refer to p as ordinary for 4.

Conjecture 10.1 (Adolphson-Sperber). For any 4, p is ordinary for all p � 0.

This conjecture is too strong as Example 10.2 illustrates.

Example 10.2. Let f = a0 + a1x1 + . . . + anxn + an+1x1x2 . . . xn and

4 = Conv((0, . . . , 0), (1, . . . , 0), . . . , (0, . . . , 1), (1, 1, . . . , 1)).

Therefore d(4) = n for n ≥ 2. Furthermore, ∆ is an empty simplex, i.e., a simplex
with no lattice points other than vertices. It follows that

1. p is ordinary for 4 if and only if p ≡ 1 mod (n− 1). This implies
2. If n ≥ 4, then the Adolphson-Sperber conjecture is false.
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Figure 7. NP ≥ HP

Convex Triangulation

De�nition 10.3.

1. A triangulation of 4 is a decomposition

4 =
m⋃

i=1

4i,

such that each 4i is a simplex, 4i∩4j is a common face for both 4i and
4j .

2. The triangulation is called convex if there is a piecewise linear function
φ : 4 7→ R such that

(a) φ is convex i.e. φ( 1
2x + 1

2x′) ≤ 1
2φ(x) + 1

2φ(x′), for all x, x′ ∈ 4.
(b) The domains of linearity of φ are precisely the n-dimensional simplices
4i for 1 ≤ i ≤ m.

Examples of convex triangulations include the star decomposition, the hyper-
plane decomposition and the collapsing decomposition [27].

Basic Decomposition Theorem

The decomposition methods in [22], [27] generalize to prove the following decom-
position theorem.
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Figure 8. Piecewise projection down

Theorem 10.4.

1. Let 4 = ∪m
i=14i be a convex integral triangulation of 4. If p is ordinary

for each 4i, 1 ≤ i ≤ m, then p is ordinary for 4.
2. If 4 is a simplex and p ≡ 1 mod d(4), then p is ordinary.

Corollary 10.5. If p ≡ 1 mod (lcm(d(41), . . . , d(4m))), then p is ordinary.

Example 10.6. Let A be the convex closure of (−1,−1), (1, 0) and (0, 1) in R2.
The star decomposition in Figure 9 is convex and integral.

More generally,

Example 10.7. Consider f : {x1 + x2 + . . . + xn + 1/x1x2 . . . xn − y = 0} over Fp.
This is generically ordinary for all p. The proof uses the same star decomposition.

Example 10.8. Let 4 = {(d, 0, . . . , 0), (0, d, 0, . . . , 0), . . . , (0, . . . , d), (0, . . . , 0)}.
We may make a parallel hyperplane cut as in Figure 10. This will make d(4i) = 1
for each piece 4i of the decomposition, see [22]. This proves that the universal
family of a�ne (or projective) hypersurfaces of degree d and n variables over Fp

•????????
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Figure 9. Star decomposition of A
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Figure 10. Parallel Hyperplane Decomposition into simplices

is also generically ordinary for every p. The projective hypersurface (complete
intersection) case was �rst proved by Illusie [15].

Corollary 10.9. If n = dim(4) = 2, then p is ordinary for 4 for all p.

Corollary 10.10. If n = dim(4) = 3, then p is ordinary for p > 6V ol(4).

This corollary is proven by showing stability of the p-action on the weight.
This is a di�erent argument than by proving d(4i) = 1 argument.

De�nition 10.11. Let 4 be an n-dimensional integral convex polytope in Rn.
Assume that 0 (origin) is in the interior of 4. Given such a situation, de�ne
4∗ ⊂ Rn by:

4∗ = {(x1, . . . , xn) ∈ Rn|
n∑

i=1

xiyi ≥ −1, ∀(y1, . . . , yn) ∈ 4}

Observe 4∗ is also a convex polytope in Rn, though it may not have integral
vertices. Also observe (4∗)∗ = 4.

De�nition 10.12. 4 is called re�exive if 4∗ is also integral.

Corollary 10.13. If n = dim(4) = 4 and if 4 is re�exive then p is ordinary for
4 for all p > 12V ol(∆).

Slope Zeta Function

The concept of slope zeta functions was developed for arithmetic mirror symmetry
as we will describe here. More information can be found in [29], [30].

Let (X, Y ) be a mirror pair over Fq. Candelas, de la Ossa and Rodriques-
Villegas in [3] desired a possible mirror relation of the type

Z(X, T ) =
1

Z(Y, T )



for 3 dimensional Calabi-Yau varieties. This is not true. If this were the case then

∑ T k

k
#X(Fq) =

∑ T k

k
(−#Y (Fq)).

Therefore

#X(Fq) = −#Y (Fq),

which is impossible for large q on nonempty varieties.
The question is then to modify the zeta function suitably so that the desired

mirror relation holds. The slope zeta function was introduced for this purpose.

De�nition 10.14. Write Z(X, T ) =
∏

i(1− αiT )±1 ∈ Cp(T ).

1. The slope zeta function of X is de�ned to be the following two variable
function:

S(X, U, T ) =
∏

i

(1− Uordq(αi)T )±1.

2. If f : X 7→ Y de�ned over Fq (a nice family) then the slope zeta function
of f is the generic one among S(f−1(y), U, T ) from all y ∈ Y , denoted by
S(f, U, T ).

Conjecture 10.15. Let X be a 3-dimensional Calabi-Yau variety over Q. Assume
that X has a mirror over Q. Then the generic family containing X as a member
is generically ordinary for all p � 0.

This conjecture implies the following

Conjecture 10.16 (Arithmetic Mirror Conjecture). Let {f, g} be two generic mir-
ror families of a 3-dimensional Calabi-Yau variety over Q. Then for all p � 0,

S(f ⊗ Fp, U, T ) =
1

S(g ⊗ Fp, U, T )
.
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