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Abstract. We study rational points and rational curves on varieties over
finite fields. The main new result is the construction of rational curves
passing through a given collection of points on smooth cubic hypersur-
faces over finite fields.

1. Introduction

The aim of these lectures is to study rational points and rational curves on vari-
eties, mainly over finite fields F,. We concentrate on hypersurfaces X" of degree
< n+1in P*"! especially on cubic hypersurfaces.

The theorem of Chevalley—Warning (cf. Esnault’s lectures) guarantees ratio-
nal points on low degree hypersurfaces over finite fields. That is, if X C P**! is
a hypersurface of degree < n + 1, then X (F,) # 0.

In particular, every cubic hypersurface of dimension > 2 defined over a finite
field contains a rational point, but we would like to say more.

e Which cubic hypersurfaces contain more than one rational point?
e Which cubic hypersurfaces contain rational curves?
e Which cubic hypersurfaces contain many rational curves?

Note that there can be rational curves on X even if X has a unique F-point.
Indeed, f : P! — X could map all ¢ + 1 points of P!(F,) to the same point in
X (F,), even if f is not constant.

So what does it mean for a variety to contain many rational curves? As an
example, let us look at CP?. We know that through any 2 points there is a line,
through any 5 points there is a conic, and so on. So we might say that a variety Xy
contains many rational curves if through any number of points py, ..., p, € X(K)
there is a rational curve defined over K.

However, we are in trouble over finite fields. A smooth rational curve over
F, has only ¢ + 1 points, so it can never pass through more than ¢ + 1 points in
X(F,). Thus, for cubic hypersurfaces, the following result, proved in Section 9,
appears to be optimal:



Theorem 1.1. Let X C P""! be a smooth cubic hypersurface over F,. Assume that
n > 2 and q¢ > 8. Then every map of sets ¢ : P1(F,) — X (F,) can be extended to
a map of Fy-varieties ® : P! — X.

In fact, one could think of stronger versions as well. A good way to formulate
what it means for X to contain many (rational and nonrational) curves is the
following:

Conjecture 1.2. [KS03] X C P**! be a smooth hypersurface of degree < n + 1
defined over a finite field F,. Let C' be a smooth projective curve and Z C C a
zero-dimensional subscheme. Then any morphism ¢ : Z — X can be extended to
C'. That is, there is a morphism ® : C — X such that ®|; = ¢.

More generally, this should hold for any separably rationally connected variety
X, see [KS03]. We define this notion in Section 4.

The aim of these notes is to explore these and related questions, especially
for cubic hypersurfaces. The emphasis will be on presenting a variety of methods,
and we end up outlining the proof of two special cases of the Conjecture.

Theorem 1.3. Conjecture (1.2) holds in the following two cases.

1. [KS03] For arbitrary X, when q is sufficiently large (depending on
dim X, g(C) and deg Z), and
2. for cubic hypersurfaces when q > 8 and Z contains only odd degree points.

As a warm-up, let us prove the case when X = P™. This is essentially due to
Lagrange. The case of quadrics is already quite a bit harder, see (4.7).

Example 1.4 (Polynomial interpolation). Over Fg, let C' be a smooth projective
curve, Z C C a zero-dimensional subscheme and ¢ : Z — P™ a given map.

Fix a line bundle L on C such that deg L > |Z| 4+ 2¢(C) — 1 and choose an
isomorphism Oz =2 L|z. Then ¢ can be given by n + 1 sections ¢; € H(Z, L|z).
From the exact sequence

0—-L(-Z)—L—1L|lz—0

we see that H(C, L) - H°(Z, L|z). Thus each ¢; lifts to ®; € H(C, L) giving
the required extension ® : C' — P™.

1.5 (The plan of the lectures). In Section 2, we study hypersurfaces with a unique
point. This is mostly for entertainment, though special examples are frequently
useful.

Then we prove that a smooth cubic hypersurface containing a K-point is
unirational over K. That is, there is a dominant map g : P --+ X. This of course
gives plenty of rational curves on X as images of rational curves on P". Note
however, that in general, g : P*(K) --+ X(K) is not onto. (In fact, one expects
the image to be very small, see [Man86, Sec.VI.6].) Thus unirationality does not
guarantee that there is a rational curve through every K-point.

As a generalization of unirationality, the notion of separably rationally con-
nected varieties is introduced in Section 4. This is the right class to study the



existence of many rational curves. Spaces parametrizing all rational curves on a
variety are constructed in Section 5 and their deformation theory is studied in
Section 6.

The easy case of Conjecture 1.2 is when Z is a single K-point. Here a complete
answer to the analogous question is known over R or Q,. Over F,, the Lang-Weil
estimates give a positive answer for ¢ large enough; this is reviewed in Section 7.

The first really hard case of (1.2) is when C' = P! and Z = {0,00}. The
geometric question is: given X with p, p’ € X (IF,), is there a rational curve defined
over I, passing through p, p’? We see in Section 8 that this is much harder than
the 1-point case since it is related to Lefschetz-type results on the fundamental
groups of open subvarieties. We use this connection to settle the case for ¢ large
enough and p,p’ in general position.

Finally, in Section 9 we use the previous result and the “third intersection
point map” to prove Theorem 1.1.

Remark 1.6. The first indication that the 2-point case of (1.2) is harder than
the 1-point case is the different behavior over R. Consider the cubic surface S
defined by the affine equation y? + 2% = 2® — 2. Then S(R) has two components
(a compact and an infinite part).

e If p,p’ lie in different components, there is no rational curve over R through
p,p’, since RP! is connected.

e If p,p’ lie in the same component, there is no topological obstruction. In
fact, in this case an R-rational curve through p, p’ always exists, see [Kol99,
1.7].

2. Hypersurfaces with a unique point

The first question has been answered by Swinnerton-Dyer. We state it in a seem-
ingly much sharpened form.

Proposition 2.1. Let X be a smooth cubic hypersurface of dimension > 2 defined
over a field K with a unique K-point. Then dim X = 2, K =Fy and X is unique
up to projective equivalence.

Proof. We show in the next section that X is unirational. Hence, if K is infinite,
then X has infinitely many K-points. So this is really a question about finite
fields.

If dim X > 3 then | X (K)| > ¢+ 1 by (2.3). Let us show next that there is no
such surface over I, for ¢ > 3.

Assume to the contrary that S' contains exactly one rational point € S(F,).
There are ¢> hyperplanes in P3 over F, not passing through x.

The intersection of each hyperplane with S is a curve of degree 3, which is
either an irreducible cubic curve, or the union of a line and a conic, or the union
of three lines. In the first case, the cubic curve contains a rational point (if C'
contains a singular point, this points is defined over [Fy; if C' is smooth, the Weil
conjectures show that |#C(F,;) — (¢ +1)| < 2,/q, so #C(F,) = 0 is impossible);



in the second case, the line is rational and therefore contains rational points; in
the third case, at least one line is rational unless all three lines are conjugate.

By assumption, for each hyperplane H not passing through x, the intersection
SN H does not contain rational points. Therefore, SN H must be a union of three
lines that are not defined over F,, but conjugate over F,.

This gives 3¢> lines on S. However, over an algebraically closed field, a cubic
surface contains exactly 27 lines. For ¢ > 3, we have arrived at a contradiction.

Finally we construct the surface over Fy, without showing uniqueness. That
needs a little more case analysis, see [KSC04, 1.39].

We may assume that the rational point is the origin of an affine space on
which S is given by the equation

f(@,y,2) = 2+ Q(x,y,2) + C(x,y, 2),

with @ (resp. C') homogeneous of degree 2 (resp. 3). If C' vanishes in (z,y, z),
then S has a rational point (z : y : z) on the hyperplane P? at infinity. Since
C must not vanish in (1,0, 0), the cubic form C' must contain the term 3, and
similarly y3, 23. By considering (1, 1,0), we see that it must also contain z2y or
xy?, so without loss of generality, we may assume that it contains z2y, and for
similar reasons, we add the terms y?z, z2z. To ensure that C' does not vanish at
(1,1,1), we add the term xyz, giving

C(z,y,2) =2 +y° + 2° + 2%y + %2 + 2%z + 2y2.

Outside the hyperplane at infinity, we distinguish two cases: We see by considering
a tangent plane (z = 0) that it must intersect S in three conjugate lines. We
conclude that Q(z,y, z) = z(ax + by + cz) for certain a,b,c € Fa. For z # 0, we
must ensure that f does not vanish at the four points (0,0, 1), (1,0,1), (0,1,1),
(1,1, 1), resulting in certain restrictions for a, b, c. These are satisfied by a = b =0
and ¢ = 1. Therefore, f(z,y,2) = z + 22 + C(x,y,2) with C as above defines a
cubic surface over Fy that has exactly one Fo-rational point.

There are various ways to check that the cubic is smooth. The direct compu-
tations are messy by hand but easy on a computer. Alternatively, one can note
that S does contain 3 - 23 + 3 = 27 lines and singular cubics always have fewer
than 27. O

Remark 2.2. A variation of the argument in the proof shows, without using the
theorem of Chevalley—~Warning, that a cubic surface S' defined over F; must con-
tain at least one rational point:

If S does not contain a rational point, the intersection of S with any of
the ¢ + ¢?> + ¢ + 1 hyperplanes in P3 consists of three conjugate lines, giving
3(¢® + ¢* + q+ 1) > 45 > 27 lines, a contradiction.

Exercise 2.3. Using Chevalley-Warning, show that for a hypersurface X c P*+!
of degree n + 1 — r, the number of Fy-rational points is at least |P"(Fy)| = ¢" +
gt L

Question 2.4. Find more examples of hypersurfaces X C P"t! of degree at most
n+ 1 with #X(F,) = 1.



Example 2.5 (H.-C. Graf v. Bothmer). We construct hypersurfaces X C P7+!
over [F5 containing exactly one rational point.

We start by constructing an affine equation. Note that the polynomial
f = xo---xpy1 vanishes in every x € FSH except (1,...,1), while g :=
(xo — 1)+ (xp41 — 1) vanishes in every point except (0,...,0). Therefore, the
polynomial h := f 4+ g + 1 vanishes only in (0,...,0) and (1,...,1).

The only monomial of degree at least n+2 occurring in f and g is xg - - - Tp11,
while the constant term 1 occurs in g but not in f. Therefore, h is a polynomial of
degree n + 1 without constant term. We construct the homogeneous polynomial
H of degree n 4+ 1 from h by replacing each monomial z;, x;, ---x;, of degree
re{l,...,n+1} of h with i; <--- <, by xﬁHmh .-+ x;, of degree n+1 (where
k=mn+1-7). Since a* = a for any k > 1 and a € Fy, we have h(x) = H(x) for

any x € F5*2; the homogeneous polynomial H vanishes exactly in (0,...,0) and
(1,...,1).

Therefore, H defines a degree n+ 1 hypersurface P**! containing exactly one
Fy-rational point (1 :---:1).

Using a computer, we can check for n = 2,3,4 that H defines a smooth
hypersurface of dimension n. Note that for n = 2, the resulting cubic surface is
isomorphic to the one constructed in Proposition 2.1. For n > 5, it is unknown
whether H defines a smooth variety.

Example 2.6. Let a1 be a generator or F,m /F, with conjugates «;. It is easy to
see that

X(a) = (H(ml + g+ ol a,) = 0) cpm

%

has a unique Fg-point at (1:0:---:0). X(«) has degree m, it is irreducible over
F, but over Fym it is the union of m planes.

Assume now that ¢ < m — 1. Note that afx; — ;27 is identically zero on
P™(F,). Let H be any homogeneous degree m element of the ideal generated by
all the z{a; — x;z]. Then H is also identically zero on P™(IF,), thus

X(a,H) := (H(Jcl + oo +~--+almfla:m) = H) cpm

i

also has a unique Fy-point at (1:0:---:0).

By computer it is again possible to find further examples of smooth hyper-
surfaces with a unique point, but the computations seem exceedingly lengthy for
m > 6.

Remark 2.7. Let X C P"*! be a smooth hypersurface of degree d. Then the
primitive middle Betti number is

(d—1)""2 4 (=1)"

y 14+ (_1>n S dn+1.

Thus by the Deligne-Weil estimates



|#X(Fq) _#Pn(Fq)| < d"+1qn/2.

Thus we get that for d = n + 1, there are more then #P"~!(F,) points in X (F,)
as soon as ¢ > (n+ 1)2+%.

3. Unirationality

Definition 3.1. A variety X of dimension n defined over a field K is called unira-
tional if there is a dominant map ¢ : P --» X, also defined over K.

Exercise 3.2. [Kol02, 2.3] Assume that there is a dominant map ¢ : PV --» X for
some N. Show that X is unirational.

The following result was proved by Segre [Seg43] in the case n = 2, by Manin
[Man86] for arbitrary n and general X when K is not a finite field with “too few”
elements, and in full generality by Kollar [Kol02].

Theorem 3.3. Let K be an arbitrary field and X C P*t1 a smooth cubic hyper-
surface (n > 2). Then the following are equivalent:

1. X is unirational over K.

2. X(K) # 0.

Proof. Let us start with the easy direction: (1) = (2). The proof of the other
direction will occupy the rest of the section.

If K is infinite, then K-rational points in P™ are Zariski-dense, so ¢ is defined
on most of them, giving K-rational points of X as their image.

If K is a finite field, ¢ might not be defined on any K-rational point. Here,
the result is a special case of the following.

Lemma 3.4 (Nishimura). Given a smooth variety Y defined over K with Y (K) # ()
and a rational map ¢ : Y --» Z with Z proper, we have Z(K) # 0.

Proof (after E. Szabs). We proceed by induction on the dimension of Y. If
dimY = 0, the result is clear. If dimY = d > 0, we extend ¢ : ¥ --+ Z to
¢' Y’ --» Z where Y’ is the blow-up of Y in p € Y (K). Since a rational map
is defined outside a closed subset of codimension at least 2, we can restrict ¢’ to
the exceptional divisor, which is isomorphic to P?~!. This restriction is a map
satisfying the induction hypothesis. Therefore, X (K) # 0. O

3.5 (Third intersection point map). Let C' C P? be a smooth cubic curve. For
p,p’ € C the line (p,p’) through them intersects C in a unique third point, denote
it by ¢(p,p’). The resulting morphism ¢ : C x C — C is, up to a choice of the
origin and a sign, the group law on the elliptic curve C.

For an arbitrary cubic hypersurface X defined over a field K, we can construct
the analogous rational map ¢ : X x X --» X as follows. If p # p’ and if the
line (p,p’) does not lie completely in X, it intersects X in a unique third point
o(p,p’). If X is irreducible, this defines ¢ on an open subset of X x X.



It is very tempting to believe that out of ¢ one can get an (at least birational)
group law on X. This is, unfortunately, not at all the case. The book [Man8&6]
gives a detailed exploration of this direction.

We use ¢ to obtain a dominant map from a projective space to X, relying on
two basic ideas:

e Assume that Y;,Y5 C X are rational subvarieties such that dimY; +
dim Y5 > dim X. Then, if Y7, Y5 are in “general position,” the restriction of
¢ gives a dominant map Y7 X Yo --+» X. Thus X is unirational since Y7 x Y5
is birational to a projective space.

e How can we find rational subvarieties of X7 Pick a rational point p € X (K)
and let Y}, be the intersection of X with the tangent hyperplane 7T}, of X in
p. Note that Y}, is a cubic hypersurface of dimension n—1 with a singularity
at p.

If p is in “general position,” then Y} is irreducible and not a cone. Thus
7 :Y, --» P"~1 the projection from p, is birational and so Y, is rational.

From this we conclude that if X (K) has at least 2 points in “general position,”
then X is unirational. In order to prove unirationality, one needs to understand
the precise meaning of the above “general position” restrictions, and then figure
out what to do if there are no points in “general position.” This is especially a
problem over finite fields.

Example 3.6. [Hir81] Check that over Fy, 4 and Fyg all points of (z3 + 23 + 23 +
x3 = 0) lie on a line. In particular, the curves Y, are reducible whenever p is over
F16. Thus there are no points in “general position.”

3.7 (End of the proof of (3.3)). In order to prove (3.3), we describe 3 constructions,
working in increasing generality.

(3.7.1) Pick p € X(K). If Y, is irreducible and not a cone, then Y}, is birational
over K to P"~!. This gives more K-rational points on Y,. We pick p’ € Y,(K) C
X(K), and if we are lucky again, Y,/ is also birational over K to P"~!. This
results in

bir

. 2n—2
Pipyp P - Y XYy -0 X,

where the first map is birational and the second map is dominant.

This construction works when K is infinite and Y, is irreducible and not a
cone.

(3.7.2) Over K, it might be impossible to find p € X(K) such that Y, is
irreducible. Here we try to give ourselves a little more room by passing to a
quadratic field extension and then coming back to K using the third intersection
point map ¢.

Given p € X(K), a line through p can intersect X in two conjugate points
s, 8" defined over a quadratic field extension K'/K. If Y, Yy (the intersections
of X with the tangent hyperplanes in s resp. s’) are birational to P*~! over K’,
consider the map

Qo5 Vs x Yy -5 X,



So far @1 5 ¢ is defined over K.

Note however that Y, Yy are conjugates of each other by the Galois involution
of K'/K. Furthermore, if z € Y and z € Y/ is its conjugate then the line ¢(z, %)
is defined over K. Indeed, the Galois action interchanges z,z hence the line (z, %)
is Galois invariant, hence the third intersection point ®; s 4 (2,%) is defined over
K.

That is, the involution (21, z2) +— (22, Z1) makes Y x Yy into a K-variety and
®y 4, then becomes a K-morphism. Thus we obtain a dominant map

ég,p,L : E)‘{K//KIP”_l --» X

where Ry xP" ! is the Weil restriction of P*~! (cf. Example 3.8).

This construction works when K is infinite, even if Y}, is reducible or a cone.
However, over a finite field, it may be impossible to find a suitable line L.

As a last try, if none of the lines work, let’s work with all lines together!

(3.7.3) Consider the universal line through p instead of choosing a specific
line. That is, we are working with all lines at once. To see what this means, choose
an affine equation such that p is at the origin:

L(fﬂl, . ,$n+1) + Q(acl, N ,l’n+1) + C(l’l, N ,Zn+1) = 0,

where L is linear, () is quadratic and C is cubic. The universal line is given
by (mat,...,mut,t) where the m; are algebraically independent over K and the
quadratic formula gives the points s, s’ at

—Q(my,...,my,1) £ \/D(ml,...,mn,l)
20(7’7’),17. . 7mn—171) ’

t:

where D = Q% — 4LC is the discriminant.
Instead of working with just one pair Yy, Yy, we work with the universal
family of them defined over the field

K(ml,...,mn,\/D(ml,...,mn,1)>

It does not matter any longer that Y may be reducible for every my,...,m, €
K since we are working with all the Y; together and the generic Y; is irreducible
and not a cone.

Thus we get a map

By, P" x Pl x Pl Y ) Pl s X

K(m1,...,mn,\/ﬁ)/K(ml,...,mn)
The last step is the following observation. Unirationality of X g changes if we
extend K. However, once we have a K-map P3?~2 --s X, its dominance can be
checked after any field extension. Since ®3,, incorporates all ®,,, 1., we see that
the K-map ®3, is dominant if ® , 1, is dominant for some K-line L.
Thus we can check dominance over the algebraic closure of K, where the
techniques of the previous cases work.



There are a few remaining points to settle (mainly that Y, is irreducible

and not a cone for general p € X(K) and that ®;, , is dominant for general

p,p" € X(K)). These are left to the reader. For more details, see [Ko0l02, Section 2].

Example 3.8. We give an explicit example of the construction of the Weil restric-
tion. The aim of Weil restriction is to start with a finite field extension L/K and
an L-variety X and construct in a natural way a K-variety Ry, X such that
X(L) = (R X) (K).

As a good example, assume that the characteristic is # 2 and let L = K ( /a)
be a quadratic field extension with G := Gal(L/K) = {id,o}. Let X be an
L-variety and X its conjugate over K.

Then X x X7 is an L-variety. We can define a G-action on it by

o ¢ (21,29) = (22,29).

This makes X x X into the K-variety Ry, x X.

We explicitly construct Ry, x P!, which is all one needs for the surface case
of (3.3).

Take the product of two copies of P! with the G-action

((s1:12), (s3 2 85)) = ((s2.: 2), (57 = £7))-

Sections of O(1,1) invariant under G are

R a — o P— o o P o o
up i= 5189, wug:=1t1tg, ug:= 51t +s3t1, ug = —(s1t — s5t1).

Ja

These sections satisfy u2 —aus = 4ujus, and in fact, this equation defines Ry, / xP!
as a subvariety of P3 over K.

Thus Ry, kP! is a quadric surface with K-points (e.g., (1: 0: 0: 0)), hence
rational over K.

Let us check that (Rp,xP')(K) = P!(L). Explicitly, one direction of this
correspondence is as follows. Given (z1 + vazz : y1 + ayz) € PY(L) with
r1,%2,Y1,Y2 € K, we get the G-invariant point

(($1 +Vazy : y1 + Vaya), (x1 — Vaxs y1 — \/5y2)) € ((X x XU)(L))G-
From this, we compute

up =af —arl, up =y} —ayy, uz=2(r1y1 —awvayz), us = 2(Tay1 — T1Y2).
Then (uq : ug : ug : ug) € Ry P (K).

For the precise definitions and for more information, see [BLR90, Section 7.6]
or [Kol02, Definition 2.1].

In order to illustrate the level of our ignorance about unirationality, let me
mention the following problem.



Question 3.9. Over any field K, find an example of a smooth hypersurface X C
P+ with deg X < n+ 1 and X (K) # 0 that is not unirational. So far, no such
X is known.

The following are 2 further incarnations of the third intersection point map.

Exercise 3.10. Let X" be an irreducible cubic hypersurface. Show that S?X is
birational to X x P", where S2X denotes the symmetric square of X, that is,
X X X modulo the involution (z,2') — (2, ).

Exercise 3.11. Let X™ be an irreducible cubic hypersurface defined over K and
L/K any quadratic extension. Show that there is a map Rp/ kX -+ X.

4. Separably rationally connected varieties

Before we start looking for rational curves on varieties over finite fields, we should
contemplate which varieties contain plenty of rational curves over an algebraically
closed field. There are various possible ways of defining what we mean by lots of
rational curves, here are some of them.

4.1. Let X be a smooth projective variety over an algebraically closed field K.
Consider the following conditions:
1. For any given z,2’ € X, there is f : P! — X such that f(0) = z, f(o0) =
x'.
2. For any given x1,...,%, € X, there is f : P! — X such that
{z1,...,2m} C f(PL).
3. Let Z C P! be a zero-dimensional subscheme and fz : Z — X a morphism.
Then fz can be extended to f : P! — X.
4. Conditions (3) holds, and furthermore f*Tx (—Z) is ample. (That is, f*Tx
is a sum of line bundles each of degree at least |Z| + 1.)
5. There is f : P! — X such that f*Ty is ample.

Theorem 4.2. [KMM92b], [Kol96, Sec.4.3] Notation as above.

1. If K is an uncountable field of characteristic O then the conditions 4.1.1-
4.1.5 are equivalent.
2. For any K, condition 4.1.5 implies the others.

Definition 4.3. Let X be a smooth projective variety over a field K. We say that
X is separably rationally connected or SRC' if the conditions 4.1.1-4.1.5 hold for
X7

Remark 4.4. There are 2 reasons why the conditions 4.1.1-4.1.5 are not always
equivalent.

First, in positive characteristic, there are inseparably unirational varieties.
These also satisfy the conditions 4.1.1-4.1.2, but usually not 4.1.5. For instance,
if X is an inseparably unirational surface of general type, then 4.1.5 fails. Such
examples are given by (resolutions of) a hypersurface of the form 2P = f(z,y) for
deg f > 1.



Second, over countable fields, it could happen that (4.1.1) holds but X has
only countably many rational curves. In particular, the degree of the required f
depends on z,2’. These examples are not easy to find, see [BT05] for some over
F,. It is not known if this can happen over Q or not.

Over countable fields of characteristic 0, we must require the existence of
f: P! — X of bounded degree in these conditions in order to obtain equivalence
with 4.1.5.

Example 4.5. Let S C P2 be a cubic surface. Over the algebraic closure, S is the
blow-up of P2 in six points. Considering f mapping P! to a line in P? not passing
through any of the six points, we see that S is separably rationally connected.

More generally, any rational surface is separably rationally connected.

It is not quite trivial to see that for any normal cubic surface S that is not
a cone, there is a morphism to the smooth locus f : P! — S™ such that f*Ts is
ample.

Any normal cubic hypersurface is also separably rationally connected, except
cones over cubic curves. To see this, take repeated general hyperplane sections
until we get a normal cubic surface S C X which is not a cone. The normal bundle
of § in X is ample, hence the f : P! — S™ found earlier also works for X.

In characteristic 0, any smooth hypersurface X C P"t! of degree < n + 1 is
SRC; see [Kol96, Sec.V.2] for references and various stronger versions. Probably
every normal hypersurface is also SRC, except for cones.

In positive characteristic the situation is more complicated. A general hyper-
surface of degree < n + 1 is SRC, but it is not known that every smooth hyper-
surface of degree < n + 1 is SRC. There are some mildly singular hypersurfaces
which are not SRC, see [Kol96, Sec.V.5].

4.6 (Effective bounds for hypersurfaces). Let X C P"*! be a smooth SRC hy-
persurface over K. Then (4.2) implies that there are rational curves through any
point or any 2 points. Here we consider effective bounds for the degrees of such
curves.

First, if deg X < n+1 then through every point there are lines. For a general
point, the general line is also free (cf. (5.2)).

If deg X = n + 1 then there are no lines through a general point, but usu-
ally there are conics. However, on a cubic surface there are no irreducible conics
through an Eckart point p. (See (7.5) for the definition and details.)

My guess is that in all cases there are free twisted cubics through any point,
but this may be difficult to check. I don’t know any reasonable effective upper
bound.

For 2 general points z, 2’ € X, there is an irreducible rational curve of degree
<n(n+1)/(n+2 —deg X) by [KMM92a]. The optimal result should be closer
to n + 1, but this is not known. Very little is known about non-general points.

Next we show that (1.2) depends only on the birational class of X. The proof
also shows that (4.1.3) is also a birational property.

Proposition 4.7. Let K be a field and X, X' smooth projective K -varieties which
are birational to each other. Then, if (1.2) holds for X, it also holds for X'.



Proof. Assume for notational simplicity that K is perfect. Fix embeddings
X Cc PN and X’ ¢ PM and represent the birational maps ¢ : X --» X’ and
¢~ X' --» X with polynomial coordinate functions.

Given f} : Z — X', we construct a thickening Z € Z, C C and fz, : Z, — X
such that if f: C' — X extends fz, then f':= ¢ o f extends f.

Pick a point p € Z and let @, =2 L[[t] be its complete local ring where
L = K(p). Then the corresponding component of Z is Specy L][t]]/(t™) for some
m > 1.

By choosing suitable local coordinates at f,(p) € X', we can define its com-
pletion by equations

Yn+i = Gi(yla"'7y7z) where Gi S L[[ylaayn”

Thus f7 is given by its coordinate functions

gr(t),- - un(t), - € L[]/ (™).

The polynomials g; for ¢ = 1,...,n can be lifted to y;(¢t) € L[[t]] arbitrarily.
These then determine liftings y,1:(t) = Gi(y1(t),...,yn(t)) giving a map F’ :
Specy L[[t]] — X'. In particular, we can choose a lifting such that ¢~ is a local
isomorphism at the image of the generic point of Specy L[[t]]. Thus ¢~ o F’ and
¢o¢ o F' are both defined and ¢po ¢~ o F/ = F'.

Using the polynomial representations for ¢, ¢~ !, write

oo (Lyr(t), . yn(t),...) = (zo(t),...,2n(t),...), and
do(xo(t),...,on(t),...) = (20(t),. .., 2n(t),...).

Note that (20(t),...,2zn(t),...) and (1,y1(t),...,yn(t),...) give the same map
F' : Specg L[[t]] — X', but we map to projective space. Thus all we can say is
that

yi(t) = zi(t)/20(t) Vi>1.

Assume now that we have (z{(t),...,z}

po(ai(t), ... ,xh(t),...) = (25(),...,zn(t),...).

(t),...) and the corresponding

such that

Then also
zi(t) =2 (t) modt® Vi.
In particular, if s > r := multg 2o (¢), then multg 2§ (t) = multy 2o(¢) and so

it
(t)

~—

I

yi(t) = =y;(t) mod (7).

N

*
0



That is, if F* : Specy L[[t]] — X agrees with ¢~ o F’ up to order s = r +m then
¢ o F* agrees with F’ up to order m = s —r.

We apply this to every point in Z to obtain the thickening Z C Z; C C and
fz, + Zy — X as required. O

5. Spaces of rational curves

Assume that X is defined over a non-closed field K and is separably rationally
connected. Then X contains lots of rational curves over K, but what about ra-
tional curves over K? We are particularly interested in the cases when K is one
of Fy, Qp or R.

5.1 (Spaces of rational curves). Let X be any variety. Subvarieties or subschemes
of X come in families, parametrized by the Chow variety or the Hilbert scheme.
For rational curves in X, the easiest to describe is the space of maps Hom (P!, X).

Pick an embedding X C PV and let F; be homogeneous equations of X.

Any map f : P! — PV of fixed degree d is given by N + 1 homogeneous
polynomials (fo(s,t),..., fn(s,t)) of degree d in two variables s,t (up to scaling
of these polynomials). Using the coefficients of fy,..., fn, we can regard f as a
point in POVHD (@11,

We have f(P') C X if and only if the polynomials F;(fo(s,t),..., fn(s,t))
are identically zero. Each F; gives d - deg F; + 1 equations of degree deg F; in the
coefficients of fy,..., fn.

If fo,..., fn have a common zero, then we get only a lower degree map. We
do not count these in Homg4(P!, X). By contrast we allow the possibility that
f € Homy(P!, X) is not an embedding but a degree e map onto a degree d/e
rational curve in X. These maps clearly cause some trouble but, as it turns out,
it would be technically very inconvenient to exclude them from the beginning.

Thus Homy(P!, X) is an open subset of a subvariety of P(N+D(@+1)=1 defined
by equations of degree < max;{deg F;}.

Hom(P!, X) is the disjoint union of the Homg(P*, X) for d = 1,2,. ...

Therefore, finding a rational curve f : P! — X defined over K is equivalent
to finding K-points on Hom(P!, X).

In a similar manner one can treat the space Hom (P!, X, 0 — x) of those maps
f: P! — X that satisfy f(0) = 2z or Hom(P!, X,0 — z,00 — 2’), those maps
f P! — X that satisfy f(0) =z and f(o0) = 2’

5.2 (Free and very free maps). In general, the local structure of the spaces
Hom(P!, X) can be very complicated, but everything works nicely in certain im-
portant cases.

We say that f: P! — X is free if f*Tx is semi-positive, that is a direct sum
of line bundles of degree > 0. We see in (6.4) that if f is free then Hom(P!, X)
and Hom(P!, X,0 — f(0)) are both smooth at [f].

We say that f : P! — X is very free if f*Tx is positive or ample, that is,
a direct sum of line bundles of degree > 1. This implies that Hom(P!, X,0
f(0),00 — f(c0)) is also smooth at [f].



Remark 5.3. Over a nonclosed field K there can be smooth projective curves C
such that Cx = PL but C(K) = 0, thus C is not birational to Pj. When we
work with Hom(P!, X), we definitely miss these curves. There are various ways
to remedy this problem, but for us this is not important.

Over a finite field K, every rational curve is in fact birational to Pk, thus we
do not miss anything.

To get a feeling for these spaces, let us see what we can say about the irre-
ducible components of Homg (P!, X) for cubic surfaces.

Example 5.4. Let S C P3 be a cubic surface defined over a non-closed field K.
Consider Homg (P, S) for low values of d.

e For d = 1, over K, there are 27 lines on S, so Hom;(P!,S) has 27
components which may be permuted by the action of the Galois group
G = Gal(K/K).

e For d = 2, over K, there are 27 one-dimensional families of conics, each
obtained by intersecting S with the pencil of planes containing a line on S.
These 27 families again may have a non-trivial action of G.

e For d = 3, over K, there are 72 two-dimensional families of twisted cubics

on S (corresponding to the 72 ways to map S to P2 by contracting 6 skew
lines; the twisted cubics are preimages of lines in P? not going through any
of the six blown-up points). Again there is no reason to assume that any
of these 72 families is fixed by G.
However, there is exactly one two-dimensional family of plane rational cubic
curves on S, obtained by intersecting S with planes tangent to the points
on S outside the 27 lines. This family is defined over K and is geometrically
irreducible.

All this is not very surprising. A curve C on S determines a line bundle
0Os(C) € Pic(S) = Z7, hence we see many different families in a given degree
because there are many different line bundles of a given degree. It turns out
that, for cubic surfaces, once we fix not just the degree but also the line bundle
L = Og(C), the resulting spaces Homp, (P!, X) are irreducible.

This, however, is a very special property of cubic surfaces and even for smooth
hypersurfaces X it is very difficult to understand the irreducible components of
Hom(P!, X). See [HRS04,HS05,HRS05,dJS04] for several examples.

Thus, in principle, we reduced the question of finding rational curves de-
fined over K to finding K-points of the scheme Hom(P!, X). The problem is that
Hom (P!, X) is usually much more complicated than X.

5.5 (Plan to find rational curves). We try to find rational curves defined over a
field K in 2 steps.

1. For any field K, we will be able to write down reducible curves C' and
morphisms f : C' — X defined over K and show that f : C' — X can be
naturally viewed as a smooth point [f] in a suitable compactification of
Hom (P!, X) or Hom(P!, X,0 — ).



2. Then we argue that for certain fields K, a smooth K-point in a compact-
ification of a variety U leads to a K-point inside U.
There are 2 main cases where this works.

(a) (Fields with an analytic inverse function theorem)
These include R,Q, or the quotient field of any local, complete
Dedekind domain, see [GR71]. For such fields, any smooth point in
U(K) has an analytic neighborhood biholomorphic to 0 € K™. This
neighborhood has nontrivial intersection with any nonempty Zariski
open set, hence with U.

(b) (Sufficiently large finite fields)
This method relies on the Lang-Weil estimates. Roughly speaking these
say that a variety U over F, has points if ¢ > 1, where the bound on ¢
depends on U. We want to apply this to U = Homg4(P!, X). We know
bounds on its embedding dimension and on the degrees of the defining
equations, but very little else. Thus we need a form of the Lang-Weil
estimates where the bound for ¢ depends only on these invariants.

We put more detail on these steps in the next sections, but first let us see an
example.

Example 5.6. Let us see what we get in a first computation trying to find a degree
3 rational curve through a point p on a cubic surface S over Fj,.

The intersection of S with the tangent plane at p usually gives a rational
curve C,, which is singular at p. If we normalize to get n : P! — C, about half the
time, n~!(p) is a conjugate pair of points in F,2. This is not what we want.

So we have to look for planes H C P3 that pass through p and are tangent
to S at some other point. How to count these?

Projecting S from p maps to P? and the branch curve B C P? has degree
4. Moreover, B is smooth if p is not on any line. The planes we are looking for
correspond to the tangent lines of B.

By the Weil estimates, a degree 4 smooth plane curve has at least ¢+1—6,/q
points. For ¢ > 33 this guarantees a point in B(F,) and so we get a plane H
through p which is tangent to S at some point.

However, this is not always enough. First, we do not want the tangency to be
at p. Second, for any line L C S, the plane spanned by p and L intersects S in L
and a residual conic. These correspond to double tangents of B. The 28 double
tangents correspond to 56 points on B. Thus we can guarantee an irreducible
degree 3 rational curve only if we find an IF;-point on B which different from these
56 points. This needs ¢ > 121 for the Weil estimates to work. This is getting quite
large!

Of course, a line is a problem only if it is defined over F, and then the
corresponding residual conic is a rational curve over I, passing through p, unless
the residual conic is a pair of lines. In fact, if we look for rational curves of degree
< 3, then ¢ > 33 works.

I do not know what the best bound for g is. In any case, we see that even
this simple case leads either to large bounds or to case analysis.

The current methods work reasonably well when ¢ > 1, but, even for cubic
hypersurfaces, the bounds are usually so huge that I do not even write them down.



Then we see by another method that for cubics we can handle small values of
q. The price we pay is that the degrees of the rational curves found end up very
large.

It would be nice to figure out a reasonably sharp answer at least for cubics,
Just to start the problem, let me say that I do not know the answer to the
following.

Question 5.7. Let X be a smooth cubic hypersurface over F, and p,p’ € X (F,)
two points. Is there a degree < 9 rational curve defined over F, passing through
p and p'?

Exercise 5.8. Let S C P? be the smooth cubic surface constructed in (2.1). Show
that S does not contain any rational curve of degree < 8 defined over Fs.

Hints. First prove that the Picard group of S is generated by the hyperplane
sections. Thus any curve on S has degree divisible by 3.

A degree 3 rational curve would be a plane cubic, these all have at least 2
points over Fy.

Next show that any rational curve defined over Fo must have multiplicity 3
or more at the unique p € S(Fs). A degree 6 rational curve would be a complete
intersection of S with a quadric ). Show that S and @) have a common tangent
plane at p and then prove that S N @ has only a double point if @ is irreducible.

6. Deformation of combs

Example 6.1. Let S be a smooth cubic surface over R and p a real point of S.
Our aim is to find a rational curve defined over R passing through p. It is easy
to find such a rational curve C defined over C. Its conjugate C then also passes
through p. Together, they define a curve C' + C C S which is defined over R. So
far this is not very useful.

We can view C + C as the image of a map ¢g : Qo — S where Qy C P? is
defined by 224+y? = 0. Next we would like to construct a perturbation ¢. : Q. — S
of this curve and of this map. It is easy to perturb Qg to get “honest” rational
curves over R, for instance Q. := (2% + y? = £2?).

The key question is, can we extend ¢ to ¢.? Such questions are handled by
deformation theory, originated by Kodaira and Spencer. A complete treatment of
the case we need is in [Kol96] and [AKO03] is a good introduction.

The final answer is that if H'(Qq,¢5Ts) = 0, then ¢. exists for |e| < 1.
This allows us to obtain a real rational curve on S, and with a little care we can
arrange for it to pass through p.

In general, the above method gives the following result:

Corollary 6.2. [Kol99] Given Xg such that X¢ is rationally connected, there is a
real rational curve through any p € X(R).

We would like to apply a similar strategy to X such that X4 is separably
rationally connected. For a given = € X(K), we find a curve g; : P! — X
defined over K such that ¢;(0) = z, with conjugates ¢gs,...,gm. Then C :=



g1(PY) + -+ + g (P1) is defined over K. Because of the singularity of C in z, it is
harder to find a smooth deformation of C. It turns out that there is a very simple
way to overcome this problem: we need to add a whole new P! at the point z and
look at maps of curves to X which may not be finite.

Definition 6.3. Let X be a variety over a field K. An m-pointed stable curve of
genus 0 over X is an object (C,p1,...,pm, f) where

1. C'is a proper connected curve with p,(C) = 0 defined over K having only
nodes,

2. p1,...,pm are distinct smooth points in C(K),

. f:C — X is a K-morphism, and

4. C has only finitely many automorphisms that commute with f and fix
D1, ..., Pm. Equivalently, there is no irreducible component C; C C'z such
that f maps C; to a point and C; contains at most 2 special points (that
is, nodes of C or p1,...,pm)-

w

Note that if f: C — X is finite, then (C,p1,...,pm, f) is a stable curve of
genus 0 over X, even if (C,p1,...,pm) is not a stable m-pointed genus 0 curve in
the usual sense [FP97].

We have shown how to parametrize all maps P' — X by the points of a scheme
Hom (P!, X). Similarly, the methods of [KM94] and [Ale96] show that one can
parametrize all m-pointed genus 0 stable curves of degree d with a single scheme
Mo m(X,d). For amap (C,p1,...,Ppm, f), the corresponding point in My, (X, d)
is denoted by [C,p1,. .., Pm, f].

Given K-points x1,...,x, € X(K), the family of those maps f : C — X
that satisfy f(p;) = a; for i =1,...,m forms a closed scheme

Mo,m(X,pi — ;) C Mom(X).

See [AKO03, sec.8] for more detailed proofs.

The deformation theory that we need can be conveniently compacted into
one statement. The result basically says that the deformations used in (6.1) exist
for any reducible rational curve.

Theorem 6.4. (c¢f. [Ko0l96, Sec.Il.7] or [AK03]) Let f : (p1,...,pm € C) — X be
an m-pointed genus 0 stable curve. Assume that X is smooth and

Hl(ca f*TX(_pl — _pm)) =0.
Then:

1. There is a unique irreducible component

Comp(C,p1,--,Pm, f) C Mom(X,pi — f(pi))

which contains [C,p1,...,Pm, f].
2. [Cyp1,...yPm, [] is a smooth point of Comp(C,p1,...,Pm, [). In particu-

lar, if f : (p1,-..,pm € C) — X is defined over K then Comp(C,p1,...,0Pm, f)
is geometrically irreducible.



3. There is a dense open subset

Smoothing(C, p1,...,pm, f) C Comp(C,p1,...,Dm, f)

which parametrizes free maps of smooth rational curves, that is
SmOOthing(Ca Pis---5Pm, f) C Homfree(Plﬂ vai = f(p’t))

(We cheat a little in (6.4.2). In general [C, p1, ..., pm, f] is smooth only in the
stack sense; this is all one needs. Moreover, in all our applications [C, p, f] will be
a smooth point.)

The required vanishing is usually easy to check using the following.

Exercise 6.5. Let C = Cy + - -- + ()}, be a reduced, proper curve with arithmetic
genus 0 and p € C' a smooth point. Let C1,--- , C,, be its irreducible components
over K. Let E be a vector bundle on C' and assume that H!(C;, E|c,(—1)) = 0
for every i. Then H'(C, E(—p)) = 0.

In particular, if f : C' — X is a morphism to a smooth variety and if each
o, is free then H(C, f*Tx(—p)) = 0.

f

Definition 6.6 (Combs). A comb assembled from a curve B (the handle) and m
curves C; (the teeth) attached at the distinct points by,...,b, € B and ¢; € C;
is a curve obtained from the disjoint union of B and of the C; by identifying the
points b; € B and ¢; € C;. In these notes we only deal with the case when B and
the C; are smooth, rational.

A comb can be pictured as below:

b1 | b | b"i

Comb with m-teeth

Assume now that we have a Galois extension L/K and g; : (0 € P!) — (z € X),
a conjugation invariant set of maps defined over L.

We can view this collection as just one map as follows. The maps [g;] €
Hom (P!, X) form a 0-dimensional reduced K-scheme Z. Then the g; glue together
to a single map

G:Zx(0eP)=(ZCP}) — (v € X).

Let j : Z < Pi be an embedding. We can then assemble a comb with handle
Pl and teeth PL. Let us denote it by



Comb(g1,...,9m)-

(The role of j is suppressed, it will not be important for us.)

If K is infinite, an embedding j : Z — P} always exists. If K is finite, then
Z may have too many points, but an embedding exists whenever Z is irreducible
over K.

Indeed, in this case Z = Specy K(a) for some a € K. Thus K[t] — K(a)
gives an embedding Z — Al

Everything is now ready to obtain rational curves through 1 point.

Corollary 6.7. [Kol99] Given a separably rationally connected variety X defined
over a local field K = Q, or K = F,((t)), there is a rational curve defined over
K through any x € X (K).

Proof. Given x € X(K), pick a free curve g; : (0 € P!) — (z € X) over K
with conjugates g, ..., gm. As in (6.6), assemble a K-comb

f:(0 € Comb(gy,...,9m)) — (z € X).
Using (6.4), we obtain
Smoothing(C, 0, f) € Hom™ (P!, X,0 — f(p))

and by (6.4.2) we see that (5.5.2.a) applies. Hence we get K-points in Smoothing(p €
C, f), as required. O

The finite field case, corresponding to (5.5.2.b), is treated in the next section.

7. The Lang-Weil estimates

Theorem 7.1. [LW5/] Over F,, let U C PN be the difference of two subvarieties
defined by several equations of degree at most D. If Uy C U is a geometrically
irreducible component, then

|[#Uo(Fy) — ¢"™ V| < C(N, D) - g™ Vo2,
where the constant C(N, D) depends only on N and D.

Notes on the proof. The original form of the estimate in [LW54] assumes
that Uy is projective and it uses deg Uy instead of D. These are, however, minor
changes.

First, if V' C PV is an irreducible component of W which is defined by
equations of degree at most D, then it is also an irreducible component of some
W' > W which is defined by N —dim V' equations of degree at most D. Thus, by
Bézout’s theorem, deg V' < DN—dim V'

Thus we have a bound required for #U, (F,) and we need an upper bound
for the complement #(Up \ Up)(F,). We assumed that Uy \ Up is also defined by



equations of degree at most D. A slight problem is, however, that it may have
components which are geometrically reducible. Fortunately, an upper bound for
#V (F,) is easy to get. O

Exercise 7.2. Let V C PY be a closed, reduced subscheme of pure dimension r
and degree d. Show that if ¢ > d then V does not contain PV (F,). Use this to
show that there is a projection 7 : V' — P" defined over F, which is finite of
degree d. Conclude from this that

LV(F,) S d-#P () =d- (¢ ++q+1).

7.3 (Application to Homgy(P!, X)). We are looking for rational curves of degree
d on a hypersurface X C P"™! of degree m. We saw in (5.1) that Homy (P!, X)
lies in P(*+2)(@+1)=1 (hence we can take N = (n 4 2)(d + 1) — 1) and its closure
is defined by equations of degree m.

The complement of Homgy(PP!, X) in its closure consists of those (fo, ..., fn)
with a common zero. One can get explicit equations for this locus as follows. Pick
indeterminates A;, ;. Then fo, ..., fy have a common zero iff the resultant

Res(3_;Aifis D215 1)

is identically zero as a polynomial in the A;, u;. This gives equations of degree 2d
in the coefficients of the f;. Thus we can choose D = max{m, 2d}.

Finally, where do we find a geometrically irreducible component of the space
Homg(P!, X)? Here again a smooth point [f] in a suitable compactification of
Hom (P!, X) gives the answer by (7.4). Similar considerations show that our meth-
ods also apply to Homg (P!, X, 0 — p).

Exercise 7.4. Let W be a K-variety and p € W a smooth point. Then there
is a unique K-irreducible component W,, C K which contains p and W), is also
geometrically irreducible if either p is K-point or K is algebraically closed in

K(p).
As a first application, let us consider cubic surfaces.

Example 7.5 (Cubic surfaces). Consider a cubic surface S C P3, defined over
K =TF,. We would like to use these results to get a rational curve through any
p € S(Fy). _

We need to start with some free rational curves over K.

The first such possibility is to use conics. If L C S is a line, then the plane
spanned by p and L intersects .S in L plus a residual conic Cy,. C' is a smooth and
free conic, unless p lies on a line.

In general, we get 27 conics and we conclude that if ¢ is large enough, then
through every point p € S(F,) which is not on a line, there is rational curve of
degree 2 - 27 = 54, defined over FF,.

If p lies on 1 (resp. 2) lines, then we get only 16 (resp. 8) smooth conics, and
so we get even lower degree rational curves.

However, when p lies on 3 lines (these are called Eckart points) then there is
no smooth conic through p.



Let us next try twisted cubics. As we saw in (5.4), we get twisted cubics from
a morphism S — P? as the birational transforms of lines not passing through any
of the 6 blown up points. Thus we get a 2-dimensional family of twisted cubics
whenever p is not on one the 6 lines contracted by S — PZ2.

If p lies on O (resp. 1, 2, 3) lines, we get 72 (resp. 72—16, 72—2-16, 72—3-16)
such families.

Hence we obtain that for every p € S(F,), the space Hom4(P!, X, 0 — p) has
a geometrically irreducible component for some d < 3 - 72 = 216.

As in (7.3), we conclude that if ¢ is large enough, then through every point
p € S(F,), there is rational curve of degree at most 216, defined over F,,.

Example 7.6 (Cubic hypersurfaces). Consider a smooth cubic hypersurface X" C
P!, defined over K = F, and let p € X (F,) be a point.

If p lies on a smooth cubic surface section S C X, then we can assemble
a K-comb of degree < 216 and, as before, we can use it to get rational curves
through p.

Over a finite field, however, there is no guarantee that X has any smooth
cubic surface sections. What can we do then?

We can use a generic cubic surface section through p. This is then defined over
a field extension L = K(y1,...,ys) where the y; are algebraically independent
over K. By the previous considerations we can assemble an L-comb and conclude
that Homgy(P!, X, 0 — p) has a smooth L-point for some d < 3 - 72 = 216.

By (7.4), this implies that it also has a geometrically irreducible component,
and we can then finish as before.

Tt is now clear that the methods of this section together with (4.6) imply the
following:

Theorem 7.7. Let X C P"*! be a smooth SRC hypersurface of degree m < n + 1
defined over a finite field F,. Then there is a C(n) such that if ¢ > C(n) then
through every point in X (F,) there is a rational curve defined over F,,. O

Exercise 7.8. Prove the following consequence of (7.1):

Let f : U — W be a dominant morphism over ;. Assume that W and the
generic fiber of f are both geometrically irreducible. Then there is a dense open
set WO such that f(U(Fgm)) D WO(Fgm) for m > 1.

8. Rational curves through two points and Lefschetz-type theorems

8.1 (How not to find rational curves through two points). Let us see what happens
if we try to follow the method of (6.7) for 2 points. Assume that over K we
have a rational curve C; through p,p’. Then C; is already defined over a finite
Galois extension K’ of K. As before, consider its conjugates of Cs, ..., Cy, under
G := Gal(K'/K), and attach copies C},...,C! to two copies of P!, one over p
and one over p’. This results in a curve Yy which is defined over K and may be
deformed to a smooth curve Yz, still passing through p,p’.



The problem is that although all the K-irreducible components of Y, are
rational, it has arithmetic genus m — 1, hence the smooth curve Y, has genus
m — 1.

Note that finding curves of higher genus through p,p’ is not very interest-
ing. Such a curve can easily be obtained by taking the intersection of X with
hyperplanes through p,p’.

In fact, no other choice of Y;; would work, as shown by the next exercise.

Exercise 8.2. Let C be a reduced, proper, connected curve of arithmetic genus 0
defined over K. Let p # p’ € C(K) be 2 points. Then there is a closed sub-curve
p,p’ € C' C C such that C’ is connected and every K-irreducible component of
C' is isomorphic to Pk-.

In this section we first connect the existence of rational curves through two
points with Lefschetz-type results about the fundamental groups of open subsets
of X and then use this connection to find such rational curves in certain cases.

Definition 8.3. Let K be a field, X a normal, projective variety and

cy L x
7l s (8:3.1)
U

a smooth family of reduced, proper, connected curves mapping to X with a section
s. For x € X, set Uy, := s 1¢~!(z), parametrizing those maps that send the
marked point to x, and

Cu. . X
7o LT Su (8.3.2)
US‘HE

the corresponding family.
We say that the family (8.3.1) satisfies the Lefschetz condition if, for general

x € X(K), the map ¢, is dominant with geometrically irreducible generic fiber.
Sometimes it is more convenient to give just

Us oy s, (8.3.3)

without specifying the section s : U — Cy. In this case, we consider the family
obtained from the universal section. That is,

Cy xp Oy B X
m T 51 (8.3.4)
Cu

where ma(c,¢’) =/, d1(e, ') = ¢(c) and s1(c) = (¢, ¢).
If 2 € X then U, = ¢~ () = s7 *¢; () is the set of triples (C, ¢, $|¢) where
C'is a fiber of 7 and ¢ a point of C' such that ¢(c) = x.



Similarly, if z,2' € X then U, = ¢ 1(z) xy ¢~ 1(a’) is the set of all
(C,e,d, ¢|lc) where C is a fiber of m and ¢, ¢’ points of C such that ¢(c¢) = x and
#() = «'. Informally (and somewhat imprecisely) U, . is the family of curves
in U that pass through both x and z’.

Thus the family (8.3.4) satisfies the Lefschetz condition iff (Cy)g , is geo-

metrically irreducible for general z, 2’ € X (K).

Exercise 8.4 (Stein factorization). Let g : U — V be a morphism between irre-
ducible and normal varieties. Then g can be factored as

g:UinV

where W is normal, h is finite and generically étale and there is an open and
dense subset W0 such that ¢=!(w) is geometrically irreducible for every w € W0.

Thus g : U — V is dominant with geometrically irreducible generic fiber iff g
can not be factored through a nontrivial finite and generically étale map W — V.

The Appendix explains how the Lefschetz condition connects with the Lef-
schetz theorems on fundamental groups of hyperplane sections. For now let us
prove that a family satisfying the Lefschetz condition leads to rational curves
through 2 points.

Example 8.5. Let S C P3 be a smooth cubic surface. Let U «— Cy — S be
the family of rational hyperplane sections. Note that Cyy — S is dominant with
geometrically irreducible generic fiber. Furthermore, for general p € S(K), the
map ¢, is dominant, generically finite and has degree 12.

On the other hand, let U be an irreducible family of twisted cubics on S.
Then U satisfies the Lefschetz condition. As discussed in (5.4), U corresponds
to the family of lines in P2 not passing through the 6 blown-up points. Thus U,
consists of lines in P? through x, hence ¢, : Cyy, — S is birational. Thus it cannot
factor through a nontrivial finite cover.

Theorem 8.6. Let X be a smooth projective variety over F,. Let U C Hom™ (P!, X)
be a geometrically irreducible smooth subset, closed under Aut(P'). Assume that

UZUxP % x satisfies the Lefschetz condition.
Then there is an open subset YO C X x X such that for m > 1 and (x,2') €
YO(F,m) there is a point u € U(Fym) giving a rational curve

by : PP — X such that  ¢,(0) =z, ¢u(c0) =2’
Proof. Set s(u) = (u,0) and consider the map
dy:=(posom¢):UxP — X x X.
Note that on Uy, x P! this is just ¢, followed by the injection X = {2} x X —
X xX.

If the generic fiber of ® is geometrically irreducible, then by (8.4) and (7.8),
there is an open subset Y° C X x X such that for m > 1 and for every (z,2') €



YO(F,m) there is a (u,p) € U(Fym) x P}(Fym) such that ®2(u,p) = (z,2). This
means that ¢,(0) = z and ¢,(p) = 2’. A suitable automorphism ~ of P! sends
(0,00) to (0,p). Thus ¢, o~ is the required rational curve.

If the generic fiber of ®5 is geometrically reducible, then ®5 factors through a
nontrivial finite cover W — X x X. For general z € X, the restriction redW, —
{z} x X is nontrivial and Us_,, — redW,, is dominant. This is impossible by the
Lefschetz condition. O

Next we discuss how to construct families that satisfy the Lefschetz condition.

Lemma 8.7. Let U & Cy % X be a smooth family of reduced, proper, generically
irreducible curves over K such that U, is irreducible for general x € X. Let
W C U be a locally closed smooth subset and W x P! = Dy, C Cy a subfamily.
Let U C U be an open dense subset. If

W E Dy X
satisfies the Lefschetz condition, then so does
U & Cpo & X.

Proof. Assume that contrary. Then there is a nontrivial finite and generically
étale map Z — X such that the restriction (;S|CU'(J : Cyo — X factors through Z.
Since U, is irreducible, so is Z. ’

Let go : Cy xx Z — Cy be the projection. By assumption, there is a rational
section s : Cyo — Cy xx Z. Let B C Cy X x Z be the closure of its image. Then
golp: B — Cy is finite and an isomorphism over Cyo. Thus gclp : B — Cy is
an isomorphism at every point where Cy is smooth (or normal). In particular, s
restricts to a rational section sy : Dy --» Cy X x Z.

Repeating the previous argument, we see that sy, is an everywhere defined
section, hence ¢|p,, factors through Z, a contradiction. O

Corollary 8.8. Let X be a smooth projective variety over a perfect field K. If there
is a K-family of free curves

U, 20 x PP A X

satisfying the Lefschetz condition then there is a K -family of free curves
UZUxP'SX

satisfying the Lefschetz condition.

Proof. As usual, the first family is defined over a finite Galois extension; let
Ui,...,U, be its conjugates. -
Consider the family of all K-combs



Comb(U) := {Comb(¢1,u1 yeo a¢m,um)}

where u; € U; and ¢1(u1,0) = -+ = ¢py (U, 0) with 0 a marked point on the
handle. (We do not assume that the w; are conjugates of each other.) Each comb
is defined by choosing w1, ..., um, as above and m distinct points in P!\ {0}.

Thus Comb(U) C M 1(X) is defined over K. Furthermore, for each x € X,
Comb(U), C Mo1(X,0+ z) is isomorphic to an open subset of

(PHY™ x Uy p X+ X Uppy

hence irreducible.

By (6.4), there is a unique irreducible component Smoothing(U) C Mg 1(X)
containing Comb(U) and Smoothing(U) is defined over K.

We can now apply (8.7) with W := Comb(U) and Dy — W the first tooth
of the corresponding comb. This shows that Smoothing(U) satisfies the Lefschetz
condition. O

Example 8.9 (Cubic hypersurfaces). We have already seen in (8.5) how to get a
family of rational curves on a smooth cubic surface S that satisfies the Lefschetz
condition:

For general p € S, there are 72 one-parameter families of twisted cubics
C1,...,Cyo through p. Assemble these into a 1-pointed comb and smooth them
to get a family U(S) of degree 216 rational curves. (In fact, the family of degree
216 rational curves on S that are linearly equivalent to Og(72) is irreducible, and
so equals U(S), but we do not need this.)

Let us go now to a higher dimensional cubic X C P"*!. Let G denote the
Grassmannian of 3-dimensional linear subspaces in P"*!. Over G we have S — G,
the universal family of cubic surface sections of X. For any fiber S = L3N X we
can take U(S). These form a family of rational curves U(S) on X and we obtain

U(S) & U(S) x P! % Xx.

We claim that it satisfies the Lefschetz condition. Indeed, given z,2’ € X, the
family of curves in U(S) that pass through x, 2z’ equals

uis),,.= U @r*nx)), ..

)
z,x'€L3

The set of all such L3-s is parametrized by the Grassmannian of lines in P?~1,
hence geometrically irreducible. The general L3 N X is a smooth cubic surface,
hence we already know that the corresponding U(L3N X), . is irreducible. Thus
U(S)_ ., is irreducible.

x,x

Although we did not use it for cubics, let us note the following.

Theorem 8.10. [Ko0l00,Ko0l03] Let X be a smooth, projective SRC variety over a
field K. Then there is a family of rational curves defined over K



UZUxP' 2 X
that satisfies the Lefschetz condition.

8.11 (Going from 2 points to many points). It turns out that going from curves
passing through 2 general points to curves passing through m arbitrary points
does not require new ideas.

Let us see first how to find a curve through 2 arbitrary points x,z’ € X.

We have seen in Section 5 how to produce very free curves in Hom(P*, X, 0 +—
z) and in Hom (P!, X,0 + 2/). If m > 1 then we can find ¢ € Hom(P!, X, 0 +— z)
and ¢’ € Hom(P!, X, 0 ~ 2') such that (8.6) produces a rational curve ¢ : P! —
X passing through (c0) and 9’(00).

We can view this as a length 3 chain

(W, 0,0 : PLVPLVP — X

through z,z’. Using (6.4), we get a family of free rational curves through z, 2’
and, again for m > 1 a single free curve through z, z’.

How to go from 2 points to m points x1, ..., 2,7 For each i > 1 we already
have very free curves a g; : P! — X such that ¢;(0) = 21 and g;(c0) = ;. We can
assemble a comb with (m — 1) teeth ¢ : Comb(ga,...,gm) — X.

By (6.4), we can smooth it in

Mo,m(val L1, P Tn)

to get such rational curves.
Appendiz. The Lefschetz condition and fundamental groups

The classical Lefschetz theorem says that if X is a smooth, projective variety
over C and j : C — X is a smooth curve obtained by intersecting X with
hypersurfaces, then the natural map

Jx 1 m(C) — m(X) is onto.

Later this was extended to X quasi-projective. Here j, need not be onto for every

curve section C, but j, is onto for general curve sections. In particular we get the
following. (See [GMS88] for a general discussion and further results.)

Theorem 8.12. Let X™ be a smooth, projective variety over C and |H| a very ample
linear system. Then, for every open subset X° C X and general Hy,... H, | €
|H],

711(X0 N H, ﬁ---ﬂHn,l) — m(X) s onto.

It should be stressed that the notion of “general” depends on XO.



If X is a hypersurface of degree > 3 then the genus of the curves H1N---NH,_1
is at least 1. We would like to get a similar result where {Hy N ---N H,_1} is
replaced by some family of rational curves.

The following argument shows that if a family of curves satisfies the Lefschetz
condition, then (8.12) also holds for that family.

Pick a family of curves U & Cy 2, X with a section s : U — Cyp that satisfies
the Lefschetz condition.

Given a generically étale g : Z — X, there is an open X° C X such that
7% := g71(X") — XU is finite and étale.

Pick a general point p € XY. There is an open subset US C U, such that
¢, ' (XY) — U, is topologically a locally trivial fiber bundle over C'[ij — U with
typical fiber CO = C, N ¢~ 1(X°) where u € U is a general point.

Thus there is a right split exact sequence

m(Cyp) = m(Cy ) S m(Uy) — 1,

where the splitting is given by the section s. Since s(Up) gets mapped to the point
p by ¢, ﬂl(Cgp) gets killed in 71 (X?). Hence

im[r1(Cy) — m(X°)] = im[my(C7,) — m1(X7)].

Since Cy, — X is dominant, im[m (C’lojp) — 71 (X)) has finite index in 7;(X?).
We are done if the image is m1(X"). Otherwise the image corresponds to a non-
trivial covering Z° — X° and ¢p factors through Z9. This, however, contradicts
the Lefschetz condition. O

A more detailed consideration of the above argument shows that (8.12) is
equivalent to the following weaker Lefschetz-type conditions:

1. The generic fiber of Cy — X is geometrically irreducible, and
2. for general x € X, U, is geometrically irreducible and Cy, — X is domi-
nant.

In positive characteristic the above argument has a problem with the claim
that something is “topologically a locally trivial fiber bundle” and indeed the two
versions are not quite equivalent. In any case, the purely algebraic version of (8.3)
works better for us.

9. Descending from F > to I,

Our methods so far constructed rational curves on hypersurfaces over F, for
q > 1. Even for cubics, the resulting bounds on ¢ are huge. The aim of this section
is to use the third intersection point map to construct rational curves on cubic
hypersurfaces over [F, from rational curves on cubic hypersurfaces over F2. The
end result is a proof of (1.1). The price we pay is that the degrees of the rational
curves become larger as ¢ gets smaller.



9.1 (Descent method). Let X be a cubic hypersurface, C a smooth curve and
¢:C(F,) — X(F,) a map of sets.

Assume that for each p € C(F,) there is a line L, through ¢(p) which inter-
sects X in two further points s(p), s'(p). These points are in F,2 and we assume
that none of them is in F,, hence s(p), s'(p) are conjugate over F,. This gives a
lifting of ¢ to ¢ : C(Fy) — X(F,2) where ¢2(p) = s(p). (This involves a choice
for each p but this does not matter.)

Assume that over Fg2 there is an extension of ¢ to @ : €' — X. If ®, denotes
the conjugate map, then ®(p) = s'(p).

Applying the third intersection point map (3.5) to the Weil restriction (3.8)
we get an F,-map

h: quZ/]FqO — X.
Since C is defined over F,, the Weil restriction has a diagonal
j :C — D‘iqu/FqC

and ¢ := hoj:C — X is the required lifting of ¢.
Thus, in order to prove (1.1), we need to show that

1. (1.1) holds for ¢ > 1, and
2. for every x € X (F,) there is a line L as required.

Remark 9.2. In trying to use the above method over an arbitrary field K, a
significant problem is that for each point p we get a degree 2 field extension
K(s(p))/K but we can use these only if they are all the same. A finite field
has a unique extension of any given degree, hence the extensions K(s(p))/K are
automatically the same.

There are a few other fields with a unique degree 2 extension, for instance
R,Q((1)) or F,((¢)) for p # 2.

If we have only 1 point p, then the method works over any field K. This is
another illustration that the 1 point case is much easier.

In the finite field case, the method can also deal with odd degree points of C'
but not with even degree points.

9.3 (Proof of (9.1.1)). We could just refer to (8.11) or to [KS03, Thm.2], but I
rather explain how to prove the 2 point case using (8.6) and the above descent
method.

Fix ¢,c € C(F,). By (8.6), there is an open subset Y C X x X such that
the following holds

(¥) If Fgm D F, is large enough then for every (z,z’) € Y9(F,m) there is an
Fym-map ¥ : C' — X such that ¥(c) =z and ¥(c) = 2’.

Assume now that we have any z,2’ € X(Fym). If we can choose the lines
L through z and L’ through 2’ such that (s(z),s(z’)) € Y, then the descent
method produces the required extension ¥ : C' — X over Fym.

By the Lang-Weil estimates, Y°(F,=) has about ¢®"™ points. If, for a line L
through z, one of the other two points of XN L is in Fym then so is the other point.



Thus we have about $¢™™ lines where s(z), s'(x) are in X (Fgm ). Accounting for
the lines tangent to X gives a contribution O(q(”’l)m). Thus about % of all line
pairs (L, L") work for us.

The proof of (9.1.2) is an elaboration of the above line and point counting
argument.

Lemma 9.4. Let X C P! be a normal cubic hypersurface and p € X(F,) a
smooth point. Assume that n > 1 and q > 8. Then

1. either there is a line defined over F, through p but not contained in X that
intersects X in two further smooth points s,s" € X(Fp2) \ X(F,),

2. or projecting X from p gives an inseparable degree 2 map X --» P". In
this case ¢ = 2™ and X 1is singular.

Proof. Start with the case n = 1. Thus C := X is plane cubic which we allow to
be reducible.

Consider first the case when C'= LU Q@ a line through p and a smooth conic
Q. There are ¢+ 1 [F-lines through p, one is L and at most 2 of them are tangent
to @, unless projecting @ from p is purely inseparable. If all the remaining ¢ — 2
lines intersect @ in two Fy-points, then @ has 2+ 2(g — 2) = 2¢ — 2 points in F,.
This is impossible for ¢ > 3. In all other reducible cases, C' contains a line not
passing through p. (Since C' is smooth at p, C' can not consist of 3 lines passing
through p.)

Assume next that C is irreducible and smooth. If projection from p is sepa-
rable, then at most 4 lines through p are tangent to C' away from p and one is
tangent at p. If all the remaining ¢ — 4 lines intersect C' in two [F -points, then C
has 54 2(q — 4) = 2q — 3 points in F,. For ¢ > 8 this contradicts the Hasse-Weil
estimate #C(F,;) < ¢+ 1+ 2,/q. The singular case works out even better.

Now to the general case. Assume that in affine coordinates p is the origin and
write the equation as

L(fﬂl, e ,xn+1) + Q(fﬂl, [N ,1’n+1) + C(l’l, ‘e ,Zn+1) = 0.

Let us show first that there is a line defined over F, through p but not contained
in X that intersects X in two further smooth points s, s’.

If the characteristic is 2, then projection from p is inseparable iff Q = 0. If
Q is not identically zero, then for ¢ > 3 there are aq,...,a,41 € F, such that
(L-Q)(a,...,ant1) # 0. The corresponding line intersects X in 2 further distinct
points, both necessarily smooth.

If the characteristic is # 2, then the line corresponding to ai,...,a,11 €
F, has a double intersection iff the discriminant Q* — 4LC vanishes. Note that
Q? — 4LC vanishes identically only if X is reducible. Thus, for ¢ > 5 there
are ay,...,an4+1 € Fy such that (L (Q* —4LC))(ay,...,ant1) # 0. As before,
the corresponding line intersects X in 2 further distinct points, both necessarily
smooth.

It is possible that for this line s,s" € X (F,2) \ X(IF,) and we are done. If not
then s, s’ € X(F,). We can choose the line to be (z1 = --- = z, = 0) and write



s=(0,...,0,8,41) and s = (0,...,0,s],, ;). Our aim now is to intersect X with
the planes

P(ay,...,a,) :={(0,...,0,1),(a1,...,a,,0))

for various ai,...,a, € F,; and show that for one of them the intersection does
not contain a line not passing through p. Then the curve case discussed above
finishes the proof.

Set 7, ;1 = Tny1 — Spy1. At s the equation of X is

Ly(z1,..., 2 ,q) + Qs(x1,... 2l 1) + Cs(x1,...,2),,,) =0.

Since X is irreducible, Ly does not divide either Q, or C;. Ly contains x;,, ; with
nonzero coefficient since the vertical line has intersection number 1 with X. We
can use Ly to eliminate z;, | ; from Q, and C;. As we saw, one of these is nonzero,
let it be Bs(x1,...,x,). Similarly, at s’ we get B.(x1,...,zp).

If XNP(ay,...,a,) contains a line through s (resp. s’) then By(ay,...,a,) =
0 (vesp. Bl(ay,...,an) = 0). Thus we have the required (aq, ..., a,), unless B- B’
is identically zero on P"~1(F,). This happens only for ¢ < 5. O

Exercise 9.5. Let H(z1,...,x,) be a homogeneous polynomial of degree d. If H
vanishes on IFZ; and g > d then H is identically zero.

Exercise 9.6. Set F'(zo,...,Tm) = ,,; x?" x;. Show that F vanishes on P (Fan)
and for m odd it defines a smooth hypersurface.
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