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Abstract. We discuss a p-adic version of Beilinson’s conjecture and its
relationship with noncommutative geometry.

Introduction

Hodge theory is one of the most important computation tools in modern algebraic
geometry, and for many reasons; in these lectures, we will be concerned with only
one facet of the story – the properties of the so-called regulator map. This actually
has a long history which predates both Hodge theory and algebraic geometry and
includes, for instance, the well-known Dirichlet Unit Theorem. However, from the
modern viewpoint – and we will adopt the modern viewpoint – the regulator map
is a gadget which compares algebraic K-theory and certain cohomology groups
of algebraic varieties constructed by means of the Hodge theory. Algebraic K-
groups of a variety contain a lot of valuable information, but are notoriously hard
to compute; cohomology, on the other hand, is easily computable in most cases.
Thus it would be very important to be able to express one through the other.
This is what the regulator map does.

Of course, one needs to know that the comparison is exact, so that no in-
formation is lost in the process. This is essentially the content of the first of the
famous Beilinson conjectures made about twenty years ago ([B], [RSS]).

At the time of writing, there is still no significant progress in proving the
conjectures. However, we now understand them somewhat better. In particular,
while Beilinson was working with algebraic varieties defined over Q and their
cohomology with real coefficients, we now have a p-adic version of the story. The
goal of these lectures is to give a very brief introduction to a still more recent
discovery – it turns out that the p-adic version of the first of Beilinson conjectures
can be transfered to the setting of non-commutative varieties. We still cannot
prove anything; however, since the p-adic conjecture can be now formulated in
much larger generality, it becomes more accessible, and a lot of structure used
in the original version can be removed as redundant. Hopefully, this will allow
someone to concentrate on the essential heart of the problem, and maybe finally
solve it.

The paper follows very closely two lectures I gave at a summer school in Goet-
tingen in June 2007. The exposition is very threadbare – we only indicate proofs,
with details given elsewhere, and we try to concentrate on the ideas by cutting



a lot of technical corners. We follow the most direct path we could find from the
definitions, to Beilinson conjectures, to the p-adic analog, to the non-commutative
p-adic version. For better or for worse, we choose brevity over completeness at
every turn.

Acknowledgements. I would like to thank Yu. Tschinkel for making these lec-
tures possible, and I would like to thank N. Hoffmann for a superb job of taking
down the notes and writing them up as a first draft. This research was partially
supported by CRDF grant RM1-2694-MO05.

1. Regulator maps and Beilinson conjectures

Let X be a smooth projective algebraic variety over C. Let

ch : K0(X) −→
⊕

i

H2i(Xan, Q)

be the Chern character map from the algebraic K-group K0(X) to the cohomol-
ogy of the underlying analytic space of X with rational coefficients. For most
varieties, the map is of course not even close to being surjective. What can be
said about its image? One constraint is well-known: if we denote by

Hi(Xan, C) =
⊕

p+q=i

Hp,q(X)

the Hodge decomposition, then every class [E ] ∈ K0(X) satisfies

ch([E ]) ∈
⊕

i

Hi,i(X).

Definition 1.1. A pure Q-Hodge structure of weight n consists of

(i) a Q-vector space VQ, and
(ii) a decreasing filtration F iVC on its complexification VC := VQ ⊗ C,

such that the following two conditions are satisfied:

(i) F iVC ∩ F jVC = 0 whenever i + j > n, and
(ii) VC =

⊕
i F iVC ∩ Fn−iVC.

Here the overline in V denotes complex conjugation on VC, i. e. the tensor
product VC → VC of the identity on VQ and the complex conjugation on C.

Example 1.2. The vector space Hn(X, Q) carries a natural pure Q-Hodge struc-
ture of weight n, given by the Hodge decomposition:

F iHn(X, C) =
⊕
j≥i

Hj,n−j(X).



Assume that V is a pure Q-Hodge structure of weight 2i. Then the space of
(i, i)-classes in VQ is the kernel of the map

F iVC ⊕ VQ −→ VC

which is the difference of the two inclusions F iVC ↪→ VC and VQ ↪→ VC.
Applying this to the vector spaces V = Hi(X, Q), we see that the Chern

character maps into the direct sum of these kernels for all i ≥ 0.
Note that we can turn a pure Q-Hodge structure of weight n into one of weight

n + 2 by just renumbering the filtration. Thus we can turn the pure Q-Hodge
structure H2i(X, Q) into one of any given even weight; we denote by

H2i(X, Q(j))

the pure Q-Hodge structure of weight 2i − 2j thus obtained. In particular, this
produces a pure Q-Hodge structure H2i(X, Q(i)) of weight 0. Altogether, we get
a factorisation of the Chern character

K0(X) −→ ker
[
F 0VC ⊕ VQ −→ VC

]
⊆ V :=

⊕
i

H2i(X, Q(i)).

The famous Hodge conjecture states that this arrow is surjective.

To proceed further, recall that K0(X) is a part of Quillen’s higher K-theory
K

q
(X), which behaves like a cohomology theory (has Mayer-Vietoris sequences,

excision etc.) Can we extend the Chern character ch to K
q
(X)? Yes – as shown

in [B], based on earlier work by other people, there exists a regulator map

r : K
q
(X) −→ cone

(
F 0V

q
C ⊕ V

q
Q −→ V

q
C
)
, V

q
:=

⊕
j

H2j+ q
(X, Q(j)).

where, just as one would expect for a cohomology theory, we have replaced the
kernel above by a mapping cone. This cone

cone
(
F 0V

q
C ⊕ V

q
Q −→ V

q
C
)
, V

q
:=

⊕
j

H2j+ q
(X, Q(j))

has a name: it is called Deligne cohomology and denoted by H2j+ q
D (X, Q(j)).

(We note that the Deligne cohomology is usually defined as the hypercoho-
mology H q

(X, Q(j)) of the complex

Q(j) : Q −→ OX −→ Ω1
X −→ Ω2

X −→ . . . −→ Ωj
X −→ 0.

In order to compare this definition with the one given above, one notes that the
first term Q in this complex yields V

q
Q , and that the rest of the complex yields up

to quasi-isomorphism the mapping cone of F 0V
q

C → V
q

C .)
Replacing the Q-lattices in the Deligne cohomology by R-vector spaces, we

obtain a version



r : K
q
(X)⊗ R −→

⊕
j

H2j+ q
D (X, R(j)) (1)

of the regulator map above. Roughly speaking, the Beilinson conjecture asserts
that this is an isomorphism if X is defined over Q.

More precisely, there is one necessary modification: if a smooth projective
variety X is defined over Q, or even over R ⊂ C, then it has a real structure —
that is, an anti-complex involution ι : X → X. This involution acts on everything
in the story above, and in particular, on Deligne cohomology; one twists the action
of ι on H

q
D(X, R(j)) by (−1)j and replaces the right-hand side of (1) with the

subspace of ι-invariant vectors.
However, even with this modification, the Beilinson conjecture is false for a

stupid reason, since the left hand side of (1) is zero in negative degrees, and the
right-hand side is not. To kill off the parasitic cohomology classes, one has to
replace Deligne cohomology by the so-called Deligne-Beilinson cohomology.

Definition 1.3. A mixed R-Hodge structure consists of

(i) an R-vector space VR,
(ii) an increasing filtration W qVR, called the weight filtration, and
(iii) a decreasing filtration F

q
VC on VC := VR⊗R C, called the Hodge filtration,

such that the graded piece grW
i (V ) with the induced filtration F

q
is a pure Hodge

structure of weight i for all i.

Although the category of filtered vector spaces is not abelian, we have:

Fact 1.4. (i) Mixed R-Hodge structures form an abelian category.
(ii) This abelian category has homological dimension 1.

Example 1.5. The mixed R-Hodge structure R(j) consists of

(i) the vector space VR := R,
(ii) the weight filtration W−1VR = 0, W0VR = VR, and
(iii) the Hodge filtration F−jVC = VC, F 1−jVC = 0.

For any mixed R-Hodge structure V , one can check that

RHom
q
(R(0), V )

is (quasi-isomorphic to) the mapping cone of

(W0VC ∩ F 0VC)⊕W0VR −→ W0VC.

This is the Deligne-Beilinson cohomology – it both gives a conceptual explanation
for the Deligne cohomology, and refines it by removing the “parasitic” terms. As
shown by Beilinson, the regulator map factors through a map from K

q
(X) ⊗ R

to the Deligne-Beilinson cohomology; what he actually conjectured was that this
refined regulator map is an isomorphism onto the subspace of ι-invariant vectors
when X is a smooth projective variety over Q.

To finish the section, here are some additional comments.



(i) The Beilinson conjecture comprises both a Hodge-type conjecture which
says that the regulator map is surjective, and a generalization of a conjec-
ture by S. Bloch which says that the map is injective. Hodge-type conjec-
ture has a chance of being true even for varieties defined over R, but the
injectivity certainly fails unless X is defined over Q.

(ii) There are further conjectures about the determinant of the regulator map
in some appropriate basis and its relation to values of L-functions at in-
tegral points, but this lies outside the scope of the present paper (and a
reader who does not know or does not wish to know what an L-function
is may safely read on).

(iii) In the usual definition of the Hodge structure R(i), one modifies the em-
bedding VR → VC by multiplying it by (2π

√
−1)i. This makes no sense

in our definition of Hodge structure; the only place where
√
−1

i
actually

appears is in the action of the additional complex conjugation ι (this ex-
plains the twist by (−1)j on H

q
D(X, R(j))). The multiplier 2π is important

for the further Beilinson conjectures on special values; for the purposes of
the present paper, it can be ignored.

2. A p-adic version

There is a p-adic version of the above theory, due to Fontaine and Laffaille [FL],
Fontaine and Messing [FM], M. Gros [G1,G2].

We work over the ring of Witt vectors W := W (Fp), which is the maximal
unramified extension of Zp. Let FrW : W → W be the unique lift of the Frobenius
automorphism on Fp. Given a W -module M , we denote its Frobenius twist by

M (1) := M ⊗W,FrW
W.

Thus a W -linear map M (1) → M ′ is the same thing as a FrW -semilinear map
M → M ′.

Definition 2.1 ([FL]). A filtered Dieudonné module M consists of

(i) a finitely generated module M over the ring W (Fp),
(ii) a decreasing filtration F

q
M of M , and

(iii) W -linear maps ϕi : F iM (1) → M for all i,

such that the following two conditions are satisfied:

(i) ϕi|F i+1M = pϕi+1 for all i, and
(ii) the direct sum

⊕
i ϕi :

⊕
i F iM (1) → M is surjective.

Note that for any i and j ≥ i, ϕj is determined by ϕi if M is torsion-free.
However, it is useful also to include modules M with torsion, and then we need
all the ϕi.

Fact 2.2 ([FL]). (i) Filtered Dieudonné modules form an abelian category.
(ii) This abelian category has homological dimension 1.



Example 2.3. The filtered Dieudonné module Zp(0) consists of

(i) the free W -module M := W ,
(ii) the trivial filtration F 0M = M , F 1M = 0, and
(iii) the Frobenius map ϕ0 := FrW : F 0M (1) → M .

From now on, let X be a smooth projective variety over W ; we assume p >
dim(X) (in order to be able to divide by i! when dealing with exterior i-forms
on X). Recall that the de Rham cohomology H

q
DR(X) of X is by definition the

hypercohomology of its de Rham complex.

Example 2.4. M := H
q
DR(X), together with the filtration F

q
M given by the

stupid filtration of the de Rham complex, is a filtered Dieudonné module.

About the proof. The main point is to construct the maps ϕi : F iM (1) → M . Let
X(1) be the Frobenius twist of X, i. e. the fibered product

X(1) −−−−→ Xy y
Spec W (Fp)

Fr∗W−−−−→ Spec W (Fp).

We make the simplifying assumption that there is a map

F̃r : X −→ X(1) (2)

which lifts the (absolute) Frobenius map at the special fiber. Then we get a map

F̃r
∗

: Ω
q
X(1) −→ Ω

q
X .

The induced map on hypercohomology is our ϕ0.
We claim that F̃r

∗
: Ω1

X(1) −→ Ω1
X vanishes modulo p. Indeed, the sheaf Ω1

is locally generated by exact forms df , and

F̃r
∗
(df) = d(F̃r

∗
(f)) = d(fp + pf ′) = pfp−1df + pdf ′ ≡ 0 mod p

for some function f ′. This shows that F̃r is divisible by p on Ω1; by multiplicativity,
it is then divisible by pi on Ωi. Thus we get a map 1/piF̃r on the truncated de
Rham complex Ω≥i; the induced map on hypercohomology is our ϕi.

This constructs the filtered Dieudonné module structure on H
q
DR(X) in the

case where a lift F̃r of the absolute Frobenius at the special fiber exists. In general,
there are obstructions against such a lift. There is a way of deducing the general
case from the special case treated here. However, we can then no longer guarantee
that ϕi maps F iM (1) to F iM ; all we can say is that it maps F iM (1) to M .

For any filtered Dieudonné module M , it is easy to check that

RHom(Zp(0),M)



is (quasi-isomorphic to) the mapping cone of

F 0M (1) Id−ϕ0−−−−→ M.

E. g. for RHom(Zp(0), Zp(0)), we get W
Id−FrW−−−−−−→ W , which is just Zp in degree

0.
The analogy with Beilinson’s definition of the Deligne cohomology leads to:

Definition 2.5 ([FM]). The syntomic cohomology of X is

RHom(Zp(0),H
q
DR(X)).

One immediate problem with this definition is that our Dieudonné modules
lack the weight filtration – thus what we get is a version of Deligne cohomology,
not of Deligne-Beilinson cohomology, and we cannot expect a version of Beilinson
conjectures to hold for the same stupid reason as in char 0. At present, it is not
known how to cure this. The best we can do is to introduce the following.

Definition 2.6. Assume that the operations ϕi on the de Rham cohomology groups
H

q
DR(X) preserve the Hodge filtration, φi(F i) ⊂ F i (for instance, this is the

case when X admits a lifting of the Frobenius, as in (2)). The reduced syntomic
cohomology of X is the mapping cone of the natural map

F 0M (1) Id−ϕ0−−−−→ F 0M,

where M = H
q
DR(X).

Unfortunately, the assumption needed to define reduced syntomic cohomol-
ogy is only rarely satisfied; in general, one has to deal with the full syntomic
cohomology which contains parasitic classes. Be it as it may, Michel Gros [G1,G2]
has constructed a regulator map

r : K
q
(X) −→ syntomic cohomology.

He also formulated a precise version of the Beilinson conjectures in this p-adic
setting (including those that deal with special values of L-functions).

3. The non-commutative setting

We still work over the ring of Witt vectors W = W (Fp). Let A be a flat W -algebra;
all our algebras are associative and unital, but not necessarily commutative. Our
goal is to construct

(i) an analogue of the de Rham cohomology for A,
(ii) a filtered Dieudonné module structure on it, and
(iii) a regulator map.



At this point I should add a disclaimer. While my source for the material here
is [K1], a large part of it is an independent rediscovery of things discovered by
algebraic topogists about 15 years ago — mostly within the theory of the so-
called Topological Cyclic Homology and cyclotomic trace of Bökstedt, Hsiang and
Madsen (see [BHM], or a very good exposition in [HM]). However, at the moment
I don’t completely understand the precise relation to the topological story, and I
prefer to completely ignore this in these lectures.

3.1. Non-commutative de Rham cohomology

The main reference for this subsection is Loday’s book [L] (which is in particular
a reliable source for the many signs involved).

We consider A as a bimodule under left and right multiplication by A, or
in other words as a (left) A ⊗ Aopp-module (where Aopp denotes the opposite
algebra). This bimodule is in general not flat. E. g. if A is commutative, then this
bimodule A corresponds to the structure sheaf of the diagonal as a module over
the structure sheaf of Spec(A)× Spec(A).

Definition 3.1. The Hochschild homology of A is

HH q(A) := TorA⊗Aoppq (A,A).

The diagonal bimodule A has a standard flat resolution C q(A) → A, namely

. . .
b′−→ A⊗A⊗A

b′−→ A⊗A
b′−→ A, (3)

whose differential b′ :=
∑

i=1(−1)imi involves the multiplication m : A⊗A → A;
mi is the multiplication at the i-th tensor sign.

Using this flat resolution C q(A) → A to compute HH q(A), we get the complex

. . .
b−→ A⊗A⊗A

b−→ A⊗A
b−→ A (4)

whose differential b := b′ + (−1)nm0 contains the extra summand m0 := m1 ◦ σ,
where n is the number of A’s, and σ is the cyclic permutation

σ(a1 ⊗ . . .⊗ an−1 ⊗ an) := (−1)n−1an ⊗ a1 ⊗ . . .⊗ an−1.

The two complexes (3) and (4) can be put together to a periodic bicomplex



−−−−→ A
1−−−−→ A

1−σ−−−−→ A −−−−→

b

x b′

x xb

−−−−→ A⊗A
1+σ−−−−→ A⊗A

1−σ−−−−→ A⊗A −−−−→

b

x b′

x xb

−−−−→ A⊗A⊗A
1+σ+σ2

−−−−−→ A⊗A⊗A
1−σ−−−−→ A⊗A⊗A −−−−→

b

x b′

x xb

. . . . . . . . .

b

x b′

x xb

−−−−→ A⊗n 1+σ+···+σn−1

−−−−−−−−−→ A⊗n 1−σ−−−−→ A⊗n −−−−→

b

x b′

x xb

(5)

which we denote by Per q(A).

Definition 3.2. HP q(A) is the homology of the total complex of Per q(A).

Remark 3.3. Since the bicomplex Per q(A) is unbounded in one direction, there
are two ways of forming its total complex: one that involves infinite direct sums
of its entries, and one that involves infinite products. We use products. This is
important – for instance, were the base field to have characteristic 0, the total
complex understood as a sum would have been acyclic.

Example 3.4. Suppose that A is commutative, that X := Spec(A) is smooth and
that p > dim(X). Then

HHi(A) = Ωi(X) and HPi(A) =
⊕

j

H2j+i
DR (X).

Thus HP q(A) contains less information then H
q
DR(X) in the commutative case

— we can only recover certain direct sums of Hn
DR(X) from the HPi(A), not all

the Hn
DR(X) themselves. However, as the reader will easily notice, it is exactly

these direct sums that are relevant for our story.

3.2. The filtered Dieudonné module structure.

The aim of this subsection is to turn HP q(A) into a filtered Dieudonné module.
Here the main problem is to find a non-commutative analogue of the Frobenius.

Even if we reduce everything mod p and replace A with the Fp-algebra A/p,
the naive guess does not work: the map x 7→ xp is not even additive modulo p.
However, we can analyze the difficulty by decomposing it into two maps

A
ϕ−→ A⊗p m−→ A, ϕ(a) := a⊗a . . .⊗a, m(a1⊗ . . .⊗ap) := a1 · . . . ·ap. (6)



The first map is awful (not additive, etc.), but it is equally awful in the commu-
tative case; it is the multiplication map m which stops being an algebra map in
the non-commutative case and creates difficulties.

Fortunately — and this is the main idea — while this map m cannot be made
into an algebra map, it can be made to act on Hochschild and cyclic homology.

More precisely, we have two morphisms of complexes

b′−−−−→ A⊗3 b′−−−−→ A⊗2 b′−−−−→ A

m

x m

x xm

b′p−−−−→ (A⊗3)⊗p
b′p−−−−→ (A⊗2)⊗p

b′p−−−−→ A⊗p

(7)

and

b−−−−→ A⊗3 b−−−−→ A⊗2 b−−−−→ A

m

x m

x xm

bp−−−−→ (A⊗3)⊗p bp−−−−→ (A⊗2)⊗p bp−−−−→ A⊗p

(8)

where the differentials b′p :=
∑

i=1(−1)im⊗p
i and bp :=

∑
i=0(−1)im⊗p

i involve
the same multiplications mi as in (3) and (4) above, but raised to the p-th tensor
power, and

m : A⊗pn = A⊗n ⊗ . . .⊗A⊗n︸ ︷︷ ︸
p terms

−→ A⊗n

is the identity on the first n − 1 tensor factors A, and the multiplication on the
remaining pn− n + 1 factors. (If for example n = 2 and p = 3, then

m : (A⊗A)⊗ (A⊗A)⊗ (A⊗A)︸ ︷︷ ︸
multiply

−→ A⊗A (9)

sends (a11⊗a12)⊗ (a21⊗a22)⊗ (a31⊗a32) to a11⊗a12a21a22a31a32.) We can also
form a periodic bicomplex Perpq(A), whose vertical differentials are bp and (b′)p,
and whose horizontal differentials are the same as in Per q(A) (with σ on A⊗np

being the cyclic permutation of order np).
We define the Hodge filtration F

q
on the complexes Per q(A) and Perpq(A) by

the following rule

(i) For the 0-th filtration piece F 0HP q(A), we take everything in the bicom-
plex Per q(A) to the right of the column with b.

(ii) For the i-th filtration piece F iHP q(A), we shift this to the right by 2i
columns.

Fact 3.5. The morphisms of complexes (7) and (8) are quasi-isomorphisms, and
they extend to a quasiisomorphism of filtered complexes m : Perpq(A) → Per q(A).



About the proof:. The upper rows both in (7) and (8) come from a simplicial
abelian group. The first statement is a very general property of simplicial abelian
groups, similar to barycentric subdivision. To obtain the second statement, one
has to use the notion of cyclic object which extends that of a simplicial object,
see e. g. [L, Ch. 6]. We say no more and refer the reader to [K2, Lemma 2.2] and
[K1, Lemma 1.14] for actual proofs.

As for the very bad map ϕ in (6), it turns out that it can be modified quite a
bit without changing anything – in particular, it can sometimes be replaced with
an actual algebra map. Namely, consider A⊗p as a representation of Z/pZ, the
generator τ ∈ Z/pZ acting by cyclic permutation of the tensor factors. The group
cohomology of this representation is computed by the periodic complex

−−−−→ A⊗p 1+τ+···+τp−1

−−−−−−−−−→ A⊗p 1−τ−−−−→ A⊗p −−−−→ .

The above map ϕ : A → A⊗p, a 7→ a⊗ . . .⊗ a, induces an isomorphism

ϕ : A(1)/p −→ Hodd(Z/pZ, A⊗p) (10)

where A(1) := A⊗W,FrW
W is again the Frobenius twist.

Definition 3.6. A quasi-Frobenius map for A is a Z/pZ-equivariant algebra ho-
momorphism

ϕ : A(1) −→ A⊗p

which induces the standard isomorphism (10).

Example 3.7. Let A = W [G] be the group algebra of some (discrete) group
G. Then the map ϕ : A(1) → A⊗p induced by the diagonal embedding G →
G× . . .×G︸ ︷︷ ︸

p times

is a quasi-Frobenius map for A = W [G].

If we are given a quasi-Frobenius map ϕ for A, then we can construct the
filtered Dieudonné module structure on HP q(A) as follows:

(i) The Hodge filtration F
q
is as above.

(ii) The required map ϕ0 : F 0HP q(A(1)) → HP q(A) is induced by the follow-
ing morphism of bicomplexes ϕ0 : F 0 Per q(A) −→ Perpq(A):

• On F 0/F 1, ϕ0 is given by powers of the quasi-Frobenius map ϕ.
• On F i/F i+1, the same times pi.

(iii) The required maps ϕi : F iHP q(A(1)) → HP q(A) are again obtained by
dividing an appropriate restriction of the morphism of bicomplexes ϕ0 by
pi.

It is easy to see that this is well-defined. Indeed, the power φn : A⊗n(1) →
A⊗pn of the quasi-Frobenius map φ commutes with the horizontal differential 1−σ
in the complexes Per q(A), Perpq(A) on the nose; to make it send the differential
1 + σ + · · ·+ σn−1 to



1 + σ + · · ·+ σnp−1 = (1 + σ + · · ·+ σn−1)(1 + τ + · · ·+ τp−1),

we have to multiply it by (1+τ +· · ·+τp−1), where τ is the generator of the Z/pZ-
action on A⊗pn. But since φ⊗n : A⊗n → A⊗np is Z/pZ-equivariant with respect
to the trivial Z/pZ-action on the left-hand side, this is equivalent to multiplying
by p.

In general, there is no quasi-Frobenius map, but there is a complicated pro-
cedure to still obtain such a filtered Dieudonné module structure, cf. [K1], [K3].
It yields the following:

(i) ϕ0 exists and is unique up to a quasi-isomorphism if the homological di-
mension of A is less than 2p, hom.dim.(A⊗Aopp) < 2p.

(ii) This structure is functorial.

We note that in general, the maps ϕ
q
do not preserve the filtration F

q
, but if

A admits a quasi-Frobenius map, then they do (this is similar to the case of
commutative algebraic varieties, where a similar role is palyed by the lifting map
(2)). Using the filtered Dieudonné module structure on HP q(A), we can define
the syntomic homology HP syntq (A) as the mapping cone of

F 0HP q(A(1))
Id−ϕ0−−−−→ HP q(A).

If there is a quasi-Frobenius map ϕ, then we can define reduced syntomic homology
HP

syntq (A), namely as the mapping cone of

F 0HP q(A(1))
Id−ϕ0−−−−→ F 0HP q(A).

Of course, the natural embedding F 0HP q(A) → HP q(A) induces a natural map
HP

syntq (A) → HP syntq (A).

3.3. The regulator map.

We now turn to the construction of a regulator map. First, let us consider the
case A = W [G] for a (discrete) group G. Here we have

C q(W [G]) = C q(B̃G,W )

where the left-hand side is the standard complex which computes HH q, and the
right-hand side is the chain complex of the simplicial nerve B̃G of the groupoid
G/Gad, the quotient of the set G modulo the conjugation action of G.

Inside G/Gad, we have the “unity component” 1/Gad ⊂ G/Gad; its nerve
BG ⊂ B̃G is the usual classifying simplicial set of the group G, and we obtain
the inclusion C q(BG) ⊂ C q(B̃G). One checks easily that BG ⊂ B̃G is preserved
by the cyclic permutation σ needed to define the periodic cyclic complex (the
scientific formulation is “BG is a cyclic subset in B̃G”, see [L, Ch. 7]). Thus one
can define HP q(BG) together with a map HP q(BG) → HP q(B̃G) = HP q(W [G]).



Moreover, the quasi-Frobenius map of Example 3.7 preserves BG ⊂ B̃G, so that
we can define the reduced syntomic homology

HP
syntq (BG).

Lemma 3.8. We have HP
syntq (BG) ∼= H q(G, Zp).

Proof. On F 1, ϕ0 is divisible by p, so Id−ϕ0 is invertible. Thus it suffices to
consider the cone of

F 0/F 1 Id−ϕ0−−−−→ F 0/F 1.

These two complexes have entries A⊗n = W [Gn] for various n. Moreover, by defi-
nition, the map ϕ0 is induced by the identity map on the sets Gn, the components
of the simplicial set BG. Indeed, the inclusion BG ⊂ B̃G identifies Gn with the
subset of elements

〈g0, g1, . . . , gn〉 ∈ Gn+1

such that g0 · g1 · · · · · gn = 1, and

m(φ(〈g0, g1, . . . , gn〉)) = m(〈g0, g1, . . . , gn, g0, g1, . . . , gn, . . . , g0, g1, . . . , gn〉),

with p factors in the right-hand side; plugging this into (9), we obtain

m(φ(〈g0, g1, . . . , gn〉)) = 〈g0, g1, . . . , gn(g0 · g1 · . . . · · · gn)p−1〉 = 〈g0, g1, . . . , gn〉.

But in the difference Id−ϕ0, one term is FrW -semilinear, whereas the other is
W -linear. Thus we obtain many copies of the cone of Id−FrW : W → W . Re-
placing each of these copies (quasi-isomorphically) by Zp, we obtain a complex
that computes H q(G, Zp).

This Lemma, astonishingly trivial as it may be, is the crucial part in the
construction. The rest is a standard and well-known procedure, see e. g. [L]. For
any n ≥ 1, we let Mn(A) be the ring of (n × n) quadratic matrices over A, and
we let GLn(A) ⊆ Mn(A) be its group of invertible elements. Then the canonical
ring homomorphism

W [GLn(A)] −→ Mn(A)

and the canonical maps BG ⊂ B̃G etc. yield two maps

HP
syntq (B GLn(A)) −→ HP syntq (

W [GLn(A)]
)
−→ HP syntq (Mn(A)).

Due to the Morita invariance of HP syntq , the right-hand side does not depend
on n, so that we can pass to the limit with respect to the natural embeddings
GLn(A) → GLn+1(A) and obtain a map



HP
syntq (B GL∞(A)) −→ HP syntq (A).

This is the desired regulator map. Indeed, according to the Lemma 3.8, its source
is

HP
syntq (B GL∞(A)) ∼= H q(B GL∞(A), Zp) ∼= H q(B GL+

∞(A), Zp),

Quillen’s plus-construction for K-theory, and its target is HP syntq (A).

Remark 3.9. To re-iterate: since the weight filtration is missing here, we cannot
expect this regulator map to be an isomorphism. In the commutative setting
and in char 0, this was healed by the passage from Deligne to Deligne-Beilinson
cohomology. We don’t know yet how to do this here. A reader who has an idea is
kindly requested to contact the author.
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