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Abstract. This is an extended version of the talk I gave at the summer
school in Göttingen in July 2007. We discuss the Mordell-Weil Sieve and
some applications.

1. The Problem

Let A be an abelian variety over Q (for simplicity; we could work over an arbi-
trary number field instead), and let V ⊂ A be a “transversal” subvariety, i.e.,
a subvariety that does not contain a translate of a nontrivial subabelian variety
of A.

Our goal is to obtain information on V (Q), the set of rational points on V .
For example, we would like to prove that V (Q) = ∅.

The standard example for this situation is when we have a curve C over Q
of genus g ≥ 2. If we we know a rational divisor class D of degree 1 on C, then
we can use D as a base-point for an embedding ι : C ↪→ J , P 7→ [P ] −D. Here
A = J is the Jacobian variety of C, and V = ι(C) ⊂ A.

2. The Idea

Our approach is to combine global and local information in the following way. The
global input is the knowledge of the Mordell-Weil group A(Q). This means that
we need to know explicit generators of this group (which is a finitely generated
abelian group, by the Mordell-Weil Theorem). Note that it requires some non-
trivial computations and a bit of luck to obtain this information. If A is the
Jacobian of a curve of genus 2, it is usually possible to perform the necessary
computations successfully. This includes a 2-descent on A as described in [1],
a search for rational points on A (see for example [2]), possibly visualization
computations to improve the upper bound for the rank obtained by 2-descent
(see [3] and [4]) and canonical height computations in order to make sure that
one has generators of the full group (see [5] and [6]). The latter part, which is
currently only available for genus 2 Jacobians, can be replaced by a computation



that checks that the index of the known subgroup is prime to a finite set of primes.
Compare the genus 3 example from [7] discussed in Section 7 below.

The local input is obtained by looking at the situation over Fp, for a suitable
finite set S of primes p. We assume (for now) that p is a prime of good reduction
for A and V . We can then compute the finite abelian group A(Fp) and determine
its subset V (Fp). Denote by

αp : V (Fp) ↪→ A(Fp)

the inclusion map.
Since we assume we know generators of A(Q), we can also compute the group

homomorphism

βp : A(Q) → A(Fp) .

If P ∈ A(Q) is in V (Q), then βp(P ) ∈ αp

(
V (Fp)

)
.

Thus we obtain congruence conditions on the coefficients of P with respect
to our generators of A(Q).

We now combine the information we obtain from all the primes in the set S.
Consider the following commutative diagram.

V (Q)
� � //

��

A(Q)

β =
Q

p∈S

βp

��∏
p∈S

V (Fp)
� �

α =
Q

p∈S

αp

// ∏
p∈S

A(Fp)

As before, if P ∈ A(Q) is in V (Q), then β(P ) ∈ im(α).
In particular, if im(α) ∩ im(β) = ∅, then this proves that V (Q) = ∅.
This technique is called the Mordell-Weil Sieve. It appears first in Scha-

raschkin’s thesis [8]. It was later applied to many genus 2 curves by Flynn [9], and
more recently used and improved by Bruin and Stoll [10] in a project whose aim
it was to decide for all genus 2 curves C : y2 = f(x), where f has integral coeffi-
cients of absolute value ≤ 3, whether C has rational points or not; see Section 4
below.

3. The Poonen Heuristic

Assuming that indeed V (Q) = ∅, what are our chances to prove this fact in the
way just described?

The following considerations are due to Bjorn Poonen [11].
Let B be some large integer. We will consider all primes p < B2.



For ρ > 0, there is a number δρ > 0 such that there are at least δρB
ρ B-

smooth integers ≤ Bρ, for B large. (An integer is “B-smooth” if all its prime
divisors are ≤ B.)

We assume that a similar statement is true for the set {#A(Fp) : p < B2}.
More precisely, we make the following

Assumption 1 Let

SB = {p < B2 : p is good and #A(Fp) is B-smooth}.

Then

lim inf
B→∞

#SB

π(B2)
> 0 .

By the Weil bounds, we have

#A(Fp) ≤ (
√

p + 1)2 dim A ≤ B2 dim A(1 + o(1)) .

If the group orders #A(Fp) behave like random integers in this range, then the
assumption should be valid, by the result on the density of B-smooth numbers
up to Bρ (taking ρ = 2dim A).

The exponent of A(Fp) for p ∈ SB divides∏
q≤B

qblogq #A(Fp)c ≤ B2π(B) dim A(1 + o(1)) ≈ e2B dim A .

The inequality comes from qblogq #A(Fp)c ≤ #A(Fp) ≤ B2 dim A(1 + o(1)), and for
the estimate, we use the Prime Number Theorem π(x) ∼ x/ log x.

Let r be the rank of A(Q). Then the image of A(Q) in
∏

p∈SB

A(Fp) has size

at most c e2rB dim A for some constant c. This is because each generator of A(Q)
maps to an element of order � e2B dim A.

On the other hand, for B large, we have

#
∏

p∈SB

A(Fp) ≈ e2δBB2 dim A ,

where δB =
#SB

π(B2)
≥ δ > 0, by Assumption 1.

We now make the following

Assumption 2 V (Fp) behaves like a random subset of A(Fp) of size ≈ pdim V .

Then
∏

p∈SB

V (Fp) is a random subset of
∏

p∈SB

A(Fp) of size≈ e2δBB2 dim V . Recall

the diagram of maps



V (Q)
� � //

��

A(Q)

βB

��∏
p∈SB

V (Fp)
� �

αB
// ∏

p∈SB

A(Fp)

We have seen that we have the following estimates.

#
∏

p∈SB

A(Fp) ≈ e2δBB2 dim A, #im(αB) ≈ e2δBB2 dim V , #im(βB) ≤ c e2rB dim A

So the probability that im(α) ∩ im(β) 6= ∅ is (roughly)

#im(αB) ·#im(βB)
#

∏
p∈SB

A(Fp)
< c e2(rB dim A−δBB2(dim A−dim V )) .

(This is in fact the expected size of the intersection, which gives an upper bound
for the relevant probability.) Since δB ≥ δ > 0, this tends to zero when B →∞.
Thus we obtain the following result.

Proposition 3 Under Assumptions 1 and 2, the Mordell-Weil Sieve will be suc-
cessful with probability 1.

Note that Assumption 2 will not be valid when V (Q) 6= ∅, since in this case,
V (Fp) will always contain the images of the global points in V (Q). Of course,
the Mordell-Weil Sieve computation cannot succeed in this case. On the other
hand, in the absence of global points, there does not seem to be any reason for a
non-random behavior of the sets V (Fp), and so Assumption 2 should make sense
in this case. In any case, if we perform the computation and it succeeds, this
will prove unconditionally that V (Q) = ∅; the assumptions are only necessary to
convince us that we will succeed eventually.

4. Application: Proving That Curves Do Not Have Rational Points

In a joint project with Nils Bruin [10], we considered all “small” curves of genus 2:

C : y2 = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0

with f0, f1, . . . , f6 ∈ {−3,−2,−1, 0, 1, 2, 3}.
Our goal was to decide whether C has rational points, for all such curves C.
Among the ≈ 200 000 isomorphism classes of such curves, there were ≈ 1 500,

for which more straight-forward approaches (searching for rational points, check-
ing for local points, performing a “2-cover descent”; for details see [10]) were
unsuccessful.



We were able to determine generators of J(Q) for these curves (this is con-
ditional on the Birch and Swinnerton-Dyer Conjecture in 42 cases). We then ap-
plied the Mordell-Weil Sieve to these curves and their Jacobians; for all of them,
we could prove in this way that C(Q) = ∅.

5. Practical Considerations and Improvements

In practice, the computation suggested by the heuristic is infeasible. The sets we
have to deal with would be much too large.

Instead, we pick a smooth number N and work with

V (Q) //

��

A(Q)
NA(Q)

β(N)

��∏
p∈S

V (Fp)
α(N)

// ∏
p∈S

A(Fp)
NA(Fp)

where S is a set of primes such that A(Fp)/NA(Fp) is reasonably large (i.e., such
that a large part of the exponent divides N).

Instead of computing the subset of A(Q)/NA(Q) of elements that map under
β(N) into the image of α(N) directly in one go, we build N successively as a product
of prime factors, keeping track of the sets Σ(N ′) = (β(N ′))−1

(
im(α(N ′))

)
at each

step. If we go from N ′ to N ′q, we then only have to check all possible lifts to
A(Q)/N ′qA(Q) of the elements of Σ(N ′). The number of such checks is qr#Σ(N ′),
and the total complexity will be much less than Nr (which corresponds to the
one-step approach) if we can make sure that the sets Σ(N ′) are considerably
smaller than (N ′)r. For more details on our implementation, see [12].

The procedure as decribed so far works well when the rank is at most 2. To
go further than this, we need to use more information than just what we can
obtain mod p for primes p of good reduction. For the method, this restriction is
unnecessary, and we can work more generally with finite quotients of A(Qp) in
place of A(Fp). In this way, we can include information at bad primes and “deep”
information modulo higher powers of p. For example, the component group of the
Néron model of A at a prime p of bad reduction can provide useful information.

These improvements make the Mordell-Weil Sieve practical for a curve sitting
in an abelian surface when r ≤ 3 and maybe even r = 4 (but the evidence in this
case is too sparse to say something definite).

6. A Variation

Even when V does have rational points, we can use the Mordell-Weil Sieve to rule
out rational points on V with certain additional properties.



For example, we can show that there is no P ∈ V (Q) such that

• P is in a certain residue class mod n, or
• P is in a certain coset mod nA(Q).

(These two kinds of condition are actually equivalent: via the maps A(Q) →
A(Qp)/A(Qp)n and C(Qp) → A(Qp)/A(Qp)n, congruence conditions mod pn

can be translated into coset conditions mod eA(Q), where e is the exponent of
A(Qp)/A(Qp)n, and conversely. Here A(Qp)n is the nth kernel of reduction.)

To deal with the first kind of condition, we restrict to the relevant subset of
V (Qp) for the primes p dividing n.

To deal with the second kind of condition, we use values of N that are mul-
tiples of n and restrict to the relevant cosets in A(Q)/NA(Q).

If we can determine an integer n such that no two points in V (Q) are in the
same coset mod nA(Q), then this refinement of the Mordell-Weil Sieve allows us
(assuming a suitably modified version of the Poonen Heuristic) to determine the
set V (Q) in the following way. For each coset of nA(Q), we search for points in
this coset that are on V , and at the same time, we run the Mordell-Weil Sieve in
an attempt to show that no such point exists. One of the two procedures should
be successful, and so we will either have shown that there is no point on V in the
coset, or else we will have found such a point, and then we know that it must be
the only one.

If V is a curve in its Jacobian A, and r < dim A (which is the genus of
the curve), then we can use Chabauty’s method to obtain such a “separating”
integer n. For details, see [12].

7. An Example

Consider the smooth plane quartic curve

C : −2x3y − 2x3z + 6x2yz + 3xy3 − 9xy2z + 3xyz2 − xz3 + 3y3z − yz3 = 0 .

It has the known rational points

(1 : 0 : 0) , (0 : 1 : 0) , (0 : 0 : 1) , (1 : 1 : 1) .

Any point P ∈ C(Q) such that

P ≡ (0 : 1 : 0) mod 3 and P ≡ (1 : 0 : 0) or (1 : 1 : 1) mod 2

would lead to a primitive integral solution of x2 + y3 = z7. Note that the known
points do not satisfy this condition.

We want to prove that no rational point on C satisfies the condition.
(This was the last step in the complete solution of x2 + y3 = z7, see [7].)
Let J be the Jacobian of C. We can prove that the rank of J(Q) is 3, and we

find generators of a subgroup of J(Q) of finite index prime to 14.



We need to use information at the bad primes 2 and 3; we will use the com-
ponent groups of the Néron model at these primes. We find

J(Q2) −→−→ Φ2
∼=

Z
4Z

× Z
4Z

J(Q3) −→−→ Φ3
∼=

Z
7Z

The congruence conditions on P ∈ C(Q) correspond to subsets of size 3 and 1,
respectively.

With the additional information coming from

J(F23) ∼=
Z
2Z

× Z
16Z

× Z
16Z

× Z
32Z

J(F97) ∼=
Z

98Z
× Z

98Z
× Z

98Z

J(F13) −→−→
Z

14Z

we get a contradiction. Thus we have shown that no rational points on C exist
that satisfy the congruences mod 2 and mod 3.

Since we are working in J(Q)/NJ(Q) with N = 2a · 7b, it suffices to know
that the known points in J(Q) generate a subgroup of index prime to 14. In
particular, it is not necessary to know that we actually have generators of J(Q).
Since there is no explicit theory of canonical heights available for Jacobians of
genus 3 curves, we would not be able to prove that we do have generators. On the
other hand, we can verify that the index of the subgroup generated by the points
we know is prime to a given prime number q, by considering maps J(Q) → J(Fp)
for primes p such that q | #J(Fp).

8. Another Application

We can use the Mordell-Weil Sieve to show that for every P ∈ V (Q) there is a
known point Q ∈ V (Q) such that P − Q is in a subgroup of very large index in
A(Q). More precisely, if at some stage in the computation, we find that the set
Σ(N) ⊂ A(Q)/NA(Q) of elements that are consistent with the local information
coincides with the image of the known points in V (Q), then this implies that for
any unknown point P ∈ V (Q), there must be a known point Q ∈ V (Q) such that
P ∈ Q + NA(Q). Since (by assumption), P 6= Q, this implies that ĥ(P ) � N2,
and so any unknown point in V (Q) must be extremely large (if N is not very
small).

In some cases, we can use Baker’s Method to get a (very large) bound on
the height of integral points on V . We can then combine this with the Mordell-
Weil Sieve information to show that we know all the integral points on V . This



is ongoing work of Bugeaud, Mignotte, Siksek, Stoll, and Tengely, see [13]. For
example, we can determine the set of integral points on the curve

C : y2 − y = x5 − x .

The Jacobian J of C has Mordell-Weil rank 3. The Mordell-Weil Sieve computa-
tion gave

N = 4449329780614748206472972686179940652515754483274306796568214048000,

and after another step based on similar ideas that replaces NJ(Q) be a sublattice
of much larger index, this can be used to show that

log x(P ) ≥ 0.95× 102159

for every unknown integral point P on C. This turned out to be much more than
sufficient to contradict the upper bound, and so we can conclude that there are no
unknown integral points. The complete list of integral points is therefore given by

(x, y) = (−1, 0), (−1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2,−5),

(2, 6), (3,−15), (3, 16), (30,−4929), (30, 4930).
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