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Abstract. We present a general and comprehensive overview of recent
developments in the theory of integral models of Shimura varieties of
Hodge type. The paper covers the following topics: construction of in-
tegral models, their possible moduli interpretations, their uniqueness,
their smoothness, their properness, and basic stratifications of their spe-
cial fibres.

1. Introduction

This paper is an enlarged version of the three lectures we gave in July 2007 during
the summer school Higher dimensional geometry over finite fields, June 25 - July
06, 2007, Mathematisches Institut, Georg-August-Universitdt Gottingen.

The goal of the paper is to provide to non-specialists an efficient, accessible,
and in depth introduction to the theory of integral models of Shimura varieties
of Hodge type. Accordingly, the paper will put a strong accent on defining the
main objects of interest, on listing the main problems, on presenting the main
techniques used in approaching the main problems, and on stating very explicitly
the main results obtained so far. This is not an easy task, as only to be able to list
the main problems one requires a good comprehension of the language of schemes,
of reductive groups, of abelian varieties, of Hodge cycles on abelian varieties, of
cohomology theories (including étale and crystalline ones), of deformation theories,
of p-divisible groups, and of F-crystals. Whenever possible, proofs are included.

We begin with a motivation for the study of Shimura varieties of Hodge
type. Let X be a connected, smooth, projective variety over C. We recall that
the albanese variety of X is an abelian variety Alb(X) over C equipped with
a morphism ax : X — Alb(X) that has the following universal property. If
bx : X — B is another morphism from X to an abelian variety B over C,
then there exists a unique morphism ¢ : Alb(X) — B such that the following
identity bx = coax holds. This universal property determines Alb(X) uniquely
up to isomorphisms. Not only Alb(X) is uniquely determined by X, but also the
image Im(ax) is uniquely determined by X up to isomorphisms. Thus to X one
associates an abelian variety Alb(X) over C as well as a closed subvariety Im(ax)
of it. If X belongs to a good class € of connected, smooth, projective varieties



over C, then deformations of X would naturally give birth to deformations of
the closed embedding Im(ax) < Alb(X). Thus the study of moduli spaces of
objects of the class € is very much related to the study of moduli spaces of
abelian schemes endowed with certain closed subschemes (which naturally give
birth to some polarizations). For instance, if X is a curve, then Alb(X) = Jac(X)
and the morphism ayx is a closed embedding; to this embedding one associates
naturally a principal polarization of Jac(X). This implies that different moduli
spaces of geometrically connected, smooth, projective curves are subspaces of
different moduli spaces of principally polarized abelian schemes.

For the sake of generality and flexibility, it does not suffice to study moduli
spaces of abelian schemes endowed with polarizations and with certain closed sub-
schemes. More precisely, one is naturally led to study moduli spaces of polarized
abelian schemes endowed with families of Hodge cycles. They are called Shimura
varieties of Hodge type (see Subsection 3.4). The classical Hodge conjecture pre-
dicts that each Hodge cycle is an algebraic cycle. Thus we refer to Subsection
2.5 for a quick introduction to Hodge cycles on abelian schemes over reduced
Q-schemes. Subsections 2.1 to 2.5 review basic properties of algebraic groups, of
Hodge structures, and of families of tensors.

Shimura varieties can be defined abstractly via few axioms due to Deligne (see
Subsection 3). They are in natural bijection to Shimura pairs (G, X). Here G is a
reductive group over Q and X is a hermitian symmetric domain whose points form
a G(R)-conjugacy class of homomorphisms (C\ {0},:) — Gg of real groups, that
are subject to few axioms. Initially one gets a complex Shimura variety Sh(G, X)¢
defined over C (see Subsection 3.1). The totally discontinuous, locally compact
group G(Ay) acts naturally on Sh(G, X)c from the right. Cumulative works of
Shimura, Taniyama, Deligne, Borovoi, Milne, etc., have proved that Sh(G, X)¢
has a canonical model Sh(G, X) over a number field E(G, X) which is intrinsically
associated to the Shimura pair (G, X') and which is called the reflez field of (G, X)
(see Subsection 3.2). One calls Sh(G, X) together with the natural right action
of G(Ay) on it, as the Shimura variety defined by the Shimura pair (G, X). For
instance, if G = GLy and X=C\ R is isomorphic to two copies of the upper half-
plane, then Sh(G, X) is the elliptic modular variety over Q and is the projective
limit indexed by N € N of the affine modular curves Y (N).

Let H be a compact, open subgroup of G(Ay). The quotient scheme
Sh(G, X)/H exists and is a normal, quasi-projective scheme over E(G, X). If v
is a prime of F(G,X) of residue field k(v) and if N is a good integral model
of Sh(G,X)/H over the local ring O(,) of v, then one gets a Shimura variety
Ni(vy over the finite field k(v). The classical example of a good integral model
is Mumford moduli scheme A, ;. Here r € N, the Z-scheme A, is the course
moduli scheme of principally polarized abelian scheme of relative dimension 7,
and the Q-scheme A, ; g is of the form Sh(G,X)/H for (G,X) a Shimura pair
that defines (see Example 3.1.2) a Siegel modular variety.

In this paper, we are mainly interested in Shimura varieties of Hodge type.
Roughly speaking, they are those Shimura varieties for which one can naturally
choose AV to be a finite scheme over A, 1,0, - In this paper we study A and its
special fibre N (,y. See Subsections 4.1 and 4.2 for some moduli interpretations
of M. See Section 5 for different results pertaining to the uniqueness of N. See



Section 6 for basic results that pertain to the smooth locus of . See Section 7 for
the list of cases in which N is known to be (or it is expected to be) a projective
O(v)-scheme. Section 8 presents four main stratifications of the (smooth locus of
the) special fibre N,y and their basic properties. These four stratifications are
defined by (see Subsections 8.3, 8.4, 8.6, and 8.7 respectively):

(a) Newton polygons of p-divisible groups;

(b) isomorphism classes of principally quasi-polarized F-isocrystals with ten-
SOTS;

(c) inner isomorphism classes of the reductions modulo integral powers of p
of principally quasi-polarized F-crystals with tensors;

(d) isomorphism classes of principally quasi-polarized F-crystals with tensors.

The principally quasi-polarized F-crystals with tensors attached naturally to
points of the smooth locus of Nj(,) with values in algebraically closed fields are
introduced in Subsection 8.1. Generalities on stratifications of reduced schemes
over fields are presented in Subsection 8.2. Subsection 8.5 shows that the smooth
locus of Nk(v) is a quasi Shimura p-variety of Hodge type in the sense of [Vab,
Def. 4.2.1]. Subsection 8.5 is used in Subsections 8.6 and 8.7 to define the last
two stratifications, called the level m and Traverso stratifications.

2. A group theoretical review

In this section we review basic properties of algebraic groups, of Hodge structure,
of families of tensors, and of Hodge cycles on abelian schemes over reduced Q-
schemes. We denote by k an algebraic closure of a field k.

We denote by G, and G,,, the affine, smooth groups over k with the property
that for each commutative k-algebra C, the groups G,(C) and G,,(C) are the
additive group of C' and the multiplicative group of units of C' (respectively). As
schemes, we have G, = Spec(k[z]) and G,,, = Spec(k[z][1]). Thus the dimension
of either G, or G,, is 1. For t € N, let p; be the kernel of the t*"-power endomor-
phism of G,,,. An algebraic group scheme over k is called linear, if it is isomorphic
to a subgroup scheme of GL,, for some n € N.

2.1. Algebraic groups

Let G be a smooth group over k which is of finite type. Let G° be the identity
component of G. We have a short exact sequence

(1) 0—-G°—G—G/G° -0,
where the quotient group G/G? is finite and étale. A classical theorem of Chevalley

shows that, if k is either perfect or of characteristic 0, then there exists a short
exact sequence



(2) 0—L—-G"—A—0,

where A is an abelian variety over k and where L is a connected, smooth, linear
group over k. In what follows we assume that (2) exists. Let L" be the unipotent
radical of L. It is the maximal connected, smooth, normal subgroup of L which
is unipotent (i.e., which over k has a composition series whose factors are G
groups). We have a short exact sequence

(3) 0—-L"—-L—R—D0,

where R := L/L" is a reductive group over k (i.e., it is a smooth, connected, linear
group over k whose unipotent radical is trivial). By the k-rank of R we mean the
greatest non-negative integer s such that G;, is a subgroup of R. If the k-rank of
R is equal to the k-rank of Ry, then we say that R is split.

Let Z(R) be the (scheme-theoretical) center of R. It is a group scheme of
multiplicative type (i.e., over k it is the extension of a finite product of p; group
schemes by a torus GI'; here n € N U {0} and ¢ € N). The quotient group
R* .= R/Z(R) is called the adjoint group of R; it is a reductive group over k
whose (scheme-theoretical) center is trivial. Let R be the derived group of R; it
is the minimal, normal subgroup of R with the property that the quotient group
R := R/R%" is abelian. The group R?" is a torus (i.e., over k it is isomorphic to
G,). The groups R*! and RI" are semisimple. We have two short exact sequences

(4) 0— Z(R) — R— R -0
and
(5) 0— R - R— R*™ 0.

The short exact sequences (1) to (5) are intrinsically associated to G.

If G = GL,, then Z(G) and G® are isomorphic to G,,, G4 = SL,,, and
G* = PGL,. If G = GSpy,, then Z(G) and G?* are isomorphic to G,,, GI* =
Span, and G* = PGSpy,, = Spa,/t2. If G = 802,11, then Z(G) and G are
trivial and therefore from (4) and (5) we get that G = G9¢* = G4,

2.1.1. Examples of semisimple groups over Q

Let a, b € NU{0} with a+b > 0. Let SU(a, b) be the simply connected semisimple
group over Q whose Q-valued points are the Q(i)-valued points of SL,44 o that

leave invariant the hermitian form —z121 — -+ — 2,24 + 2a4+1Za+1 + - + Za+bZatb
over Q(7). Let SO(a,b) be the semisimple group over Q of a 4+ b by a + b matrices
of determinant 1 that leave invariant the quadratic form —a% — -+ — 22 + 22| +

42, on Q¥ Let SO, := S0(0,a). Let SO*(2a) be the semisimple group
over Q whose group of Q-valued points is the subgroup of SOz, (Q(7)) that leaves
invariant the skew hermitian form —z1Z,411 + 2p+121 — * -+ — 2pZ2n + 2212, OVEr
Qi) (z’s and x;’s are related here over Q(4) via z; = x;).



Definition 1. By a reductive group scheme R over a scheme Z, we mean a smooth
group scheme over Z which is an affine Z-scheme and whose fibres are reductive
groups over fields.

As above, one defines group schemes Z(R), R*, R4* and R*P over Z which
are affine Z-schemes. The group scheme Z(R) is of multiplicative type. The group
schemes R®d and R are semisimple. The group scheme R’ is a torus.

2.2. Weil restrictions

Let i : I — k be a separable finite field extension. Let G be a group scheme over
k which is of finite type. Let Resy,; be the group scheme over [ obtained from G
through the Weil restriction of scalars. Thus Resy/; G is defined by the functorial
group identification

(6) Hom(Y, Resy,/; G) = Hom(Y x; k, G),
where Y is an arbitrary [-scheme. We have

(7) (Resi)1 G)g = Respg ik Groi = || G X ke
e€Hom; (k,k)

From (7) we easily get that:

(*) if G is a reductive (resp. connected, smooth, affine, linear, unipotent,
torus, semisimple, or abelian variety) group over k, then Resy/; G is a reductive
(resp. connected, smooth, affine, linear, unipotent, torus, semisimple, or abelian
variety) group over [.

If j : m — [ is another separable finite field extension, then we have a
canonical and functorial identification

Res;/m Resy 1 G = Resy, G

as one can easily check starting from formula (6).
If H is a group scheme over [, then we have a natural closed embedding
homomorphism

(8) H— Resk/l Hy,

over | which at the level of [-valued points induces the standard monomorphism
H(l) — H(k) = Resy,;; Hg(l).



2.3. Hodge structures

Let S := Resc/r Gm be the two dimensional torus over R whose group of R-
valued points is the multiplicative group (C\ {0},-) of C. As schemes, we have
S = Spec(R[x,y}[ﬁD. By applying (8) we get that we have a short exact
sequence

9) 0— Gy —S—8S02r — 0.

The group SOz g(R) is isomorphic to the unit circle and thus to R/Z. The short
exact sequence (9) does not split; this is so as S is isomorphic to (G,, xgSO2 r) /12,
where po is embedded diagonally into the product.

We have S(R) = C\ {0}. We identify S(C) = G,,(C) x G,,(C) = (C\ {0}) x
(C\ {0}) in such a way that the natural monomorphism S(R) — S§(C) induces
the map z — (z,%z), where z € C\ {0}.

Let S be a Z-subalgebra of R (in most applications, we have S € {Z,Q,R}).
Let Vg be a free S-module of finite rank. Let Vg := Vs ®g R. By a Hodge S-
structure on Vg we mean a homomorphism

(10) p:S — GLy,.
We have a direct sum decomposition
(11) V]R ®]R C = @(7.78)6Z2VT’S

with the property that (z1,22) € S(C) acts via pc on V™* as the scalar multipli-
cation with 27 "z; ®. Thus the element z € S(R) acts via p on V™° as the scalar
multiplication with z7"Z7*. Therefore z acts on V™% as the scalar multiplication
with z=%z~". This implies that for all (r,s) € Z? we have an identity

(12) Ver =yrs,

Conversely, each direct sum decomposition (11) that satisfies the identities (12),
is uniquely associated to a homomorphism as in (10).

By the type of the Hodge S-structure on Vg, we mean any symmetric subset
T of Z? with the property that we have a direct sum decomposition

V]R 4 C = @(7.7S)ETVT’S.

Here symmetric refers to the fact that if (r,s) € 7, then we also have (s,7) € 7.
If we can choose 7 such that the sum n := r + s does not depend on (r,s) € 7,
one says that the Hodge S-structure on Vg has weight n.

2.3.1. Polarizations

For n € Z,let S(n) be the Hodge S-structure on (27¢)™S which has type (—n, —n).
Suppose that the Hodge S-structure on Vg has weight n. By a polarization of the
Hodge S-structure on Vg we mean a morphism ¢ : Vs ®g Vg — S(—n) of Hodge
S-structures such that the bilinear form (279)"y(z ® p(i)y) defined for x,y € Vi,
is symmetric and positive definite. Here we identify 1 with its scalar extension to
R.



2.3.2. Example

Let A be an abelian variety over C. We take S = Z. Let Vz = H'(A%",Z) be the
first cohomology group of the analytic manifold A** := A(C) with coefficients in
Z. Then the classical Hodge theory provides us with a direct sum decomposition

(13a) Ve @r C =V Vol

where V10 = HO(A Q) and V0! = HY(A,04) (see [Mu, Ch. I, 1]). Here O4
is the structured ring sheaf on A and 2 is the O 4-module of 1-forms on A. We
have V1.0 = V%! and therefore (13a) defines a Hodge Z-structure on V. Let
F1(Vg ®@g C) := V10 it is called the Hodge filtration of Vg ®g C.

Let Wz := Hom(Vz,Z) = H,(A*,Z). Let Wg := Wz ®z R. Taking the dual
of (13a), we get a Hodge Z-structure on Wz of the form

(13b) Wg @r C =W 10 w1

One can identify naturally W =10 = Hom(V19 C) = Lie(A). Each z € S(R) acts
on the complex vector space Lie(A4) as the multiplication with z and this explains
the convention on negative power signs used in the paragraph after formula (11).
We have canonical identifications

A = W5\ Lie(A) = Wz\(Wg ®g C)/ W1,
If A is a polarization of A, then the non-degenerate form
(14) Y Wz, ®z Wy — Z(1)

defined naturally by A, is a polarization of the Hodge Z-structure on Wy.
We have End(Vz) = Vz ®z Wz = End(Wz). Due to the identities (13a) and
(13b), the Hodge Z-structure on End(Vz) is of type

(15) Tab ‘= {(_171)7(070)’(17_1)}

Definition 2. We use the notations of Example 2.3.1. Let W := Wz ®z Q. By
the Mumford—Tate group of the complex abelian variety A, we mean the smallest
subgroup H 4 of GLy with the property that the homomorphism x4 : S — GLyy,
that defines the Hodge Z-structure on Wz, factors through Har.

Proposition 1. The group H4 is a reductive group over Q.

Proof: From its very definition, the group H 4 is connected. To prove the Propo-
sition it suffices to show that the unipotent radical HY of H4 is trivial. Let W;
be the largest rational subspace of W on which HY acts trivially. As HY is a
normal subgroup of H4, Wi is an H 4-module. Thus x4 normalizes W; ®g R and
therefore we have a direct sum decomposition

W1 ®qC = [(W; ®C)n W10 & [(W; @ C) N W),



Thus (WzNW1)\(W1®¢C)/[(W1 ®9C)NW%~1] is a closed analytic submanifold
A" of A A classical theorem of Serre asserts that AJ™ is algebraizable i.e.,
it is the analytic submanifold associated to an abelian subvariety A; of A. The
short exact sequence 0 — 47 — A — A/A; — 0 splits up to isogenies (i.e., A is
isogeneous to Ay X¢ Az, where Ay := A/A;). Let Wo := H;(A5", Q). We have a
direct sum decomposition W = Wy & W, whose extension to R is normalized by
x4. Thus the direct sum decomposition W = W7 ® W5 is normalized by H4. In
particular, W5 is an H}j-module.

If Wy # W, then the unipotent group HY acts trivially on a non-zero subspace
of W5 and this represents a contradiction with the largest property of Wi. Thus
Wi =W ie., HY acts trivially on W. Therefore HY is the trivial group. O

2.4. Tensors

Let M be a free module of finite rank over a commutative Z-algebra C. Let
M* := Hom¢ (M, C). By the essential tensor algebra of M @& M* we mean the
C-module

T(M) = @s,teNu{o}M@)s ®c M.

Let F'*(M) be a direct summand of M. Let FO(M) := M and F?*(M) := 0.
Let FY(M*) = 0, FO(M*) := {y € M*|y(F*(M)) = 0}, and F~}(M*) :=
M*. Let (F(T(M)));ez be the tensor product filtration of 7 (M) defined by
the exhaustive, separated filtrations (F*(M))icf0,1,2) and (F*(M*));c(-1,01y of
M and M* (respectively). We refer to (F*(7(M)));cz as the filtration of 7 (M)
defined by F*(M) and to each F(7(M)) as the Fi-filtration of 7 (M) defined by
FY(M).

We identify naturally End(M) = M @c M* C T(M) and End(End(M)) =
M®2@c M*®2. Let z € C be a non-divisor of 0. A family of tensors of 7 (M[1]) =
T (M)[L] is denoted (uq)acs, with J as the set of indexes. Let M; be another
free C-module of finite rank. Let (u14)acs be a family of tensors of T (M;[1])
indexed also by the set J. By an isomorphism

(M, (ta)aes)= (M, (U1,0)aes)

we mean a C-linear isomorphism M = M; that extends naturally to a C-linear
isomorphism 7 (M[L]) 57 (M;[1]) which takes uq to ui, for all @ € J. We
emphasize that we will denote two tensors or bilinear forms in the same way,
provided they are obtained one from another via either a reduction modulo some
ideal or a scalar extension.

2.5. Hodge cycles on abelian schemes

We will use the terminology of [De3] on Hodge cycles on an abelian scheme Bx
over a reduced Q-scheme X. Thus we write each Hodge cycle v on Bx as a
pair (v4r,vet), where vqr and vg; are the de Rham and the étale component of
v (respectively). The étale component vg; at its turn has an [-component v}, for
each rational prime [.



In what follows we will be interested only in Hodge cycles on Bx that involve
no Tate twists and that are tensors of different essential tensor algebras. Accord-
ingly, if X is the spectrum of a field F, then in applications Uét will be a suitable
Gal(E/E)-invariant tensor of T(H},(Bx,Q;)), where X := Spec(E). If E is a
subfield of C, then we will also use the Betti realization vg of v. The tensor vg
has the following two properties (that define Hodge cycles on Bx which involve
no Tate twist; see [De3, Sect. 2]):

(i) it is a tensor of 7 (H!((Bx xx Spec(C))**,Q)) that corresponds to vqr
(resp. to vét) via the canonical isomorphism that relates the Betti cohomology of
(Bx xx Spec(C))* with Q—coefficients with the de Rham (resp. the Q; étale)
cohomology of Bx x x Spec(C);

(i) it is also a tensor of the FO-filtration of the filtration of 7(H'((Bx X x
Spec(C))2®,C)) defined by the Hodge filtration F*(H!((Bx xx Spec(C))®,C))
of H'((Bx xx Spec(C))®",C).

We have the following particular example:

(iii) if vp € End(H!((Bx xx Spec(C))*®,Q)), then from Riemann theorem
we get that vp is the Betti realization of a Q-endomorphism of Bx x x Spec(C)
and therefore the Hodge cycle (vgr,ver) on Bx is defined uniquely by a Q-
endomorphism of Bx.

The class of Hodge cycles is stable under pull backs. In particular, if X is a
reduced Q-scheme of finite type, then the pull back of (vgr,ve:) via a complex
point Spec(C) — X, is a Hodge cycle on the complex abelian variety Bx X x
Spec(C).

2.5.1. Example

Let A be an abelian variety over C. Let S be an irreducible, closed subvariety of A.
Let n be the codimension of S in A. To S one associates classes [S]ar € H3%(A/C),
(Sl € HZMA,Q)(n), and [S]p € H* (A, Q)(n). If [Slee = ([S])ia prime;
then the pair ([S]ar,[S]¢:) is a Hodge cycle on A which involves Tate twists
and whose Betti realization is [S]p. One can identify HZ"(A,Q;)(n) with a Q-
subspace of H, (A, Q))®"®q, [(HL,(A,Q;))*]®™ and H3%(A/C) with a C-subspace
of Hiz(A/C)®" @¢ [(Hig(A/C))*]®™; thus one can naturally view ([S]ar., [S]et)
as a Hodge cycle on A which involves no Tate twists. The Q-linear combinations
of such cycles ([S]ar, [S]et) are called algebraic cycles on A.

3. Shimura varieties

In this section we introduce Shimura varieties and their basic properties and
main types. All continuous actions are in the sense of [De2, Subsubsect. 2.7.1]
and are right actions. Thus if a totally discontinuous, locally compact group I'
acts continuously (from the right) on a scheme Y, then for each compact, open
subgroup A of I' the geometric quotient scheme Y/A exists and the epimorphism
Y — Y/A is pro-finite; moreover, we have an identity ¥ = proj.lim.AY/A.



8.1. Shimura pairs

A Shimura pair (G, X) consists of a reductive group G over Q and a G(R)-
conjugacy class X of homomorphisms S — Gp that satisfy Deligne’s axioms of
[De2, Subsubsect. 2.1.1]:

(i) the Hodge Q-structure on Lie(G) defined by each element z € X is of
type Tab = {(_17 1)7 (070)7 (17 _1)};

(ii) no simple factor of the adjoint group G of G becomes compact over R;

(iif) Ad(z(7)) is a Cartan involution of Lie(G§'), where Ad : Gg — GLy;0(gs0)
is the adjoint representation.

Axiom (iii) is equivalent to the fact that the adjoint group G&! has a faithful
representation Gﬁd — GLy, with the property that there exists a polarization of
the Hodge R-structure on Vg defined naturally by any x € X which is fixed by
Gﬁd. These axioms imply that X has a natural structure of a hermitian symmetric
domain, cf. [De2, Cor. 1.1.17].

For © € X we consider the Hodge cocharacter

Mm:Gm_)G(C

defined on complex points by the rule: z € G,,(C) is mapped to z¢(z,1) € G¢(C).

Let E(G,X) — C be the number subfield of C that is the field of definition
of the G(C)-conjugacy class [ux] of the cocharacters p,’s of Gc, cf. [Mi2, p.
163]. More precisely [ux] is defined naturally by a G(Q)-conjugacy class [,u(%] of
cocharacters G,, — G@; the Galois group Gal(Q) acts naturally on the set of such

G(Q)-conjugacy classes and F(G, X) is the number field which is the fixed field

of the stabilizer subgroup of [1%] in Gal(Q). One calls E(G, X) the reflex field of
(G, X).
We define the complex Shimura space

Sh(G, X)c := proj.lim. g c,(q) G(Q)\(X x G(Af)/K),

where o(G) is the set of compact, open subgroups of G(Ay) endowed with the
inclusion relation (see [Del], [De2], and [Mil] to [Mi4]). Thus Sh(G, X)c(C) is a
normal complex space on which G(A) acts. We have an identity

(16) Sh(G, X)c(C) = GQ\[X x (G(Af)/Z(G)(Q))];

where Z(G)(Q) is the topological closure of Z(G)(Q) in G(Ay) (cf. [De2, Prop.
2.1.10]). Let z € X and a,g € G(Ay). Let [z,a] € Sh(G, X)c(C) be the point
defined naturally by the equivalence class of (z,a) € X x G(Ay), cf. (16). The
G(Ay)-action on Sh(G, X)c(C) is defined by the rule [z,a] - g := [z, ag].

For § a compact subgroup of G(Ay) let Shy(G, X)c(C) := Sh(G, X)c(C)/1.
Let K € 0(G). We can write Shi (G, X)c(C) = G(Q)\(XxG(As)/K) as a disjoint
union of normal complex spaces of the form ¥\X° where X° is a connected



component of X and ¥ is an arithmetic subgroup of G(Q) (i.e., is the intersection
of G(Q) with a compact, open subgroup of G(Ay)). A classical result of Baily and
Borel allows us to view naturally Shx (G, X)c(C) = G(Q)\(X x G(Af)/K) as the
complex space associated to a finite, disjoint union Shg (G, X)¢ of normal, quasi-
projective, connected varieties over C (see [BB, Thm. 10.11]). Thus Shg (G, X)c
is a normal, quasi-projective C-scheme and

Sh(G, X)(c = pI‘Oj.lim.Keg(G) ShK (G, X)c

is a normal C-scheme on which G(Ay) acts. We have a canonical identifica-
tion Shi (G, X)c = Sh(G, X)c/K. If K is small enough, then K acts freely on
Sh(G, X)¢ and thus Shi (G, X)c¢ is in fact a smooth, quasi-projective C-scheme.

3.1.1. Example

Let A be an abelian variety over C. Let H4 be its Mumford—Tate group. Let
za S — Har be the homomorphism that defines the Hodge Z-structure on
Wa = Hy1(A*,Z), cf. Definition 2. Let X4 be the H4(R)-conjugacy class of z 4.
We check that the pair (Ha,X4) is a Shimura pair. The fact that the axiom 3.1
(i) holds for (Ha, X4) is implied by (15). If H3 has a (non-trivial) simple factor o
which over R is compact, then the fact that X4 is a hermitian symmetric domain
implies that the image of x4 in og is trivial and this contradicts the smallest
property (see Definition 2) of the Mumford-Tate group H4. Thus the axioms 3.1
(ii) holds for (Ha, X4). The fact that the axioms 3.1 (iii) holds is implied by the
fact that B has a polarization and thus by the fact that (14) holds. We emphasize
that the reflex field E(H 4, X4) can be any CM number field.

3.1.2. Example

The most studied Shimura pairs are constructed as follows. Let W be a vector
space over QQ of even dimension 27. Let 1 be a non-degenerate alternative form on
W. Let S be the set of all monomorphisms S < GSp(W®gR, 1) that define Hodge
Q-structures on W of type {(—1,0), (0, —1)} and that have either 2miy) or —2mit)
as polarizations. Thus S is two copies of the Siegel domain of genus r (the two
copies correspond to either 2mwiy or —2miy being a polarization of the resulting
Hodge Q-structures on W). It is easy to see that S is a GSp(W, ¢)(R)-conjugacy
class of homomorphisms S — GSp(W ®gR, ). One can choose an abelian variety
A over C such that in fact we have (GSp(W,¢),S) = (Ha,X4) and therefore
(GSp(W, 1), S) is a Shimura pair, cf. Example 3.1.1. We call (GSp(W,v),S) a
Shimura pair that defines a Siegel modular variety Sh(GSp(W,),S) (to be de-

fined in Subsection 3.2 below). As GSp(W, v) is a split group, the GSp(W, ¢)(Q)-

conjugacy class [M%] is defined naturally by a cocharacter of GSp(W, 1) and there-
fore we have E(GSp(W,),S) = Q.

3.1.8. Example

Let n be a positive integer. Let G := SO(2,n); it is the identity component of
the group that fixes the quadratic from —a% — 23 + 23 + -+ + 22, on Q"2
The group G has a subgroup SO2 xg SO,, which normalizes the rational vector



subspaces of Q"2 generated by the first two and by the last n vectors of the
standard Q-basis for Q"*2. Let = : S — Gr be a homomorphism whose image is
the subgroup SOz g of Gr and whose kernel is the split torus G,, of S. Let X be
the G(R)-conjugacy class of x. Then the pair (G, X) is a Shimura pair.

The group G, is split (i.e., Glisa subgroup of it) and thus the G(Q)-
conjugacy class [,u(%] is defined naturally by a cocharacter po : G, — Gogiy- We
can choose po such that the non-trivial element of Gal(Q(7)/Q) takes po under
Galois conjugation to pg 1 It is easy to see that the two cocharacters po and Ho 1
are G(Q(7))-conjugate. Therefore F(G, X) = Q.

If n = 19, then (G, X) is the Shimura pair associated to moduli spaces of
polarized K3 surfaces.

3.1.4. Example

Let T be a torus over Q. Let x : S — Ty be an arbitrary homomorphism. Then
the pair (T, {x}) is a Shimura pair. Its reflex field E := E(T, {z}) is the field of
definition of the cocharacter p, : G,, — Tc. We denote also by pu, : G,, — Tg
the homomorphism whose extension to C is .

From the homomorphism pu, : G,, — T we get naturally a new one

Res . orm
N, : Resg/oGm z/afa) Resp/oTE Nom B/Q

Thus for each commutative Q-algebra C' we get a homomorphism N, (C) :
Gm(E ®q C) — T(C).
Let E2P be the maximal abelian extension of E. The reciprocity map

(T, {z}) : Gal(E*/E) — T(Af)/T(Q)

is defined as follows: if 7 € Gal(E*"/E) and if s € Jg is an idele (of E) such
that recg(s) = 7, then r(T,{z})(7) := Ny (A)(ss), where sy is the finite part of
s. Here the Artin reciprocity map recg is such that a uniformizing parameter is
mapped to the geometric Frobenius element.

Definition 3. By a map [ : (G1,X1) — (G2, Xs) of Shimura pairs we mean a
homomorphism f : G1 — Ga of groups over Q such that for each x € X; we
have f(x) := frox € Xo. If f : G1 — G2 is a monomorphism, then we say
f:(G1,X1) — (Ga, Xa) is an injective map. If Gy is a torus and if f : (G1, X)) —
(G2, X2) is an injective map, then f is called a special pair in (Ga, Xs).

3.2. Canonical models
By a model of Sh(G,X)c over a subfield k of C, we mean a scheme S over k
endowed with a continuous right action of G(Ay) (defined over k), such that there

exists a G(Ay)-equivariant isomorphism

Sh(G, X)c->Sc.



The canonical model of Sh(G, X)¢ (or of (G, X) itself) is the model Sh(G, X)
of Sh(G, X)¢c over E(G,X) which satisfies the following property:

(*) of (T, {x}) is a special pair in (G,X), then for each element a € G(Ay)
the point [z,a] of Sh(G,X)(C) = Sh(G, X)c(C) is rational over E(T,{x})*® and
every element T of Gal(E(T,{z})*®/E(T,{z})) acts on [z, a] according to the rule

Tlx,a] = [z, ar(T)],
where v :=r(T,{x}) is as in Example 8.1.4.

The canonical model of Sh(G, X)) exists and is uniquely determined by the
property (*) up to a unique isomorphism (see [Del], [De2], [Mi2], and [Mi4]).

By the dimension d of Sh(G,X) (or (G,X) or Sh(G, X)c) we mean the di-
mension of X' as a complex manifold. One computes d as follows. For x € X, let
Lie(Ge) = F; 10 @ F2° @ F2~! be the Hodge decomposition defined by . Let
K be the centralizer of x in Gg; it is a reductive group over R (cf. [Bo, Ch. IV,
13.17, Cor. 2]). We have Lie(K) ®r C = F29 and (as analytic real manifolds)
X = [G(R)]/[Ks(R)]. Thus as dimg(F~1Y) = dime(F% 1), we get that
(17)

d= % dlm(GR/Koo) = % dlm(C(Lle(Gc)/FS@) = dim(C(Fm_l’O) _ dim([j(Fg’_l),

For § a compact subgroup of G(Ay) let Shy(G,X) := Sh(G,X)/i. If K €
o(G), then Shi(G,X) is a normal, quasi-projective E(G, X)-scheme which is
equidimensional of dimension d and whose extension to C is (canonically identified
with) the C-scheme Shg (G, X)c we have introduced in Subsection 3.1.

If f: (G1,X1) — (Ga,A3) is a map between two Shimura pairs, then
E(G2, X») is a subfield of E(G1, X1) and there exists a unique G1 (A f)-equivariant
morphism (still denoted by f)

(18) f . Sh(Gl, Xl) — Sh(GQ, XQ)E(Gl,Xl)

which at the level of complex points is the map [z,a] — [f(z), f(a)] ([Del, Cor.
5.4]). We get as well a G(Ay)-equivariant morphism (denoted in the same way)

f : Sh(Gl, Xl) — Sh(GQ, Xg)

of E(Gy, Xs)-schemes. If f is an injective map, then based on (16) one gets that
(18) is in fact a closed embedding.

8.8. Classification of Shimura pairs

Let (G, X) be a Shimura pair. If x € X, let 22" : S — G&" and 229 : S — G&d be
the homomorphisms defined naturally by x : S — Gg. The homomorphism P
does not depend on x € X and the Shimura pair (G*”, {*}) has dimension 0.
Let X2 be the G24(R)-conjugacy class of 2. The Shimura pairs (G2P, {z*P})
and (G, x2d) are called the toric and the adjoint (respectively) Shimura pairs of



(G, X). The centralizer Ko aq of 224 in Gﬁd is a reductive group over R which is
a maximal compact subgroup of G&%. The hermitian symmetric domain structure
on X is obtained via the natural identification X*! = [G2(R)]/[K oo .aa(R)].
The hermitian symmetric domain X is a finite union of connected components of
x4 In particular, we have X C x4,

We have a product decomposition

(19) (G x) = T[(Gi, %)

icl

into simple adjoint Shimura pairs, where each G; is a simple group over Q. For
each i € I there exists a number field F; such that we have an isomorphism
G;—=Resp, /QGf ‘. where Gf ¢ is an absolutely simple adjoint group over F; (see [Ti,
Subsubsect. 3.1.2]). The number field F; is uniquely determined up to Gal(Q)-
conjugation (i.e., up to isomorphism).

Axiom 3.2 (iii) is equivalent to the fact that G&! is an inner form of its compact
form G%d’c, cf. [De2, p. 255]. Thus G&d is a product of absolutely simple, adjoint
groups over R. But for each i € I we have G; g—Resp, g r/r [GF x g, (F; @9 R)).
From the last two sentences, we get that for each ¢ € I the R-algebra F; ®g R is
isomorphic to a finite number of copies of R. In other words, for each ¢ € I the
number field F; is totally real.

We have the following conclusions of the last three paragraphs:

(i) Let G be a reductive group over Q. To give a Shimura pair (G, X) is
the same thing as to give a Shimura pair (G2, {z2"}) of dimension 0 (i.e., a
homomorphism 22 : S — G&P) and an adjoint Shimura pair (G*¢, x24), with the
properties that for an (any) element x4 € X34 the homomorphism (22", z2d) :
S — G& xg G&4 lifts to a homomorphism z : S — G, where Gg — G&° x G
is the standard isogeny. One takes X to be the G(R)-conjugacy class of x. We
emphasize that the Shimura pair (G, X) can depend on the choice of z2d € x4
(though its isomorphism class does not).

(ii) To give an adjoint Shimura pair (G4, X2d) is the same thing as to give
a finite set (G;, X;) of simple adjoint Shimura pairs, cf. (19).

(iii) To give a simple adjoint Shimura pair (G;, X;), one has to first give a
totally real number field F; and an absolutely simple, adjoint group GZF * over F;
that satisfies the following property:

(*) for each embedding j : F; — R, the group Gfi X F;.; R is either compact
(and then one defines &; ; to be a set with one element) or is not compact and
associated naturally to a connected hermitian symmetric domain A ;.

The product [] jeHom(F; R) A, ; is a connected hermitian symmetric domain iso-
morphic to the connected components of &;. If G,F ¢ is of classical Lie type and if
G¥* x g, ; R is not compact, then Gi* X, ; R is isomorphic to either SU(a, b)3

?

with a,b > 1, or SO(2,n)a with n > 1, or Spgfh]R with n > 1, or SO*(2n)ad



with n > 4. The last think one has to give is a family of homomorphisms
i+ S/Gp — Gf"' x r; ; R, where

o x; ; is trivial if G;* X, ; R is compact, and

e z; ; identifies S/G,, = SOz r with the identity component of the center of
a maximal compact subgroup of GI* x g, ; R if GI* X, ; R is not compact.

One takes X; to be the G;(R)-conjugacy class of the composite of the natural
epimorphism S — S/G,,, with HjEHom(Fi,R) 25 S/Gy — Gir. Once F; and G?
are given, there exist a finite number of possibilities for &; (they correspond to
possible replacements of some of the z; ;’s by their inverses).

8.8.1. Shimura types

A Shimura variety Sh(Gy, X)) is called unitary if the adjoint group G4 is non-
trivial and all simple factors of GT% are PGL groups over C.

Let (G, X) be a simple, adjoint Shimura pair. Let £ be the Lie type of anyone
of the simple factors of G¢. If £ is either A,, B,, C,, Eg, or E7, then one say
that (G, X) is of £ Shimura type. If £ is D,, with n > 4, then there exist three
disjoint possibilities for the type of (G, X): they are DE, DR and Dmixed [fp > 5,
then (G, X) is of DE (resp. of D®) Shimura type if and only if each simple, non-
compact factor of Gy is isomorphic to SO*(2n)3d (resp. to SO(2,2n — 2)3d). The
only if part of the previous sentence holds even if n = 4.

We will not detail here the precise difference between the Shimura types DY,
D% and Dyixed (see [De2, p. 272]).

8.4. Shimura varieties of Hodge type

Let (G, X) be a Shimura pair. We say that Sh(G, X) (or (G, X)) is of Hodge type,
if there exists an injective map f : (G,X) — (GSp(W,v),S) into a Shimura
pair that defines a Siegel modular variety. The Hodge Q-structure on W defined
by any z € X is of type {(—1,0),(0,—1)}, cf. (13b). This implies that z(G,,)
is the group of scalar automorphisms of GLy g r. Therefore Z(G) contains the
group G, = Z(GLw ) of scalar automorphisms of W. The image of Z(G)g in
GSp(W, )3 is contained in the centralizer of the image of z in GSp(W, ¥)ad and
thus it is contained in a compact group. From the last two sentences we get that
we have a short exact sequence

(20) 0—-Gpn—Z(G)— Z(G)° =0,

where Z(G)§ is a compact group of multiplicative type. In this way we get the
only if part of the following Proposition (see [De2, Prop. 2.3.2 or Cor. 2.3.4]).
Proposition 2. A Shimura pair (G, X) is of Hodge type if and only if the following

two properties hold:

(i) there ezists a faithful representation G — GLy with the property that the
Hodge Q-structure on W defined by a (any) x € X is of type {(—1,0),(0,—1)};

(if) we have a short exact sequence as in (20).



If (G, X) is of Hodge type, then (16) becomes (cf. [De2, Cor. 2.1.11])
Sh(G, X)(C) = GIQ\(X x G(Ay)).

3.4.1. Moduli interpretation

Let f: (G, X) — (GSp(W,4),S) be an injective map. We fix a family (sq)acs
of tensors of 7 (W*) such that G is the subgroup of GSp(W, ) that fixes s, for
all @ € J, cf. [De3, Prop. 3.1 (¢)]. Let L be a Z-lattice of W such that we have
a perfect form ¢ : L ®z L — Z. We follow [Val, Subsect. 4.1] to present the
standard moduli interpretation of the complex Shimura variety Sh(G, X)c with
respect to the Z-lattice L of W and the family of tensors (s4)acs-

We consider quadruples of the form [A, A4, (Va)ac, k] where:

(a) (A, \4) is a principally polarized abelian variety over C;
(b) (va)aes is a family of Hodge cycles on A;

(c) k is an isomorphism H;(A4*",7Z) ®z N Q7 7 whose tensorization with
Q (denoted also by k) takes the Betti realization of v, into s, for all « € J and
which induces a symplectic similitude isomorphism between (H;(A?", Z)@ZZ Aa)
and (L ®g, Z,1)).

We define A(G, X, W, 1) to be the set of isomorphism classes of quadruples
of the above form that satisfy the following two conditions:

(i) there exists a similitude isomorphism (H; (A%, Q), A4)=(W, v) that takes
the Betti realization of v, into s, for all a € J;

(ii) by composing the homomorphism x4 : S — GSp(H;(A*",R),A4) that
defines the Hodge R-structure on Hi (A", R) with an isomorphism of real groups

GSp(H;(A*,R), A4)=>GSp(W ®¢ R, ¢) induced naturally by an isomorphism as
in (i), we get an element of X.

We have a right action of G(Af) on A(G, X, W, ) defined by the rule:

[Aa A4, (Ua)aeja k] g = [Alv Aar, (Ua)aeja g_lk]'

Here A’ is the abelian variety which is isogeneous to A and which is defined by the
Z-lattice H (A", Z) of Hi (A" Q) = H1(A*,Q) whose tensorization with Z
is (k~tog)(L®z Z), while A4 is the only rational multiple of A4 which produces
a principal polarization of A’ (see [Del, Thm. 4.7] for the theorem of Riemann
used here). Here as well as in (e) below, we will identify a polarization with its
Betti realization.

There exists a G(Ay)-equivariant bijection

fie.xww)  Sh(G, X)(C)=A(G, X, W, ¢)

defined as follows. To [z, g] € Sh(G,X)(C) = G(Q) \ (X x G(Ay)) we associate
the quadruple fia x w,y)([2,9]) == [4, Aa, (Va)aes, k] where:



(d) A is associated to the Hodge Q-structure on W defined by z and to the
unique Z-lattice Hy(A**,Z) of H1(A*,Q) = W for which we have an isomor-
phism k = g7 : H1(A*,Z) ®7 7L Rz Z induced naturally by the automor-
phism g~ of W ®g A¢; thus we have A*™ = H; (A, Z)\(W ®g C)/W !, where
W ®qC =W, 19¢ W21 is the Hodge decomposition defined by z;

(e) A4 is the only rational multiple of ¢ which gives birth to a principal
polarization of A;

(f) for each o € J, the Betti realization of v, is sq.

The inverse ga,x,w,y) of fa,.x,w,y) is defined as follows. We consider a
quadruple [A, A4, (Vo)acr, k] € A(G, X, W,1). We choose a symplectic similitude
isomorphism i4 : (Hy (A4, Q),Aa)=(W, %) as in (i). It gives birth naturally to
an isomorphism 74 : GSp(H;(A*,Q),\4) — GSp(W, 1) of groups over Q. We
define z € X to be iggoxa (with 24 as in Definition 2) and g € G(A}) to be the

-1 ®1
composite isomorphism W ®qg A £ H (A*™,Q) ®g Ay U w ®g Ay. Then

g(G,X,W,’([))([Aa )\A7 (Ua)aEJ» k]) = [Img]

Taking (G,X) = (GSp(W,),S) and J = 0, we get a bijection between
the set Sh(GSp(W,),S)(C) and the set of isomorphism classes of principally
polarized abelian varieties over C of dimension $ dimg(W) that have (compati-
bly) level-N symplectic similitude structures for all positive integers N. Thus to
give a C-valued point of Sh(GSp(W,1),S) is the same thing as to give a triple
[A, A, (InN) nen], where (A, A4) is a principally polarized abelian variety over C
of dimension £ dimg (W) and where Iy : (L/NL,¢)=(H,(A™,Z/NZ),\4)’s are
forming a compatible system of symplectic similitude isomorphisms. The compat-
ibility means here that if Ny and Ny are positive integers such that Ni|Ng, then
In, is obtained from Iy, by tensoring with Z/N;Z.

8.4.2. Canonical models

Let r := 1 dimg(W) € N. Let N > 3 be a positive integer. Let A, 1 v be the
Mumford-moduli scheme over Z[3;] that parametrizes isomorphism classes of
principally polarized abelian schemes over Z[%]—schemes that have level-IN sym-
plectic similitude structure and that have relative dimension r, cf. [MFK, Thms.

7.9 and 7.10]. We consider the Q-scheme
Ap1an i= projlim. yenAr 1 N

We have a natural identification Sh(GSp(W, ), S)(C) = A, 1,an1(C) of sets,
cf. end of Subsubsection 3.4.1. One can easily check that this identification is
in fact an isomorphism of complex manifolds. From the very definition of the
algebraic structure on Sh(GSp(W, ), S)c (obtained based on [BB, Thm. 10.11]),
one gets that there exists a natural identification Sh(GSp(W, ), S)c = Ar1,a1,c
of C-schemes. Classical works of Shimura, Taniyama, etc., show that the last
identification is the extension to C of an identification Sh(GSp(W, ), S) = A, 1.an
of Q—schemes.



The reflex field E(G,X) is the smallest number field such that the closed
subscheme Sh(G, X)¢ of Sh(GSp(W, ), S)c is defined over E(G,X). In other
words, we have a natural closed embedding (cf. end of Subsection 3.2)

(21) [ :Sh(G,X) = A1 an,6@G,x) = Sh(GSp(W,¥), S)pq,x)-

The pull back (V, Ay) to Sh(G, X) of the universal principally polarized abelian
scheme over A,.; a1 g(G,x) is such that there exists naturally a family of Hodge
cycles (vX)aecs on the abelian scheme V.

Ity := [xvg] € Sh(G7 X)((C) and if f(G,X,W,w)([x’g]) - [Av A4, (Ua)a637 k‘}v
then each y*(vY) is the Hodge cycle v, on A = y*(V).

Definition 4. Let (G1, X1) be a Shimura pair. We say that (G1, X1) is of preabelian
type, if there exists a Shimura pair (G, X) of Hodge type such that we have an
isomorphism (G*4, xX24) (G, x24) of adjoint Shimura pairs. If moreover this
isomorphism (G*4, X2 =5(G34, X)) is induced naturally by an isogeny G4 —
G{e*, then we say that (G, X1) is of abelian type.

Remark 1. Let (G1, X1) be an arbitrary Shimura variety. Let p1 : G1 — GLyy, be
a faithful representation. As in Subsubsection 3.4.1, one checks that Sh(Gy, X1 )c
18 a moduli space of Hodge Q—structures on W1 equipped with extra structures. If
moreover (G1, X1) is of abelian type, then Sh(G1, X1)c is in fact a moduli scheme
of polarized abelian motives endowed with Hodge cycles and certain compatible
systems of level structures (cf. [Mi3]).

3.4.3. Classification

Let (Gy, &X1) be a simple, adjoint Shimura pair. Then (G1, A7) is of abelian type if
and only if (G, X1) is of A, B, Cy, DE, or D¥ Shimura type. For this classical
result due to Satake and Deligne we refer to [Sal], [Sa2, Part III], and [De2,
Table 2.3.8]. There exists a Shimura pair (G, X') of Hodge type whose adjoint is
isomorphic to (G1, &;) and whose derived group G9°' is simply connected if and
only if (Gy, X)) is of A, By, Cy, or DX Shimura type (cf. [De2, Table 2.3.8]).

4. Integral models

In this Section we follow [Mi2] and [Val] to define different integral models of
Shimura varieties. Let p € N be a prime. Let Z(,) be the location of Z at its prime

ideal (p). Let Agcp ) be the ring of finite adeles with the p-component omitted; we

have Ay = Q, X Agcp). Let (G, X) be a Shimura pair. Let v be a prime of E(G, X)
that divides p. Let O(,) be the local ring of v.

4.1. Basic definitions

(a) Let H be a compact, open subgroup of G(Q,). By an integral model of
Shy (G, X) over O,y we mean a faithfully flat scheme N over Oy, together with

a G(A;p ))-continuous action on it and a G(A(fp ))-equivariant isomorphism



NE(G,X)% ShH(G, X)

When the G(A(p ))—action on N is obvious, by abuse of language, we say that the
O(y)-scheme ./\/fis an integral model. The integral model N is said to be smooth

(resp. normal) if there exists a compact, open subgroup Hy of G(Agcp )) such that
for every inclusion Ho C H; of compact, open subgroups of Hy, the natural
morphism A/Hy — N/H; is a finite étale morphism between smooth schemes
(resp. between normal schemes) of finite type over O(,). In other words, there
exists a compact open subgroup Hy of G(Ascp )) such that N is a pro-étale cover
of the smooth (resp. the normal) scheme N'/Hj of finite type over O,).

(b) A regular, faithfully flat O(,)-scheme Y is called p-healthy (resp. healthy)
regular, if for each open subscheme U of Y which contains Yy and all points of
Y of codimension 1, every p-divisible group (resp. every abelian scheme) over U

extends uniquely to a p-divisible group (resp. extends to an abelian scheme) over
Y.

(c) A scheme Z over O, is said to have the extension property if for each
healthy regular scheme Y over O,), every E(G, X)-morphism Yg g x) — ZgG,x)
extends uniquely to an O(,y-morphism Y — Z.

(d) A smooth integral model of Shy (G, X) over O, that has the extension
property is called an integral canonical model of Sh(G,X)/H over O(,).

(e) Let D be a Dedekind domain. Let K be the field of fractions of D. Let
Zx be a smooth scheme of finite type over K. By a Néron model of Zx over
D we mean a smooth scheme of finite type Z over D whose generic fibre is Zx
and which is uniquely determined by the following universal property: for each
smooth scheme Y over D, every K-morphism Yx — Zk extends uniquely to a
D-morphism Y — Z.

(f) The group Gq, is called unramified if and only if extends to a reduc-
tive group scheme Gz, over Z,. In such a case, each compact, open subgroup of
Go,(Qp) of the form Gz, (Z,) is called a hyperspecial subgroup of Gq, (Qp).

(g) Let Z be a flat O(,)-scheme and let Y be a closed subscheme of Zj,,. The
dilatation W of Z centered on Y is an affine Z-scheme defined as follows. To define
W, we can work locally in the Zariski topology of Z and therefore we van assume
that Z = Spec(C) is an affine scheme. Let I be the ideal of C' that defines Y and
let m, be a uniformizer of O,). Then W is the spectrum of the C-subalgebra of
C[%] generated by % with 4 € I. The affine morphism W — Z of O,)-schemes
enjoys the following universal property. Let ¢ : Z — Z be a morphism of flat
O(y)-schemes. Then ¢ factors uniquely through a morphism Z — W of Z-schemes
if and only if g, : Zk(v) — Zy(v) factors through Y (i.e., gi(,) is a composite
morphism Zk(v) =Y = Zyw)-

4.2. Classical example

Let f : (G,X) — (GSp(W,%),S) be an injective map. Let L be a Z-lattice of
W such that v induces a perfect form ¢ : L ®z L — Z. Let N > 3 be a natural



number which is prime to p. Let
K(N) := {g € GSp(L,)(Z)|g mod N is identity} and K, :=GSp(L,¢)(Zy).
We have an identity K, = K(N)NGSp(W,¢)(Q,). Let

M = proj.lim. yen g.c.d.(N,p)=1Ar1,N;

it is a Zp)-scheme that parametrizes isomorphism classes of principally polar-
ized abelian schemes over Z,)-schemes that have compatible level-N symplectic
similitude structures for all N € N prime to p and that have relative dimension
r.

The totally discontinuous, locally compact group GSp(W, ) (A;p )) acts con-
tinuously on M and moreover M is a pro-étale cover of A, 1, NZ, forall N e N
prime to p. From (21) we get that we can identify Shgn)(GSp(W,v),S) =
Ar.1.n,0 and Shg, (GSp(W, 1), S) = Mgq. From the last two sentences we get that
M is a smooth integral model of Shg, (GSp(W,),S) over Z,).

Let Gy, be the Zariski closure of G in GLrg,z,,; it is an affine, flat group
scheme over Z,y whose generic fibre is G. Let H(N) := K(N) N G(Ay) and
H,:= H(N)NG(Q,). From (21) we easily get that we have finite morphisms

(22a) F(N) : Shyn) (G, X) — Sh(n) (GSp(W, ¢), S)
and
(22b) f, < Shy, (G, X) — Shy (GSp(W, ), S).

As N > 3, a principally polarized abelian scheme with level-N structure has
no automorphism (see [Mu, Ch. IV, 21, Thm. 5] for this result of Serre). This
implies that K (V) acts freely on A,.1 a11,5(q,x) = Sh(GSp(W, ), S) g(a,x)- From
this and (21) we get that H(NN) acts freely on Sh(G, X). Therefore the E(G, X)-
scheme Shy(n)(G,X) is smooth and thus Shy, (G, X) is a regular scheme which
is formally smooth over E(G, X).

Let N(N) be the normalization of A,; n in the ring of fractions of
Sh(ny (G, X) and let NV, be the normalization of M in the ring of fractions of
Shg, (G, X). [Comment: the role of the integral model A" used in Section 1, will be
played in what follows by N'(INV).] Let O(G, X) be the ring of integers of E(G, X).
Let O(G, X)) := O(G,X) @z Z(y; it is the normalization of Z,) in E(G,X).
The scheme N(N) is a faithfully flat O(G, X)[+]-scheme which is normal and
of finite type and whose generic fibre is Shyn) (G, X) (the finite type part is
implied by the fact that Oy, is an excellent ring). The scheme N, is a faithfully
flat O(G, X')(p)-scheme which is normal and whose generic fibre is Shy, (G, X).

One gets the existence of a finite map

F(N):N(N) = Aan

and of a pro-finite map



fp: Np = M

that extends naturally (22a) and (22b) (respectively). Moreover, the totally dis-
continuous, locally compact group G(AE‘P )) acts continuously on N,,. Let

Ny =Ny ®0(G,%) () Ow)-

(p)
Proposition 3. (a) The O(,)-scheme N, is a normal integral model of Sh(G, X)
over O(y). Moreover, N, is a pro-étale cover of N(N)o,,, -

(b) The morphism f, : N, — M is finite.

Proof: Let Hy be a compact, open subgroup of G(AE}J)) such that H, x Hy is a
compact, open subgroup of H(N). As H(N) acts freely on M, it also acts freely
on N,. This implies that N, is a pro-étale cover of both N'(N)o,,, and N, /Ho.
Therefore for all open subgroups H; and Hs of Hy with Hy < Hs, the morphism
No/Hy — N,/H; is a finite morphism between étale covers of N(N)o,,, and
therefore it is an étale cover. Based on this, one easily checks that the right action
of G(Agcp)) on N, is continuous. Thus (a) holds.

Part (b) is an easy consequence of the fact that N,/ Hy is a finite scheme over
Moc,x)q, /Ho. 0

4.2.1. PEL type Shimura varieties
Let B be the Q—subalgebra of End (W) formed by elements fixed by G. We consider

two axioms:

(*) the group G is the identity component of the centralizer of B in GSp(W, ¢);
(**) the group G is the centralizer of B in GSp(W, ).

If the axiom (*) holds, then one calls Sh(G, X') a Shimura variety of PEL type.
If the axiom (**) holds, then one calls Sh(G, X') a Shimura variety of PEL type
of either A or C type. Here PEL stands for polarizations, endomorphisms, and
level structures while the A and C types refer to the fact that all simple factors
of G%d are (under the axiom (**)) of some A,, or C, Lie type (and not of D,, Lie
type with n > 4).

If the axiom (**) holds, then we can choose the family (v4)aes to be exactly
the family of all elements of B. In such a case, all Hodge cycles mentioned in
Subsection 3.4.2 are defined by endomorphisms. Let B,y := BN End(Lg,z,, ); it
is a Z,y-order of B.

4.2.2. Example

Suppose that B, is a semisimple Z,)-algebra and that Gz, is the centralizer
of B(y) in the group scheme GSp(L ®z Z(;), ). Then Gz, is a reductive group
scheme and moreover NV, (resp. N,) is a moduli scheme of principally polarized
abelian schemes which are over O(G, ) ,)-schemes (resp. over O(,)-schemes),
which have relative dimension r, which have compatible level-N symplectic simil-



itude structures for all N € N prime to p, which are endowed with a Z,)-algebra
By of Z)-endomorphisms, and which satisfy certain axioms that are related to
the properties (d) to (f) of Subsubsection 3.4.2. Unfortunately, presently this is
the only case when N, (resp. when N,) has a good moduli interpretation. This
explains the difficulties one encounters in getting as well as of stating results
pertaining to either A\, or N,,.

4.3. Main problems

Here is a list of six main problems in the study of N(N), N, and N,. For
simplicity, these problems will be stated here only in terms of N'(N).

(a) Determine when A (V) is uniquely determined up to isomorphism by its
generic fibre Shyy N)(G, X) and by a suitable universal property.

(b) Determine when N(N) is a smooth O(G, X)[+]-scheme.

(c) Determine when N(N) is a projective O(G, X)[+]-scheme.

(d) Identify and study different stratifications of the special fibres of N'(IV).

(e) Describe the points of N (N) with values in finite fields.

(f) Describe the points of N'(N) with values in O[+], where O is the ring of

integers of some finite field extension of E(G, X).

In the next four Sections we will study the first four problems one by one, in
a way that could be useful towards the partial solutions of the problem (e). Any
approach to the problem (f) would require a very good understanding of the first
five problems and this is the reason (as well as the main motivation) for why the
six problems are listed together.
5. Uniqueness of integral models

Until the end we will use the following notations introduced in Section 4:

f : (G’ X) — (GSp(VI/? ,(/})78)7 L? N7 K(N)’ KP’ H(N)’ HP’ O(G7 X)?

O(G, X)), v, Owy, fFIN):N(N)— Arin, fp:Np =M, Ny, Gz,
Let e, be the index of ramification of v. Let k(v) be the residue field of v. Let
L(N)y == N(N) @o(c,x)1 k(v) and L, =N, ®o,, k().
In this Section we study when the k(v)-scheme L(N), (resp. £,) is uniquely

determined in some sensible way by Shyn)(G,&) (resp. by Shy (G, X)) and
by the prime v of E(G, X). Whenever one gets such a uniqueness property, one



can call L(N), (resp. L£,) as the canonical fibre model of Shy(ny)(G,X) (resp.
Shy, (G, X)) at v (or over k(v)).

Milne’s original insight (see [Mi2] and [Val]) was to prove in many cases the
uniqueness of NV, and £, by showing first that:

(i) the O,y-scheme N, has the extension property, and
(ii) NV, is a healthy regular scheme in the sense of Definition 4.1 (b).

While (i) always holds (see Proposition 4 below), it is very hard in general
to decide if (ii) holds. However, results of [Val], [Va2], and [Vall] allow us to
get that (ii) holds in many cases of interest (see Subsection 5.1). Subsection 5.2
shows how one gets the uniqueness of N (V) (and therefore also of L(N),) via
(the uniqueness of) Néron models.

Proposition 4. The O(,)-scheme N, has the extension property.

Proof: Let Y be a healthy regular scheme over O(,). Let ¢ : Yg(g x) — Shg, (G, X)
be a morphism of E(G, X)-schemes. Let (U, \y) be the pull back to Yg g, x) of the
universal principally polarized abelian scheme over M (via the composite mor-
phism Yg g x) — Shy, (G, X) — Shg, (GSp(W,¢),S) = Mg). As the universal
principally polarized abelian scheme over M has a level-N symplectic similitude
structure for all N € N prime to p, the same holds for (U, A/). From this and the
Néron-Ogg—Shafarevich criterion of good reduction (see [BLR, Ch. 7, 7.4, Thm.
5]) we get that U extends to an abelian scheme Uy over an open subscheme U of
Y which contains Yp = Yg (g x) and for which we have codimy (Y \ U) > 2. Thus
Uy extends to an abelian scheme Uy over Y, cf. the very definition of a healthy
regular scheme. The polarization Ay extends as well to a polarization Ay, of Uy,
cf. [Mi2, Prop. 2.14]. Moreover, each level-N symplectic similitude structure of
(U, M) extends to a level-N symplectic similitude structure of (Uy, Ay, ). This
implies that the composite of ¢ with the finite morphism Shy (G, X) — Mg x)
extends uniquely to a morphism Y — Mop, . As Y is a regular scheme and thus
also normal and as NV, — Mo,,, 1s a finite morphism, we get that the morphism
Y — Mo, factors uniquely through N, (as it does so generically). This implies
that ¢ : Yg(g,x) — Shg, (G, X) extends uniquely to a morphism gy : Y — N, of
O(y)-schemes. From this the Proposition follows. O

Proposition 5. Let Y be a regular scheme which is faithfully flat over Z,y. Then
the following two properties hold:

(a) Let U be an open subscheme of Y which contains Yo and the generic
points of Yr,. Let Ay be an abelian scheme over U with the property that its p-
divisible group Dy extends to a p-divisible group D over Y. Then Ay extends to
an abelian scheme A over U.

(b) If Y is a p-healthy regular scheme, then it is also a healthy regular scheme.

Proof: Part (b) follows from (a) and the very definitions. To prove (a) we follow
[Va2, Prop. 4.1]. Let N > 3 be a positive integer relatively prime to p.



To show that A exists, we can assume that Y is local, complete, and strictly
henselian, that U is the complement of the maximal point y of Y, that Ay has
a principal polarization A4, , and that (Ay, A4, ) has a level-N symplectic simil-
itude structure Iy n (see [FC, (i)-(iii) of pp. 185, 186]). We write ¥ = Spec(R).
Let Ap, be the principal quasi-polarization of Dy defined naturally by A4, ; it
extends to a principal quasi-polarization Ap of D (cf. Tate’s theorem [Ta, Thm.
4]). Let r be the relative dimension of Ay. Let (A, A 4) be the universal principally
polarized abelian scheme over A, 1 n.

Let my : U — A, 1,5 be the morphism defined by (Ay, Aa,,lu,n). We show
that my extends to a morphism m:Y — A, 1 n.

Let Ny € N be prime to p. From the classical purity theorem we get that the
étale cover Ay[Ny] — U extends to an étale cover Yy, — Y. But as Y is strictly
henselian, Y has no connected étale cover different from Y. Thus each Yy, is a
disjoint union of NZ"-copies of Y. From this we get that (Ay, A4, ) has a level-Ng
symplectic similitude structure Iy, for every Ny € N prime to p.

Let A, 1 n be a projective, toroidal compactification of A, 1 y such that (cf.
[FC, Chap. IV, Thm. 6.7]):

(a) the complement of A, 1 y in .717”,1’ ~ has pure codimension 1 in XM, ~ and

(b) there exists a semi-abelian scheme over XT,L ~ that extends A.

Let Y be the normalization of the Zariski closure of U in Y X7, ./Tlm,N. It
is a projective, normal, integral Y-scheme which has U as an open subscheme.
Let C' be the complement of U in Y endowed with the reduced structure; it is a
reduced, projective scheme over the residue field k of y. The Z-algebras of global
functions of Y, U, and Y are all equal to R (cf. [Ma, Thm. 38] for U). Thus C' is
a connected k-scheme, cf. [Ha, Ch. III, Cor. 11.3] applied to Y — Y.

Let Zg be the semi-abelian scheme over ¥ that extends Ay (it is unique, cf.
[FC, Chap. I, Prop. 2.7]). Due to the existence of the Iy n,’s, the Néron-Ogg—
Shafarevich criterion implies that Ay is an abelian scheme in codimension at
most 1. Therefore, since the complement of A, 1 y in ZM, ~ has pure codimension
1 in ZT,L N, it follows that Zf, is an abelian scheme. Thus my extends to a
morphism my : Y — A1 n. Let )‘Zf, = m*Y(AA). Tate’s theorem implies that
the principally quasi-polarized p-divisible group of (Zy,)\zf/) is the pull-back

(Dy, Ap, ) of (D, Ap) to Y. Hence the pull back (D¢, Ap..) of (Dy, Ap, ) to C is
constant i.e., it is the pull back to C' of a principally quasi-polarized p-divisible
group over k.

We check that the image my (C) of C through my is a point {yo} of A1 n.
Since C' is connected, to check this it suffices to show that, if 66 is the comple-
tion of the local ring O, of C' at an arbitrary point ¢ of C, then the morphism
Spec(O.) — Ay n defined naturally by my is constant. But as (D¢, Ap,,) is
constant, this follows from Serre-Tate deformation theory (see [Me, Chaps. 4, 5]).
Thus my (C) is a point {yo} of A1 n.

Let Ry be the local ring of A, 1 v at yo. Because Y is local and Y isa pro-
jective Y-scheme, each point of Y specializes to a point of C. Hence each point of
the image of my specializes to yo and thus my factors through the natural mor-



phism Spec(Ry) — A, 1,n. Since R is the ring of global functions of Y, the result-
ing morphism Y — Spec(Ry) factors through a morphism Spec(R) — Spec(Rj).
Therefore my factors through a morphism m : Y — A, ; v that extends my.
This ends the argument for the existence of m. We conclude that A := m*(A) is
an abelian scheme over Y which extends Ay. Thus (a) holds. O

5.1. Examples of healthy reqular schemes

In (the proofs of) [FC, Ch. IV, Thms. 6.4, 6.4°, and 6.8] was claimed that every
regular scheme which is faithfully flat over Z,) is p-healthy regular as well as
healthy regular. In turns out that this claim is far from being true. For instance,
an example of Raynaud-Gabber—Ogus (see [dJO1, Sect. 6]) shows that the regular
scheme Spec(W (k)[[z,y]]/((xy)P~* — p)) is neither p-healthy nor healthy regular.
Here W (k) is the ring of Witt vectors with coefficients in a perfect field &k of
characteristic p.

Based on Proposition 5 (b) and a theorem of Raynaud (see [Ra, Thm. 3.3.3]),
one easily checks that if e, < p — 2, then each regular scheme which is formally
smooth over O, is a healthy regular scheme (see [Val, Subsubsect. 3.2.17]). In
[Va2, Thm. 1.3] it is proved that the same holds provided e, = 1. In [Vall] it is
proved that the same holds provided e, = p — 1. Even more, in [Vall, Thm. 1.3
and Cor. 1.5] it is proved that:

Theorem 1. (a) Suppose that p > 2. Fach regular scheme which is formally smooth
over Oy 1s healthy regular if and only if the following inequality holds e, < p—1.

(b) Suppose that p = 2 and e, = 1. Then each regular scheme which is
formally smooth over O, is healthy regular.

Part (a) also holds for p = 2 but this is not checked loc. cit. and this is why
above for p = 2 we stated only one implication in the form of (b). From Theorem
1 and Propositions 3 (a) and 4 we get the following answer to the problem 4.3

(a):

Corollary 1. Suppose that e, < p — 1 and that N, is a reqular scheme which is
formally smooth over O,y (i.e., and that ./\/'(N)O(v) is a smooth O(y,)-scheme).
Then N, is the integral canonical model of Shy (G, X) over O(v) and it is uniquely
determined up to unique isomorphism. Thus also L(N), and L, are uniquely
determined by Shy(ny(G, X) and Shy, (G, X) (respectively) and v.

5.1.1. Example
The integral canonical model of Shy, (GSp(W, ), S) over Z, is M.

5.2. Integral models as Néron models

In [Ne] it is showed that ecach abelian variety over the field of fractions K of a
Dedekind domain D has a Néron model over D. In [BLR] it is checked that many
other closed subschemes of torsors of certain commutative group varieties over
K, have Néron models over D. But most often, for N >> 0 the E(G, X')-scheme
Sh(n)(G, &) can not be embedded in such torsors; we include one basic example.



5.2.1. Example

Suppose that G3d is isomorphic to SU(a, b)3d xg SU(a + b,0)3 for some pos-
itive integers a > 3 and b > 3. One has H%(C(C),C) = 0 for each con-
nected component C of Shy(n) (G, X)c, cf. [Pa, Thm. 2, 2.8 (i)]. The analytic
Lie group Alb(C)*" associated to the albanese variety Alb(C) is isomorphic to
[Hom(H°(C(C),C),C)]/H,(C,Z) and therefore it is 0. The Q-rank of G*! is 0
and this implies that Shyny)(G, X) is a projective E(G, X)-scheme, cf. [BHC,
Thm. 12.3 and Cor. 12.4]. From the last two sentences one gets that C is a con-
nected, projective variety over C whose albanese variety Alb(C) is trivial. Thus C
can not be embedded into commutative group varieties over C. Therefore the con-
nected components of the E(G,X)-scheme Shyny(G, X) can not be embedded
into torsors of commutative group varieties over E(G, X).

Based on the previous example we get that the class of Néron models intro-
duced below is new (cf. [Va4, Prop. 4.4.1] and [Vall, Thm. 4.3.1]).

Theorem 2. Suppose that for each prime p that does not divide N and for every
prime v of E(G,X) that divides p, we have e, < p — 1. Suppose that N'(N) is
a smooth, projective O(G, X)[x-]-scheme. Then N'(N) is the Néron model of its
generic fibre Shy(n)(G, X) over O(G, X)[+] (and thus it is uniquely determined
by Shy(n) (G, X) and N ).

Theorem 2 provides a better answer to problem 4.3 (a) than Corollary 1,
provided in addition we know that AV(IV) is a projective O(G, X)[+]-scheme.

6. Smoothness of integral models

We will use the notations listed at the beginning of Section 5. In this Section we
study the smoothness of NV, and N'(N),,.. Let (G, X1) be a Shimura pair such that
the group G, is unramified. Let H; be a hyperspecial subgroup of G1(Q,) =
G1,0,(Qp), cf. Definition 4.1 (f). In 1976 Langlands conjectured the existence of a
good integral model of Shy, (G1, X1) over each local ring O(,,) of E(Gy, A1) at a
prime vy of E(Gy,X;) that divides p (see [La, p. 411]); unfortunately, Langlands
did not explain what good is supposed to stand for. We emphasize that the
assumption that G g, is unramified implies that E(G1, A1) is unramified above
p (see [Mi3, Cor. 4.7 (a)]); thus the index of ramification e,, of v; is 1.

In 1992 Milne made the following conjecture (slight reformulation made by
us, as in [Val, Conj. 3.2.5]; strictly speaking, both Langlands and Milne stated
their conjectures over the completion of O(,,)).

Conjecture 1. There exists an integral canonical model of Shy, (G1,X1) over
O(vy)-

From the classical works of Zink, Rapoport-Langlands, and Kottwitz one gets
(see [Zil], [LR], and [Ko2]):



Theorem 3. (a) The Milne conjecture holds if p > 3 and Sh(G1, X1) is a Shimura
variety of PEL type.

(b) The Milne conjecture holds if Sh(Gy,X1) is a Shimura variety of PEL
type of either A or C type.

The main results of [Val] and [Va6] say (see [Val, 1.4, Thm. 2, and Thm.
6.4.1] and [Va6, Thm. 1.3]):

Theorem 4. Suppose one of the following two conditions holds:

(a) p > 5 and Shy, (G1, X1) is of abelian type;
(b) p is arbitrary and Shy, (G1, X1) is a unitary Shimura variety.

Then the Milne conjecture holds. Moreover, for each prime vy of E(G1,X1)
that divides p, the integral canonical model of Shy, (G1, X1) over O, is a pro-
€tale cover of a smooth, quasi-projective O(,,)-scheme.

Remark 2. See [Va2, Thm. 1.3] and [Va6, Thm. 1.3] for two corrections to the
proof of Theorem 4 under the assumption that condition (a) holds. More precisely:

e the original argument of Faltings for the proof of Proposition 5 was incorrect
and it has been corrected in [Va2] (cf. proof of Proposition 5);

e the proof of Theorem J for the cases when Gi*fi@ has simple factors isomor-
phic to PGLy,, for some m € N was partially incorrect and it has been corrected
by [Va6, Thm. 1.5] (cf. [Va6, Appendiz, E.3]).

6.1. Strategy of the proof of Theorem 4, part a

To explain the four main steps of the proof of the (a) part of Theorem 4, we will
sketch the argument why the assumptions that p > 3 and that GZ(p) is a reductive
group scheme over Z,) imply that Np is a formally smooth scheme over Zp)y- Let
W (FF) be the ring of Witt vectors with coefficients in an algebraic closure F of F),.
Let B(F) := W(F)[1].

Let y : Spec(F) — N, and let z : Spec(V) — N, be a lift of y, where V is
a finite, discrete valuation ring extension of W (F). Let e be the index of ram-
ification of V. Let R, be the p-adic completion of the W(F)[[x]]-subalgebra of
B(F)([z]] generated by £+ with n € N. Let ®, be the Frobenius endomorphism
of R, which is compatible with the Frobenius automorphism of W (F) and which
takes = to zP. We have a natural W (F)-epimorphism m, : R, — V which maps
x to a fixed uniformizer m of V. The kernel J, of m, has divided power struc-
tures and thus we can speak about the evaluation of F-crystals at the thickening
Spec(V) — Spec(R.) defined naturally by m,. We now consider the principally
quasi-polarized, filtered F-crystal of the pull back (Ay, A4, ) to Spec(V) of the
universal principally abelian scheme over M (via f, o z). Its evaluation at the
thickening Spec(V') — Spec(R,) is of the form

(MRe7F\}'7QSMReavMRe)wA/IRe)?



where Mp, is a free R.-module of rank 2r, F‘l/ is a direct summand of
Hig(Av V) = Mg, /J< Mg, of rank r, ¢, is a ®.-linear endomorphism of Mp,,
V iy, is an integrable, nilpotent modulo p connection on Mg, , and a7, is a
perfect alternating form on Mg, . The generic fibre of Ay is equipped with a fam-
ily of Hodge cycles whose de Rham realizations belong to T(MRE[%]/JﬁMRE [%])
and lift naturally to define a family of tensors (t,,4)acy of T (Mg, [%])

The first main step is to show that, under some conditions on the closed
embedding homomorphism Gz, — GSp(L ®z Zp), ) and under the assump-
tion that p > 3, the Zariski closure in GSp(Mg,,¥nr,, ) of the subgroup of
GSp(Mp, [%], Yy, ) that fixes t. o for all a € J, is a reductive group scheme Gr.
over R.. See [Val, Subsect. 5.2] for more details and see [Val, (5.2.12)] for the

fact that the reductive group scheme G R, 1s isomorphic to Gz, Xz, Re.

The second main step is to show that we can lift Fy to a direct summand Fée
of Mg, in such a way that ¢, (Fg ®Fg_ ) = 0 and that for each element v € J
the tensor t, , belongs to the FO-filtration of T(MRC[%]) defined by Fj [%] The
essence of this second main step is the classical theory of infinitesimal liftings of
cocharacters of smooth group schemes (see [DG, Exp. IX]). Due to the existence
of Fj_, the morphism z : Spec(V) — N, lifts to a morphism w : Spec(R.) —
N,. The reduction of w modulo the ideal R. N zB(F)[[z]] of R. is a lift z, :
Spec(W (F)) — N, of y. Thus, by replacing z with z, we can assume that V =
W (F). See [Val, Subsect. 5.3] for more details.

The third main step uses the lift zg : Spec(W (F)) — N, of y and Faltings
deformation theory (see [Fa, Sect. 7]) to show that N, is formally smooth over
Zpy at its F-valued point defined by y. See [Val, Subsect. 5.4] for more details.

The fourth main step shows that for p > 3 the mentioned conditions on
the closed embedding homomorphism Gz, < GSp(L ®z Z(y),1) always hold,
provided we replace f : (G,X) — (GSp(W,v¢),S) by a suitable other injective
map f1 : (G, X1) — (GSp(Wy,11),S1) with the property that (G#4, x2d) =
(G34, x8d). See [Val, Subsects. 6.5 and 6.6] for more details.

Remark 3. In [Va7] it is shown that Theorem 4 holds even if p € {2,3} and
Sh(Gy, A1) is of abelian type. In [Ki] it is claimed that Theorem 4 holds for p > 3.
The work [Ki] does not bring any new conceptual ideas to [Val], [Va6], and [VaT7].
In fact, the note [Ki] is only a variation of [Val], [Va6], and [Va7]. This variation
18 made possible due to recent advances in the theory of crystalline representations
achieved by Fontaine, Breuil, and Kisin. We emphasize that [Ki] does not work
for p =2 while [Va7] works as well for p = 2.

6.2. Strategy of the proof of Theorem 4, part b

To explain the three main steps of the proof of the (b) part of Theorem 4, in this
Subsection we will assume that (G7,X;) is a simple, adjoint, unitary Shimura
pair of isotypic A,, Dynkin type. In [De2, Prop. 2.3.10] it is proved the existence
of an injective map f : (G, X) — (GSp(W,4),S) of Shimura pairs such that we
have (Gad,Xad) = (Gl,Xl).



The first step uses a modification of the proof of [De2, Prop. 2.3.10] to show
that we can choose f such that Gz, is the subgroup of GSp(L ®z Z,), ) that
fixes a semisimple Z,)-subalgebra B,y of End(WW) (see [Va6, Prop. 3.2]). Let
Hyp = G (Zy); it is a hypersecial subgroup of G1,g,(Q,) = G} (Qp).

The second step only applies Theorem 3 to conclude that N, is a formally
smooth O(G, X'),)-scheme.

The third step uses the standard moduli interpretation of \,, to show that the
analogue N ,, of NV, but for (G1, X3, Hy ) instead of for (G, X, H)) exists as well
(see [Va6, Thm. 4.3 and Cor. 4.4]). If we fix a Z,)-monomorphism O(G, X)(,) —
W (F), then every connected component C; of Ny y () will be isomorphic to the
quotient of a connected component C of N, w (F) by a suitable group action T whose
generic fibre is free and which involves a torsion group. The key point is to show
that the action ¥ itself is free (i.e., C; is a formally smooth W (F)-scheme). If
p > 2 and p does not divide n 4 1, then the torsion group of the action ¥ has no
elements of order p and thus the action ¥ is free (cf. proof of [Val, Thm. 6.2.2
b)]). In [Va6] it is checked that the action ¥ is always free i.e., it is free even for
the harder cases when either p = 2 or p divides n 4+ 1. The proof relies on the
moduli interpretation of N, which makes this group action quite explicit. The
cases p = 2 and p divides n + 1 are the hardest due to the following two reasons.

(i) If p = 2 and if A is an abelian variety over F whose 2-rank a is positive,
then the group (Z/2Z)%" is naturally a subgroup of the group of automorphisms
of the formal deformation space Def(A) of A in such a way that the filtered
Dieudonné module of a lift x of A to Spf(W (FF)) depends only on the orbit under
this action of the Spf(W (IF))-valued point of Def(A) defined by .

(ii) For a positive integer m divisible by p — 1 there exist actions of Z/pZ on
Zyp[[z1, - - -, m]] such that the induced actions on Z,[[z1,. .. ,xm]][%] are free.

Theorem 5. We assume that either 6 divides N or Sh(G, X) is a unitary Shimura
variety. We also assume that the Zariski closure of G in GLL®ZZ[%] 1s a reductive

group scheme over Z[+:]. Then N (N) is a smooth scheme over either O(G, X)[+]
or Z[+].

Proof: Let p be an arbitrary prime that does not divide N and let v be a prime
of E(G, &) that divides p. The group scheme Gz, is reductive. Thus the group
Gq, is unramified. This implies that E(G, &) is unramified over p and that H,
is a hyperspecial subgroup of Gg,(Q,). Therefore O(G, X)[+] is an étale Z[+]-
algebra. From this and Proposition 3 (a) we get that to prove the Theorem it
suffices to show that each scheme N, is regular and formally smooth over O(v)-
Let Z, be the integral canonical model of Shy, (G, &) over O(y), cf. Theorem
4. As 7, is a healthy regular scheme (cf. Theorem 1), from Proposition 4 we get
that we have an O(,)-morphism a : Z, — N, whose generic fibre is the identity
automorphism of Shy, (G, X'). The morphism a is a pro-étale cover of a morphism
ag, : In/Ho — N,/Hy of normal O(,)-schemes of finite type, where Hj is a

small enough compact, open subgroup of G(Agcp )). From Theorem 4 we get that
7,/ Hy is a quasi-projective O(,)-scheme. Thus ap, is a quasi-projective morphism



between flat O,)-schemes. As each discrete valuation ring of mixed characteristic
(0,p) is a healthy regular scheme, the morphism a satisfies the valuative criterion
of properness with respect to such discrete valuation rings. From the last two
sentences we get that ap, is in fact a projective morphism.

We consider an open subscheme V, of NV, which contains Shy, (G, X') and for
which the morphism a=1(V,) — V, is an isomorphism. As Z, has the extension
property (cf. Definition 4.1 (d)), from Theorem 4 we easily get that we can assume
that V, contains the formally smooth locus of N, over O(,). As ag, is projective,
from Proposition 3 (a) we get that we can also assume that we have an inequality
codimyy, (M, \ V) > 2. Obviously we can assume that V, is Ho-invariant. Thus
the projective morphism ag, : Z,,/Hy — N, /Hp is an isomorphism above V,,/ Hy.

To check that NV, is a regular scheme which is formally smooth over O, it
suffices to show that ap, is an isomorphism. To check that ap, is an isomorphism,
it suffices to show that aI_{i (Vy/Hp) contains all points of Z,,/Hy of codimension 1
(this is so as the projective morphism ayy, is a blowing up of a closed subscheme
of N, /Hp; the proof of this is similar to [Ha, Ch. I, Thm. 7.17]). We show that
the assumption that there exists a point y of Z,,/Hy of codimension 1 which does
not belong to aﬁi (Vy/Hp)=>V,/Hy leads to a contradiction.

Let C be the open subscheme of Z,,/Hy that contains: (i) the generic fibre of
T,/Hy and (ii) the connected component £ of the special fibre of Z,,/Hy whose
generic point is y. The image & := ap,(E) has dimension less than & and is
contained in the non-smooth locus of N, /Hy. The morphism C — N, /Hy factors
through the dilatation D of N, /Hy centered on the reduced scheme of the non-
smooth locus of N, /Hy, cf. the universal property of dilatations (see Definition
4.1 (g) or [BLR, Ch. 3, 3.2, Prop. 3.1 (b)]). But D is an affine N, /Hy-scheme and
thus the image of the projective N, /Hg-scheme £ in D has the same dimension
as &. By repeating the process we get that the image of £ in a smoothening D,
of N, /Hy obtaining via a sequence of blows up centered on non-smooth loci (see
[BLR, Ch. 3, Thm. 3 of 3.1 and Thm. 2 of 3.4]), has dimension dim(&p) and thus
it has dimension less than £. But each discrete valuation ring of D, dominates
a local ring of Z,,/Hy (as ap, is a projective morphism) and therefore it is also a
local ring of Z,,/Hy. As Do, has at least one discrete valuation ring which is not
a local ring of V,,/Hy, we get that this discrete valuation ring is the local ring of
y. Thus the image of £ in Dy, has the same dimension as £. Contradiction. O

7. Projectiveness of integral models

The C-scheme Shy(n)(G, X)c is projective if and only if the Q-rank of G* is 0,
cf. [BHC, Thm. 12.3 and Cor. 12.4]. Based on this Morita conjectured in 1975
that (see [Mo]):

Conjecture 2. Suppose that the Q-rank of G*! is 0. Then for each N € N with
N >3, the O(G, X)[+]-scheme N'(N) is projective.

Conjecture 3. Let Ap be an abelian variety over a number field E. Let H 4 be the
Mumford-Tate group of some extension A of A to C. If the Q-rank of H5! is 0,
then Ag has potentially good reduction everywhere (i.e., there exists a finite field



extension Ey of E such that Ag, extends to an abelian scheme over the ring of
integers of E1).

7.1. On the equivalence of Conjectures 2 and 8

In [Mo] it is shown that Conjectures 2 and 3 are equivalent. We recall the argument
for this. Suppose that Conjecture 2 holds. To check that Conjecture 3 holds, we
can replace E by a finite field extension of it and we can replace Ag by an abelian
variety over E which is isogeneous to it. Based on this and [Mu, Ch. IV, §23,
Cor. 1], we can assume that Agr has a principal polarization A4 ,. By enlarging
E, we can also assume that all Hodge cycles on A are pull backs of Hodge cycles
on Ag (cf. [De3, Prop. 2.9 and Thm. 2.11]) and that (Ag, A4, ) has a level-l;l5
symplectic similitude structure. Here [; and [» are two distinct odd primes. By
taking G = H 4 and z 4 to belong to X4, we can assume that (Ag, A4, ) is the pulls
back of the universal principally polarized abelian schemes over N'(I1) and N (l2).
As N(l1) and N (l2) are projective schemes over O(G,X)[%] and O(G, X)[i]
(respectively), we get that (Ag, A4, ) extends to a principally polarized abelian
scheme over the ring of integers of E. Thus Conjecture 2 implies Conjecture 3.

The arguments of the previous paragraph can be reversed to show that Con-
jecture 3 implies Conjecture 2.

Definition 5. We say Ag (resp. (G, X)) has compact factors, if for each simple
factor t of H3Y (resp. of G*) there exists a simple factor of tg which is compact.

In [Va4, Thm. 1.2 and Cor. 4.3] it is proved that:

Theorem 6. Suppose that (G, X) (resp. Ag) has compact factors. Then Congjecture
2 (resp. 3) holds.

7.2. Different approaches

Let Ly := H1(A*,Z) and W4 := L4 ®z Q. We present different approaches to
prove Conjectures 2 and 3 developed by Grothendieck, Morita, Paugam, and us.

(a) Suppose that there exists a prime p such that the group H&‘: is anisotropic
(i.e., its Qp-rank is 0). Then Conjectures 2 and 3 are true (see [Mo] for the
potentially good reduction outside of those primes dividing p; see [Pau] for the
potentially good reduction even at the primes dividing p).

(b) Let B be as in Subsubsection 4.2.1 (resp. be the centralizer of H4 in
End(Wy)). We assume that the centralizer of B in End(W) (resp. in End(Wa4))
is a central division algebra over Q. Then Conjecture 2 (resp. 3) holds (see [Mo]).

(c) By replacing F with a finite field extension of it, we can assume that
Ap has everywhere semi-abelian reduction. Let [ € N be a prime different from
p. Let T)(Ag) be the l-adic Tate-module of Ag. As Z;-modules we can identify
Ti(Ag) = Hi(A* 2)®,7Z; = LA®zZ,. By replacing F with a finite field extension
of it, we can assume that for each prime [ € N the l-adic representation p; :
Gal(E) — GL7;(4,)(Q) factors through Ha(Q;). Let w be a prime of E that



divides p. If Ag does not have good reduction at w, then there exists a Z;-
submodule T of T;(Ag) such that the inertia group of w acts trivially on T and
Ti(Ag)/T and non-trivially on T;(Ag) (see [SGAT, Vol. I, Exp. IX, Thm. 3.5]).
This implies that H4(Q;) has unipotent elements of unipotent class 2.

In [Pauy] is is shown that if H4(Q;) has no unipotent element of unipotent
class 2, then Conjecture 3 holds for A. Using this, Conjectures 2 and 3 are proved
in [Pau] in many cases. These cases are particular cases of either Theorem 6 or

(a).

(d) We explain the approach used in [Vad] to prove Theorem 6. Let By be
another abelian variety over E. We say that Ag and Bg are adjoint-isogeneous,
if the adjoint groups of the Mumford-Tate groups Hu, Hp, and Hax.p are
isomorphic (more precisely, the standard monomorphism Hax.p — Ha xXg Hp
induces naturally isomorphisms H3d, = H%d and H jdXC g HHY.

To prove Conjecture 3 for Ag it is the same thing as to prove Conjecture 3
for Bg. Based on this, to prove Conjecture 3, one can replace the monomorphism
H,4 — GLw, by another one Hg — GLyy, which is simpler. Based on this and
Subsection 7.1, to prove Conjectures 2 and 3 it suffices to prove Conjecture 2 in
the cases when:

(i) the adjoint group G* is a simple Q-group;

(i) if F is a totally real number field such that G*! = Resp/q G**F', with
G*F an absolutely simple adjoint group over F, then F is naturally a Q-

subalgebra of the semisimple Q-algebra B we introduced in Subsubsection 4.2.1;

(iii) the monomorphism G < GLyy is simple enough.

Suppose that (G, X) has compact factors. By considering a large field that
contains both R and Q,, one obtains naturally an identification Hom(F,R) =
Hom(F,Q,). Thus we can speak about the p-adic field F}, which is the factor of

(23a) FaqQ,=]]F
jed

that corresponds (via the mentioned identification) to a simple, compact factor of
Gad = [Lictom(rr) G*4F xR, The existence of such a simple, compact factor
is guaranteed by Definition 5.

To prove Theorem 6, it suffices to show that each morphism ¢ : Spec(k((z))) —
N(N), with k an algebraically closed field of prime characteristic p that does not
divide N, extends to a morphism Spec(k[[z]]) — N(N).

We outline the argument for why the assumption that there exists such a
morphism ¢ : Spec(k((z))) — N(N) which does not extend, leads to a contradic-
tion. The morphism c gives birth naturally to an abelian variety E of dimension r
over k((x)). We can assume that E extends to a semi-abelian scheme Ej,)) over
k[[x]] whose special fibre Ej, is not an abelian variety. Let T}, be the maximal torus
of Cf. The field F acts naturally on X*(T}) ®z Q, where X*(T}) is the abelian
group of characters of Ty. Let k1 be an algebraic closure of k((x)). Let (M, @)



be the contravariant Dieudonné module of Fj,. Due to (ii), one has a natural
decomposition of F' ®g Q,-modules

(230) w@m:@MM@.

For each m € N, the composite monomorphism T [p™] — Ex[p™] — Ej lifts
uniquely to a homomorphism (T%[p"™])k(2]] — Ekj2) (see [DG, Exp. IX, Thms.
3.6 and 7.1]) which due to Nakayama’s lemma is a closed embedding. This implies
that we have a monomorphism (7%[p"™])k(()) < E[p™]. Taking m — oo, at the
level of Dieudonné modules over k1 we get an epimorphism

(23¢) 9%%?@*WWDMB%MFW@WM

which (due to the uniqueness part of this paragraph) is compatible with the
natural F-actions. Here oy, is the Frobenius automorphism of the field of fractions
B(ky) of the ring W (ky) of Witt vectors with coefficients in k;.

From (23b) and (23c) we get that each (M}, ¢) has Newton polygon slope 1.
But based on (iii) one can assume that the F-isocrystal (M}, , ¢) has no integral
Newton polygon slope. Contradiction.

8. Stratifications

We will use the notations listed in the beginning of Section 5. Let N'(N)% be the
smooth locus of N'(N), over O(,); its generic fibre is Shy(n) (G, X) (cf. Subsection
4.2). In this Section we will study different stratifications of the special fibre
L(N)3 of N(N)5. We begin with few extra notations.

Let ¥* be the perfect alternating form on L* induced naturally by . Let
Hz,,, be the flat, closed subgroup scheme of Gz, which fixes ¢*; its generic
fibre is a connected group Hg. Let (sq)acy C T (W*) be a family of tensors as
in Subsection 3.4.2. We denote also by (V,Ay) the pull back to N(N) of the
universal principally polarized abelian scheme over A, ; n (to be compared with
Subsubsection 3.4.2). By replacing N with an integral power of itself, we can
speak about a family (vY)aec 7 of Hodge cycles on Vg obtained as in Subsubsection
3.4.2. Such a replacement is irrelevant for this Section as we are interested in
points of N'(N) with values in &k, W (k), or B(k). Here k is an algebraically closed
field of characteristic p, W (k) is the ring of Witt vectors with coefficients in k,
and B(k) = W(k)[%] is the field of fractions of W (k). Let o be the Frobenius
automorphism of k, W(k), or B(k).

All the results of Section 5 involve finite primes unramified over p. Due to
this in this Section we will assume that:

(*) the prime v of E(G, X) is unramified over p and the k(v)-scheme L(N)3

is non-empty.

See [Va7, Lem. 4.1] for a general criterion on when (*) holds.



8.1. F-crystals with tensors

Let y : Spec(k) — L(N)S. Let z : Spec(W(k)) — N(N)S be a lift of y, cf. (¥).
Let (A, \4) := Z*((VvAV)N(N)fJ)- Let

(M7¢3¢M)

be the principally quasi-polarized Dieudonné module of (A, A4)k. Thus ¢y is a
perfect alternating form on M such that we have (¢ ( ) ® ¢(b)) = pok(Y(a®b))
for all a,b € M. The oy-linear automorphism ¢ : M [ =M [%] extends naturally

to a og-linear automorphism ¢ : 7 (M [p])%T(M[%]),

The abelian variety Ap) is endowed naturally with a family (ve)aecs of
Hodge cycles (it is obtained from the family (v} )ae7 of Hodge cycles on Vg via a
natural pull back process). Let t, € T (M [p]) be the de Rham component of v,,.

Let F! be the Hodge filtration of M defined by the lift A of Aj,. We have
qﬁ(%Fl + M) = M. Let pu, : G, — GL)s be the inverse of the canonical split
cocharacter of (M, F',¢) defined in [We, p. 512]. It gives birth to a direct sum
decomposition M = F' @ FO such that G,, acts via p. trivially on F° and via
the inverse of the identical character of G,,, on F!.

It is known that the element t, of 7 (M [%]) is a de Rham and thus also
crystalline cycle. If the abelian variety Ap) is definable over a number subfield
of B(k), then this result was known since long time (for instance, see [Bl, Thm.
(0.3)]). The general case follows from loc. cit. and [Val, Principle B of 5.2.16] (in
the part of [Val, Subsect. 5.2] preceding the Principle B an odd prime is used;
however the proof of loc. cit. applies to all primes). The fact that ¢,, is a crystalline
cycle means that:

(i) the tensor ¢, belongs to the FO-filtration of 7 (M [ ]) defined by Fl[ ] and
it is fixed by ¢.

Let Gp(x) be the subgroup of GSp(M[%}, Yyr) that fixes t,, for all a € J. Let
G be the Zariski closure of Gp()y in GSp(M,nr) (or GLyy); it is an affine, flat
group scheme over W (k). We refer to the quadruple

Cy = (M,9,(ta)acs, V)

as the principally quasi-polarized F-crystal with tensors attached to y € N(IN)3.
It is easy to see that this terminology makes sense (i.e., t, depends only on
y : Spec(k) — L(N)$ and not on the choice of the lift z : Spec(W (k)) — N(N)3 of
y). We note down that G is uniquely determined by C,. We refer to the quadruple

Ry = <M[%1,¢, (ta)acss o)

as the principally quasi-polarized F-isocrystal with tensors attached to y €
N(N)3. From (i) and the functorial aspects of [Wi, p. 513] we get that each tensor
to is fixed by p,. This implies that:



(ii) the cocharacter p, : G, — GLjs factors through G and we denote also
by u. : G, — G this factorization.

If y; : Spec(k) — L(N)$ is a point indexed by the elements ¢ of some set,
then we will use the index ¢ to write down Cy, = (M;, @i, (tia)aca,¥m;) as well
as Ry7 = (MZ[%]v ¢i7 (ti,a)aej, 'l/)Ml)

If y; : Spec(k) — L(N), does not factor through L£(N)$, then we define
Cy, = (M, ¢i,%n,) to be the principally quasi-polarized Dieudonné module of
yi (V, Av)£(v)s )- Similarly we define R, := (Mi[%], bisPar,)-t

Before studying different stratifications of £(N)$ defined naturally by basic
properties of the C,’s, we will first present basic definitions on stratifications of
reduced schemes over fields.

8.2. Types of stratifications

Let K be a field. By a stratification & of a reduced Spec(K)-scheme X (in po-
tentially an infinite number of strata), we mean that:

(i) for each field [ that is either K or an algebraically closed field which
contains K and that has countable transcendental degree over K, a set &; of
disjoint reduced, locally closed subschemes of X; is given such that each point of
X with values in an algebraic closure of [ factors through some element of &;;

(ii) if 412 : I3 — Iy is an embedding between two fields as in (a), then the
reduced scheme of the pull back to Iy of every member of &;,, is an element of
S,,; thus we have a natural pull back injective map &(i12) : &;, — &y,.

Each element s of some set &; is referred as a stratum of G; we denote by §
the Zariski closure of s in X;. If all maps &(i12)’s are bijections, then we identify
6 with Gk and we say G is of finite type.

Definition 6. We say that the stratification & has (or satisfies):

(a) the strong purity property if for each field I as in (i) above and for every
stratum s of &y, locally in the Zariski topology of § we have s = §,, where a is
some global function of 5 and where 5, is the largest open subscheme of 5 over
which a is an invertible function;

(b) the purity property if for each field I as in (i) above, every element of &,
is an affine X;-scheme (thus & has the purity property if and only if each stratum
of it is an affine X -scheme);

(c) the weak purity property if for each field I as in (i) above and for every
stratum s of &, the scheme 5 is noetherian and the complement of s in s is either
empty or has pure codimension 1 in 5.

IFor each lift of y; to a point of N'(N),, with values in a finite discrete valuation ring extension
of W(k), one defines naturally a family of tensors (¢; o)acy of T(MZ[%]) We do not know
if this family of tensors: (i) does not depend on the choice of the lift and (ii) can be used in

Subsections 8.4 and 8.5 in the same way as the families of tensors attached to k-valued points
of L(N)S.



As the terminology suggests, the strong purity property implies the purity
property and the purity property implies the weak purity property. The converses
of these two statements do not hold. For instance, there exist affine, integral,
noetherian schemes Y which have open subschemes whose complements in Y have
pure codimension 1 in Y but are not affine (see [Va3, Rm. 6.3 (a)]).

8.2.1. Fxample

Suppose that K = k, that X is an integral k-scheme, and that there exists a
Barsotti-Tate group D of level 1 over X which generically is ordinary. Let O be
the stratification of X of finite type which has two strata: the ordinary locus sg
of D and the non-ordinary locus s, of D. We have 5, = X and s, = s,. Moreover
locally in the Zariski topology of X we have an identity s, = X,, where a is the
global function on X which is the determinant of the Hasse-Witt map of D. Thus
the stratification © has the strong purity property.

8.8. Newton polygon stratification

Let O be the stratification of L(N), of finite type with the property that two
geometric points y1,y2 : Spec(k) — L(N), factor through the same stratum if
and only if the Newton polygons of (M, ¢1) and (Ma, ¢2) coincide. In [dJO2] it
is shown that 9 has the weak purity property (see [Zi2] for a more recent and
nice proof of this).

Theorem 7. The stratification N of L(N), has the purity property.

Proof: The stratification 91 is the Newton polygon stratification of L(NV),, defined
by the F-crystal over L(NN), associated to the p-divisible group of V(y),. Thus
the Theorem is a particular case of [Va3, Main Thm. B]. O

8.4. Rational stratification

Let R be the stratification of £(N)$ with the property that two geometric points
y1,Y2 : Spec(k) — L(N)? factor through the same stratum if and only if there
exists an isomorphism R,, =R,, to be called a rational isomorphism.

Theorem 8. The following three properties hold:

(a) Each stratum of R is an open closed subscheme of a stratum of the re-
striction N of N to L(N)S,.

(b) The stratification R of LIN)S is of finite type.

v

(c) The stratification R of L(N)Z has the purity property.

Proof: We use left lower indices to denote pulls back of F-crystals. Let [ be either
k(v) or an algebraically closed field that contains k(v) and that has countable
transcendental degree over k(v). Let Sp be a stratum of M° contained in L(N)3 ;.
Let S; be an irreducible component of Sy. To prove the part (a) it suffices to

show that for each two geometric points y; and ys of S; with values in the same



algebraically closed field k, there exists a rational isomorphism R,, =R,,. We
can assume that k is an algebraic closure of [((z)) and that y; and yo factor
through the generic point and the special point (respectively) of a morphism
m : Spec(l[[z]]) — L(N);,; of l-schemes. Here z is an independent variable. We
denote also by y; and ysa, the k-valued points of Spec(I[[x]]) or of its perfection
Spec(I[[z]]P°™) defined naturally by the factorizations of y; and y through m.
Let ® be the Frobenius lift of W (I)[[x]] that is compatible with ¢ and that
takes = to zP. Let B = (V, ¢y, ¥y, Vy) be the principally quasi-polarized F-
crystal over [[[x]] of m*((V,Av)cwvys ). Thus V' is a free W (1)[[z]]-module of
rank 2r equipped with a perfect alterﬁating form ¥y, ¢y : V — V is a ®-linear
endomorphism, and Vy : V — Vdz is a connection. Let tY € T(V[%D be the

de Rham realization of the Hodge cycle nB(l)(v(‘;) on ”E(k)((V)N(N)iVU))’ where

n : Spec(W ()[[z]]) — N(N)3, W 1s a lift of m.

Fontaine’s comparison theory (see [Fo]) assures us that there exists an iso-
morphism (Mi[1], (t1,0)aes: ¥a1,) = (W* @q B(k), (sa)acs, V).

Based on this and [Kol] we get that R,, is isomorphic to the pull back to k of
the principally quasi-polarized F-isocrystal R, with tensors defined naturally by
a principally quasi-polarized F-crystal C; with tensors over an algebraic closure
k(v) of k(v). Strictly speaking [Kol] uses a language of oj-conjugacy classes of sets
of the form G(B(k)) or Hg(B(k)) and not a language which involves polarizations
and tensors (and thus which involves og-conjugacy classes of sets of the form
Ho(B(k))so, where sg € G(B(k)) is an element whose image in (G/Hg)(B(k)) =
G (B(k)) belongs to (G/Hg)(Qp) = G (Q,)); but the arguments of [Kol] apply
entirely in the present principally quasi-polarized context which involves sets of
the form Hg(B(k))so € G(B(k)). Here s is uo[%], where 1o : G, — G is an
arbitrary cocharacter whose extension to C via an O(,)-monomorphism B(k) — C
is G(C)-conjugate to the cocharacters ji, : G,, — G¢ with x € X

Let C; be C; but viewed only as an F-crystal over k(v). Let M7 1 be the
W (k)-lattice of Ml[%] that corresponds naturally to C;, via an isomorphism
11,1t Rip—Ry, -

From [Ka, Thm. 2.7.4] we get the existence of an isogeny ig : ¥y — U, where
Y is an F-crystal over [[[z]] whose extension to the I[[z]]-subalgebra I[[z Hperf of k
is constant (i.e., it is the pull back of an F-crystal over ). Let ig : Mo — M be
the W (k)-linear monomorphism that defines yi(ig). We can assume that ig (M)
is contained in M; ;. The inclusion g ,(My) € My, gives birth to a morphism

: ‘I]o = Cl_k of F-crystals over k. It is the extension to k of a morphism

o, Tappert — Cp ] pere cf. [RR, Lem. 3.9] and the fact that B jjj,jeerr and
C;l[ [ajpert A€ CONstant F-crystals over k[[z]]Pert. Let P C;l (afpert — Do 1[fa]pert
be a morphism of F-crystal such that jperf o ]{’erf =pil .- for some ¢ € N.

1,1[[z]]perf
By composing jT°¢ ot with io,k[[2]]pert WE get an isogeny i : C;l—[[w”mf — Dji[appers
whose extension to k is defined by the inclusion p?M; ; € M;. The isomorphism
of F-isocrystals over Spec(k[[z]]P°™) defined by p~9 times i; takes ¢, to t) for
all « € J, as this is so generically. Thus y3(i1) is an isogeny which when viewed
as an isomorphism of F-isocrystals is p? times an isomorphism 7; 2 : R15—=Ry,
Thus there exists a rational isomorphism 4; 5 o 11_% : Ry, —=Ry,. Thus (a) holds.



Part (b) follows from (a) and the fact that 91° is a stratification of finite type.
Part (c) follows from (a) and Theorem 7. O

Remark 4. The proof of Theorem 8 (a) and (b) is in essence only a concrete
variant of a slight refinement of [RR, Thm. 3.8]. The only new thing it brings
to loc. cit., is that it weakens the hypotheses of loc. cit. (i.e., it considers the
“Newton point” of only one faithful representation which is Gg, — GLw-g,q, ).

8.5. A quasi Shimura p-variety of Hodge type

Let H := Hz,, xz,, W(k), where Hz , is as in the beginning of this Section.
The group Hp(x) is a connected group and we have a short exact sequence

(24) 1-H—-Gwr — Gy — 1.

We fix an O(,)-embedding W (k) — C. Let v be the set of cocharacters of
Gw () whose extension to C are G(C)-conjugate to any one of the cocharacters
e Gy — G with ¢ € X, Let p, : G,,, — G be the cocharacter introduced in
the property (ii) of Subsection 8.1.

Until the end we will also assume that the following three properties hold:

(**) the group scheme G, is smooth over Z);

(***) for each algebraically closed field k of countable transcendental degree
over k(v) and for every point y : Spec(k) — L(N)$, there exists an isomorphism

Py : (MO’ (Sa)oteja ¢*);(M> (ta)aejawhf);

(****) the set 1 of cocharacters of Gy (i) formed by all cocharacters of the
form p;l,uzpy : Gy — Gw(k), with z running through all W (k)-valued points of
N(N)® and with p, running through all isomorphisms as in (**), is a H(W (k))-
conjugacy class of cocharacters of Gy ().

We fix an element pg : G, — Gy (k) of vo. Let

& = (M07 %0, (SQ)QEJ’w*) = (L* ®z W(k)a/m(%)(l ® U)’Ha (SQ)QEJa¢*)

Let ¥y : My — My be the Verschiebung map of ¢o. We have 9gpg = ¢oto = play,.

Let [z.,9:] € Shyn) (G, X)(C) be the complex point defined by the com-
posite of the morphism Spec(C) — Spec(W (k)) with z : Spec(W (k)) — N(N)3.
Under the fixed O(,)-embedding W (k) — C, we can identify:

-~ M @w@) C = Hig(A™/C) = H'(A™,Q) @ C = W* ®@q C (cf. property
(d) of Subsubsection 3.4.1 for the last identification);

—- It ®w (k) C with the Hodge filtration of Hip (A*™/C) = W* @q C defined
by the point z, € X;

—to = 84 for all @ € J and thus Ge = G (see [De3)]).



Based on this we easily get that p. ¢ : G, — Ge = Gc is G(C)-conjugate to
bz, : Gy, — Ge. From this we get that the cocharacter p;luzpy : G — Gw
belongs to v. Thus we have:

vy C 1.

By composing p, with an automorphism of (L* ®z W (k), (Sa)acs) defined by
an element of H(W (k)), we can assume that in fact we have p,'p.py = po (cf.
(****)). This implies that p, gives birth to an isomorphism of the form

Py * (M07gy¢07 H7 (SQ)QEJv w*);Cy

for some element g, € Gy ) (W (k)). For g € H(W(k)), let
Ey = (Mo, 9o, (5a)acs V™).
Therefore & = &1,,, and moreover
Cy is isomorphic with &, .
Let
Fo = {&lg € HW(K))};

it is a family of principally quasi-polarized F-crystals with tensors. We emphasize
that, due to (***) and (****) the isomorphism class of the family Fy depends
only on £L(N); and not on the choice of the element jg : G, — Gy i) of 1p.

Definition 7. Let m € N. By the D-truncation of level m (or mod p™) of &,
we mean the reduction E;[p™] of (Mo, gpo, %09, H,*) modulo p™ (here it
is more convenient to use H instead of (Sa)acy). For gi,92 € H(W(k)), by
an inner isomorphism between gy, [p™] and 4, [p™] we mean an isomorphism
Egi [p™]=Eg, [p™] defined by an element of H(Wp,(k)).

Remark 5. (a) Statement (***) is a more general form of a conjecture of Milne
(made in 1995). In [Va8] it is shown that (***) holds if either p > 2 or p = 2
and Gz, is a torus. The particular case of this result when moreover Gz, is a
reductive group scheme over Zy), is also claimed in [Kif.

(b) If the statement (****) does not hold, then one has to work out what
follows with a fized connected component of L(N)S instead of with L(N)3.

v

(€) In many cases one can choose the cocharacter g : Gp, — Gy (yy in such
a way that the quadruple &y is a canonical object of the family Fy. For instance,
if Gz, is a reductive group scheme over Zy, then we have vo = v and one can
choose g as follows. Let Bz, be a Borel subgroup scheme of Gz, := Gz, Xz,
Zy. Let Ty, be a mazimal torus of Bz,. Let Gy (x(v)) := Gz, Xz, W(k(v)). Let
Ho,w (k(v) * Gm — Gw (k(v)) be the unique cocharacter whose extension o : Gy, —
Gw (k) to W (k) belongs to the set v, which factors through Ty, <z, W (k(v)), and



through which Gy, acts on Lie(Bz,) ®z, W (k(v)) via the trivial and the identical
characters of G, (cf. [Mi3, Cor. 4.7 (b)]). As pairs of the form (Bgz,,Tz,) are
Gz, (Zy)-conjugate, the isomorphism class of &y constructed via such a cocharacter

po does not depend on the choice of (Bgz,,Tz,). Thus & is a canonical object of
the family Fo.

Theorem 9. Under the assumptions (*) to (****) of this Section, the A1 N k(v)-
scheme L(N)2 is a quasi Shimura p-variety of Hodge type relative to Fy in the

v

sense of [Vab, Def. 4.2.1].

Proof: As [Va5, Def. 4.2.1] is a very long definition, the essence of its parts will
be pointed out at the right time in this proof. We emphasize that due to (**) and
(24), the group scheme H is smooth over W (k) and therefore the statement of
the Theorem makes sense.

Let

(25a) My =Fy & Fy

be the direct sum decomposition such that G,, acts through g : G, — Gy
trivially on F) and via the inverse of the identical character of G,, on Fj. To
(25a) corresponds a direct sum decomposition

(25b) End(My) = Hom(Fy, Fy) @ End(Fy)) @ End(Fy ) ® Hom(F,, )

of W (k)-modules. Let Lie(H) = @!__, Fi(Lie(H)) be the direct sum decompo-
sition such that G,, acts trough po on F¢(Lie(H)) via the —i-th power of the
identity character of G,,. Thus we have an identity

(25¢) Fy Y (Lie(H)) = Hom(F}, FY) N Lie(H),

the intersection being taken inside End(Mj). Let U be the connected, smooth,
unipotent subgroup scheme of H defined by the following rule: if C' is a commu-
tative W (k)-algebra, then U(C) = 1aey . c + Ey Y (Lie(H)) Qw (k) C-

The smooth k(v)-scheme L£(N)? is equidimensional of dimension d. As pg
belongs to vy and thus to v, from Formula (17) we get that the rank e_ of
FEy ' (Lie(H)) is precisely d. Thus the smooth k(v)-scheme L£(N)3 is equidimen-
sional of dimension e_. In other words, the axiom (i) of [Va5, Def. 4.2.1] holds.

Let R, be the completion of the local ring of J\/'(N)?/V(k) at its k-valued point
defined by y. We fix an identification R, = W(k)[[z1,...,z4]]. Let ® be the
Frobenius lift of R, which is compatible with o and which takes z; to ¥ for all
i € {1,...,d}. We have a natural morphism Spec(R,) — N'(NN)* which is formally
étale. The principally quasi-polarized filtered F-crystal over R,/pR, of the pull
back to Spec(R,) of (V, Ay) is isomorphic to

(26(1) (MO ®W(k) Ry7 FO1 ®W(k) Ry7 hy(gy¢0 & (I))a 1/)*7 Vy)a

where h, € H(R,) is such that modulo the ideal (x1,...,z4) of R, is the identity
element of H(W (k)) and where V,, is an integrable, nilpotent modulo p connection
on Moy @ ry Ry. We have:



(i) for each element o € J, the tensor ¢, € T(MO[%]) QB(k) Ry[%] =
T (Mo Qw (k) Ry[%]) is the de Rham realization of the pull back to Spec(Ry[%]) of
the Hodge cycle v¥ on Vg and therefore it is annihilated by Vi

(ii) the connection V,, is versal.

The two properties (i) and (ii) hold as, up to W (k)-automorphisms of R, that
leave invariant its ideal (z1, ..., x4), we can choose the morphism h,, : Spec(R,) —
H to factor through a formally étale morphism h, — U (i.e., we can choose
hy to be the universal element of the completion of U). If Gz, is a reductive
group scheme, then the fact that such a choice of h, is possible follows from
[Val, Subsect. 5.4]. The general case is entirely the same (for instance, cf. [Va7,
Subsects. 3.3 and 3.4]).

We recall the standard argument that V, annihilates each t, with o € J.
We view 7 (M) as a module over the Lie algebra (associated to) End(My) and
accordingly we denote also by V, the connection on 7 (My @y (1) Ry[%]) which
extends naturally the connection V, on My ®y () R,. The ®-linear action of
hy(gyd0 @ ®) on Mo Qw(x) R, extends to a ®-linear action of hy(g,¢o ® ®) on
T (Mo Qw (x) Ry[%]). For instance, if a € M§ ®w ) Ry = (Mo ®w k) R,)* and if
b € Mo®w (x) Ry, then [hy(g,00@®P)](a) € Mg@W(k)Ry[%] maps [h, (9,00 @®P)](b)
to ®(a(b)). As ¢g, gy, and hy, fix t,, the tensor ¢, € T(M0®W(k)Ry[%]) is also fixed
by hy(g,¢0 ® ®). The connection V, is the unique connection on My Qw (x) Ry
such that we have an identity

Vy o [hy(gydo @ @)] = [hy(gy¢o © P)] @ dP) 0V,
cf. [Fa2, Thm. 10]. From the last two sentences we get that
Vy(ta) = [hy(gyd0 ® ) ® d®](Vy(ta)).

As we have d®(z;) = pr_ldxi for all ¢ € {1,...,d}, by induction on ¢ € N we
get that V,(to) € 7(Mo) @w ) (21, .. 7xd)qQ§y/W(k)[%]. Here ng/W(k) is the
p-adic completion of the sheaf of relative 1-differential forms. As R, is complete
with respect to the (z1,...,zq)-topology, we have V,(t,) = 0.

Due to the property (i), the morphism L(N); — Ag1 w4k induces k-
epimorphisms at the level of complete, local rings of residue field k i.e., it is a
formal closed embedding at all k-valued points (this is precisely the statement of
[Va7, Part I, Thm. 1.5 (b)]). Thus the axiom (ii) of [Va5, Def. 4.2.1] holds.

Based on the property (i) and a standard application of Artin’s approximation
theorem, we get that there exists an étale map 7, : Spec(E,) — N(N)%V(k) whose
image contains the k-valued point of N (N )?,V(k) defined naturally by y and for
which the following three properties hold:

(iii) the p-adic completion E,' of E, has a Frobenius lift ®p,;

(iv) the principally quasi-polarized filtered F-crystal over E,/pE, of the pull
back to Spec(E,/pE,) of (V,Ay) is isomorphic to



(260) (Mo ®w ) Ep Fy @wy E, dy(gydo ® ), 0", V3'8),

where j, € H(E,)) and where Vglg is an integrable, nilpotent modulo p connection
on My ®y (r) R, which is versal at each k-valued point of Spec(Eé\);

(v) for each element oo € J, the tensor ¢, € T(Mo[%] ®B(k) Eé\[%]) =
T (Mo @w (k) E;\[%]) is the de Rham realization of the pull back to Spec(Eﬁ[%])
of the Hodge cycle v¥ on Vg and therefore it is annihilated by Vglg.

Let 7 : Spec(Ey/pEy) — L(N); ;. be the étale map defined naturally by 7,.
Let Ij, be a finite set of k-valued points of L(N)3 such that we have an identity
Uger Im(7y) = LIN);

v

This means that the axiom (iii.a) of [Va5, Def. 4.2.1] holds for the family of étale
maps (7;)ger,

Let W, be the maximal parabolic subgroup scheme of GLj,, that normalizes
Fj. Let Wf :=H N Wao; it is a smooth subgroup scheme of H (cf. [Va5, Lem.
4.1.2]). As Vglg is versal at each k-valued point of Spec(Ey), we have:

(vi) the reduction modulo p of j, is a morphism Spec(E,/pE,) — Hj whose
composite with the quotient morphism Hy — Hy/ Wf&k is étale.

Property (vi) implies that the axiom (iii.b) of [Vab, Def. 4.2.1] holds for
(M) ger-

Based on properties (iv) and (v), it is easy to see that the axiom (iii.c) of
[Vab, Def. 4.2.1] holds for (73)ger,-

The fact that the axiom (iii.d) of [Vab, Def. 4.2.1] holds as well for (7j3)ger,
is only a particular case of Faltings’ deformation theory [Fa, §7, Thm. 10 and
Rm. i) to iii) after it], cf. the versality part of the property (iv). More precisely, if
w € Ker(H(Ry) - H(Ry/(x1,...,xq))) is such that the composite of w modulo p
with the quotient morphism Hjy — Hy/ WfQ i is formally étale, then there exists
an W (k)-automorphism a, : R,—~R, that leaves invariant the ideal (x1,...,2zq)
and for which the extension of (26a) via a, is isomorphic to

(MO ®W(k) Ry7 Fb1 ®W(k) Ryaw(g’u(bo ® (I))a ’ll}*, vy)

under an isomorphism defined by an element of Ker(H(R,) — H(Ry/(%1,.-.,%4)))-
Thus axioms (i) to (iii) of [Vab, Def. 4.2.1] hold i.e., L(N)5 is a quasi Shimura

p-variety of Hodge type relative to Fy in the sense of [Vab, Def. 4.2.1]. O
8.6. Level m stratification

We assume that properties (*) to (****) of this Section hold. Let m be a
positive integer. From Theorem 9 and [Va5, Cor. 4.3] we get that there ex-
ists a stratification £,, of £L(NN)? with the property that two geometric points
Y1, Y2 : Spec(k) — L(NV);, factor through the same stratum if and only &, [p™] is
inner isomorphic to &, [p™]. We call £,, as the level m stratification of L(V)3.

Among its many properties we list here only three:



Proposition 6. Let | be either k(v) or an algebraically closed field of countable
transcendental degree over k(v). Let n be a stratum of M® which is a locally closed
subscheme of L(N)5, ;. Then we have:

(a) there exists a family (1;)icr(n) of strata of £y which are locally closed
subschemes of L(N); ; and such that we have an identity

(45) n(l) = Usermli(l);

(b) the scheme n is regular and equidimensional;

(c) the L(N);, -scheme n is quasi-affine.

Proof: The Newton polygon of a p-divisible group D over k of codimension ¢ and
dimension d is uniquely determined by D[p[%]], cf. [NV2, Thm. 1.2]. Thus the
Newton polygon of (M, ¢) is uniquely determined by the inner isomorphism class
of &, [p'21]. From this the part (a) follows.

Parts (b) and (c) are particular cases of [Vab, Cor. 4.3]. O

Remark 6. (a) For PEL type Shimura varieties, the idea of level m stratifications
shows up first in [We]. The level 1 stratifications generalize the Ekedahl-Oort
stratifications studied extensively by Kraft, Ekedahl, Oort, Wedhorn, Moonen, and
van der Geer.

(b) Suppose that Gz, is a reductive group scheme and that the properties (*)
and (**¥) of this Section hold. As Gz, is a reductive group scheme, it is easy to
see that the properties (**) and (****) hold as well. Thus the level m stratification
L., exists. It is known that £1 has a finite number of strata (see [Val10, Sect. 12]).

8.6.1. Problem

Study when £,, has the purity property.

8.7. Traverso stratifications

We continue to assume that properties (*) to (****) of this Section hold. Let
ny, €N

be the smallest positive integer such that for all elements g € H(W(k)) and
g1 € Ker(H(W (k)) — H(W,,(k))), the quadruples £; and &4, are isomorphic.
The existence of n, is implied by [Va3, Main Thm. A].

Lemma 1. We assume that the assumptions (*) to (****) of this Section hold.
Let g1,90 € H(W(k)). The D-truncations of level m of &, and &, are in-
ner isomorphic if and only if there exists g3 € H(W(k)) such that we have
93920095+ = gogido for some element gy € Ker(H(W (k) — H(Wpn(k))).



Proof: This is only a principal quasi-polarized variant of [Va3, Lem. 3.2.2].
Its proof is entirely the same as of loc. cit. O

Due to Lemma 1, from the very definition of n, we get that for every two
elements g1, go € H(W(k)) we have the following equivalence:

i) &£,, is isomorphic to &,, if and only if £, [p™¥] is isomorphic to &, [p™¥].
91 g2 g1 g2

Due to the property (i), for m > n, we have an identity

We refer to
T =L,

as the Traverso stratification of £(NN)3. Such stratifications were studied in [Tr1]
to [Tr2] (using the language of group actions), in [Oo] (using the language of
foliations), and in [Va3] and [Va5] (using the language of ultimate or Traverso
stratifications). Based on Theorem 9, the next Theorem is only a particular case
of [Va5, Cor. 4.3.1 (b)].

Theorem 10. Under the assumptions (*) to (****) of this Section, the Traverso
stratification T of L(N)3 has the purity property.

8.7.1. Problems
1. Find upper bounds for n, which are sharp.

2. Study the dependence of n, on v.

8.7.2. Example

We assume that f is an isomorphism i.e., we have an identification (G,X) =
(GSp(W, ¢), S). We have v = p and thus we will denote n, by n,. We also assume
that y is a supersingular point i.e., all Newton polygon slopes of (M, ¢) are %
The isomorphism class of (M, ¢, 1) is uniquely determined by &, [p"], cf. [NV,
Thm. 1.3]. Moreover, in general we can not replace in the previous sentence &£, [p"]
by &, [p""'] (cf. [NV1, Example 3.3] and the result [Va3, Prop. 5.3.3] which says
that each principally quasi-polarized Dieudonné module over k is the one attached
to a principally polarized abelian variety over k).

Therefore, the restrictions of ¥ and £, to the (reduced) supersingular locus

of Ar1.nr, = L(N), = L(N);, coincide and we have an inequality

Ny > 1.
Based on Traverso’s isomorphism conjecture (cf. [Tr3, §40, Conj. 4] or [NV1, Conj.
1.1]), one would be inclined to expect that n, is in fact exactly r. However, we
are not at all at the point where we could state this as a solid expectation.
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