K3 surfaces of Picard rank one which are
double covers of the projective plane

Andreas-Stephan Elsenhans and Jérg Jahnel

Universitit Gottingen, Mathematisches Institut,
Bunsenstrafle 3-5, D-37073 Géttingen, Germany®
e-mail: elsenhan@uni-math.gwdg.de, jahnelQuni-math.gwdg.de

Abstract. We construct examples of K3 surfaces over @) which are of
degree 2 and the geometric Picard rank of which is equal to 1. We
construct, particularly, examples in the form w? = det M where M is
a symmetric (3 X 3)-matrix of ternary quadratic forms or a symmetric
(6 X 6)-matrix of ternary linear forms. Our method is based on reduction
modulo p for p = 3 and 5.

Introduction

A K3 surface is a simply connected, projective algebraic surface with trivial canon-
ical class. Let B C IP? be a smooth plane curve of degree 6 given by fs(z,y, z) = 0.
The equation w? = fg(x,vy,2) defines an algebraic surface S in weighted projec-
tive space P(1,1,1,3). We have a double cover 7: S — P? ramified at 7—1(B).
This surface is a K3 surface (of degree two).

Examples 1.1 K3 surfaces embedded into P™ are automatically of even degree.
Small degree cases may be realized as follows: A K3 surface of degree two is
a double cover of P2, ramified in a smooth sextic. K3 surfaces of degree four
are smooth quartics in IP3. A K3 surface of degree six is a smooth complete
intersection of a quadric and a cubic in P%. And, finally, K3 surfaces of degree
eight are smooth complete intersections of three quadrics in IP®.

The Picard group of a K3 surface is known to be isomorphic to Z™ where n may
range from 1 to 20. It is generally known that a generic K3 surface over C is of
Picard rank one.

Nevertheless, it seems that the first explicit examples of K3 surfaces of ge-
ometric Picard rank one have been constructed as late as in 2005 [5]. All these
examples are of degree four.

IThe computer part of this work was executed on the Sun Fire V20z Servers of the Gaufl
Laboratory for Scientific Computing at the Gottingen Mathematisches Institut. Both authors
are grateful to Prof. Y. Tschinkel for the permission to use these machines as well as to the
system administrators for their support.



Our goal here is to provide explicit examples of K3 surfaces defined over @ which
are of degree two and geometric Picard rank one.

Let . be a K3 surface over a finite field IF,. We have the first Chern class
homomorphism

C1: Plc(y) — Hgt(yﬁ‘qvﬁl(l))

into f-adic cohomology. There is a natural operation of the Frobenius on
HZ (S5, Q,(1)). All eigenvalues are of absolute value 1. The Frobenius operation
on the Picard group is compatible with the operation on cohomology.

Every divisor is defined over a finite extension of the ground field. Conse-
quently, on the subspace Pic(%% )®zQ, — HZ (S, Q,(1)), all eigenvalues are
roots of unity. Those Corresponci to eigenvalues of the Frobenius operation on
HZ (yﬁw({ @Q,) which are of the form ¢¢ for ¢ a root of unity.

We may therefore bound the rank of the Picard group Pic(yﬁq) from above
by counting how many eigenvalues are of this particular form. Bounds from below
may be obtained by explicitly constructing divisors. Combining these two bounds
it is sometimes possible to calculate rk Pic(.7F, ).

Our general strategy is to use reduction modulo p. If S is a K3 surface over
Q@ then there is the inequality
rk PIC(S@) S rk PIC(SFP)
which holds for every prime p of good reduction.

Remark 1.2 Consider a complex K3 surface S. Since H!(S, 0g) = 0, the Picard
group of S is discrete and the first Chern class homomorphism

c1: Pic(S) — H*(S,Z) c H*(S,C)

is an injection. For divisors, numerical and homological equivalence are known
to coincide [4, Corollary 1]. This shows that Pic(S) equals the group of divisors
modulo numerical equivalence.

2. Geometric constructions of divisors over I,

In order to bound the rank of the Picard group from below, one needs to explic-
itly construct divisors. Calculating discriminants, it is possible to show that the
corresponding divisor classes are linearly independent.

Assumption 2.1 For the algebro-geometric considerations described in this sec-
tion, we assume that we work over a ground field which is algebraically closed of
characteristic # 2.

Construction 2.2 i) Assume that the branch curve “f¢ = 0” has a tritangent line
G. The pull-back of G to the K3 surface . is a divisor splitting into two irre-
ducible components. The corresponding divisor classes are linearly independent.



ii) A second possibility is to use a conic which is tangent to the branch sextic in
six points.

Both constructions yield a lower bound of 2 for the rank of the Picard group.

Tritangent. Assume that the line G is tritangent to “fs = 0”. The restriction of fg
to G = P! is a section of @(6), the divisor of which is divisible by 2 in Div(G). As
G is of genus 0, this implies fg|g is the square of a section f € I'(G, €(3)). The
form fg may, therefore, be written as fs = % +1gs for I a linear form defining G,
f a cubic form lifting f, and a quintic form gs.

Consequently, the restriction of 7 to 771(G) is given by an equation of the
form w? = f2(s,t). We, therefore, have 7*(G) = D; + Dy where D; and Dy are
the two irreducible divisors given by w = £ f(s,t). Both curves are isomorphic to
G. In particular, they are projective lines.

The adjunction formula shows —2 = D;(D; + K) = D?. Analogously,
D2 = —2. Finally, we have G? = 1. It follows that (D; + D2)? = 2 which yields
D1D5 = 3. For the discriminant, we find

=-5%#0

guaranteeing that rk Pic(.7) > 2.

Remark 2.3 This argument works without modification if two or all three points
of tangency coincide.

Conic tangent in six points. If C' is a conic tangent to the branch curve “fg = 0”
in six points then, for the same reasons as above, we have 7*(C) = C +C5, where
C1 and Cy are irreducible divisors. Again, C7 and Cy are isomorphic to C and,
therefore, of genus 0. This shows C? = C3 = —2. Further, C? = 4 which implies
(C1 + C3)? = 8 and C1Cy = 6. The discriminant equals

‘2 _6‘=—327eo.

Thus, rk Pic(.¥) > 2 in this case as well.

Remark 2.4 Further tritangents or further conics which are tangent in six points
lead to even larger Picard groups.

3. Explicit divisors — Practical tests over IF,

A test for tritangents. The property of a line of being a tritangent may easily be
written down as an algebraic condition. Therefore, tritangents may be searched
for, in practice, by investigating a Groébner basis.

More precisely, a general line in IP? can be described by a parametrization



Gap:t—[l:t: (a+0bt)].

ga,p 1S a (possibly degenerate) tritangent of the sextic “f¢ = 0” if and only if
f6 © gap 1s a perfect square in IF,[¢]. This means that

f6(gap(t)) = (co + et + cot® + cat®)?

is an equation which encodes the tritangent property of g, . Comparing coeffi-
cients, this yields a system of seven equations in ¢gy, ¢1, ¢2, and ¢3 which is solvable
if and only if g, 5 is a tritangent. The latter may be understood as well as a system
of equations in a, b, ¢y, c1, c2, and c3 encoding the existence of a tritangent of
the form above.

Using Magma, we compute the length of IF,[a, b, co, ¢1, 2, c3] modulo the cor-
responding ideal I. This is twice the number of the tritangents detected.

The remaining one dimensional family of lines may be tested analogously
using the parametrizations g,: ¢ — [1:a:t] and g: t — [0: 1 :¢].

Remarks 3.1 a) To compute the length of F,[a, b, co, ¢1, ¢2, c3]/1, a Grébner basis
of I is needed. The time required to compute such a basis over a finite field is
usually a few seconds. From the Grobner basis, the tritangents may be read off,
explicitly.

b) Since the existence of a tritangent is a codimension one condition, one occa-
sionally finds tritangents on randomly chosen examples.

A test for conics tangent in six points. A non-degenerate conic in P? allows a
parametrization of the form

c:t [(co+ cit + cot?) 1 (do + dit + dot?) : (eg + e1t + eat?)].

With the sextic “f¢ = 07, all intersection multiplicities are even if and only if fgoc
is a perfect square in IF,[t]. This may easily be checked by factoring fg o c.

For small g, that allows, at least, to search for conics which are defined over IF,
and tangent in six points. To achieve this, we listed all ¢%(¢® — 1) non-degenerate
conics over I, for ¢ = 3 and 5.

Remark 3.2 A analogous general method to find conics defined over [, does not
succeed. The required Grobner basis computation becomes too large.

4. Upper bounds — The Frobenius operation on /-adic cohomology

The Lefschetz trace formula. The Frobenius operation on HZ (YE, @Q,) can be
analyzed as follows.

Count the points on . over [,a and apply the Lefschetz trace formula [6] to
compute the trace of the Frobenius gi)]Fp .= #?. In our situation, this yields

Tr(¢?) = #7 (Ba) —p™ — 1.



We have Tr(¢?) = A4 -+Ady =: 04(A1, ..., Az2) when we denote the eigenvalues
of ¢ by A1,..., \a2. Newton’s identity [8]
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shows that, doing this for d = 1,...,k, one obtains enough information to de-
termine the coefficient (—1)*sj, of #22=% of the characteristic polynomial f, of

0.

Observe that we also have the functional equation

(*) p22fp(t) = itQpr(pQ/t)

at our disposal. It may be used to convert the coefficient of ¢' into the one of
22—

Methods for counting points. The number of the points may be determined by

#SE) = Y [Lx(feley.2)].

[x:y:z]€P2(Fy)

Here, x is the quadratic character. The sum is well-defined since fg(x,y,2) is
uniquely determined up to a sixth-power residue. To count the points naively, one
would need ¢? + g + 1 evaluations of fg and .

There are several ways to optimize. Here are two possibilities:

i) Symmetry: If fs is defined over F, then the summands for [z : y : 2] and
¢([z : y : 2]) are equal. This means, over E,, we may save a factor of d if,
on the affine chart “z = 17, we put in for y only values from a fundamental
domain of the Frobenius.

ii) Decoupling: Suppose, fg contains only monomials of the form z‘y5~¢ or
2'257%. Then, on the affine chart “c = 17, the form fs may be written as

a sum of a function in y and a function in z.

In O(qlog q) steps, for each of the two functions, we build up a table stating
how many times it adopts each of its values. Again, we may restrict one
of the tables to a fundamental domain of the Frobenius. We tabulate the
quadratic character, too. After these preparations, less than ¢ additions
suffice to determine the number of points.

The advantage of a decoupled situation is, therefore, that an evaluation of
a polynomial in IF. gets replaced by an addition.

Remark 4.1 Having implemented the point counting in C, these optimizations
allow us to determine the number of Fzio-rational points on a K3 surface . within
half an hour (without decoupling) on an AMD Opteron processor.



In a decoupled situation, the number of [Fyo-rational points may be counted
within two hours. In a few cases, we determined the numbers of points over Fxio.
This took about two days. Without decoupling, the same counts would have taken
about one day or 25 days, respectively.

This shows that using the methods above we may effectively compute the
traces of (prd =g¢lford=1,...,9, (10).

An upper bound for rk Pic(./% ), counting up to d = 10.

We know that the characteristic polynomial of the Frobenius f, has a zero at p
since the pull-back of a line in P? is a divisor defined over [,. Suppose, we deter-
mined Tr(¢?) for d = 1,...,10. We may achieve an upper bound for rk Pic(.#% )
as follows. !

i) Assume the minus sign in the functional equation (x). Then f, automatically
has coefficient 0 at ¢'!. Therefore, the numbers of points counted suffice in this
case to determine f,, completely.

ii) Assume, on the other hand, that the plus sign is present in (x). In this case,
the data collected immediately allow to compute all coeflicients of f, except the
one at t'!. Use the known zero at p to determine that final coefficient.

iii) Use the numerical test, described below, to decide which sign is actually
present.

iv) Factor f,(pt) into irreducible polynomials. Check which of the factors are
cyclotomic polynomials and add their degrees. That sum is an upper bound for
rk Pic(#% ). If step iii) had failed then one has to work with both candidates for
fp and deal with the maximum.

Verifying rk Pic(.%% ) = 2 with d < 9.

Let . be a K3 surface over I, given by Construction 2.2.i) or ii). We know that
the rank of the Picard group is at least 2. We suppose that the divisor constructed
by pull-back splits already over IF,. This ensures that p is a double zero of f,.
There is the following method to verify rk Pic(YFp) =2.

i) First, assume the minus sign in the functional equation (x). This forces another
zero of f, at (—p). The data collected suffice to determine f,, completely. The
numerical test, described below, may indicate a contradiction.

Otherwise, the verification fails. (In that case, we could still find an upper bound
for rk Pic(.#F, ) which is, however, at least equal to 4.)

ii) As we have the plus sign in (x), the data immediately suffice to compute all
coefficients of f, with the exception of those at t10 1 and t'2. The functional
equation yields a linear relation for the three remaining coefficients of f,,. From
the known double zero at p, one computes another linear condition.

iii) Let n run through all natural numbers such that ¢(n) < 20. (The largest
such n is 66.) Assume, in addition, that there is another zero of the form p(,.
This yields further linear relations. Inspecting this system of linear equations, one



either finds a contradiction or determines all three remaining coefficients. In the
latter case, the numerical test may indicate a contradiction.

If each value of n is contradictory then rk Pic(S5 ) = 2.

Consequently, the equality rk Pic(fﬁp) = 2 may be effectively provable from
Tr(¢?) for d=1,...,9,(10).

A numerical test. Given a polynomial f of degree 22, we calculate all its zeroes
as floating point numbers. If at least one of them is clearly not of absolute value
p then f can not be the characteristic polynomial of the Frobenius for any K3
surface over IF,.

Remarks 4.2 i) This approach will always yield an even number for the upper
bound of the Picard rank. Indeed, the bound is

rk Pic(f, ) < dim(HZ (S5, Q)
— #{ zeroes of f, which are not of the form (,p}.

The relevant zeroes come in pairs of complex conjugate numbers. Hence, for a K3
surface the bound is always even.

ii) There is a famous conjecture due to John Tate [7] which implies that the
canonical injection c¢; : Pic(YTFP) — H ;(YFP, Q,(1)) maps actually onto the sum
of all eigenspaces for the eigenvalues which are roots of unity. Together with the
conjecture of J.-P. Serre which says that the Frobenius operation on étale coho-
mology is always semisimple, this would imply that the bound above is actually
sharp.

It is a somewhat surprising consequence of the Tate conjecture that the Picard
rank of a K3 surface over T, is always even. For us, this is bad news. The obvious
strategy to prove rk Pic(S@) =1 for a K3 surface S over @ would be to verify
rk Pic(SE) =1 for a suitable place p of good reduction. The Tate conjecture
indicates that there is no hope for such an approach.

5. How to prove rk Pic(Sg) =1

Using the methods described above we can construct even upper bounds for the
Picard rank. On the other hand, we can generate lower bounds by explicitly stat-
ing divisors. In optimal situations this may establish an equality rk Pic(LS%Fp) =2.
However, how to reach Picard rank 1 for a surface defined over Q7 Here we apply
a trick due to R. van Luijk [5, Remark 2].

Fact 5.1 (van Luijk) Assume that we are given a K3 surface ) over F3 and a
K3 surface % ®) over Fs which are both of geometric Picard rank 2. Suppose fur-
ther that the discriminants of the intersection forms on Pic(yfp(:’)) and Pic(YF(SS))
are essentially different, i.e., their quotient is not a perfect square in Q.

Then every K3 surface S such that its reduction at 3 is isomorphic to & (3
and its reduction at 5 is isomorphic to . ®) is of geometric Picard rank one.



Proof. The reduction maps ¢;: Pic(5g) — Pic(Sg)) = Pic(ﬁ%(p)) are injective |3,
Example 20.3.6]. Observe that Pic(Sg) is equal to the group of divisors on S
modulo numerical equivalence.

This immediately leads to the bound rkPic(Sg) < 2. Assume, by contra-
diction, that equality holds. Then, the reductions of Pic(Sg) are sublattices of
maximal rank in both, Pic(Sg,) = Pic(#")) and Pic(Sg,) = Pic(#").

The intersection product is compatible with reduction. Therefore, the quo-
tients Disc Pic(Sg)/ Disc Pic(yﬁ(as)) and Disc Pic(Sg)/ Disc Pic(yﬁF@) are perfect

squares. This is a contradiction to the assumption. ’ O

Remark 5.2 Suppose that .7 ) and . ®) are K3 surfaces of degree two given by
explicit branch sextics in P2. Then, using the Chinese Remainder Theorem, they
can easily be combined to a K3 surface S over Q.

If one of them allows a conic tangent in six points and the other a tritangent
then the discriminants of the intersection forms on PiC(YF(;)) and Pic(YF(;)) are
essentially different as shown in Section 2.

Remark 5.3 Suppose S is a K3 surface over @ constructed that way. Then, S
cannot be isomorphic, not even over @, to a K3 surface S’ C IP? of degree 4. In
particular, the explicit examples, which we will describe in the next sections, are
different from those of R. van Luijk [5].

Indeed, Pic(Sg) = Z-(-Z) and deg S = 2 mean that the intersection form
on Pic(Sg) is given by (", £%™) = 2nm. All self-intersection numbers of
invertible sheaves on S@ are of the form 2n? which is always different from 4.

6. An explicit K3 surface of degree two

Examples 6.1 We consider two particular K3 surfaces over finite fields.

i) By 279, we denote the surface over I3 given by the equation

w’ = (y° —2®y)?

+(@? + %+ 22) 223y + 232 + 22%yz + 2222 + 2293 + 2yt + 2)
= 220y + 202 + aty? + 2atyz + 2t2? + 233 + 23y?2 + 23y2? + 2323
+2223 24+ 22y? 22 4+ 202y 23 + 202 2 - 20y + 22093 22 4+ 2yt 22 4422t 426
ii) Further, let Z° be the K3 surface over [F5 given by
2

w? = 2Py +aty? + 223 + 2yt + 2y’ + 498 + 205 2 4 20422 + 42323 + 2225 428

Theorem 6.2 Let S be a K3 surface over Q such that its reduction modulo 3
is isomorphic to Z° and its reduction modulo 5 is isomorphic to #°. Then,
rk Pic(Sg) = 1.

Proof. We follow the strategy described in Remark 5.2. For the branch locus of
279 the conic given by 22 +y? + 22 = 0 is tangent in six points. The branch locus



of % has a tritangent given by z — 2y = 0. It meets the branch locus at [1: 0 : 0],
[1:3:1],and [0:1:2].

It remains to show that rk P1c(%0 ) <2 and rk Pic(%2)) < 2. To verify these
assertions, we used the methods descrlbed in Section 4. V\?e counted points over
[Fya and [Fya, respectively, for d < 10. For Y, we could use the faster method
since the sextic form on the right hand side is decoupled. O

Corollary 6.3 Let S be the K3 surface over Q given by
w? = —4aPy + 720z + aty? + batyz + 7ot + Tty — badyPz 4 5adyz?
+ 42323 4 622y + ba?y3z — ba?y?2? + bayz® + bzt — day®
+ 5xy°2% — 3x2° — 68 + 5yta? — Byt + 428,
i) Then, tk Pic(Sg) = 1.
ii) Further, S(Q) # 0. For ezample, [2:0:0:1] € S(Q).

Remarks 6.4 i) For the K3 surface 2%, our calculations show the following.

The numbers of the points defined over [F54 for d = 1, ..., 10 are, in this order, 14,
92, 758, 6752, 59 834, 532 820, 4796 120 43068 728, 387421463, and 3487077 812.
The traces of the Frobenius qud = ¢% on HZ (5{0 @Q,) are equal to 4, 10, 28, 190,
784, 1378, 13150, 22006, 973 and 293 410

The sign in the functional equation is positive. For the decomposition of the
characteristic polynomial f, of the Frobenius, we find (after scaling to zeroes of
absolute value 1)
(t o 1)2(3t2(] 4 2t19 4 2t18 + 2t17+t16 - 2t15 o 2t12 o tll o 2t10 o t9
—2t — 2T 1t + 23 + 2%+ 2t + 3)/3
with an irreducible polynomial of degree 20. The assumption of the negative sign

leads to zeroes the absolute values of which range (without scaling) from 2.598
to 3.464.

ii) For the K3 surface #'°, our calculations yield the following results.

The numbers of points over s« are, in this order, 41, 751, 15626,
392251, 9759376, 244134376, 6103312501, 152589156 251, 3814 704 296 876,
and 95367474609376. The traces of the Frobenius on Hgd%l@d are 15, 125,
0, 1625, —6 250, —6 250, —203 125, 1265625, 7031 250, and 42968 750.

The sign in the functional equation is positive. For the decomposition of the scaled
characteristic polynomial of the Frobenius, we find

(t —1)?(5t%0 — 5¢1° — 5t18 1 10417 — 2416 — 3415 41t 2413 2412 4 41!
4+ 3t10 449 — 268 — 247 4 445 — 3t — 2t* +10¢3 — 5t2 — 5t +5)/5.

The assumption of the negative sign leads to zeroes the absolute values of which
range (without scaling) from 3.908 to 6.398.



7. K3 surfaces of degree 2 given by a symmetric (3 x 3)-determinant

Examples 7.1
i) Let 2" be the surface over IF; given by the equation w? = fg(z,y, 2) for

222 fay+rztyz+222 2x2 +xy xy+y2 +yz+222
222+ xz4yz+22 zy+y2+yz+222 2x2 +2zy+2y% +2y2

fo =

2wy +2y% +yz 202 +xy+aztyz+222 202 4zztyz+z?
det

= 225 4+ 22%y + 22° 2 + 22%y? + 2tyz + 23y + 23y + 2323 + 222yt
T a2yBs 4 2029222 4wy 4 2228 8 + 0 4+ g2t oy 225

ii) Let % be the K3 surface over IF5 given by w? = fe(w,y, ), where

49c2+4;cz+y2 2:c2+3z2 4x2+2xy+2xz+4y2+3yz+2z2
f6 = det 222 4322 212+4zy+4y2+yz+3z2 4zy+212+y2+4yz+4z2
4x2+2xy+2mz+4y2+3yz+2z2 4acy+2xz+y2+4yz+4z2 4x2+a:z+3z2

= 425 4 225y + %2 + aty? + 242? + 23y
+ 42323 + 222yt + 2222% + Aoy’ + 120 + 420 .
Theorem 7.2 Let S be any K3 surface over Q such that its reduction modulo

3 is isomorphic to X and its reduction modulo 5 is isomorphic to % . Then,
rk Pic(Sg) = 1.

Proof. Consider the branch locus of 2. The conic C, given by
2% + 2y + 222 + 22 = 0, admits the parametrization
. 2.9, (9,2
g u U2 (2u + 2u)).
We find
fo(q(w) = (u+ 1)%(w® + u* +u® +u+1)2,

i.e., C is tangent in six points and the corresponding divisor on 2 splits already
over IF5. The branch sextic of # has a degenerate tritangent given by x = 0.

To verify that rk Pic(2f,) < 2 and rk Pic(%4,) < 2, again, we used the meth-
ods described in Section 4. We counted points over Fa, respectively Fyq, for
d < 10. Observe that, for %, we could use the faster method since the sextic form
on the right hand side is decoupled. O

Corollary 7.3 Let S be the K3 surface over Q given by w? = fo(x,y,2) for fo =

212751y75127150y275yzf722 212+4zy76y2+6yz+322 4zy73zz+y2+4yzfz2

d " 76x2+5xy76xz74339y275yz 29c275xy75xz7150y275yz77z2 79c273xy+7xz76y272yz+7z2
€

2 . 2 2 . 2 2 .2 . . 2 2

—x° —3xy+Trxz—6y° —2yz+472 daxy—3xz4+y +4yz—=z —x“+5xy+6xz+5y°+5yz+32

= 142% — 1182%y — 642%2 4+ 8 021z%y? + 220xyz — 1142422
— 2024923y — 4770023y% 2 — 635x3y2? + 42323
— 64 75322yt — 24792522132 + 26 0452%y% 22 — 274522y 2> — 15322 2%



—33821xy® — 107 1002y 2 — 463 2452y3 2% — 62450xy%23 — 3075zxy2* — 384x2°
+ 24 025¢5 — 77 34515z — 143 880y* 22 — 201 8851323 — 39 455y 2% — 1 055y 2° — 19625.

i) Then, rk Pic(SQ) =1.
ii) Further, S(Q) # 0. For example, [155:0:1:0] € S(Q).

Remarks 7.4 i) For the K3 surface 2", our calculations show the following.

The numbers of the points defined over [F34 for d = 1, ..., 10 are, in this order, 14,
88, 800, 6 664, 59 114, 531 136, 4 782 344, 43 029952, 387 550223 and 3 486 755 578.
The traces of the Frobenius be@d = ¢% on Hft(%E, Q,) are 5, 7,71, 103, 65, —305,
—625, —16769, 129734, and —28823.

The decomposition of the scaled characteristic polynomial is
(t—1)2(3t%0 + 19 4 2418 4 16 4 415 4 914 4 9413 4 3412
+2t10 43¢5 + 267 + 260 + 5 + 1 + 2¢2 +- ¢ + 3)/3.
It follows that the geometric Picard rank is equal to 2.
ii) For the K3 surface %/, our calculations yield the following results.

The numbers of points over Fza are, in this order, 33, 669, 15522,
391861, 9768668, 244132734, 6103019942, 152588860821, 3814709624 898,
and 95367420137974. The traces of the Frobenius on Hézt(%s, Q) are 8, 44,
—103, 1236, 3043, —7891, —495 683, 970196, 12359 273, and —11 502 651.

The decomposition of the scaled characteristic polynomial is

(t — 1)2(5t%0 + 2610 + 18 4 5117 4 2416 4 2415 4 5l 4 813 4 4412 4 oMt
+ 8110 4 269 44t® 4 8t7 + 5% 4 265 + 2t 4 53 + 12 + 2t +5)/5.

Consequently, the geometric Picard rank is equal to 2.

Construction of symmetric (3 x 3)-matrices with decoupled determinant.

A general ternary sextic has 28 coefficients. It is decoupled if 15 of these vanish.
Thus, a randomly chosen sextic form in [, [z, y, z] is decoupled with a probability
of ¢~'°. This is too low for our purposes.

On the other hand, we can think of decoupling as solving a nonlinear system
of 15 equations in 36 variables. One could try to attack this system by a Grobner
base calculation. We use a mixture of both methods. More precisely, we do the
following.

Method 7.5 We construct the matriz M in the particular form

a‘(xayVZ) b(xaz) Cl(l’,y,Z)
M = b(x,z) 62(35,2172’) 03(3572/72’)
a(z,y,2) es(z,y,2)  dlz,2)

i) We choose the quadratic forms ¢y, ca, c3, and d, randomly.



ii) In a second step, we have to fix the nine coefficients of the quadratic forms a
and b. The coefficients of det M at x°~1=Iyiz7 fori,j > 0 are linear functions of
the coefficients of a and b. Observe that the summand —b?d does not contribute
to these critical coefficients.

Thus, we have to solve a system of 15 linear equations in nine variables. Naively,

such a system is solvable with a probability of ¢~C.

If it is not solvable then we go back to the first step.

Remarks 7.6 i) We randomly generated a sample of 30 surfaces over Fs. For each
of them, the branch locus was smooth and had passed the two tests described in
Section 3, to exclude the existence of a tritangent and to ensure there was exactly
one conic over [F5 tangent in six points.

We could establish the equality rk Pic(2F, ) = 2 in three of the examples. Example
7.1.1) reproduces one of them.

ii) Using the probabilistic method described above, we generated a sample of 50
surfaces over F5. We made sure that for each of them the branch sextic was
smooth, had exactly one tritangent, and no conic over [F5 tangent in six points.
Further, it was decoupled by construction. It took Magma approximately one hour
to generate that sample.

Having counted points over [F5a for d < 9, we were able to establish the equality
rk Pic(%ﬁ) = 2 in two of the examples. For those, we determined, in addition,
the numbers of points over Fxsio. Example 7.1.ii) reproduces one of the two.

8. K3 surface of degree 2 given by a symmetric (6 x 6)-determinant

Examples 8.1 i) Let 27 be the surface over I3 given by w? = f4(x,y, z) for

000022 021121 211120
010101 29229222 110121
002112 120110 102112
fo=detlzloq 1 [tY 1211117111001
201122 2921122 221022
212120 120120 012120

= 20+ 20y + 2202 + 22%y? 4 20ty + 222932 + 222t

ii) Further, let 2/ be the K3 surface over 5 given by w? = fs(x,y, 2) for

+ 221 + 2yt 4+ 290 + 2y°2 + y22t + 220

343441 003301 211105
430210 020131 104444
b= det || 304030 | 1305035 | 1142302
6 420213 Y'310355 143122
413102 033501 040231
100321 115513 542210



= 225 + 2%y + 22%y? + 32222 + 233 + 2232% + 2%yt + 3222t + 225 + 428

Theorem 8.2 Let S be any K3 surface over Q such that its reduction modulo
3 is isomorphic to X and its reduction modulo 5 is isomorphic to %'. Then,
rk Pic(Sg) = 1.

Proof. Consider the branch locus of 2”. For the conic C, given by
xz + 3% 4+ 2yz + 222 = 0, there is the parametrization

g ur [(2ut +u+1) w1
We find
fola(w) = (u* +u+2)*(u +u +2)%,

i.e. C' admits the property of being tangent in six points and the corresponding
divisor on 2" splits already over IF3. The branch sextic of %’ has a degenerate
tritangent given by = = 0.

To verify that rk Pic(2%, ) < 2 and rk Pic(%2 ) < 2, again, we used the meth-
ods described in section 4. We counted points over Fya and Fya, respectively, for
d < 10. Observe, for %", we could use the faster method since the sextic form on
the right hand side is decoupled. O

Corollary 8.3 Let S be the K3 surface over Q given by w? = fs(x,y,2) for fo =

—2382 —21 3 —6 —1 —4 0O 5 -2-2 5 1 2 1 1 1 5 0

—-21 28 0O 7 6 =5 5 2 5 —4 -7 —4 1 -5-6 4 -1 4

3 0 -1-5 -2 5 -2 5 0 -5 -2 0 1 -6 2 -2 -5 2

det x —6 7T -5 7 1 =2 + Y -2 -4 -5 -2 -5 -5 +z 1 4 -2 6 -3 7
-1 6 -2 1 5 2 5 -7 -2 -5 5 —4 5 -1 =5 =3 =7 —4

-4 -5 5 -2 2 6 1 -4 0 -5-4 3 0O 4 2 7 -4 0

= 761391672°% + 231 184 0812°y + 210075 7252°2

+ 25609 337z*y? + 487337 315z yz — 314154 987z 22

— 14193771923y + 283 035 18023y z — 434 149 81523y 2% — 5367 46823 2>
— 175763 0342%y* + 168 686 0902:2y> =

— 421490 010223222 4 160 009 15522y 2> — 153 566 95722 2%

— 90295 273zy° + 175 779 575xy* 2 — 285 747 180xy> 2>

+ 327585255212 2% — 215 766 345xy2* + 94479 0452:2°

+ 13322095 + 31 145y°2 + 380 715y 2% — 32419512 — 476 810y%2*
+402845y2° — 17426125

i) Then, tk Pic(Sg) = 1.
ii) Further, S(Q) # 0. For example, [1286:1:1:1] € S(Q).



Remarks 8.4 i) For the K3 surface 2", our calculations show the following.

The numbers of the points defined over [F54 for d = 1,...,10 are, in this order, 12,
90, 783, 6534, 59697, 535 329, 4793 661, 43079 526, 387 521 091, and 3 487 248 045.
The traces of the Frobenius ¢IF;Jd = ¢d on Hé2t(3b‘”ﬁF'37 Q) are 3, 9, 54, —27, 648,
3888, 10 692, 32 805, 100 602, and 463 644.

The decomposition of the scaled characteristic polynomial is
(t —1)%(3t%0 4 3t1° 4 3¢18 - 2617 4 3¢16 4 2415 — 2413 — 3412 — 441!
— 61 — 47 — 3% — 27 + 2t° + 3t + 2t + 3¢* + 3t + 3)/3.
Consequently, the geometric Picard rank is equal to 2.
ii) For the K3 surface %", our calculations yield the following results.

The numbers of points over Fya are, in this order, 36, 666, 15711,
391706, 9763601, 244152021, 6103934341, 152589189186, 3814705355181,
and 95367412593451. The traces of the Frobenius on Hézt(@fp/,vﬁe) are 11, 41,
86, 1081, —2024, 11396, 418 716, 1298561, 8089 556, and —19 047 174.

The decomposition of the scaled characteristic polynomial is

(t— 1)2(51520 19 18 | 9p1T L gpl5 4 yld 9418 4 412 410
+ 2610 — 9 48 — 267 +4° 43¢ + 23 + 42 —t +5)/5.

It follows that the geometric Picard rank is equal to 2.

Construction of symmetric (6 x 6)-matrices with decoupled determinant.

Method 8.5 a) We construct a symmetric (6 x 6)-matrix My the entries of which
are linear forms only in y and z. The goal is that its determinant is decoupled,
ie.

det My = ay® + b2°

for certain a,b € I, not both vanishing.
This leads to five conditions for the coefficients.
i) We choose all entries in My randomly except for (Mp)11.

ii) The determinant is linear in the coefficients of (Mp);;. Therefore, we have a
system of five linear equations in two variables. Such a system is solvable with a
probability of g~3 which is enough for our purposes.

If there is no solution then we return to step i).

b) We construct M in the form
M := My + z2A

for A a symmetric matrix with entries in IF,.



i) First, look at the monomials xyz5~* for i = 1,...,4, only. Insisting that their
coefficients vanish gives a system of four linear equations. In general, its solutions
form a 17-dimensional vector space.

ii) For decoupling, six further coefficients have to vanish. We are left with 17
parameters and six non-linear equations.

We choose the parameters randomly and iterate this procedure until a solution is

found. Naively, the probability to hit a solution is ¢~6.

Remarks 8.6 i) We randomly generated a sample of 50 surfaces over Fs. For each
of them, the branch sextic was smooth and had passed the two tests described in
Section 3, to exclude the existence of a tritangent and to ensure there was exactly
one conic over [F5 tangent in six points.

We established rk Pic(’%ﬁF;) = 2 in eleven of the examples. Example 8.1.i) is one
of them.

ii) Using the probabilistic method described above, we generated a sample of
120 surfaces over 5. For each of them, the branch sextic was decoupled, by
construction. We made sure, in addition, that it was smooth, had exactly one
tritangent, and no conic, defined over IF5, which was tangent in six points. It took
Magma half a day to generate that sample.

Having counted points over FFyq for d < 9, we were able to establish the equality
rkPic(#Z ) = 2 in three of the examples. For those, we determined also the
number of points over Fyio. Example 8.1.ii) reproduces one of the three.
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