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Abstract. We construct examples of K3 surfaces over Q which are of
degree 2 and the geometric Picard rank of which is equal to 1. We
construct, particularly, examples in the form w2 = det M where M is
a symmetric (3 × 3)-matrix of ternary quadratic forms or a symmetric
(6×6)-matrix of ternary linear forms. Our method is based on reduction
modulo p for p = 3 and 5.

Introduction

A K3 surface is a simply connected, projective algebraic surface with trivial canon-
ical class. Let B ⊂ P2 be a smooth plane curve of degree 6 given by f6(x, y, z) = 0.
The equation w2 = f6(x, y, z) defines an algebraic surface S in weighted projec-
tive space P(1, 1, 1, 3). We have a double cover π : S → P2 ramified at π−1(B).
This surface is a K3 surface (of degree two).

Examples 1.1 K3 surfaces embedded into Pn are automatically of even degree.
Small degree cases may be realized as follows: A K3 surface of degree two is
a double cover of P2, ramified in a smooth sextic. K3 surfaces of degree four
are smooth quartics in P3. A K3 surface of degree six is a smooth complete
intersection of a quadric and a cubic in P4. And, finally, K3 surfaces of degree
eight are smooth complete intersections of three quadrics in P5.

The Picard group of a K3 surface is known to be isomorphic to Zn where n may
range from 1 to 20. It is generally known that a generic K3 surface over C is of
Picard rank one.

Nevertheless, it seems that the first explicit examples of K3 surfaces of ge-
ometric Picard rank one have been constructed as late as in 2005 [5]. All these
examples are of degree four.

1The computer part of this work was executed on the Sun Fire V20z Servers of the Gauß
Laboratory for Scientific Computing at the Göttingen Mathematisches Institut. Both authors
are grateful to Prof. Y. Tschinkel for the permission to use these machines as well as to the
system administrators for their support.



Our goal here is to provide explicit examples of K3 surfaces defined over Q which
are of degree two and geometric Picard rank one.

Let S be a K3 surface over a finite field Fq. We have the first Chern class
homomorphism

c1 : Pic(S ) −→ H2
ét(SFq

,Q`(1))

into `-adic cohomology. There is a natural operation of the Frobenius on
H2

ét(SFq
,Q`(1)). All eigenvalues are of absolute value 1. The Frobenius operation

on the Picard group is compatible with the operation on cohomology.
Every divisor is defined over a finite extension of the ground field. Conse-

quently, on the subspace Pic(SFq
)⊗ZQ` ↪→ H2

ét(SFq
,Q`(1)), all eigenvalues are

roots of unity. Those correspond to eigenvalues of the Frobenius operation on
H2

ét(SFq
,Q`) which are of the form qζ for ζ a root of unity.

We may therefore bound the rank of the Picard group Pic(SFq
) from above

by counting how many eigenvalues are of this particular form. Bounds from below
may be obtained by explicitly constructing divisors. Combining these two bounds
it is sometimes possible to calculate rkPic(SFq

).

Our general strategy is to use reduction modulo p. If S is a K3 surface over
Q then there is the inequality

rkPic(SQ) ≤ rkPic(SFp
)

which holds for every prime p of good reduction.

Remark 1.2 Consider a complex K3 surface S. Since H1(S, OS) = 0, the Picard
group of S is discrete and the first Chern class homomorphism

c1 : Pic(S) → H2(S,Z) ⊂ H2(S,C)

is an injection. For divisors, numerical and homological equivalence are known
to coincide [4, Corollary 1]. This shows that Pic(S) equals the group of divisors
modulo numerical equivalence.

2. Geometric constructions of divisors over Fp

In order to bound the rank of the Picard group from below, one needs to explic-
itly construct divisors. Calculating discriminants, it is possible to show that the
corresponding divisor classes are linearly independent.

Assumption 2.1 For the algebro-geometric considerations described in this sec-
tion, we assume that we work over a ground field which is algebraically closed of
characteristic 6= 2.

Construction 2.2 i) Assume that the branch curve “f6 = 0” has a tritangent line
G. The pull-back of G to the K3 surface S is a divisor splitting into two irre-
ducible components. The corresponding divisor classes are linearly independent.



ii) A second possibility is to use a conic which is tangent to the branch sextic in
six points.

Both constructions yield a lower bound of 2 for the rank of the Picard group.

Tritangent. Assume that the line G is tritangent to “f6 = 0”. The restriction of f6

to G ∼= P1 is a section of O(6), the divisor of which is divisible by 2 in Div(G). As
G is of genus 0, this implies f6|G is the square of a section f ∈ Γ(G, O(3)). The
form f6 may, therefore, be written as f6 = f̃2 + lq5 for l a linear form defining G,
f̃ a cubic form lifting f , and a quintic form q5.

Consequently, the restriction of π to π−1(G) is given by an equation of the
form w2 = f2(s, t). We, therefore, have π∗(G) = D1 + D2 where D1 and D2 are
the two irreducible divisors given by w = ±f(s, t). Both curves are isomorphic to
G. In particular, they are projective lines.

The adjunction formula shows −2 = D1(D1 + K) = D2
1. Analogously,

D2
2 = −2. Finally, we have G2 = 1. It follows that (D1 + D2)2 = 2 which yields

D1D2 = 3. For the discriminant, we find∣∣∣∣−2 3
3 −2

∣∣∣∣ = −5 6= 0

guaranteeing that rkPic(S ) ≥ 2.

Remark 2.3 This argument works without modification if two or all three points
of tangency coincide.

Conic tangent in six points. If C is a conic tangent to the branch curve “f6 = 0”
in six points then, for the same reasons as above, we have π∗(C) = C1+C2, where
C1 and C2 are irreducible divisors. Again, C1 and C2 are isomorphic to C and,
therefore, of genus 0. This shows C2

1 = C2
2 = −2. Further, C2 = 4 which implies

(C1 + C2)2 = 8 and C1C2 = 6. The discriminant equals∣∣∣∣−2 6
6 −2

∣∣∣∣ = −32 6= 0.

Thus, rkPic(S ) ≥ 2 in this case as well.

Remark 2.4 Further tritangents or further conics which are tangent in six points
lead to even larger Picard groups.

3. Explicit divisors – Practical tests over Fq

A test for tritangents. The property of a line of being a tritangent may easily be
written down as an algebraic condition. Therefore, tritangents may be searched
for, in practice, by investigating a Gröbner basis.

More precisely, a general line in P2 can be described by a parametrization



ga,b : t 7→ [1 : t : (a + bt)] .

ga,b is a (possibly degenerate) tritangent of the sextic “f6 = 0” if and only if
f6 ◦ ga,b is a perfect square in Fq[t]. This means that

f6(ga,b(t)) = (c0 + c1t + c2t
2 + c3t

3)2

is an equation which encodes the tritangent property of ga,b. Comparing coeffi-
cients, this yields a system of seven equations in c0, c1, c2, and c3 which is solvable
if and only if ga,b is a tritangent. The latter may be understood as well as a system
of equations in a, b, c0, c1, c2, and c3 encoding the existence of a tritangent of
the form above.

Using Magma, we compute the length of Fq[a, b, c0, c1, c2, c3] modulo the cor-
responding ideal I. This is twice the number of the tritangents detected.

The remaining one dimensional family of lines may be tested analogously
using the parametrizations ga : t 7→ [1 : a : t] and g : t 7→ [0 : 1 : t].

Remarks 3.1 a) To compute the length of Fq[a, b, c0, c1, c2, c3]/I, a Gröbner basis
of I is needed. The time required to compute such a basis over a finite field is
usually a few seconds. From the Gröbner basis, the tritangents may be read off,
explicitly.

b) Since the existence of a tritangent is a codimension one condition, one occa-
sionally finds tritangents on randomly chosen examples.

A test for conics tangent in six points. A non-degenerate conic in P2 allows a
parametrization of the form

c : t 7→ [(c0 + c1t + c2t
2) : (d0 + d1t + d2t

2) : (e0 + e1t + e2t
2)] .

With the sextic “f6 = 0”, all intersection multiplicities are even if and only if f6◦c
is a perfect square in Fq[t]. This may easily be checked by factoring f6 ◦ c.

For small q, that allows, at least, to search for conics which are defined over Fq

and tangent in six points. To achieve this, we listed all q2(q3 − 1) non-degenerate
conics over Fq for q = 3 and 5.

Remark 3.2 A analogous general method to find conics defined over Fq does not
succeed. The required Gröbner basis computation becomes too large.

4. Upper bounds – The Frobenius operation on l-adic cohomology

The Lefschetz trace formula. The Frobenius operation on H2
ét(SFp

,Q`) can be
analyzed as follows.

Count the points on S over Fpd and apply the Lefschetz trace formula [6] to
compute the trace of the Frobenius φF

pd
= φd. In our situation, this yields

Tr(φd) = #S (Fpd)− p2d − 1 .



We have Tr(φd) = λd
1+· · ·+λd

22 =: σd(λ1, . . . , λ22) when we denote the eigenvalues
of φ by λ1, . . . , λ22. Newton’s identity [8]

sk(λ1, . . . , λ22) =
1
k

k−1∑
r=0

(−1)k+r+1σk−r(λ1, . . . , λ22)sr(λ1, . . . , λ22)

shows that, doing this for d = 1, . . . , k, one obtains enough information to de-
termine the coefficient (−1)ksk of t22−k of the characteristic polynomial fp of
φ.

Observe that we also have the functional equation

(∗) p22fp(t) = ±t22fp(p2/t)

at our disposal. It may be used to convert the coefficient of ti into the one of
t22−i.

Methods for counting points. The number of the points may be determined by

#S (Fq) =
∑

[x:y:z]∈P2(Fq)

[
1 + χ

(
f6(x, y, z)

)]
.

Here, χ is the quadratic character. The sum is well-defined since f6(x, y, z) is
uniquely determined up to a sixth-power residue. To count the points naively, one
would need q2 + q + 1 evaluations of f6 and χ.

There are several ways to optimize. Here are two possibilities:

i) Symmetry: If f6 is defined over Fp then the summands for [x : y : z] and
φ([x : y : z]) are equal. This means, over Fpd , we may save a factor of d if,
on the affine chart “x = 1”, we put in for y only values from a fundamental
domain of the Frobenius.

ii) Decoupling: Suppose, f6 contains only monomials of the form xiy6−i or
xiz6−i. Then, on the affine chart “x = 1”, the form f6 may be written as
a sum of a function in y and a function in z.

In O(q log q) steps, for each of the two functions, we build up a table stating
how many times it adopts each of its values. Again, we may restrict one
of the tables to a fundamental domain of the Frobenius. We tabulate the
quadratic character, too. After these preparations, less than q2 additions
suffice to determine the number of points.

The advantage of a decoupled situation is, therefore, that an evaluation of
a polynomial in Fpd gets replaced by an addition.

Remark 4.1 Having implemented the point counting in C, these optimizations
allow us to determine the number of F310-rational points on a K3 surface S within
half an hour (without decoupling) on an AMD Opteron processor.



In a decoupled situation, the number of F59-rational points may be counted
within two hours. In a few cases, we determined the numbers of points over F510 .
This took about two days. Without decoupling, the same counts would have taken
about one day or 25 days, respectively.

This shows that using the methods above we may effectively compute the
traces of φF

pd
= φd for d = 1, . . . , 9, (10).

An upper bound for rkPic(SFp
), counting up to d = 10.

We know that the characteristic polynomial of the Frobenius fp has a zero at p
since the pull-back of a line in P2 is a divisor defined over Fp. Suppose, we deter-
mined Tr(φd) for d = 1, . . . , 10. We may achieve an upper bound for rkPic(SFp

)
as follows.

i) Assume the minus sign in the functional equation (∗). Then fp automatically
has coefficient 0 at t11. Therefore, the numbers of points counted suffice in this
case to determine fp, completely.

ii) Assume, on the other hand, that the plus sign is present in (∗). In this case,
the data collected immediately allow to compute all coefficients of fp except the
one at t11. Use the known zero at p to determine that final coefficient.

iii) Use the numerical test, described below, to decide which sign is actually
present.

iv) Factor fp(pt) into irreducible polynomials. Check which of the factors are
cyclotomic polynomials and add their degrees. That sum is an upper bound for
rkPic(SFp

). If step iii) had failed then one has to work with both candidates for
fp and deal with the maximum.

Verifying rkPic(SFp
) = 2 with d ≤ 9.

Let S be a K3 surface over Fp given by Construction 2.2.i) or ii). We know that
the rank of the Picard group is at least 2. We suppose that the divisor constructed
by pull-back splits already over Fp. This ensures that p is a double zero of fp.
There is the following method to verify rk Pic(SFp

) = 2.

i) First, assume the minus sign in the functional equation (∗). This forces another
zero of fp at (−p). The data collected suffice to determine fp, completely. The
numerical test, described below, may indicate a contradiction.

Otherwise, the verification fails. (In that case, we could still find an upper bound
for rk Pic(SFp

) which is, however, at least equal to 4.)

ii) As we have the plus sign in (∗), the data immediately suffice to compute all
coefficients of fp with the exception of those at t10, t11, and t12. The functional
equation yields a linear relation for the three remaining coefficients of fp. From
the known double zero at p, one computes another linear condition.

iii) Let n run through all natural numbers such that ϕ(n) ≤ 20. (The largest
such n is 66.) Assume, in addition, that there is another zero of the form pζn.
This yields further linear relations. Inspecting this system of linear equations, one



either finds a contradiction or determines all three remaining coefficients. In the
latter case, the numerical test may indicate a contradiction.

If each value of n is contradictory then rk Pic(SFp
) = 2.

Consequently, the equality rkPic(SFp
) = 2 may be effectively provable from

Tr(φd) for d = 1, . . . , 9, (10).

A numerical test. Given a polynomial f of degree 22, we calculate all its zeroes
as floating point numbers. If at least one of them is clearly not of absolute value
p then f can not be the characteristic polynomial of the Frobenius for any K3
surface over Fp.

Remarks 4.2 i) This approach will always yield an even number for the upper
bound of the Picard rank. Indeed, the bound is

rkPic(SFp
) ≤ dim(H2

ét(SFp
,Q`))

−#{ zeroes of fp which are not of the form ζnp } .

The relevant zeroes come in pairs of complex conjugate numbers. Hence, for a K3
surface the bound is always even.

ii) There is a famous conjecture due to John Tate [7] which implies that the
canonical injection c1 : Pic(SFp

) → H2
ét(SFp

,Q`(1)) maps actually onto the sum
of all eigenspaces for the eigenvalues which are roots of unity. Together with the
conjecture of J.-P. Serre which says that the Frobenius operation on étale coho-
mology is always semisimple, this would imply that the bound above is actually
sharp.

It is a somewhat surprising consequence of the Tate conjecture that the Picard
rank of a K3 surface over Fp is always even. For us, this is bad news. The obvious
strategy to prove rkPic(SQ) = 1 for a K3 surface S over Q would be to verify
rkPic(SFp

) = 1 for a suitable place p of good reduction. The Tate conjecture
indicates that there is no hope for such an approach.

5. How to prove rkPic(SQ) = 1

Using the methods described above we can construct even upper bounds for the
Picard rank. On the other hand, we can generate lower bounds by explicitly stat-
ing divisors. In optimal situations this may establish an equality rkPic(SFp

) = 2.
However, how to reach Picard rank 1 for a surface defined over Q? Here we apply
a trick due to R. van Luijk [5, Remark 2].

Fact 5.1 (van Luijk) Assume that we are given a K3 surface S (3) over F3 and a
K3 surface S (5) over F5 which are both of geometric Picard rank 2. Suppose fur-
ther that the discriminants of the intersection forms on Pic(S (3)

F3
) and Pic(S (5)

F5
)

are essentially different, i.e., their quotient is not a perfect square in Q.
Then every K3 surface S such that its reduction at 3 is isomorphic to S (3)

and its reduction at 5 is isomorphic to S (5) is of geometric Picard rank one.



Proof. The reduction maps ιp : Pic(SQ) → Pic(SFp
) = Pic(S (p)

Fp
) are injective [3,

Example 20.3.6]. Observe that Pic(SQ) is equal to the group of divisors on SQ
modulo numerical equivalence.

This immediately leads to the bound rk Pic(SQ) ≤ 2. Assume, by contra-
diction, that equality holds. Then, the reductions of Pic(SQ) are sublattices of
maximal rank in both, Pic(SF3

) = Pic(S (3)

F3
) and Pic(SF5

) = Pic(S (5)

F5
).

The intersection product is compatible with reduction. Therefore, the quo-
tients Disc Pic(SQ)/ Disc Pic(S (3)

F3
) and Disc Pic(SQ)/ Disc Pic(S (5)

F5
) are perfect

squares. This is a contradiction to the assumption. �

Remark 5.2 Suppose that S (3) and S (5) are K3 surfaces of degree two given by
explicit branch sextics in P2. Then, using the Chinese Remainder Theorem, they
can easily be combined to a K3 surface S over Q.

If one of them allows a conic tangent in six points and the other a tritangent
then the discriminants of the intersection forms on Pic(S (3)

F3
) and Pic(S (5)

F5
) are

essentially different as shown in Section 2.

Remark 5.3 Suppose S is a K3 surface over Q constructed that way. Then, S
cannot be isomorphic, not even over Q, to a K3 surface S′ ⊂ P3 of degree 4. In
particular, the explicit examples, which we will describe in the next sections, are
different from those of R. van Luijk [5].

Indeed, Pic(SQ) = Z·〈L 〉 and deg S = 2 mean that the intersection form
on Pic(SQ) is given by 〈L ⊗n,L ⊗m〉 = 2nm. All self-intersection numbers of
invertible sheaves on SQ are of the form 2n2 which is always different from 4.

6. An explicit K3 surface of degree two

Examples 6.1 We consider two particular K3 surfaces over finite fields.

i) By X 0, we denote the surface over F3 given by the equation

w2 = (y3 − x2y)2

+(x2 + y2 + z2)(2x3y + x3z + 2x2yz + x2z2 + 2xy3 + 2y4 + z4)

= 2x5y + x5z + x4y2 + 2x4yz + x4z2 + x3y3 + x3y2z + 2x3yz2 + x3z3

+2x2y3z+x2y2z2+2x2yz3+2x2z4+2xy5+2xy3z2+2y4z2+y2z4+z6 .

ii) Further, let Y 0 be the K3 surface over F5 given by

w2 = x5y +x4y2 +2x3y3 +x2y4 +xy5 +4y6 +2x5z +2x4z2 +4x3z3 +2xz5 +4z6 .

Theorem 6.2 Let S be a K3 surface over Q such that its reduction modulo 3
is isomorphic to X 0 and its reduction modulo 5 is isomorphic to Y 0. Then,
rkPic(SQ) = 1.

Proof. We follow the strategy described in Remark 5.2. For the branch locus of
X 0, the conic given by x2 +y2 +z2 = 0 is tangent in six points. The branch locus



of Y0 has a tritangent given by z−2y = 0. It meets the branch locus at [1 : 0 : 0],
[1 : 3 : 1], and [0 : 1 : 2].

It remains to show that rk Pic(X 0
F3

) ≤ 2 and rkPic(Y 0
F5

) ≤ 2. To verify these
assertions, we used the methods described in Section 4. We counted points over
F3d and F5d , respectively, for d ≤ 10. For Y 0, we could use the faster method
since the sextic form on the right hand side is decoupled. �

Corollary 6.3 Let S be the K3 surface over Q given by

w2 = −4x5y + 7x5z + x4y2 + 5x4yz + 7x4z2 + 7x3y3 − 5x3y2z + 5x3yz2

+ 4x3z3 + 6x2y4 + 5x2y3z − 5x2y2z2 + 5x2yz3 + 5x2z4 − 4xy5

+ 5xy3z2 − 3xz5 − 6y6 + 5y4z2 − 5y2z4 + 4z6 .

i) Then, rkPic(SQ) = 1.

ii) Further, S(Q) 6= ∅. For example, [2 : 0 : 0 : 1] ∈ S(Q).

Remarks 6.4 i) For the K3 surface X 0, our calculations show the following.

The numbers of the points defined over F3d for d = 1, . . . , 10 are, in this order, 14,
92, 758, 6 752, 59 834, 532 820, 4 796 120, 43 068 728, 387 421 463, and 3 487 077 812.
The traces of the Frobenius φF

pd
= φd on H2

ét(X
0
F3

,Q`) are equal to 4, 10, 28, 190,
784, 1 378, 13 150, 22 006, 973, and 293 410.

The sign in the functional equation is positive. For the decomposition of the
characteristic polynomial fp of the Frobenius, we find (after scaling to zeroes of
absolute value 1)

(t− 1)2(3t20 + 2t19 + 2t18 + 2t17+t16 − 2t13 − 2t12 − t11 − 2t10 − t9

− 2t8 − 2t7 + t4 + 2t3 + 2t2 + 2t + 3)/3

with an irreducible polynomial of degree 20. The assumption of the negative sign
leads to zeroes the absolute values of which range (without scaling) from 2.598
to 3.464.

ii) For the K3 surface Y 0, our calculations yield the following results.

The numbers of points over F5d are, in this order, 41, 751, 15 626,
392 251, 9 759 376, 244 134 376, 6 103 312 501, 152 589 156 251, 3 814 704 296 876,
and 95 367 474 609 376. The traces of the Frobenius on H2

ét(Y
0
F5

,Q`) are 15, 125,
0, 1 625, −6 250, −6 250, −203 125, 1 265 625, 7 031 250, and 42 968 750.

The sign in the functional equation is positive. For the decomposition of the scaled
characteristic polynomial of the Frobenius, we find

(t− 1)2(5t20 − 5t19 − 5t18 + 10t17 − 2t16 − 3t15 + 4t14 − 2t13 − 2t12 + t11

+ 3t10 + t9 − 2t8 − 2t7 + 4t6 − 3t5 − 2t4 + 10t3 − 5t2 − 5t + 5)/5 .

The assumption of the negative sign leads to zeroes the absolute values of which
range (without scaling) from 3.908 to 6.398.



7. K3 surfaces of degree 2 given by a symmetric (3× 3)-determinant

Examples 7.1

i) Let X be the surface over F3 given by the equation w2 = f6(x, y, z) for

f6 = det

(
2xy+2y2+yz 2x2+xy+xz+yz+2z2 2x2+xz+yz+z2

2x2+xy+xz+yz+2z2 2x2+xy xy+y2+yz+2z2

2x2+xz+yz+z2 xy+y2+yz+2z2 2x2+2xy+2y2+2yz

)

= 2x6 + 2x5y + 2x5z + 2x4y2 + x4yz + x3y3 + x3yz2 + x3z3 + 2x2y4

+ x2y3z + 2x2y2z2 + xy5 + xy2z3 + y6 + y5z + y2z4 + yz5 + 2z6 .

ii) Let Y be the K3 surface over F5 given by w2 = f6(x, y, z), where

f6 = det
(

4x2+4xz+y2 2x2+3z2 4x2+2xy+2xz+4y2+3yz+2z2

2x2+3z2 2x2+4xy+4y2+yz+3z2 4xy+2xz+y2+4yz+4z2

4x2+2xy+2xz+4y2+3yz+2z2 4xy+2xz+y2+4yz+4z2 4x2+xz+3z2

)
= 4x6 + 2x5y + x5z + x4y2 + x4z2 + x3y3

+ 4x3z3 + 2x2y4 + 2x2z4 + 4xy5 + xz5 + 4z6 .

Theorem 7.2 Let S be any K3 surface over Q such that its reduction modulo
3 is isomorphic to X and its reduction modulo 5 is isomorphic to Y . Then,
rkPic(SQ) = 1.

Proof. Consider the branch locus of X . The conic C, given by
x2 + xy + 2xz + z2 = 0, admits the parametrization

q : u 7→ [u2 : 2 : (2u2 + 2u)].

We find

f6(q(u)) = (u + 1)2(u5 + u4 + u3 + u + 1)2,

i.e., C is tangent in six points and the corresponding divisor on X splits already
over F3. The branch sextic of Y has a degenerate tritangent given by x = 0.

To verify that rkPic(XF3
) ≤ 2 and rkPic(YF5

) ≤ 2, again, we used the meth-
ods described in Section 4. We counted points over F3d , respectively F5d , for
d ≤ 10. Observe that, for Y , we could use the faster method since the sextic form
on the right hand side is decoupled. �

Corollary 7.3 Let S be the K3 surface over Q given by w2 = f6(x, y, z) for f6 =

det
(
−6x2+5xy−6xz−4339y2−5yz 2x2−5xy−5xz−150y2−5yz−7z2 −x2−3xy+7xz−6y2−2yz+7z2

2x2−5xy−5xz−150y2−5yz−7z2 2x2+4xy−6y2+6yz+3z2 4xy−3xz+y2+4yz−z2

−x2−3xy+7xz−6y2−2yz+7z2 4xy−3xz+y2+4yz−z2 −x2+5xy+6xz+5y2+5yz+3z2

)
= 14x6 − 118x5y − 64x5z + 8 021x4y2 + 220x4yz − 114x4z2

− 20 249x3y3 − 47 700x3y2z − 635x3yz2 + 4x3z3

− 64 753x2y4 − 247 925x2y3z + 26 045x2y2z2 − 2 745x2yz3 − 153x2z4



− 33 821xy5 − 107 100xy4z − 463 245xy3z2 − 62 450xy2z3 − 3 075xyz4 − 384xz5

+ 24 025y6−77 345y5z−143 880y4z2−201 885y3z3−39 455y2z4−1 055yz5−196z6.

i) Then, rkPic(SQ) = 1.

ii) Further, S(Q) 6= ∅. For example, [155 : 0 : 1 : 0] ∈ S(Q).

Remarks 7.4 i) For the K3 surface X , our calculations show the following.

The numbers of the points defined over F3d for d = 1, . . . , 10 are, in this order, 14,
88, 800, 6 664, 59 114, 531 136, 4 782 344, 43 029 952, 387 550 223 and 3 486 755 578.
The traces of the Frobenius φF

pd
= φd on H2

ét(XF3
,Q`) are 5, 7, 71, 103, 65, −305,

−625, −16 769, 129 734, and −28 823.

The decomposition of the scaled characteristic polynomial is

(t− 1)2(3t20 + t19 + 2t18 + t16 + t15 + 2t14 + 2t13 + 3t12

+ 2t10 + 3t8 + 2t7 + 2t6 + t5 + t4 + 2t2 + t + 3)/3 .

It follows that the geometric Picard rank is equal to 2.

ii) For the K3 surface Y , our calculations yield the following results.

The numbers of points over F5d are, in this order, 33, 669, 15 522,
391 861, 9 768 668, 244 132 734, 6 103 019 942, 152 588 860 821, 3 814 709 624 898,
and 95 367 420 137 974. The traces of the Frobenius on H2

ét(YF5
,Q`) are 8, 44,

−103, 1 236, 3 043, −7 891, −495 683, 970 196, 12 359 273, and −11 502 651.

The decomposition of the scaled characteristic polynomial is

(t− 1)2(5t20 + 2t19 + t18 + 5t17 + 2t16 + 2t15 + 5t14 + 8t13 + 4t12 + 2t11

+ 8t10 + 2t9+4t8 + 8t7 + 5t6 + 2t5 + 2t4 + 5t3 + t2 + 2t + 5)/5 .

Consequently, the geometric Picard rank is equal to 2.

Construction of symmetric (3× 3)-matrices with decoupled determinant.
A general ternary sextic has 28 coefficients. It is decoupled if 15 of these vanish.
Thus, a randomly chosen sextic form in Fq[x, y, z] is decoupled with a probability
of q−15. This is too low for our purposes.

On the other hand, we can think of decoupling as solving a nonlinear system
of 15 equations in 36 variables. One could try to attack this system by a Gröbner
base calculation. We use a mixture of both methods. More precisely, we do the
following.

Method 7.5 We construct the matrix M in the particular form

M :=

 a(x, y, z) b(x, z) c1(x, y, z)
b(x, z) c2(x, y, z) c3(x, y, z)

c1(x, y, z) c3(x, y, z) d(x, z)

 .

i) We choose the quadratic forms c1, c2, c3, and d, randomly.



ii) In a second step, we have to fix the nine coefficients of the quadratic forms a
and b. The coefficients of det M at x6−i−jyizj for i, j > 0 are linear functions of
the coefficients of a and b. Observe that the summand −b2d does not contribute
to these critical coefficients.

Thus, we have to solve a system of 15 linear equations in nine variables. Naively,
such a system is solvable with a probability of q−6.

If it is not solvable then we go back to the first step.

Remarks 7.6 i) We randomly generated a sample of 30 surfaces over F3. For each
of them, the branch locus was smooth and had passed the two tests described in
Section 3, to exclude the existence of a tritangent and to ensure there was exactly
one conic over F3 tangent in six points.

We could establish the equality rk Pic(XF3
) = 2 in three of the examples. Example

7.1.i) reproduces one of them.

ii) Using the probabilistic method described above, we generated a sample of 50
surfaces over F5. We made sure that for each of them the branch sextic was
smooth, had exactly one tritangent, and no conic over F5 tangent in six points.
Further, it was decoupled by construction. It took Magma approximately one hour
to generate that sample.

Having counted points over F5d for d ≤ 9, we were able to establish the equality
rkPic(YF5

) = 2 in two of the examples. For those, we determined, in addition,
the numbers of points over F510 . Example 7.1.ii) reproduces one of the two.

8. K3 surface of degree 2 given by a symmetric (6× 6)-determinant

Examples 8.1 i) Let X ′ be the surface over F3 given by w2 = f6(x, y, z) for

f6 = det

x


0 0 0 0 2 2
0 1 0 1 0 1
0 0 2 1 1 2
0 1 1 1 1 1
2 0 1 1 2 2
2 1 2 1 2 0

+ y


0 2 1 1 2 1
2 2 2 2 2 2
1 2 0 1 1 0
1 2 1 1 1 1
2 2 1 1 2 2
1 2 0 1 2 0

+ z


2 1 1 1 2 0
1 1 0 1 2 1
1 0 2 1 1 2
1 1 1 0 0 1
2 2 1 0 2 2
0 1 2 1 2 0




= x6 + x5y + 2x5z + 2x4y2 + 2x4yz + 2x2y3z + x2z4

+ 2xy5 + 2xy4z + 2y6 + 2y5z + y2z4 + 2yz5 .

ii) Further, let Y ′ be the K3 surface over F5 given by w2 = f6(x, y, z) for

f6 = det

x


3 4 3 4 4 1
4 3 0 2 1 0
3 0 4 0 3 0
4 2 0 2 1 3
4 1 3 1 0 2
1 0 0 3 2 1

+ y


0 0 3 3 0 1
0 2 0 1 3 1
3 0 5 0 3 5
3 1 0 3 5 5
0 3 3 5 0 1
1 1 5 5 1 3

+ z


2 1 1 1 0 5
1 0 4 4 4 4
1 4 2 3 0 2
1 4 3 1 2 2
0 4 0 2 3 1
5 4 2 2 1 0







= 2x6 + x5y + 2x4y2 + 3x4z2 + x3y3 + 2x3z3 + x2y4 + 3x2z4 + 2xy5 + 4z6 .

Theorem 8.2 Let S be any K3 surface over Q such that its reduction modulo
3 is isomorphic to X ′ and its reduction modulo 5 is isomorphic to Y ′. Then,
rkPic(SQ) = 1.

Proof. Consider the branch locus of X ′. For the conic C, given by
xz + y2 + 2yz + 2z2 = 0, there is the parametrization

q : u 7→ [(2u2 + u + 1) : u : 1].

We find

f6(q(u)) = (u2 + u + 2)2(u4 + u + 2)2,

i.e. C admits the property of being tangent in six points and the corresponding
divisor on X ′ splits already over F3. The branch sextic of Y ′ has a degenerate
tritangent given by x = 0.

To verify that rkPic(X ′
F3

) ≤ 2 and rkPic(Y ′
F5

) ≤ 2, again, we used the meth-
ods described in section 4. We counted points over F3d and F5d , respectively, for
d ≤ 10. Observe, for Y ′, we could use the faster method since the sextic form on
the right hand side is decoupled. �

Corollary 8.3 Let S be the K3 surface over Q given by w2 = f6(x, y, z) for f6 =

det

x

0BBBBB@
−2382 −21 3 −6 −1 −4
−21 28 0 7 6 −5

3 0 −1 −5 −2 5
−6 7 −5 7 1 −2
−1 6 −2 1 5 2
−4 −5 5 −2 2 6

1CCCCCA + y

0BBBBB@
0 5 −2 −2 5 1
5 2 5 −4 −7 −4
−2 5 0 −5 −2 0
−2 −4 −5 −2 −5 −5

5 −7 −2 −5 5 −4
1 −4 0 −5 −4 3

1CCCCCA + z

0BBBBB@
2 1 1 1 5 0
1 −5 −6 4 −1 4
1 −6 2 −2 −5 2
1 4 −2 6 −3 7
5 −1 −5 −3 −7 −4
0 4 2 7 −4 0

1CCCCCA



= 76 139 167x6 + 231 184 081x5y + 210 075 725x5z

+ 25 609 337x4y2 + 487 337 315x4yz − 314 154 987x4z2

− 141 937 719x3y3 + 283 035 180x3y2z − 434 149 815x3yz2 − 5 367 468x3z3

− 175 763 034x2y4 + 168 686 090x2y3z

− 421 490 010x2y2z2 + 160 009 155x2yz3 − 153 566 957x2z4

− 90 295 273xy5 + 175 779 575xy4z − 285 747 180xy3z2

+ 327 585 255xy2z3 − 215 766 345xyz4 + 94 479 045xz5

+ 133 220y6 + 31 145y5z + 380 715y4z2 − 324 195y3z3 − 476 810y2z4

+ 40 2845yz5 − 174 261z6 .

i) Then, rkPic(SQ) = 1.

ii) Further, S(Q) 6= ∅. For example, [1286 : 1 : 1 : 1] ∈ S(Q).



Remarks 8.4 i) For the K3 surface X ′, our calculations show the following.

The numbers of the points defined over F3d for d = 1, . . . , 10 are, in this order, 12,
90, 783, 6 534, 59 697, 535 329, 4 793 661, 43 079 526, 387 521 091, and 3 487 248 045.
The traces of the Frobenius φF

pd
= φd on H2

ét(X
′
F3

,Q`) are 3, 9, 54, −27, 648,
3 888, 10 692, 32 805, 100 602, and 463 644.

The decomposition of the scaled characteristic polynomial is

(t− 1)2(3t20 + 3t19 + 3t18 + 2t17 + 3t16 + 2t15 − 2t13 − 3t12 − 4t11

− 6t10 − 4t9 − 3t8 − 2t7 + 2t5 + 3t4 + 2t3 + 3t2 + 3t + 3)/3 .

Consequently, the geometric Picard rank is equal to 2.

ii) For the K3 surface Y ′, our calculations yield the following results.

The numbers of points over F5d are, in this order, 36, 666, 15 711,
391 706, 9 763 601, 244 152 021, 6 103 934 341, 152 589 189 186, 3 814 705 355 181,
and 95 367 412 593 451. The traces of the Frobenius on H2

ét(Y
′
F5

,Q`) are 11, 41,
86, 1 081, −2 024, 11 396, 418 716, 1 298 561, 8 089 556, and −19 047 174.

The decomposition of the scaled characteristic polynomial is

(t− 1)2(5t20 − t19 + t18 + 2t17 + 3t15 + t14 − 2t13 + t12 − t11

+ 2t10 − t9 + t8 − 2t7 + t6 + 3t5 + 2t3 + t2 − t + 5)/5 .

It follows that the geometric Picard rank is equal to 2.

Construction of symmetric (6× 6)-matrices with decoupled determinant.

Method 8.5 a) We construct a symmetric (6× 6)-matrix M0 the entries of which
are linear forms only in y and z. The goal is that its determinant is decoupled,
i.e.

det M0 = ay6 + bz6

for certain a, b ∈ Fq, not both vanishing.

This leads to five conditions for the coefficients.

i) We choose all entries in M0 randomly except for (M0)11.

ii) The determinant is linear in the coefficients of (M0)11. Therefore, we have a
system of five linear equations in two variables. Such a system is solvable with a
probability of q−3 which is enough for our purposes.

If there is no solution then we return to step i).

b) We construct M in the form

M := M0 + xA

for A a symmetric matrix with entries in Fq.



i) First, look at the monomials xyiz5−i for i = 1, . . . , 4, only. Insisting that their
coefficients vanish gives a system of four linear equations. In general, its solutions
form a 17-dimensional vector space.

ii) For decoupling, six further coefficients have to vanish. We are left with 17
parameters and six non-linear equations.

We choose the parameters randomly and iterate this procedure until a solution is
found. Naively, the probability to hit a solution is q−6.

Remarks 8.6 i) We randomly generated a sample of 50 surfaces over F3. For each
of them, the branch sextic was smooth and had passed the two tests described in
Section 3, to exclude the existence of a tritangent and to ensure there was exactly
one conic over F3 tangent in six points.

We established rkPic(X ′
F3

) = 2 in eleven of the examples. Example 8.1.i) is one
of them.

ii) Using the probabilistic method described above, we generated a sample of
120 surfaces over F5. For each of them, the branch sextic was decoupled, by
construction. We made sure, in addition, that it was smooth, had exactly one
tritangent, and no conic, defined over F5, which was tangent in six points. It took
Magma half a day to generate that sample.

Having counted points over F5d for d ≤ 9, we were able to establish the equality
rkPic(Y ′

F5
) = 2 in three of the examples. For those, we determined also the

number of points over F510 . Example 8.1.ii) reproduces one of the three.
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